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Abstract

Traditionally, when storage systems employ erasure codes, they are designed to tolerate the
failures of entire disks. However, the most common types of failures are latent sector failures, which
only affect individual disk sectors, and block failures which arise through wear on SSD’s. This paper
introduces SD codes, which are designed to tolerate combinations of disk and sector failures. As
such, they consume far less storage resources than traditional erasure codes. We specify the codes
with enough detail for the storage practitioner to employ them, discuss their practical properties,
and detail an open-source implementation.

1 Introduction

Storage systems have grown to the point where failures are commonplace and must be tolerated
to prevent data loss. All current storage systems that are composed of multiple components em-
ploy erasure codes to handle disk failures. Examples include commercial storage systems from Mi-
crosoft [CWOT11, HSX*T12], IBM [KHHHO07], Netapp [CEG*04], HP [LMS™*10], Cleversafe [RP11] and
Panasas [WUAT08], plus numerous academic and non-commercial research projects [BJO09, CCAB10,
HCLT12, KBP*12, KK09, REGT03, SGMV08, SGMV09, WWKO08, Xu05]. In all of these systems, the
unit of failure is the disk. For example, a RAID-6 system dedicates two parity disks to tolerate the
simultaneous failures of any two disks in the system [BBBM95, CEG104]. Larger systems dedicate
more disks for coding to tolerate larger numbers of failures [CWO™11, RP11, WWKO08].

Recent research, however, studying the nature of failures in storage systems, has demonstrated that
failures of entire disks are relatively rare. The much more common failure type is the Latent Sector
Error or Undetected Disk Error, where a sector on disk becomes corrupted, and this corruption is not
detected until the sector in question is subsequently accessed for reading [BGST08, EP09, HDBROS|.

Additionally, storage systems are increasingly employing solid state devices as core components [BKPM10,
GLM™09, JBFL10, OCLN12|. These devices exhibit wear over time, which manifests in the form of
blocks becoming unusable as a function of their number of overwrites, and in blocks being unable to
hold their values for long durations.
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Figure 1: Practical motivation for SD codes. (a) In a RAID-5 disk array, there is one disk (P) devoted
to fault-tolerance. The combination of a disk and sector failure results in catastrophic data loss. (b)
RAID-6 solves the data loss problem by adding an extra disk (Q) to store redundancy. (b) An SD code
solves the data loss problem as well, but only adds one extra sector per stripe (s) for redundancy.

To combat block failures, systems employ scrubbing, where sectors and blocks are proactively probed
so that errors may be detected and recovered in a timely manner [AOS12, EP09, 0J10, SDG10, SGO07].
The recovery operation proceeds from erasure codes — a bad sector on a device holding data is recon-
structed using the other data and coding devices. A bad sector on a coding device is re-encoded from
the data devices.

Regardless of whether a system employs scrubbing, a potentially catastrophic situation occurs when
a disk fails and a block failure is discovered on a non-failed device during reconstruction. It is ex-
actly this situation which motivated companies to switch from RAID-5 to RAID-6 systems in the past
decade [CEGT04, EP09.

We use this situation, where a disk and a sector have failed, as motivation in Figure 1. When RAID-5
is employed (Figure 1(a)), there is only one parity disk, and the failed sector, plus one sector on the
failed disk, cannot be recovered. RAID-6 (Figure 1(b)) adds a second parity disk to the system, which
can now tolerate the failure of any two disks. Therefore, it can recover from the loss of a disk and
a sector. However, RAID-6 solution to the problem is overkill. While it does tolerate the failure of
two disks, this is an exceptionally infrequent failure mode, and most systems use RAID-6 primarily to
tolerate the scenario of Figure 1(b). In essence, RAID-6 dedicates an entire disk to tolerate the failure
of one sector.

In this paper, we present an alternative erasure coding methodology. Instead of dedicating entire
disks for fault-tolerance, we dedicate entire disks and individual sectors. In the scenario of Figure 1(c),
instead of dedicating two disks for fault-tolerance, we dedicate one disk and one sector per stripe. The
system is then fault-tolerant to the failure of any single disk and any single sector within a stripe.

We name the codes “SD” for “Sector-Disk” erasure codes. They have a general design, where a
system composed of n disks dedicates m disks and s sectors per stripe to coding. The remaining sectors
are dedicated to data. The codes are designed so that the simultaneous failures of any m disks and
any s sectors per stripe may be tolerated without data loss.

In this paper, we present SD codes for the storage practitioner and researcher. We present their
general design and how they may be implemented in RAID systems. There are a variety of SD con-
structions that apply to systems with different numbers of storage nodes, different stripe sizes and
different fault-tolerance parameters. We present these for parameters that are relevant in today’s stor-
age sytems. There are some open problems in constructing SD codes, which we present so that others
may build on our work.

We next evaluate the practical properties of SD codes, which we summarize briefly here. The main
practical benefit is achieving an enriched level of fault-tolerance with a minimum of extra space. The
CPU performance of the codes is less than standard Reed-Solomon codes, but well fast enough to make
disk I/O the bottleneck rather than CPU. The main performance penalty of the codes is that m + s
sectors must be updated with every modification to a data block, making the codes more ideal for cloud,
archival or append-only settings than for RAID systems that exhibit a lot of small updates.

Finally, we have written an SD encoder and decoder in C, which we post as open source to aid storage
practitioners in implementing these codes in their storage systems.
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Figure 2: A stripe in a storage system with n total disks. Each disk is partitioned into 7 rows of sectors.
Of the n disks, m are devoted exclusively to coding, and s additional sectors are devoted to coding.

2 System Model and Nomenclature

We concentrate on a stripe of a storage system, as pictured in Figure 2. The stripe is composed of n
disks, each of which holds r sectors. We may view the stripe as an r x n array of sectors; hence we
call r the number of rows. Of the n disks, m are devoted exclusively to coding. In the remaining n —m
disks, s additional sectors are also devoted to coding. The placement of these sectors is arbitrary. By
convention, we picture them evenly distributed in the bottom rows of the array.

While we refer to the basic blocks of the array as sectors, they may comprise multiple sectors. For the
purposes of coding, we will consider them to be w-bit symbols, where w is a parameter of the erasure
code, typically 8, 16 or 32, so that sectors may be partitioned evenly into symbols. As such, we will use
the terms “block,” “sector” and “symbol” interchangeably.

Storage systems may be partitioned into many stripes, where the identities of the coding disks
change from stripe to stripe to alleviate bottlenecks. The identities may be rotated as in RAID-5, or
performed on an ad-hoc, per-file basis as in Panasas [WUAT08]. Blocks may be small, as in the block
store of Cleversafe’s distributed file system [RP11] or large as in Google FS [GGL03]. As such, the
mapping of erasure code symbols to disk blocks is beyond the scope of this work. It depends on many
factors, including projected usage, system size and architecture, degree of correlated sector failures,
and distribution of storage nodes. A thorough discussion of the performance implications of mapping
erasure code symbols to disk blocks may be found in recent work by Khan et al [KBPT12].

3 Arithmetic for Coding

To perform encoding and decoding, each coding symbol is defined to be a linear combination of the
data symbols. The arithmetic employed is Galois Field arithmetic over w-bit symbols, termed GF(2").
Galois Field arithmetic is important because it defines addition, multiplication and division over closed
sets of numbers so that every number has a unique multiplicative inverse. It is the standard arithmetic
of Reed-Solomon coding, which features a wealth of instructional literature and open source implemen-
tations [GMS08, LBOX12, Oni01, Pla97, PGM13, PLS109, Par07]. Addition in GF(2%) is equivalent
to the bitwise exclusive-or operation. Multiplication is more complex, but a recent open source im-



plementation employs Intel’s SIMD instructions to perform multiplication in GF(28) and GF(2'°) at
cache line speeds. GF(23?) is only marginally slower [PGM13].

Typical presentations of erasure codes based on Galois Field arithmetic use terms like “irreducible
polynomials” and “primitive elements” to define the codes [BHH12, BR99, MS77, PW72]. In our work,
we simply use numbers between 0 and (2% — 1) to represent w-bit symbols, and assume that the codes
are implemented with a standard Galois Field arithmetic library such as those listed above. (For
reproducability of our results, we employ the same primitive polynomals in our implementations as the
software libraries cited above. In hexadecimal, these are 0x11d in GF(28), 0x1100b in GF(2'%) and
0x100400007 in GF(232).)

One feature of Galois Fields that we exploit is that every non-zero number in the field is equal to the
value two raised to some power. For example, in standard implementations of GF(2%), three is equal
to 22° and seven is equal to 2198, There are 2% — 1 non-zero values in GF(2%), so the exponents cycle:
2@t =1, and if 2%(2* — 1) = y%(2"¥ — 1), then 2% = 2¥ in GF(2¥). This also allows us to employ
negative exponents — for example, in GF(28), 271 = 2254,

4 SD Code Specification

SD codes are defined by six parameters listed below:

Parameter Description
n The total number of disks
m The number of coding disks
S The number of coding sectors
r The number of rows per stripe
GF(2v) The Galois Field
A={a;;]0<i<m+sand0<j<nr} Coding coefficients

We label the disks Dy through D,,_; and assume that disks D,,_,, through D, _; are the coding
disks. There are nr blocks in a stripe, and we label them in two ways. The first assigns subscripts for
the row and the disk, so that disk D; holds blocks by ; through b,_; ;. This labeling is the one used
in Figure 2. The second simply numbers the blocks consecutively, by through b,,,—1. The mapping
between the two is that block b; ; is also block by, ;. Figure 3 shows the same stripe as Figure 2, except
the blocks are labeled with their single subscripts.

Figure 3: The same stripe as Figure 2, except blocks are labeled with single subscripts.
Instead of using a generator matrix as in Reed Solomon codes, we employ a set of mr + s equations,

each of which sums to zero. The first mr of these are labeled Cj ., with 0 <z <mand 0 < j < 7.
They are each the sum of exactly n blocks in a single row of the array:

n—1
Cjz E azjn+ibjn+i = 0.
=0



We call these equations, “Local Parity Equations,” because they are localized to the blocks in each row

of the stripe.
The remaining s equations are labeled S, with 0 < z < s. They are the sum of all nr blocks:

rn—1

SZZ Zam+z7ibi = 0.
=0

We call these equations “Global Parity Equations,” because they involve all of the blocks in the stripe.

Intuitively, one can consider each block b;; on a coding disk to be governed by C ., and each
additional coding block governed by a different S,. However, the codes are not as straightforward as,
for example, classic Reed-Solomon codes, where each coding block is a specified as a linear combination
of the data blocks. Instead, unless m equals one, every equation contains multiple coding blocks. Thus,
the equations must be manipulated to calculate the coding blocks. In other words, encoding must be
viewed as a special case of decoding, where only the coding blocks have failed.

A concrete example helps to illustrate and convey some intuition. Figure 4 shows the ten equations
that result when the stripe of Figures 2 and 3 is encoded with A such that a; ; = 2¥. The figure is
partitioned into four smaller figures, which show the encoding with each a; ;. The left two figures show
the equations Cj and Cj 1, which employ ag,o through ag nr—1, and aq,9 through a; ,-—1 respectively.
Each equation is the sum of six blocks. The right two figures show Sy and 51, each of which is the sum
of all 24 blocks.

As mentioned above, encoding with these equations is not a straightforward activity, since each of
the ten equations contains at least two coding blocks. Thus, encoding is viewed as a special case of
decoding — when the two coding disks and two coding sectors fail.
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Figure 4: The ten equations to define the code when n =6, m =2, s = 2 and a; ; = 2.

The decoding process is straightforward linear algebra. When a collection of disks and sectors
fail, their values of b; are considered unknowns. The non-failed blocks are known values. Therefore,
the equations become a linear system with unknown values, which may be solved using Gaussian
Elimination.

For example, suppose we want to encode the system of Figure 4. To do that, we assume that disks
4 and 5 have failed, along with blocks bsg and bs;. The ten equations are rearranged so that the failed
blocks are on the left and the nonfailed blocks are on the right. Since addition is equivalent to exclusive-
or, we may simply add a term to both sides of the equation to move it from one side to another. For
example, the four equations for C;; become:



24y 4+ 2°b5s = by + 2b1 + 2%by + 23D

21000 + 2011 = 2506 + 27b7 + 28bg + 2%By
216b16 4 217b17 — 212b12 4 213b13 4 214b14 4 215b15
220b20 + 221521 + 222b22 + 223b23 = 218b18 + 219519

We are left with ten equations and ten unknowns, which we then solve with Gaussian Elimination
or matrix inversion.

This method of decoding is a standard employment of a Parity Check Matrix [MS77, PW72, PH13].
This matrix (conventionally labeled H) contains a row for every equation and a column for every block
in the system. The element in row ¢ column j is the coefficient of b; in equation 7. The vector B =
{bo,b1,...,bnr—1} is called the codeword, and the mr + s equations are expressed quite succinctly by
the equation HB = 0.

5 Defining Fault-Tolerance: MDS, PMDS and SD

We define a hierarchy of fault-tolerance classes for erasure codes that apply to stripes of blocks, such
as those depicted in Figures 2 and 3. Each class is a subset of each successive class. For example, if a
code is MDS, it is also PMDS and SD. The classes are defined as follows:

e MDS (Maximum Distance Separable): Given a stripe with k& data blocks and ¢ coding
blocks, an MDS erasure code tolerates the failure of any c of the k + ¢ blocks. The well-known
Reed-Solomon codes are canonical examples of MDS codes [MS77, PW72]. We can apply MDS
codes to our erasure-coding scenario; however in this case, every coding block has to be a function
of every data block. In other words, every equation would have to be a Global Parity Equation,
and encoding/decoding would be exorbitantly expensive. For that reason, we do not consider
MDS codes in our evaluation. We mention them here for completeness.

e PMDS (Partial MDS): Given a stripe defined by the parameters n, m, s and r as above in
Section 4, a PMDS code tolerates the failure of any m blocks per row, and any additional s blocks
in the stripe. PMDS codes are mazimally fault-tolerant for codes that are definied with mr Local
Parity Equations and s Global Parity Equations [GHSY12]. However, PMDS codes make no
distinction for blocks that fail together because they are on the same disk.

e SD (Sector-Disk): Given a stripe defined by the parameters n, m, s and r, an SD code tolerates
the failures of any m disks (columns of blocks), plus any additional s sectors in the stripe.

For a given code construction, the brute force way to determine whether it is PMDS or SD is to
enumerate all failure scenarios and test to make sure that decoding is possible. For SD codes, the total

number of scenarios is:
n\ (r(n —m)
m s ’

Although that is exponential, for smaller values of n, m, s and r, it is computable in a reasonable amount
of time. For PMDS, the number of scenarios does not have a simple closed-form equation; however it is
much larger than SD. For that reason, we do not test for the PMDS property in a brute force manner.
We have written a highly optimized brute-force verifier for SD codes, which enumerates all failure
scenarios and incrementally verifies decodability. We have used it to verify all code constructions that
we present below in section 6. The largest of these is the code for n =24, m =3, s =3 and r = 24
in GF(23%). The verification of the 4.9 x 109 failure scenarios took roughly five and a half hours on a
commodity microprocessor.



X Y

10,1,2} Y =1{0,1,-1}
{0,0,3,2} {0,1,-1,2}

{0,0,0,0,1} | {0,1,-1,2,—2}

OJ[\DD—‘S

Figure 5: SD code constructions for s = 2 and m € {1,2,3}. These constructions are SD as long
as nr < 2%,

6 Code Constructions

A major challenge of this work is to derive constructions that generate SD codes. In other words, for
given values of n, m, s, r and GF(2Y), our challenge is to define coding coefficients that yield SD

codes. Our constructions define the A, ; coefficients using two sets of numbers, X = {zo,..., Tmys—1}
and Y = {yo,...,Ym+s—1}. These define the coding coefficients in the following manner:
i) = 21i(%)n+yi(j%")' (1)

In the exponent in Equation 1, the division is integer division, and “%” is the modulo operator. For
example, the construction employed in Figure 4 may be described by X = {0,1,2,3}and Y = {0, 1,2, 3}.

In our previous work [PBH13], we limited ourselves to codes where z; = y;. In other words, we
defined codes by m + s coefficients, zo, ..., 2Zm+s—1, and a;; = z]. Since every non-zero z; € GF(2")
is equal to 2% for some 0 < z; < 2 — 1, our old constructions may be represented by x; = y; such
that 2% equals z;. We call those codes “FAST” codes. The simplest of these is the one in Figure 4,
where x; = y; = 1. We call this the “Main Construction.”

In subsequent work, we have discovered that certain codes, where x; # y;, have richer properties
than the FAST codes. This is the reason why we describe the codes with two sets of numbers rather
than one. Below we detail constructions for which we have proven properties. We do not present the
proofs here to save on space and improve readability. Instead, we provide citations to the papers in
which the proofs appear.

6.1 s=1

We start with m = 1 and s = 1, and we are protecting the system from one disk and one sector failure.
We anticipate that a large number of storage systems will fall into this category, as it handles the
common failure scenarios of RAID-6 with much less space overhead. Blaum, Hafner and Hetzler prove
that the Main Construction is PMDS so long as n < 2¥[BHH12]. Therefore, the Main Construction
in GF(2%) may be used for all systems with at most 256 disks.

They also show that when m > 1 and s = 1, the Main Construction is PMDS as long as nr < 2%.
Therefore, GF(2%) may be used while nr < 256, and GF(2'%) may be used otherwise.

6.2 s=2.

When s = 2, we have derived constructions that are SD for m € {1,2,3} so long as nr < 2. We define
them in Figure 5. We have proved the SD property for m = 1 and m = 2 [BP13]. We have not proved
it for m = 3; however, we have verified it for all n and r in GF(2%), and for all n < 24 and r < 24
in GF(219).

Because these constructions can be confusing, we give a concrete example in Figures 6 and 7. These
show the parity check matrix for the code when n = 5, m = 2, s = 2 and r = 3. From Table 5,
X ={0,0,3,2} and Y = {0,1, —1,2}. We show two representations of the parity check matrix — using
powers of two in Figure 6, and as numbers in GF(2%) in Figure 7.



Co.o: 20 20 20 20 20 0 0 0 0 0 0 0 0 0 0
Cio: 0 0 0 0 0 20 20 20 20 20 0 0 0 0 0
Cs.0: 0 0 0 0 0 0 0 0 0 0 20 20 20 20 20
Coq: || 29 | 27 27 27 27 0 0 0 0 0 0 0 0 0 0
Ci: 0 0 0 0 0 20 21 27 2% 27 0 0 0 0 0
Ca1: 0 0 0 0 0 0 0 0 0 0 20 27 27 23 27
505 20 2—1 2—2 2—3 2—4 215 214 213 212 211 230 229 228 227 226
Sl: 2() 22 24 2() 2 21() 212 214 216 21 21[) 222 224 21() 22

Figure 6: Parity check matrix for the code for n = 5, m = 2, s = 2, r = 3, where X = {0,0, 3,2}
and Y = {0,1, —1,2}. This code is SD when nr < 2%.

Co,o: 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
C1,0: 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
Cs0: 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
Co1: 1 2 4 8 16 0 0 0 0 0 0 0 0 0 0
Ci1: 0 0 0 0 0 1 2 4 8 16 0 0 0 0 0
Co1: 0 0 0 0 0 0 0 0 0 0 1 2 4 8 16
So: 1 142 71 173 216 38 19 135 205 232 96 48 24 12 6
Sh: 1 4 16 64 29 116 205 19 76 45 180 | 234 143 6 24

Figure 7: The same matrix as in Figure 6, with the values shown as numbers in GF(28). Because nr <
28, this code is SD.

6.3 s=3.

For s > 3, we have not been able to derive or prove any general SD constructions. Instead, we have
performed a pragmatic search for SD codes for parameters that are relevant in today’s storage systems.
We define these to be n and r < 24, and m < 3. Within this space, we first verified that the Main
Construction is indeed SD in GF(23?). Next, we enumerated the (2‘355) ~ 2,700,000 FAST constructions
for m = 1 in GF(28) where 29 = yo = 0. That led to a fairly low number of SD codes, and no single
construction was SD for all the successful cases.

We then performed three large-scale Monte Carlo searches to discover SD codes for m € {1,2,3}
in GF(2%) and GF(2'%). In the first, we generated random FAST constructions, where zo = yo = 0,
and in the second, we generated random values for both X and Y. For each construction, we tested
whether the code is SD for each value of n from 4 to 24 and r = 4. For each value of n, so long as r < 24
and the code is SD for » — 1, we test to see whether the code is SD for r. If the code is not SD for r» — 1,
it is impossible for the code to be SD for r [BP13]. Thus, we do not spend extra time testing for SD
codes that cannot be SD.

The third search arose when the second search generated a code forn =7, r =4, m =1 and w = 8.
There is no FAST construction in our enumeration that generates an SD code for these parameters,
which demonstrates that there are SD codes that cannot be generated by FAST constructions. Addi-
tionally, we noticed that in this code, each element of X and Y is a multiple of 15. This spurred an
additional enumeration and a third search. The enumeration was of all codes where m =1, g = yo =0,
and the remaining elements of X and Y are multiples of 15. There are roughly 17% ~ 24,000,000 of
these.

The third search Monte Carlo search generated random X and Y whose values are multiples of 15
for m € {2,3} in GF(28), and whose values are multiples of 255 for m € {1,2,3} in GF(2'6). The
intuition is that both values are equal to 2% — 1, and while we cannot give a reason why these coefficients
are effective, they are indeed effective.

The searches have been performed on over 60 machines at the University of Tennessee for multiple
months. On the whole, we have tested over 10,000,000 random constructions, and although the discovery
of new codes has slowed, we continue to test more in all three searches.

We present the results of our searches and enumerations in GF(28) in Figure 8. The FAST and
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Figure 8: SD Codes for s = 3 in GF(28), discovered through three Monte Carlo searches and two
enumerations.
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[ Coefficients Multiples of 255 (Third search)

m=2

Figure 9: SD Codes for s = 3 in GF(2!°), discovered through three Monte Carlo searches.

multiples of 15 for m = 1 are results of enumerations, and the rest are results of Monte Carlo searches.
With the exception of m = 3, the multiples of 15 generate the widest variety of SD codes. With m = 3,
the FAST and General Constructions generate codes for all r < 24 when n = 4. There is no one set of
coeflicients that generates all the SD codes in Figure 8 for any of the constructions. In all cases, the
number of SD codes is very limited for w = 8.

For w = 16, we present the results of our searches in Figure 9. There are more SD codes in these
cases, and the third search yielded stunningly more codes than the other two searches. It should be
noted that in cases where there is no SD code for given values of n and r, but there is an SD code
for n’ > n and r, then one may construct an SD code for n and r from the larger code by shortening
it. For example, there is no code in Figure 9 for n = 16 and r = 24; however there is a code for n = 17
and r = 24. Therefore, one may use this larger code for n = 16 by assuming there is a data disk in
the n = 17 code whose values are all zeros.

As in GF(2%), there is no set of coefficients responsible for all of the points in any graph. In Figure 10,
we present the coefficients that generated the most SD codes for each value of m. It should be noted
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Figure 10: The best sets of coefficients for SD codes in GF(2!°), s = 3. For m = 1, these coefficients
are X = {0, 24480, 28560, 32640}, Y = {0, 29835, 17850, 35700}. For m = 2, these coefficients are X =
{0,37995, 16575, 20910, 44370}, Y = {0, 10710, 38505, 23970, 586 }. For m = 3, these coefficients are X =
{0,19635,41820, 28815, 38250, 15300}, Y = {0, 2295, 3825, 24480, 32895, 48195}

that for m = 1, all of the successful cases of Figure 9 with the exception of n = 22, 17 < r < 20 can be
achieved with the code in Figure 10 through shortening.

We include the coefficients that generate all the data points in Figures 8 and 9 as part of our open
source software.

The bottom line of this section is as follows. For all values of n, m, s and r that we have considered,
there exist SD constructions for these values. In the majority of these cases, these codes are in GF(28)
and GF(2'%), which means that their performance will be very good. The remaining cases are handled
by the Main Construction in GF(232), which is less efficient; however, as we show below in Section 7,
their performance is still adequate for today’s storage systems.

7 Practical Properties of SD Codes

The main property of SD codes that makes them attractive alternatives to standard erasure codes such
as RAID-6 or Reed-Solomon codes is the fact that they tolerate combinations of disk and sector failures
with much lower space overhead. Specifically, to tolerate m disk and s sector failures, a standard erasure
code needs to devote m + s disks to coding. An SD code devotes m disks, plus s sectors per stripe.
This is a savings of s(r — 1) sectors per stripe, or @ disks per system. The savings grow with r
and are independent of the number of disks in the system (n) and the number of disks devoted to
fault-tolerance (m). Figure 11 shows the significant savings as functions of s and r.

The update penalty of SD codes is high. This is the number of coding blocks that must be updated
when a data block is modified. In a Reed-Solomon code, the update penalty achieves its minimum
value of m, while other codes, such as EVENODD [BBBM95], RDP [CEGT04] and Cauchy Reed-
Solomon [BKK™195] codes have higher update penalties. Because of the additional fault-tolerance, the
update penalty of an SD code is much higher — assuming that s < n — m, the update penalty of our
SD code construction is roughly 2m + s. To see how this comes about, consider the modification of
block by in Figure 3. Obviously, blocks by, bs, bog and by must be updated.However, because of blocks
bag and ba1, blocks bes and bys must also be updated, yielding a total of 2m + s.

Because of the high update penalty, these codes are appropriate for storage systems that limit
the number of updates, such as archival systems which are modified infrequently [REGT03, SGMV09],
cloud-based systems where stripes become immutable once they are erasure coded [CWO'11, HSXT12],
or systems which buffer update operations and convert them to full-stripe writes [EEET08, ODS89,

10



w

N

[EnY

Savings (# Disks)

o

0 4 8 12 16 20 24
r
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Figure 12: CPU performance of encoding with Reed-Solomon and SD codes.

SBMS93].

To assess the CPU overhead of encoding a stripe, we implemented encoders and decoders for both
SD and Reed-Solomon codes. For Galois Field arithmetic, we employ “GF-Complete,” an open source
library that leverages Intel’s SIMD instructions to achieve extremely fast performance for encoding and
decoding regions of memory [PGM13]. We ran tests on a single Intel Core i7 CPU running at 3.07 GHz.
We test all values of n between 4 and 24, m between 1 and 3, and s between 1 and 3. We also test
standard Reed-Solomon coding. For the Reed-Solomon codes, we test GF(28), GF(2!6) and GF(23?).
For the SD codes, we set » = 16 and use the best constructions from Section 6.

The results are in Figure 12. Each data point is the average of ten runs. We plot the speed of
encoding, which is measured as the amount of data encoded per second, using stripes whose sizes are
roughly 32 MB. For example, when n = 10, m = 2 and s = 2, we employ a block size of 204 KB. That
results in a stripe with 160 blocks (since r = 16) of which 126 hold data and 34 hold coding. That is a
total of 31.875 MB, of which 25.10 MB is data. It takes 0.0217 seconds to encode the stripe, which is
plotted as a rate of 25.10/0.0226 = 1111 MB/s.

The sharp drops in some of the curves in Figure 12 are a result of having to increase w in order to
obtain an SD code as n increases. For example, when m = 1 and s = 2, one must use GF(26) as
opposed to GF(2%) when n > 16. Accordingly, the curve for s = 2 in the leftmost graph of Figure 12
exhibits a sharp drop at n = 16. A similar drop occurs in the curve for s = 3 in the middle graph
at n = 11, because this is the point at which one must shift from GF(2!6) to GF(232).

While SD encoding is slower than Reed-Solomon coding, the speeds in Figure 12 are still much faster
than writing to disk. As with other current erasure coding systems (e.g. [HSX ™12, KBP*12]), the CPU
is not the bottleneck; performance is limited by I/O.

To evaluate decoding, we note first that the worst case of decoding SD codes is equivalent to encoding.
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That is because encoding is simply a special case of decoding that requires the maximum number of
equations and terms. The more common decoding cases are faster. In particular, so long as there are
at most m failed blocks per row of the stripe, we may decode exclusively from the C} . equations. This
is important, because the C; . equations have only n terms, and therefore require less computation and
I/0O than the S, equations. We do not evaluate this experimentally, but note that the decoding rate
for f blocks using the C; . equations will be equivalent to the Reed-Solomon encoding rate for m = f
in Figure 12.

8 Open Source Implementation

We have implemented an SD encoder and decoder in C and have posted it as open source under the New
BSD License at https://bitbucket.org/jimplank/sd_codes. The programs allow a user to import
data and/or coding information and then to perform either encoding or decoding using the techniques
described above. The Galois Field arithmetic implementation leverages the Intel SIMD instructions for
fast performance as described above in Section 7. The programs include all of the SD constructions
described in Section 6.

Our implementation does not implement RAID or other storage methodologies. As such, we do not
expect users to employ the implementation directly, but instead to use it as a blueprint for building
their own SD encoded systems.

9 Related Work

The most recent work on erasure codes for storage systems has focused on improving the I/O per-
formance of systems that tolerate multiple failures, when single failures occur [KBPT12, WDBI0,
XXLC10], and on regenerating codes that replace lost data and coding blocks with reduced 1/O for
decoding [CHLM11, DRWS11, HCLT12, SR10]. The focus of this work is on MDS codes in more classic
erasure coding environments.

Non-MDS codes have been explored recently because of their reduced I/O costs and applicabil-
ity to very large systems [GLW10, HCLO7, Lub02]. In particular, there are several non-MDS codes
that organize blocks of a stripe into a matrix and encode rows (inter-disk) and columns (intra-disk)
in an orthogonal manner. These include GRID codes [LSZ09], HoVeR codes [Haf06] and Intradisk
Redundancy [DEHT08]. Of these, only the latter code is like SD codes, specifically addressing the
heterogeneous failure modes that current disk systems exhibit. The orthogonal nature of Intradisk
Redundancy gives it a conceptual simplicity; however the failure coverage of SD codes is higher than
Intradisk Redundancy, and they have greater storage efficiency as well.

In close relation to SD codes are PMDS codes from IBM [BHH12] and LRC codes from Microsoft,
which provide fault-tolerance in the Azure cloud storage system [HSX*12]. Both are similarly defined
codes that achieve a higher level of fault tolerance, but have fewer known constructions. The enhanced
fault tolerance of LRC codes is leveraged by Azure, because each code symbol is stored on a different
disk, and therefore the “whole disk” failure mode of SD codes does not apply. However, since both LRC
and PMDS codes have the SD property, they may be applied in the situations addressed in this paper.

LRC code constructions are limited to m = 1. There is quite a bit of theory for constructing PMDS
codes which we leverage in our search for SD code constructions. If more theory is developed for PMDS
or LRC codes, it can be applied to SD codes as in Section 6. Blaum et al were able to discover more
PMDS codes for 16-bit symbols by using a variant of GF(2!°) that is a ring rather than a field. There
may be more SD codes as well in this ring. The Galois Field libraries mentioned above do not support
rings, so we did not employ them in our search.

Another similar code is the “diff-MDS” code [LMMS*11]; however, the focus of this code is correcting
bit flips in main memory instead of erasures in storage systems.
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10 Open Problems and Further Relaxation

As detailed in Section 6, we have only been able to prove that general constructions are SD for s =1,
and for s = 2, m < 2. We surmise that the construction given for s = 2, m = 3 has the same properties
as the others, but its proof is an open problem. Deriving general constructions for larger m and s
remain interesting open problems.

As future work, we have begun to explore a further relaxation of the SD property, in hopes that we
may derive more constructions for GF(2%) and GF(2'6). With this relaxation, we introduce yet another
parameter 0 < e < s, and the relaxed SD property specifies that in addition to the m disk failures, the
code must tolerate up to s sector failures subject to the limitation that no more than e of these sector
failures occur in the same row.

With relaxed SD codes, there are fewer failure scenarios to consider, and we have derived relaxed SD
codes where e = 1 in some cases where there is no SD code for that set of parameters. It is a subject
of future work to explore the benefits and restrictions of relaxed SD codes in relation to SD codes.

11 Conclusion

We have presented a class of erasure codes designed for how today’s storage systems actually fail. Rather
than devote entire disks to coding, our codes devote entire disks and individual sectors in a stripe, and
tolerate combinations of disk and sector failures. As such, they employ far less space for coding than
traditional erasure coding solutions.

The codes are similar to Reed-Solomon codes in that they are based on invertible matrices and
Galois Field arithmetic. Their constructions are composed of sets of equations that are solved using
linear algebra for encoding and decoding. Their performance is not as fast as Reed-Solomon coding,
but today’s implementations of Galois Field arithmetic allow them to perform at speeds that are fast
enough for today’s storage systems.

We have written programs that encode and decode using our codes, which post as open source,
so that storage practitioners may employ the codes without having to understand the mathematics
behind them. We are enthused that codes with similar properties, developed independently by Huang
et al [HSX'12], are the basis of fault-tolerance in Microsoft’s Azure cloud storage system. As such, we
anticipate that these codes will have high applicability in large-scale storage installations.
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