
SD Codes: Erasure Codes Designed for How Storage Systems Really Fail
Technical Report UT-CS-12-701, EECS Department, University of Tennessee, November, 2012

James S. Plank
Department of Electrical Engineering and Computer Science

University of Tennessee
plank@cs.utk.edu

Mario Blaum, James L. Hafner
IBM Research Division, Almaden Research Center

mblaum@hotmail.com, hafner@us.ibm.com

Abstract
Traditionally, when storage systems employ erasure

codes, they are designed to tolerate the failures of en-
tire disks. However, the most common types of fail-
ures are latent sector failures, which only affect individ-
ual disk sectors, and block failures which arise through
wear on SSD’s. This paper introduces SD codes, which
are designed to tolerate combinations of disk and sec-
tor failures. As such, they consume far less storage re-
sources than traditional erasure codes. We specify the
codes with enough detail for the storage practitioner to
employ them, discuss their practical properties, and de-
tail an open-source implementation.

1 Introduction

Storage systems have grown to the point where failures
are commonplace and must be tolerated to prevent data
loss. All current storage systems that are composed
of multiple components employ erasure codes to han-
dle disk failures. Examples include commercial stor-
age systems from Microsoft [10, 22], IBM [24], Ne-
tapp [12], HP [29], Cleversafe [42] and Panasas [52],
plus numerous academic and non-commercial research
projects [8, 11, 20, 25, 26, 43, 47, 48, 51, 54]. In all
of these systems, the unit of failure is the disk. For ex-
ample, a RAID-6 system dedicates two parity disks to
tolerate the simultaneous failures of any two disks in the
system [4, 12]. Larger systems dedicate more disks for
coding to tolerate larger numbers of failures [10, 42, 51].

Recent research, however, studying the nature of fail-
ures in storage systems, has demonstrated that failures of
entire disks are relatively rare. The much more common
failure type is the Latent Sector Error or Undetected Disk
Error where a sector on disk becomes corrupted, and this
corruption is not detected until the sector in question is
subsequently accessed for reading [2, 14, 19].

Additionally, storage systems are increasingly em-
ploying solid state devices as core components [3, 18,

23, 33]. These devices exhibit wear over time, which
manifests in the form of blocks becoming unusable as
a function of their number of overwrites, and in blocks
being unable to hold their values for long durations.

To combat block failures, systems employ scrubbing,
where sectors and blocks are proactively probed so that
errors may be detected and recovered in a timely man-
ner [1, 14, 35, 44, 45]. The recovery operation proceeds
from erasure codes — a bad sector on a device holding
data is reconstructed using the other data and coding de-
vices. A bad sector on a coding device is re-encoded
from the data devices.

Regardless of whether a system employs scrubbing, a
potentially catastrophic situation occurs when a disk fails
and a block failure is discovered on a non-failed device
during reconstruction. It is exactly this situation which
motivated companies to switch from RAID-5 to RAID-6
systems in the past decade [12, 14].

However, the RAID-6 solution to the problem is
overkill: two entire disk’s worth of storage are dedicated
to tolerate the failure of one disk and one sector. In ef-
fect, an entire disk is dedicated to tolerate the failure of
one sector.

In this paper, we present an alternative erasure cod-
ing methodology. Instead of dedicating entire disks for
fault-tolerance, we dedicate entire disks and individual
sectors. For example, in the RAID-6 scenario above, in-
stead of dedicating two disks for fault-tolerance, we ded-
icate one disk and one sector per stripe. The system is
then fault-tolerant to the failure of any single disk and
any single sector within a stripe.

We name the codes “SD” for “Sector-Disk” erasure
codes. They have a general design, where a system com-
posed of n disks dedicates m disks and s sectors per
stripe to coding. The remaining sectors are dedicated to
data. The codes are designed so that the simultaneous
failures of any m disks and any s sectors per stripe may
be tolerated without data loss.

In this paper, we present these codes for the storage



practitioner and researcher. We do not dwell on the
codes’ theoretical aspects, but instead present them in
such a way that they may be used in practical storage
settings. To that end, we have written an SD encoder and
decoder in C, which we post as open source code.

2 System Model and Nomenclature

We concentrate on a stripe of a storage system, as pic-
tured in Figure 1. The stripe is composed of n disks,
each of which holds r sectors. We may view the stripe as
a r × n array of sectors; hence we call r the number of
rows. Of the n disks, m are devoted exclusively to cod-
ing. In the remaining n −m disks, s additional sectors
are also devoted to coding. These sectors are distributed
evenly among the n−m disks. By convention, we picture
them in the bottom rows of the array.

Figure 1: A stripe in a storage system with n total disks.
Each disk is partitioned into r rows of sectors. Of the n
disks, m are devoted exclusively to coding, and s addi-
tional sectors are devoted to coding.

While we refer to the basic blocks of the array as sec-
tors, they may comprise multiple sectors. For the pur-
poses of coding, we will also consider them to be w-bit
symbols, where w is a parameter of the erasure code,
typically 8, 16 or 32, so that sectors may be partitioned
evenly into symbols. As such, we will use the terms
“block,” “sector” and “symbol” interchangeably.

Storage systems may be partitioned into many stripes,
where the identities of the coding disks change from
stripe to stripe to alleviate bottlenecks. The identities
may be rotated as in RAID-5, or performed on an ad-
hoc, per-file basis as in Panasas [52]. Blocks may be
small, as in the block store of Cleversafe’s distributed file
system [42] or large as in Google FS [15]. A thorough
discussion of the performance implications of mapping

erasure code symbols to disk blocks may be found in re-
cent work by Khan et al [25].

3 Arithmetic for Coding

To perform encoding and decoding, each coding sym-
bol is defined to be a linear combination of the data
symbols. The arithmetic employed is Galois Field arith-
metic over w-bit symbols, termed GF (2w). This is the
standard arithmetic of Reed-Solomon coding. Addition
in GF (2w) is equivalent to the bitwise exclusive-or op-
eration. Multiplication is more complex, but for the pur-
poses of this paper, we do not need to consider how it
is implemented. Please see the tutorial by Plank [39]
and further material by Greenan et at [16] and Luo et
at [31] for details on implementing Galois Field arith-
metic in software. Open source implementations of Ga-
lois Field arithmetic are abundant (e.g. [34, 37, 41]). Al-
though Plank et at demonstrated that erasure codes based
on Galois Fields are roughly four times slower than those
based on XOR operations [40], new processor architec-
tures that implement Intel’s SSE2 extensions allow us to
implement GF (28) and GF (216) at rates that are cache,
rather than CPU-limited. GF (232) is only marginally
slower.

Typical presentations of erasure codes based on Ga-
lois Field arithmetic use terms like “irreducible polyno-
mials” and “primitive elements” to define the codes [5, 6,
32, 38]. In our work, we simply use numbers between 0
and (2w−1) to represent w-bit symbols, and assume that
the codes are implemented with a standard Galois Field
arithmetic library such as those listed above. Our goal is
to be practical rather than overly formal.

4 SD Code Specification

SD codes are defined by six parameters listed below:

Parameter Description
n The total number of disks
m The number of coding disks
s The number of coding sectors
r The number of rows per stripe

GF (2w) The Galois field
A = {a0, . . . , am+s−1} Coding coefficients

We label the disks D0 through Dn−1 and assume that
disks Dn−m through Dn−1 are the coding disks. There
are nr blocks in a stripe, and we label them in two ways.
The first assigns subscripts for the row and the disk, so
that disk Di holds blocks b0,i through br−1,i. This la-
beling is the one used in Figure 1. The second sim-
ply numbers the blocks consecutively, b0 through bnr−1.

2



The mapping between the two is that block bj,i is also
block bjn+i. Figure 2 shows the same stripe as Figure 1,
except the blocks are labeled with their single subscripts.

Figure 2: The same stripe as Figure 1, except blocks are
labeled with single subscripts.

Instead of using a generator matrix as in Reed
Solomon codes, we employ a set of mr + s equations,
each of which sums to zero. The first mr of these are
labeled Cj,x, with 0 ≤ x < m and 0 ≤ j < r. They are
each the sum of exactly n blocks in a single row of the
array:

Cj,x :

n−1∑
i=0

ajn+i
x bj,i = 0.

The remaining s equations are labeled Sx with 0 ≤ x <
s. They are the sum of all nr blocks:

Sx :

rn−1∑
i=0

aim+xbi = 0.

Intuitively, one can consider each block bj,i on a cod-
ing disk to be governed by Cj,x, and each additional
coding block governed by a different Sx. However, the
codes are not as straightforward as, for example, clas-
sic Reed-Solomon codes, where each coding block is
the linear combination of the data blocks. Instead, un-
less m equals one, every equation contains multiple cod-
ing blocks, which means that encoding must be viewed
as a special case of decoding.

A concrete example helps to illustrate and convey
some intuition. Figure 3 shows the ten equations that
result when the stripe of Figures 1 and 2 is encoded
with A = {1, 2, 4, 8}. The figure is partitioned into four
smaller figures, which show the encoding with each ai.
The top two figures show the equations Cj,0 and Cj,1,
which employ a0 and a1 respectively. Each equation is
the sum of six blocks. The bottom two figures show S0

and S1, which are each the sum of all 24 blocks.
As mentioned above, encoding with these equations is

not a straightforward activity, since each of the ten equa-
tions contains at least two coding blocks. Thus, encoding

Figure 3: The ten equations to define the code when n =
6, m = 2, s = 2 and the values of ai are 1, 2, 4 and 8.

is viewed as a special case of decoding — when the two
coding disks and two coding sectors fail.

The decoding process is straightforward linear alge-
bra. When a collection of disks and sectors fail, their
values of bi are considered unknowns. The non-failed
blocks are known values. Therefore, the equations be-
come a linear system with unknown values, which may
be solved using Gaussian Elimination.

For example, suppose we want to encode the system
of Figure 3. To do that, we assume that disks 4 and 5
have failed, along with blocks b20 and b21. The ten equa-
tions are rearranged so that the failed blocks are on the
left and the nonfailed blocks are on the right. Since ad-
dition is equivalent to exclusive-or, we may simply add
a term to both sides of the equation to move it from one
side to another. For example, the four equations for Cj,1

become:

24b4 + 25b5 = b0 + 2b1 + 22b2 + 23b3
210b10 + 211b11 = 26b6 + 27b7 + 28b8 + 29b9
216b16 + 217b17 = 212b12 + 213b13 + 214b14 + 215b15
220b20 + 221b21 + 222b22 + 223b23 = 218b18 + 219b19

We are left with ten equations and ten unknowns,
which we then solve with Gaussian Elimination or ma-
trix inversion.

This method of decoding is a standard employment of
a Parity Check Matrix [32, 38]. This matrix (convention-
ally labeled H) contains a row for every equation and a

3



column for every block in the system. The element in
row i column j is the coefficient of bj in equation i. The
vector B = {b0, b1, . . . , bnr−1} is called the codeword,
and the mr + s equations are expressed quite succinctly
by the equation HB = 0.

5 The SD Condition and Constructions

A code specified by the parameters above is SD if it de-
codes all combinations of m disks and s sectors (blocks).
In other words, when the mr+ s decoding equations are
created, the Gaussian Elimination proceeds successfully.
Put another way, the sub-matrix of the Parity Check Ma-
trix composed of the columns that correspond to failed
blocks must be invertible.

Unlike Reed-Solomon codes, there is no general SD
code construction for arbitrary n, m, s and r. However,
for parameters that are likely in storage systems, we do
have valid constructions of SD codes. In the absence of
theory, verifying that a set of parameters generates a valid
SD code requires enumerating failure scenarios and ver-
ifying that each scenario can be handled. There are:(

n

m

)(
r(n−m)

s

)
failure scenarios, which means that the time to verify
codes blows up exponentially. For example, verifying the
SD code for n = 24, m = 3, s = 3, r = 24 and w = 32
took roughly three days on a standard processor.

There is some theory to help us in certain cases. Blaum
et al have developed verification theorems for PMDS
codes, which are a subset of SD codes [5]. PMDS codes
provably tolerate more failures than SD codes: m arbi-
trary failures per row, plus any additional s failures in
the stripe. For the purposes of most storage systems, we
view the additional failure protection of PMDS codes as
overkill; however, when their verification theorems ap-
ply, they are faster than enumerating failure scenarios.
Therefore, we use them to verify codes, and when we
fail to verify that codes are PMDS, we resort to the enu-
meration above.

As with Reed-Solomon codes, the choice of w affects
code construction — larger values of w generate more
codes. However, the rule of thumb is that larger values
of w also result in slower CPU performance. Therefore,
we start our search with w = 8, then move to w = 16
and then to w = 32. We focus on 4 ≤ n ≤ 24, 1 ≤
m ≤ 3, 1 ≤ s ≤ 3 and r ≤ 24, which encompasses the
majority of situations where SD codes will apply.

We focus on two constructions. The first is when ai =
2i in GF (2w). This is called “Code C(1) by Blaum
et al [5], who have developed PMDS theorems for it.
We will call it “the main construction.” The second is

4 8 12 16 20 24

4

8

12

16

20

24

r 
(r

o
w

s)

w=8 Main-PMDS

w=8 Main-SD

w=8 Random-SD

n

4 8 12 16 20 24

4

8

12

16

20

24

r 
(r

o
w

s)

n

m=1

4 8 12 16 20 24

w=16 Main-PMDS

w=16 Main-SD

w=16 Random-SD

n

4 8 12 16 20 24

n

m=2

4 8 12 16 20 24

w=32 Main-PMDS

w=32 Main-SD

n

s=2

4 8 12 16 20 24

n

s=3

m=3

Figure 4: SD codes for values of n, m, s and r that would
be common in disk systems.

when a0 is equal to one, but the other ai are chosen arbi-
trarily. We will call these “random constructions.” Given
values of n, m, r, s and w, our methodology for con-
structing SD codes as a follows. We first test whether the
main construction is PMDS according to Blaum et al.
If not, then we perform the enumeration to test whether
the main construction code is SD, but not PMDS. If not,
we then perform a Monte Carlo search to find a random
SD construction. If the Monte Carlo search fails, we
leave the search for the code to be an open problem. Al-
though we have dedicated months of CPU time to the
Monte Carlo searches, many SD constructions remain
open. However, we digest our results below.

We start with m = 1 and s = 1, and we are pro-
tecting the system from one disk and one sector fail-
ure. We anticipate that a large number of storage sys-
tems will fall into this category, as it handles the com-
mon failure scenarios of RAID-6 with much less space
overhead. The main construction is PMDS so long
as n ≤ 2w[5]. Therefore, GF (28) may be used for all
systems with at most 256 disks. When m > 1 and s = 1,
the main construction is PMDS as long as nr ≤ 2w.
Therefore, GF (28) may be used while nr ≤ 256,
and GF (216) may be used otherwise.

For the remaining combinations of m and s, we digest
the results of our search in Figure 4. There is only PMDS
theory for m = 1; hence for m = 2 and m = 3, all of
the codes are verified using enumeration. As would be
expected, PMDS and SD codes for smaller values of n,
m, s and r exist with w = 8. As the parameters grow, we
cannot find codes for w = 8, and must shift to w = 16.
As they grow further, we shift to w = 32. For all the

4



parameters that we have tested, the main construction is
SD for w = 32.

The bottom line is that for parameters that are use-
ful in today’s disk systems, there exist SD codes, often
in GF (28) or GF (216).

6 Practical Properties of SD Codes

The main property of SD codes that makes them attrac-
tive alternatives to standard erasure codes such as RAID-
6 or Reed-Solomon codes is the fact that they toler-
ate combinations of disk and sector failures with much
lower space overhead. Specifically, to tolerate m disk
and s sector failures, a standard erasure code needs to de-
vote m+s disks to coding. An SD code devotes m disks,
plus s sectors per stripe. This is a savings of s(r−1) sec-
tors per stripe, or s(r−1)

r disks per system. The savings
grow with r and are independent of the number of disks
in the system (n) and the number of disks devoted to
fault-tolerance (m). Figure 5 shows the significant sav-
ings as functions of s and r.

0 4 8 12 16 20 24

r

0

1

2

3

S
a
v
in

g
s 

(#
 D

is
k

s)

s = 3

s = 2

s = 1

Figure 5: Space savings of SD codes over standard era-
sure codes as a function of s and r.

We evaluate the overhead of encoding and decoding in
terms of full-stripe operations. The reason is that many
storage systems do not perform erasure coding until the
data has reached a threshold size, preferring replication
or triplication until enough data has accumulated to mit-
igate the overhead of encoding [10, 22, 52]. The main
overhead of encoding is the I/O, which is similar for all
erasure coding schemes.

To assess the CPU overhead of encoding a stripe, we
implemented encoders and decoders for both SD and
Reed-Solomon codes. We use the Intel SSE2 instruction
set to accelerate the performance of Galois Field arith-
metic, which results in roughly a factor of ten improve-
ment in performance over the open-source erasure cod-
ing packages tested in [40]. We ran tests on a single Intel
Core i7 CPU running at 3.07 GHz. We test all values of n
between 4 and 24, m between 1 and 3, and s between
1 and 3. We also test standard Reed-Solomon coding.

For the Reed-Solomon codes, we test GF (28), GF (216)
and GF (232). For the SD codes, we set r = 16, and use
the codes from Figure 4.

4 8 12 16 20 24

n

m = 1

0

1000

2000

3000

4000

S
p

ee
d

 (
M

B
/s

)

4 8 12 16 20 24

n

m = 2

RS, w=8

RS, w=16

RS, w=32

4 8 12 16 20 24

n

m = 3

SD, s=1

SD, s=2

SD, s=3

Figure 6: CPU performance of encoding with Reed-
Solomon and SD codes.

The results are in Figure 6. Each data point is the av-
erage of ten runs. We plot the speed of encoding, which
is measured as the amount of data encoded per second,
using stripes whose sizes are roughly 32 MB. For exam-
ple, when n = 10, m = 2 and s = 2, we employ a block
size of 204 KB. That results in a stripe with 160 blocks
(since r = 16) of which 126 hold data and 34 hold cod-
ing. That is a total of 31.875 MB, of which 25.10 MB is
data. It takes 0.0225 seconds to encode the stripe, which
is plotted as a rate of 25.10/0.0225 = 1116 MB/s.

The jagged lines in Figure 6 are a result of switch-
ing between GF (216) and GF (232), because the Monte
Carlo search found codes in GF (216) for some values
of n, but did not for others. Because the performance
of GF (28) is only marginally faster than GF (216), the
effect of switching between GF (28) and GF (216) is less
noticeable.

While SD encoding is slower than Reed-Solomon cod-
ing, the speeds in Figure 6 are much faster than measure-
ments of Plank et al [40], which used slower Galois Field
arithmetic libraries. Since those speeds were deemed fast
enough to keep up with the disks of 2009, we aver that
these speeds are well fast enough to keep up with current
disks. Put another way, as with other current erasure cod-
ing systems (e.g. [22, 25]), the CPU is not the bottleneck;
performance is limited by I/O.

To evaluate decoding, we note first that the worst case
of decoding SD codes is equivalent to encoding. That
is because encoding is simply a special case of decod-
ing that requires the maximum number of equations and
terms. The more common decoding cases are faster. In
particular, so long as there are at most m failed blocks
per row of the stripe, we may decode exclusively from
the Cj,x equations. This is important, because the Cj,x

equations have only n terms, and therefore require less
computation and I/O than the Sx equations. We do not

5



evaluate this experimentally, but note that the decoding
rate for f blocks using the Cj,x equations will be equiv-
alent to the Reed-Solomon encoding rate for m = f in
Figure 6.

A final property that we consider is the update penalty
of the codes. This is the number of coding blocks that
must be updated when a data block is modified. In a
Reed-Solomon code, the update penalty achieves its min-
imum value of m. Other codes, such as EVENODD [4],
RDP [12] and Cauchy Reed-Solomon [7] codes have
higher update penalties. Assuming that s ≤ n −m, the
update penalty of SD codes is roughly 2m+ s, which is
rather high. For that reason, these codes may be more ap-
propriate for log-based storage systems which do not al-
low overwriting of data [36, 46], or cloud-based systems
where stripes become immutable once they are erasure
coded [10, 22].

7 Open Source Implementation

We have implemented an SD encoder and decoder in C
and will post it as open source under the New BSD Li-
cense. The programs allow a user to import data and/or
coding information and then to perform either encod-
ing or decoding using the techniques described above.
The Galois Field arithmetic implementation leverages
the SSE2 instructions for fast performance as described
above in Section 6. The programs include all of the SD
constructions described in Section 5 above.

Our implementation does not implement RAID or any
other storage methodology. As such, we do not expect
users to employ the implementation directly, but instead
to use it as a blueprint for building their own SD encoded
systems.

8 Related Work

The most recent work on erasure codes for storage sys-
tems has focused on improving the I/O performance of
systems that tolerate multiple failures, when single fail-
ures occur [25, 50, 53], and on regenerating codes that
replace lost data and coding blocks with reduced I/O for
decoding [9, 13, 20, 49]. The focus of this work is on
MDS codes in more classic erasure coding environments.

Non-MDS codes have been explored recently because
of their reduced I/O costs and applicability to very large
systems [17, 21, 28, 30]. SD codes are not strictly MDS,
because they do not tolerate the failures of any mr + s
blocks in a stripe. However, unlike previous work, they
address the heterogeneous failure modes that current disk
systems exhibit.

As noted in Section 5, SD codes are a superset of
PMDS codes for which some theory has been devel-

oped [5]. Since they are more stringent, there are fewer
PMDS codes for the parameters that we explore, and
we don’t view the additional fault-tolerance provided by
PMDS codes to be overly useful in today’s storage sys-
tems. However, if more theory is developed for PMDS
codes, it can be applied to SD codes as in Section 5.
Blaum et al were able to discover more PMDS codes for
16-bit symbols by using a variant of GF (216) that is a
ring rather than a field. There may be more SD codes as
well in this ring than in the field. Unfortunately, the Ga-
lois Field libraries mentioned above do not support rings,
so we did not employ them in our search.

A second similar code is the “diff-MDS” code from
IBM [27]; however, the focus of this code is correcting
bit flips in main memory instead of erasures in storage
systems.

Recently, Huang et al have introduced LRC codes,
which are the erasure codes used in Microsoft’s Azure
cloud storage [22]. These codes are equivalent to PMDS
codes for m = 1 and are therefore also SD codes.
They were designed for a different purpose, because each
block in a stripe is stored on a different disk; however,
they have the same properties as SD codes. We are ex-
cited that codes with these properties are having impact
in today’s large scale systems, and anticipate that further
parameterizations of SD codes will have far reaching im-
pact in cloud systems.

9 Conclusion

We have presented a class of erasure codes designed for
how today’s storage systems actually fail. Rather than
devote entire disks to coding, our codes devote entire
disks and individual sectors in a stripe, and tolerate com-
binations of disk and sector failures. As such, they em-
ploy far less space for coding than traditional erasure
coding solutions.

The codes are similar to Reed-Solomon codes in that
they are based on invertible matrices and Galois Field
arithmetic. Their constructions are composed of sets of
equations that are solved using linear algebra for encod-
ing and decoding. Their performance is not as fast as
Reed-Solomon coding, but fast implementations of Ga-
lois Field arithmetic allow them to perform at speeds that
are fast enough for today’s storage systems.

We have written programs that encode and decode us-
ing our codes, which we will post as open source, so that
storage practitioners may employ the codes without hav-
ing to understand the mathematics behind them. We are
enthused that instances of these codes, developed inde-
pendently by Huang et al [22], are the basis of fault-
tolerance in Microsoft’s Azure cloud storage system. As
such, we anticipate that these codes will have high appli-
cability in large-scale storage installations.

6



References

[1] G. Amvrosiadis, A. Oprea, and B. Schroeder. Prac-
tical scrubbing: Getting to the bad sector at the right
time. In DSN-2012: The International Conference
on Dependable Systems and Networks, Boston,
MA, June 2012. IEEE.

[2] L. N. Bairavasundaram, G. Goodson, B. Schroeder,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
An analysis of data corruption in the storage stack.
In FAST-2008: 6th Usenix Conference on File and
Storage Technologies, San Jose, February 2008.

[3] M. Balakrishnan, A. Kadav, V. Prabhakaran, and
D. Malkhi. Differential RAID: Rethinking RAID
for SSD reliability. ACM Transactions on Storage,
6(2), July 2010.

[4] M. Blaum, J. Brady, J. Bruck, and J. Menon.
EVENODD: An efficient scheme for tolerat-
ing double disk failures in RAID architectures.
IEEE Transactions on Computing, 44(2):192– 202,
February 1995.

[5] M. Blaum, J. L. Hafner, and S. Hetzler. Partail-
MDS codes and their application to RAID type
of architectures. IBM Research Report RJ10498
(ALM1202-001), February 2012.

[6] M. Blaum and R. M. Roth. On lowest density MDS
codes. IEEE Transactions on Information Theory,
45(1):46–59, January 1999.

[7] J. Blomer, M. Kalfane, M. Karpinski, R. Karp,
M. Luby, and D. Zuckerman. An XOR-based
erasure-resilient coding scheme. Technical Report
TR-95-048, International Computer Science Insti-
tute, August 1995.

[8] K. Bowers, A. Juels, and A. Oprea. Hail: A high-
availability and integrity layer for cloud storage. In
16th ACM Conference on Computer and Commu-
nications Security, 2009.

[9] V. Cadambe, C. Huang, J. Li, and S. Mehrotra.
Compound codes for optimal repair in MDS code
based distributed storage systems. In Asilomar
Conference on Signals, Systems and Computers,
2011.

[10] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,
J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Kha-
tri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi,
A. Agarwal, M. Fahim ul Haq, M. Ikram ul Haq,
D. Bhardwaj, S. Dayanand, A. Adusumilli, M. Mc-
Nett, S. Sankaran, K. Manivannan, and L. Rigas.

Windows Azure Storage: A highly available cloud
storage service with strong consistency. In 23rd
ACM Symposium on Operating Systems Principles,
October 2011.

[11] B. Chen, R. Curtmola, G. Ateniese, and R. Burns.
Remote data checking for network coding-based
distributed storage systems. In Cloud Computing
Security Workshop, 2010.

[12] P. Corbett, B. English, A. Goel, T. Grcanac,
S. Kleiman, J. Leong, and S. Sankar. Row diag-
onal parity for double disk failure correction. In
3rd Usenix Conference on File and Storage Tech-
nologies, San Francisco, CA, March 2004.

[13] A. G. Dimakis, K. Ramchandran, Y. Wu, and
C. Suh. A survey on network codes for distributed
storage. Proceedings of the IEEE, 99(3), March
2011.

[14] J. G. Elerath and M. Pecht. A highly accurate
method for assessing reliability of redundant arrays
of inexpensive disks. IEEE Transactions on Com-
puters, 58(3):289–299, March 2009.

[15] S. Ghemawat, H. Gobioff, and S. T. Leung. The
Google file system. In 19th ACM Symposium on
Operating Systems Principles (SOSP ’03), 2003.

[16] K. Greenan, E. Miller, and T. J. Schwartz. Opti-
mizing Galois Field arithmetic for diverse proces-
sor architectures and applications. In MASCOTS
2008: 16th IEEE Symposium on Modeling, Analy-
sis and Simulation of Computer and Telecommuni-
cation Systems, Baltimore, MD, September 2008.

[17] K. M. Greenan, X. Li, and J. J. Wylie. Flat XOR-
based erasure codes in storage systems: Construc-
tions, efficient recovery and tradeoffs. In 26th IEEE
Symposium on Massive Storage Systems and Tech-
nologies (MSST2010), Nevada, May 2010.

[18] K. M. Greenan, D. D. Long, E. L. Miller, T. J. E.
Schwarz, and A. Wildani. Building flexible, fault-
tolerant flash-based storage systems. In 5th Work-
shop on Hot Topics in Dependability, Lisbon, Por-
tugal, June 2009.

[19] J. L. Hafner, V. Deenadhayalan, W. Belluomini,
and K. Rao. Undetected disk errors in RAID ar-
rays. IBM Journal of Research & Development,
52(4/5):418–425, July/September 2008.

[20] Y. Hu, H. C. H. Chen, P. P. C. Lee, and Y. Tang.
NCCloud: Applying network coding for the stor-
age repair in a cloud-of-clouds. In FAST-2012: 10th
Usenix Conference on File and Storage Technolo-
gies, San Jose, February 2012.

7



[21] C. Huang, M. Chen, and J. Li. Pyramid codes:
Flexible schemes to trade space for access effi-
cienty in reliable data storage systems. In NCA-
07: 6th IEEE International Symposium on Net-
work Computing Applications, Cambridge, MA,
July 2007.

[22] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,
P. Gopalan, J. Li, and S. Yekhanin. Erasure cod-
ing in Windows Azure storage. In USENIX Annual
Technical Conference, Boston, June 2012.

[23] W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li.
DFS: A file system for virtualized flash storage.
In FAST-2010: 8th Usenix Conference on File and
Storage Technologies, San Jose, February 2010.

[24] D. Kenchammana-Hosekote, D. He, and J. L.
Hafner. REO: A generic RAID engine and opti-
mizer. In FAST-2007: 5th Usenix Conference on
File and Storage Technologies, pages 261–276, San
Jose, February 2007.

[25] O. Khan, R. Burns, J. S. Plank, W. Pierce, and
C. Huang. Rethinking erasure codes for cloud
file systems: Minimizing I/O for recovery and de-
graded reads. In FAST-2012: 10th Usenix Confer-
ence on File and Storage Technologies, San Jose,
February 2012.

[26] H. Klein and J. Keller. Storage architecture with
integrity, redundancy and encryption. In 23rd
IEEE International Symposium on Parallel and
Distributed Processing, Rome, Italy, 2009.

[27] L. A. Lastras-Montaño, P. J. Meaney, E. Stephens,
B. M. Trager, J. O’Connor, and L. C. Alves. A new
class of array codes for memory storage. In Infor-
mation Theory and Applications Workshop (ITA),
La Jolla, CA, February 2011.

[28] M. Li, J. Shu, and W. Zheng. GRID codes: Strip-
based erasure codes with high fault tolerance for
storage systems. ACM Transactions on Storage,
4(4), January 2009.

[29] X. Li, A. Marchant, M. A. Shah, K. Smath-
ers, J. Tucek, M. Uysal, and J. J. Wylie. Effi-
cient eventual consistency in Pahoehoe, an erasure-
coded key-blob archive. In DSN-10: International
Conference on Dependable Systems and Networks,
Chicago, 2010. IEEE.

[30] M. Luby. LT codes. In IEEE Symposium on Foun-
dations of Computer Science, 2002.

[31] J. Luo, K. D. Bowers, A. Oprea, and L. Xu. Effi-
cient software implementations of large finite fields
GF (2n) for secure storage applications. ACM
Transactions on Storage, 8(2), February 2012.

[32] F. J. MacWilliams and N. J. A. Sloane. The Theory
of Error-Correcting Codes, Part I. North-Holland
Publishing Company, Amsterdam, New York, Ox-
ford, 1977.

[33] Y. Oh, J. Choi, D. Lee, and S. H. Noh. Caching less
for better performance: Balancing cache size and
update cost of flash memory cache in hybrid storage
systems. In FAST-2012: 10th Usenix Conference on
File and Storage Technologies, San Jose, February
2012.

[34] Onion Networks. Java FEC Library v1.0.3.
Open source code distribution: http:
//onionnetworks.com/fec/javadoc/,
2001.

[35] A. Oprea and A. Juels. A clean-slate look at disk
scrubbing. In FAST-2010: 8th Usenix Conference
on File and Storage Technologies, pages 57–70,
San Jose, February 2010.

[36] J. K. Ousterhout and F. Douglis. Beating the I/O
bottleneck: A case for log-structured file systems.
Operating Systems Review, 23(1):11–27, January
1989.

[37] A. Partow. Schifra Reed-Solomon ECC Li-
brary. Open source code distribution: http:
//www.schifra.com/downloads.html,
2000-2007.

[38] W. W. Peterson and E. J. Weldon, Jr. Error-
Correcting Codes, Second Edition. The MIT Press,
Cambridge, Massachusetts, 1972.

[39] J. S. Plank. A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systems. Software –
Practice & Experience, 27(9):995–1012, Septem-
ber 1997.

[40] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and
Z. Wilcox-O’Hearn. A performance evaluation
and examination of open-source erasure coding li-
braries for storage. In FAST-2009: 7th Usenix Con-
ference on File and Storage Technologies, pages
253–265, February 2009.

[41] J. S. Plank, S. Simmerman, and C. D. Schuman.
Jerasure: A library in C/C++ facilitating erasure
coding for storage applications - Version 1.2. Tech-
nical Report CS-08-627, University of Tennessee,
August 2008.

8



[42] J. K. Resch and J. S. Plank. AONT-RS: blending
security and performance in dispersed storage sys-
tems. In FAST-2011: 9th Usenix Conference on
File and Storage Technologies, pages 191–202, San
Jose, February 2011.

[43] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon,
B. Zhao, and J. Kubiatowitz. Pond: The
OceanStore prototype. In FAST-2003: 2nd Usenix
Conference on File and Storage Technologies, San
Francisco, January 2003.

[44] B. Schroeder, S. Damouras, and P. Gill. Under-
standing latent sector errors and how to protect
against them. In FAST-2010: 8th Usenix Confer-
ence on File and Storage Technologies, pages 71–
84, San Jose, February 2010.

[45] B. Schroeder and G. Gibson. Disk failures in the
real world: What does an MTTF of 1,000,000 mean
to you? In FAST-2007: 5th Usenix Conference on
File and Storage Technologies, San Jose, February
2007.

[46] M. Seltzer, K. Bostic, M.K. McKusick, and
C. Staelin. An implementation of a log-structured
file system for UNIX. In Conference Proceedings,
Usenix Winter 1993 Technical Conference, pages
307–326, San Diego, CA, January 1993.

[47] M. W. Storer, K. M. Greenan, E. L. Miller, and
K. Voruganti. Pergamum: Replacing tape with en-
ergy efficient, reliable, disk-based archival storage.
In FAST-2008: 6th Usenix Conference on File and
Storage Technologies, pages 1–16, San Jose, Febru-
ary 2008.

[48] M. W. Storer, K. M. Greenan, E. L. Miller, and
K. Voruganti. POTSHARDS – a secure, long-term
storage system. ACM Transactions on Storage,
5(2), June 2009.

[49] C. Suh and K. Ramchandran. Exact regeneration
codes for distributed storage repair using interfer-
ence alignment. In IEEE International Symposium
on Information Theory (ISIT), June 2010.

[50] Z. Wang, A. G. Dimakis, and J. Bruck. Rebuild-
ing for array codes in distributed storage systems.
In GLOBECOM ACTEMT Workshop, pages 1905–
1909. IEEE, December 2010.

[51] B. Warner, Z. Wilcox-O’Hearn, and R. Kinnin-
mont. Tahoe: A secure distributed filesystem.
White paper from http://allmydata.org/

˜warner/pycon-tahoe.html, 2008.

[52] B. Welch, M Unangst, Z. Abbasi, G. Gibson,
B. Mueller, J. Small, J. Zelenka, and B. Zhou. Scal-
able performance of the Panasas parallel file sys-
tem. In FAST-2008: 6th Usenix Conference on File
and Storage Technologies, pages 17–33, San Jose,
February 2008.

[53] L. Xiang, Y. Xu, J. C. S. Lui, and Q. Chang. Op-
timal recovery of single disk failure in RDP code
storage systems. In ACM SIGMETRICS, June 2010.

[54] L. Xu. Hydra: A platform for survivable and se-
cure data storage systems. In International Work-
shop on Storage Security and Survivability (Stor-
ageSS 2005), Fairfax, VA, November 2005.

9


