

	

Toward	 a	 New	 Metric	 for	
Ranking	 High	 Performance	
Computing	 Systems	
	

Michael A. Heroux
Sandia	 National	 Laboratories
Jack Dongarra
University	 of	 Tennessee	

ut-cs-13-711

 2

Toward a New Metric for Ranking High
Performance Computing Systems1

Michael A. Heroux
Scalable Algorithm Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-MS 1320

Jack Dongarra
Electrical Engineering and Computer Science Department

1122 Volunteer Blvd University of Tennessee
Knoxville, TN 37996-3450

Abstract

.
The High Performance Linpack (HPL), or Top 500, benchmark [1] is the most widely recognized
and discussed metric for ranking high performance computing systems. However, HPL is
increasingly unreliable as a true measure of system performance for a growing collection of
important science and engineering applications.

In this paper we describe a new high performance conjugate gradient (HPCG) benchmark.
HPCG is composed of computations and data access patterns more commonly found in
applications. Using HPCG we strive for a better correlation to real scientific application
performance and expect to drive computer system design and implementation in directions that
will better impact performance improvement.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1 Also released as: Sandia National Lab; SAND2013-4744

 3

ACKNOWLEDGMENTS

The authors thank the Department of Energy National Nuclear Security Agency for funding
provided for this work.

 4

CONTENTS

1. Introduction .. 6	
2. Why HPL has Lost Relevance .. 6	
3. Requirements .. 7	
4. A Preconditioned Conjugate Gradient Benchmark ... 7	
5. Justification for HPCG Benchmark .. 9	
6. Related Work and Future Adaptations .. 10	
7. Summary and Conclusions ... 10	
8. References .. 12	
Appendix: Primer on the Preconditioned Conjugate Gradient Method .. 14	
	 	

 5

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

This	 page	 is	 intentionally	 left	 blank.

	

 6

1. INTRODUCTION

The High Performance Linpack (HPL) benchmark is the most widely recognized and discussed
metric for ranking high performance computing systems. When HPL gained prominence as a
performance metric in the early 1990s there was a strong correlation between its predictions of
system rankings and the ranking that full-scale applications would realize. Computer system
vendors pursued designs that would increase HPL performance, which would in turn improve
overall application performance.

Presently HPL remains tremendously valuable as a measure of historical trends, and as a stress
test, especially for leadership class systems that are pushing the boundaries of current
technology. Furthermore, HPL provides the HPC community with a valuable outreach tool,
understandable to the outside world. Anyone with an appreciation for computing is impressed
by the tremendous increases in performance that HPC systems have attained over the past several
decades.

At the same time HPL rankings of computer systems are no longer so strongly correlated to real
application performance, especially for the broad set of HPC applications governed by
differential equations, which tend to have much stronger needs for high bandwidth and low
latency, and tend to access data using irregular patterns. In fact, we have reached a point where
designing a system for good HPL performance can actually lead to design choices that are wrong
for the real application mix, or add unnecessary components or complexity to the system.

We expect the gap between HPL predictions and real application performance to increase in the
future. In fact, the fast track to a computer system with the potential to run HPL at 1 Exaflop is a
design that may be very unattractive for our real applications. Without some intervention, future
architectures targeted toward good HPL performance will not be a good match for our
applications. As a result, we seek a new metric that will have a stronger correlation to our
application base and will therefore drive system designers in directions that will enhance
application performance for a broader set of HPC applications.

2. WHY HPL HAS LOST RELEVANCE
	
HPL is a simple program that factors and solves a large dense system of linear equations using
Gaussian Elimination with partial pivoting. The dominant calculations in this algorithm are
dense matrix-matrix multiplication and related kernels, which we call Type 1 patterns. With
proper organization of the computation, data access is predominantly unit stride and is mostly
hidden by concurrently performing computation on previously retrieved data. This kind of
algorithm strongly favors computers with very high floating-point computation rates and
adequate streaming memory systems.

While Type 1 patterns are commonly found in real applications, additional computations and
access patterns are also very common. In particular, many important calculations, which we call
Type 2 patterns, have much lower computation-to-data-access ratios, access memory irregularly,
and have fine-grain recursive computations.

 7

A system that is designed to execute both Type 1 and 2 patterns efficiently will generally run a
broad mix of applications well. However, HPL only stresses Type 1 patterns and, as a metric, is
incapable of measuring Type 2 patterns. With the emergence of accelerators, which are
extremely effective with Type 1 patterns relative to CPUs, but much less so with Type 2 patterns,
HPL results show a skewed picture relative to real application performance.

For example, the Titan system at Oak Ridge National Laboratory has 18,688 nodes, each with a
16-core, 32 GB AMD Opteron processor and a 6GB Nvidia K20 GPU[2]. Titan was the top-
ranked system in November 2012 using HPL. However, in obtaining the HPL result on Titan,
the Opteron processors played only a supporting role in the result. All floating-point
computation and all data were resident on the GPUs. In contrast, real applications, when initially
ported to Titan, will typically run solely on the CPUs and selectively off-load computations to
the GPU for acceleration.

Of course, one of the important research efforts in HPC today is to design applications such that
more computations are Type 1 patterns, and we will see progress in the coming years. At the
same time, most applications will always have some Type 2 patterns and our benchmarks must
reflect this reality. In fact, a system’s ability to effectively address Type 2 patterns is an
important indicator of system balance.

3. REQUIREMENTS

Any new metric we introduce must satisfy a number of requirements. Two overarching
requirements are:

1. Accurately predict system rankings for target suite of applications: The ranking of
computer systems using the new metric must correlate strongly to how our real
applications would rank these same systems.

2. Drive improvements to computer systems to benefit our applications: The metric should
be designed so that, as we try to optimize metric results for a particular platform, the
changes will also lead to better performance in our real applications. Furthermore,
computation of the metric should drive system reliability in ways that help our
applications.

We will perform thorough validation testing of any proposed benchmark against a suite of
applications on current high-end systems using techniques similar to those identified in the
Mantevo project [3]. We will furthermore specify restrictions on changes to the reference
version of the code to ensure that only changes that have relevance to our application base are
permitted.

4. A PRECONDITIONED CONJUGATE GRADIENT BENCHMARK

As the candidate for a new HPC metric, we consider the preconditioned conjugate gradient
(PCG) method with a local symmetric Gauss-Seidel preconditioner (see the primer in the
Appendix for more details about PCG).

 8

The reference code will be implemented in C++2 using MPI and OpenMP. It will do the
following:

1. Problem setup: Generate a synthetic symmetric positive definite (SPD) matrix A
(perhaps using several sparsity patterns to match the broad interests of our community)
using the compressed sparse row format, and a corresponding right-hand-side vector b,
and initial guess for x.

a. Linear system size is a parameter that can be chosen via a prescribed process that
assures realistic use of the machine resources.

b. The benchmarker can use a different matrix format and the setup cost in building
the new data structure is not counted in the benchmark timing, although the cost
will be reported, normalized by the cost of a matrix-vector multiplication
operation using the original data structures.

c. Although the matrix pattern may be regular, or nearly so, and value-symmetric,
matrix storage will be unstructured and keep a copy of all matrix values. The
benchmarker is prohibited from exploiting regularity by using, for example, a
sparse diagonal format and is prohibited from exploiting value symmetry to
reduce storage requirements.

2. Preconditioner setup: Set up data structures for the local symmetric Gauss-Seidel
preconditioner. The reference version will use simple compressed sparse row
representation for the lower and upper triangular matrices, each as a separate matrix.

a. The benchmarker is free to make the same transformations on these matrix objects
as in Step 1, again without counting this cost in the benchmark timing, but again
the setup time will be reported, normalized by the cost of one symmetric Gauss-
Seidel sweep using the original matrix format.

b. We may need to introduce a simple coarse grid solve as part of the preconditioner,
if the performance of a local triangular solve is not sufficiently representative of
our real codes.

3. Verification and validation setup: We will compute preconditions, post-conditions and
invariants that will aid in the detection of anomalies during the iteration phases.

a. We can compute spectral approximates that bound the error, and use other
properties of PCG and SPD matrices to verify and validate results.

b. We can compute comparison results with reference kernels to assure accurate
computation.

4. Iteration: We will perform m iterations, n times, using the same initial guess each time,
where m and n are sufficiently large to test system uptime. By doing this we can compare
the numerical results for “correctness” at the end of each m-iteration phase.

a. If the result is not bit-wise identical across successive m-iteration phases, we can
report the deviation. Acceptable deviations (as determined in the V&V setup)
will not invalidate the benchmark results. Instead they will alert the benchmarker
that bit-wise reproducibility has been lost.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2 Since many large-scale applications use C++ for its compile-time polymorphism and object-
oriented features, we believe it is important to have HPCG be a C++ code. Historically C++
compilers have not received sufficient attention in the early phases of new system development.
HPCG will provide incentive to re-prioritize efforts.

 9

b. Cache will be flushed between each of the k times the m iterations are performed
to report fair timing data for averaging.

5. Post-processing and reporting: We will report a single timing result, and other metrics.
a. Computational verification and validation metrics are reported.
b. Timing and execution rate results are reported.
c. Also reported will be the number of nodes, total storage, processors, accelerators,

precision used, compiler version, optimization level, compiler directives used,
flop count, power used, cache effects, loads and stores, etc.

d. Checkpoint/Restart capabilities may be appropriate as well.

5. JUSTIFICATION FOR HPCG BENCHMARK

The HPCG Benchmark has merit as a new metric for high performance computing for the
following reasons:

1. Provides coverage of the major communication and computational patterns: The
major communication (global and neighborhood collectives) and computational patterns
(vector updates, dot products, sparse matrix-vector multiplications and local triangular
solves) in our production differential equation codes, both implicit and explicit, are
present in this benchmark. Emerging asynchronous collectives and other latency-hiding
techniques can be explored in the context of HPCG and aid in their adoption and
optimization on future systems.

2. Represents a minimal collection of the major patterns: HPCG is the smallest
benchmark code containing these major patterns, while at the same time representing a
real mathematical computation (which aids in V&V efforts).

3. Rewards investment in high-performance of collectives: Neighborhood and all-reduce
collectives represent essential performance bottlenecks for our applications that can
benefit from high-quality system design. Improving the performance of HPCG will
improve the performance of our real applications.

4. Rewards investment in local memory system performance: The local processor
performance of HPCG is largely determined by effective use of the local memory system.
Improvements in the implementation of HPCG data structures, compilation of HPCG
code and the performance of the underlying system will improve HPCG benchmark
results and real application performance, and will inform application developers on new
approaches to optimizing their own implementations.

5. Detects and measures variances from bitwise identical computations: It is widely
believed that future computer systems will not be able to provide deterministic execution
paths for floating-point computations. Because floating-point addition is not associative,
this means we will generally not have bitwise reproducible results, even when running
the same exact computation twice on the same number of processors of the same system.
This is in contrast with many of our MPI-only applications today, and presents a big
challenge to applications that must certify their computational results and debug in the
presence of bitwise variability. HPCG will make the deviation from bitwise
reproducibility apparent.

 10

6. RELATED WORK AND FUTURE ADAPTATIONS
	
Our proposed benchmark is not entirely new, nor do we expect what we propose to remain static.
At the same time, previous efforts are not appropriate to leverage, nor do expected trends in
algorithms suggest a better approach at this time.

Survey of Related Efforts

Similar benchmarks have been proposed and used before:

1. NPB CG: The NAS Parallel Benchmarks (NPB) [3] include a CG benchmark. It shares
many attributes with what is propose here. Despite the wide use of this benchmark, it has
the critical flaw that the matrix is chosen to have a random sparsity pattern with a
uniform distribution of entries per row. This choice has led to the unfortunate result that
a two-dimensional distribution of the matrix is optimal. Therefore, computation and
communication patterns are non-physical. Furthermore, no preconditioning is present, so
the important features of local sparse triangular solve is not represented and is not easily
introduced, again because of the choice of a non-physical sparsity pattern. Although
NPB CG has been extensively used for HPC analysis, it is not appropriate as a broad
metric for our effort.

2. Iterative Solver Benchmark: A lesser-known but more relevant benchmark, the
Iterative Solver Benchmark [4] specifies the execution of a preconditioned CG and
GMRES iteration using physically meaningful sparsity patterns and several
preconditioners. As such, its scope is broader than what we propose here, but this
benchmark does not address scalable distributed memory parallelism or nested
parallelism.

Evolution of HPCG Benchmark

Regardless of which specific benchmark we propose, we expect it to evolve. HPL started as a
simple 100-by-100 dense factorization, then a 1000-by-1000, and now places no restrictions on
problem size. Furthermore, the algorithms used to compute the factorization have changed
dramatically; modified to take advantage of distributed memory, changes in network architecture
and multicore CPUs and GPUs. We expect that our new benchmark will adapt to take into
account emerging trends in a similar fashion.

7. SUMMARY AND CONCLUSIONS

The	 High	 Performance	 Linpack	 (HPL)	 Benchmark	 is	 an	 incredibly	 successful	 metric	 for	 the	
high	 performance	 computing	 community.	 	 The	 trends	 it	 exposes,	 the	 focused	 optimization	
efforts	 it	 inspires	 and	 the	 publicity	 it	 brings	 to	 our	 community	 are	 very	 important.	 	 At	 the	
same	 time,	 the	 relevance	 of	 HPL	 as	 a	 proxy	 for	 real	 application	 performance	 has	 become	
very	 low	 and	 we	 must	 seek	 an	 alternative.	
	

 11

We	 do	 not	 propose	 elimination	 of	 HPL	 as	 a	 metric.	 	 We	 believe	 the	 historical	 importance	
and	 community	 outreach	 value	 of	 HPL	 is	 far	 too	 important	 to	 be	 abandoned.	 	 Instead,	 HPCG	
will	 serve	 as	 an	 alternative	 ranking	 of	 the	 TOP500	 list,	 in	 a	 similar	 way	 to	 how	 the	 Green	
500	 [5]	 re-‐ranks	 the	 items	 on	 this	 list.	
	
HPCG	 is	 an	 attractive	 option	 because	 it	 contains	 a	 small	 collection	 of	 the	 key	 computation	
and	 communication	 patterns	 present	 in	 many	 applications.	 	 HPCG	 is	 large	 enough	 to	 be	
mathematically	 meaningful,	 yet	 small	 enough	 to	 easily	 understand	 and	 use.	
	
As	 we	 develop	 HPCG	 we	 will	 incorporate	 thorough	 verification	 processes	 and	 perform	
extensive	 validation	 against	 real	 applications	 on	 existing	 and	 emerging	 platforms.	 	
Thorough	 verification	 and	 validation	 will	 improve	 the	 quality	 of	 HPCG	 and	 instill	
confidence	 in	 HPCG	 as	 a	 valid	 metric.	

 12

8. REFERENCES
	
1. Dongarra, J., et al. Top 500 Supercomputer Sites. 1999; Available from:

http://www.top500.org.
2. OLCF. Introducing Titan | The World's #1 Open Science Supercomputer. 2013 [cited 2013

May 29, 2013]; Available from: http://www.olcf.ornl.gov/titan.
3. D. Bailey, E.B., J. Barton, D. Browning. R. Carter, L. Dagum, R. Fatoohi, S. Fineberg, P.

Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S.
Weeratunga, The NAS Parallel Benchmarks, 1994, NASA Ames Research Center:
Moffett Field, CA.

4. Jack Dongarra, V.E., Henk van der Vorst, Iterative Solver Benchmark. Scientific
Programming, 2001. 9(4): p. 223-231.

5. CompuGreen. The Green500 List News and Submitted Items | The Green500. 2013 [cited
2013 May 29, 2013]; Available from: http://www.green500.org.

 13

	

 14

APPENDIX: PRIMER ON THE PRECONDITIONED CONJUGATE
GRADIENT METHOD

The linear conjugate gradient (CG) method is a widely used iterative method for solving linear
systems of equations of the form Ax = b, where A is a large, usually sparse, matrix (or more
generally a linear operator since only the action of the operator is necessary), b is a dense vector
with known values and x is the vector whose values are sought as the result of the iterations. CG
is effective for symmetric and near-symmetric systems of equations. It is one member of a broad
collection of Krylov methods. CG is the simplest of these methods.

The preconditioned conjugate gradient (PCG) method performs an additional operation at each
iteration (after a setup phase, which we do not discuss here): Applying the operator M-1, which is
an easy-to-apply approximation of A-1. Preconditioning takes on many forms, and the most
effective preconditioners are often those that use specific knowledge about properties of the
linear operator. Even so, a very common computation used in preconditioning is a sparse
triangular solve. This kernel is part of the Gauss-Seidel, incomplete Cholesky and incomplete
LU preconditioners, which in turn are often used as smoothers in multi-level preconditioners.
Even physics-based preconditioners will often invoke a similar sweep or sparse triangular solver
as part of their execution. For this benchmark we use a local symmetric Gauss-Seidel
preconditioner, which computes a forward and back triangular solve for a block of rows of the
matrix A as determined by an additive Schwarz decomposition for parallel distributed memory
computation.

Each PCG iteration requires these basic operations:

1. One matrix-vector product (w := Ay), where A is the original matrix, y is a known vector
and w is computed.

2. One preconditioner application (w :=M-1y), where M-1 is an easy-to-apply approximation
of A-1, y is a known vector and w is computed. Note that M-1 is typically not directly
formed.

3. Three vector updates (w := αy+βz), where y and z are known vectors, α and β are known
scalar values and w is computed.

4. Two vector inner products (α := yTz), where y and z are known vectors and the scalar α is
computed.

A typical distributed memory parallel implementation of PCG uses the single-program-multiple-
data (SPMD) pattern, usually implemented on top of MPI. Data is distributed by giving a block
of rows of the matrix A, and the corresponding entries of the vectors x and b to each MPI
process.

The key communication patterns in PCG are:

1. Neighborhood collective: Each MPI process contributes to computing its portion of the
vector w := Ay by using its own portion of y and by collecting the remote values of y
needed from other processors (it will need a y value for each column in its rows that has
at least one nonzero entry). Because many of our problems are discrete differential

 15

equations, the remote y values form a halo or ghost region that surrounds the boundary of
the portion of the physical domain that is assigned to the given MPI process. In order to
compute w each MPI process must exchange values with its neighbors.

This is a collective operation since for any meaningful problem each MPI process will
exchange values with at least one other process. However, each process only exchanges
values within its neighborhood.

2. All-reduce collective: Vector inner products α := yTz are a collective operation.
Typically each MPI process computes the local portion of the dot product or norm. Then
the values are exchanged (using one of many possible collective algorithms) so that each
processor eventually receives the entire result.

In a straightforward PCG implementation this computation is synchronous, meaning that
an MPI process must wait for the final value α to arrive before proceeding to the
computational step. On large systems, or systems with high variability in communication
or computation costs, synchronous all-reduce steps can become the single biggest
impediment to scalability. Good performance of synchronous all-reduce operations is
often the most important feature that comes from purchasing a high-end parallel system
vs. building a comparably sized commodity cluster.

	

