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Abstract 
 

.  
The High Performance Linpack (HPL), or Top 500, benchmark [1] is the most widely recognized 
and discussed metric for ranking high performance computing systems.  However, HPL is 
increasingly unreliable as a true measure of system performance for a growing collection of 
important science and engineering applications.   
 
In this paper we describe a new high performance conjugate gradient (HPCG) benchmark.  
HPCG is composed of computations and data access patterns more commonly found in 
applications.  Using HPCG we strive for a better correlation to real scientific application 
performance and expect to drive computer system design and implementation in directions that 
will better impact performance improvement. 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Also released as: Sandia National Lab; SAND2013-4744 
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1.  INTRODUCTION 
 
The High Performance Linpack (HPL) benchmark is the most widely recognized and discussed 
metric for ranking high performance computing systems.  When HPL gained prominence as a 
performance metric in the early 1990s there was a strong correlation between its predictions of 
system rankings and the ranking that full-scale applications would realize.  Computer system 
vendors pursued designs that would increase HPL performance, which would in turn improve 
overall application performance. 
 
Presently HPL remains tremendously valuable as a measure of historical trends, and as a stress 
test, especially for leadership class systems that are pushing the boundaries of current 
technology.  Furthermore, HPL provides the HPC community with a valuable outreach tool, 
understandable to the outside world.  Anyone with an appreciation for computing is impressed 
by the tremendous increases in performance that HPC systems have attained over the past several 
decades.  
 
At the same time HPL rankings of computer systems are no longer so strongly correlated to real 
application performance, especially for the broad set of HPC applications governed by 
differential equations, which tend to have much stronger needs for high bandwidth and low 
latency, and tend to access data using irregular patterns.  In fact, we have reached a point where 
designing a system for good HPL performance can actually lead to design choices that are wrong 
for the real application mix, or add unnecessary components or complexity to the system. 
 
We expect the gap between HPL predictions and real application performance to increase in the 
future.  In fact, the fast track to a computer system with the potential to run HPL at 1 Exaflop is a 
design that may be very unattractive for our real applications.  Without some intervention, future 
architectures targeted toward good HPL performance will not be a good match for our 
applications.  As a result, we seek a new metric that will have a stronger correlation to our 
application base and will therefore drive system designers in directions that will enhance 
application performance for a broader set of HPC applications. 
 
2. WHY HPL HAS LOST RELEVANCE 
	  
HPL is a simple program that factors and solves a large dense system of linear equations using 
Gaussian Elimination with partial pivoting.  The dominant calculations in this algorithm are 
dense matrix-matrix multiplication and related kernels, which we call Type 1 patterns.  With 
proper organization of the computation, data access is predominantly unit stride and is mostly 
hidden by concurrently performing computation on previously retrieved data.  This kind of 
algorithm strongly favors computers with very high floating-point computation rates and 
adequate streaming memory systems.  
 
While Type 1 patterns are commonly found in real applications, additional computations and 
access patterns are also very common.  In particular, many important calculations, which we call 
Type 2 patterns, have much lower computation-to-data-access ratios, access memory irregularly, 
and have fine-grain recursive computations.  
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A system that is designed to execute both Type 1 and 2 patterns efficiently will generally run a 
broad mix of applications well.  However, HPL only stresses Type 1 patterns and, as a metric, is 
incapable of measuring Type 2 patterns.  With the emergence of accelerators, which are 
extremely effective with Type 1 patterns relative to CPUs, but much less so with Type 2 patterns, 
HPL results show a skewed picture relative to real application performance.   
 
For example, the Titan system at Oak Ridge National Laboratory has 18,688 nodes, each with a 
16-core, 32 GB AMD Opteron processor and a 6GB Nvidia K20 GPU[2].  Titan was the top-
ranked system in November 2012 using HPL.  However, in obtaining the HPL result on Titan, 
the Opteron processors played only a supporting role in the result.  All floating-point 
computation and all data were resident on the GPUs.  In contrast, real applications, when initially 
ported to Titan, will typically run solely on the CPUs and selectively off-load computations to 
the GPU for acceleration.   
 
Of course, one of the important research efforts in HPC today is to design applications such that 
more computations are Type 1 patterns, and we will see progress in the coming years.  At the 
same time, most applications will always have some Type 2 patterns and our benchmarks must 
reflect this reality.  In fact, a system’s ability to effectively address Type 2 patterns is an 
important indicator of system balance. 
 
3. REQUIREMENTS 
 
Any new metric we introduce must satisfy a number of requirements.  Two overarching 
requirements are: 

1. Accurately predict system rankings for target suite of applications:  The ranking of 
computer systems using the new metric must correlate strongly to how our real 
applications would rank these same systems.  

2. Drive improvements to computer systems to benefit our applications: The metric should 
be designed so that, as we try to optimize metric results for a particular platform, the 
changes will also lead to better performance in our real applications.  Furthermore, 
computation of the metric should drive system reliability in ways that help our 
applications.  

 
We will perform thorough validation testing of any proposed benchmark against a suite of 
applications on current high-end systems using techniques similar to those identified in the 
Mantevo project [3].  We will furthermore specify restrictions on changes to the reference 
version of the code to ensure that only changes that have relevance to our application base are 
permitted. 
 
4. A PRECONDITIONED CONJUGATE GRADIENT BENCHMARK 
 
As the candidate for a new HPC metric, we consider the preconditioned conjugate gradient 
(PCG) method with a local symmetric Gauss-Seidel preconditioner (see the primer in the 
Appendix for more details about PCG). 
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The reference code will be implemented in C++2 using MPI and OpenMP.  It will do the 
following: 
 

1. Problem setup:  Generate a synthetic symmetric positive definite (SPD) matrix A 
(perhaps using several sparsity patterns to match the broad interests of our community) 
using the compressed sparse row format, and a corresponding right-hand-side vector b, 
and initial guess for x.   

a. Linear system size is a parameter that can be chosen via a prescribed process that 
assures realistic use of the machine resources.   

b. The benchmarker can use a different matrix format and the setup cost in building 
the new data structure is not counted in the benchmark timing, although the cost 
will be reported, normalized by the cost of a matrix-vector multiplication 
operation using the original data structures.   

c. Although the matrix pattern may be regular, or nearly so, and value-symmetric, 
matrix storage will be unstructured and keep a copy of all matrix values.  The 
benchmarker is prohibited from exploiting regularity by using, for example, a 
sparse diagonal format and is prohibited from exploiting value symmetry to 
reduce storage requirements. 

2. Preconditioner setup:  Set up data structures for the local symmetric Gauss-Seidel 
preconditioner.  The reference version will use simple compressed sparse row 
representation for the lower and upper triangular matrices, each as a separate matrix.   

a. The benchmarker is free to make the same transformations on these matrix objects 
as in Step 1, again without counting this cost in the benchmark timing, but again 
the setup time will be reported, normalized by the cost of one symmetric Gauss-
Seidel sweep using the original matrix format.   

b. We may need to introduce a simple coarse grid solve as part of the preconditioner, 
if the performance of a local triangular solve is not sufficiently representative of 
our real codes. 

3. Verification and validation setup:  We will compute preconditions, post-conditions and 
invariants that will aid in the detection of anomalies during the iteration phases.   

a. We can compute spectral approximates that bound the error, and use other 
properties of PCG and SPD matrices to verify and validate results. 

b. We can compute comparison results with reference kernels to assure accurate 
computation. 

4. Iteration:   We will perform m iterations, n times, using the same initial guess each time, 
where m and n are sufficiently large to test system uptime.  By doing this we can compare 
the numerical results for “correctness” at the end of each m-iteration phase.   

a. If the result is not bit-wise identical across successive m-iteration phases, we can 
report the deviation.  Acceptable deviations (as determined in the V&V setup) 
will not invalidate the benchmark results.  Instead they will alert the benchmarker 
that bit-wise reproducibility has been lost. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Since many large-scale applications use C++ for its compile-time polymorphism and object-
oriented features, we believe it is important to have HPCG be a C++ code.  Historically C++ 
compilers have not received sufficient attention in the early phases of new system development.  
HPCG will provide incentive to re-prioritize efforts. 
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b. Cache will be flushed between each of the k times the m iterations are performed 
to report fair timing data for averaging. 

5. Post-processing and reporting:  We will report a single timing result, and other metrics. 
a. Computational verification and validation metrics are reported.   
b. Timing and execution rate results are reported.  
c. Also reported will be the number of nodes, total storage, processors, accelerators, 

precision used, compiler version, optimization level, compiler directives used, 
flop count, power used, cache effects, loads and stores, etc.   

d. Checkpoint/Restart capabilities may be appropriate as well. 
 
5. JUSTIFICATION FOR HPCG BENCHMARK 
 
The HPCG Benchmark has merit as a new metric for high performance computing for the 
following reasons: 
 

1. Provides coverage of the major communication and computational patterns: The 
major communication (global and neighborhood collectives) and computational patterns 
(vector updates, dot products, sparse matrix-vector multiplications and local triangular 
solves) in our production differential equation codes, both implicit and explicit, are 
present in this benchmark. Emerging asynchronous collectives and other latency-hiding 
techniques can be explored in the context of HPCG and aid in their adoption and 
optimization on future systems. 

2. Represents a minimal collection of the major patterns:  HPCG is the smallest 
benchmark code containing these major patterns, while at the same time representing a 
real mathematical computation (which aids in V&V efforts). 

3. Rewards investment in high-performance of collectives:  Neighborhood and all-reduce 
collectives represent essential performance bottlenecks for our applications that can 
benefit from high-quality system design.  Improving the performance of HPCG will 
improve the performance of our real applications. 

4. Rewards investment in local memory system performance: The local processor 
performance of HPCG is largely determined by effective use of the local memory system.  
Improvements in the implementation of HPCG data structures, compilation of HPCG 
code and the performance of the underlying system will improve HPCG benchmark 
results and real application performance, and will inform application developers on new 
approaches to optimizing their own implementations. 

5. Detects and measures variances from bitwise identical computations:  It is widely 
believed that future computer systems will not be able to provide deterministic execution 
paths for floating-point computations.  Because floating-point addition is not associative, 
this means we will generally not have bitwise reproducible results, even when running 
the same exact computation twice on the same number of processors of the same system.  
This is in contrast with many of our MPI-only applications today, and presents a big 
challenge to applications that must certify their computational results and debug in the 
presence of bitwise variability.  HPCG will make the deviation from bitwise 
reproducibility apparent. 
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6. RELATED WORK AND FUTURE ADAPTATIONS 
	  
Our proposed benchmark is not entirely new, nor do we expect what we propose to remain static.  
At the same time, previous efforts are not appropriate to leverage, nor do expected trends in 
algorithms suggest a better approach at this time. 
 
Survey of Related Efforts 
 
Similar benchmarks have been proposed and used before: 
 

1. NPB CG: The NAS Parallel Benchmarks (NPB) [3] include a CG benchmark.  It shares 
many attributes with what is propose here.  Despite the wide use of this benchmark, it has 
the critical flaw that the matrix is chosen to have a random sparsity pattern with a 
uniform distribution of entries per row.  This choice has led to the unfortunate result that 
a two-dimensional distribution of the matrix is optimal.  Therefore, computation and 
communication patterns are non-physical.  Furthermore, no preconditioning is present, so 
the important features of local sparse triangular solve is not represented and is not easily 
introduced, again because of the choice of a non-physical sparsity pattern.  Although 
NPB CG has been extensively used for HPC analysis, it is not appropriate as a broad 
metric for our effort. 

2. Iterative Solver Benchmark:  A lesser-known but more relevant benchmark, the 
Iterative Solver Benchmark [4] specifies the execution of a preconditioned CG and 
GMRES iteration using physically meaningful sparsity patterns and several 
preconditioners.  As such, its scope is broader than what we propose here, but this 
benchmark does not address scalable distributed memory parallelism or nested 
parallelism. 

 
Evolution of HPCG Benchmark 
 
Regardless of which specific benchmark we propose, we expect it to evolve.  HPL started as a 
simple 100-by-100 dense factorization, then a 1000-by-1000, and now places no restrictions on 
problem size.  Furthermore, the algorithms used to compute the factorization have changed 
dramatically; modified to take advantage of distributed memory, changes in network architecture 
and multicore CPUs and GPUs. We expect that our new benchmark will adapt to take into 
account emerging trends in a similar fashion. 
 
7. SUMMARY AND CONCLUSIONS 
 
The	  High	  Performance	  Linpack	  (HPL)	  Benchmark	  is	  an	  incredibly	  successful	  metric	  for	  the	  
high	  performance	  computing	  community.	  	  The	  trends	  it	  exposes,	  the	  focused	  optimization	  
efforts	  it	  inspires	  and	  the	  publicity	  it	  brings	  to	  our	  community	  are	  very	  important.	  	  At	  the	  
same	  time,	  the	  relevance	  of	  HPL	  as	  a	  proxy	  for	  real	  application	  performance	  has	  become	  
very	  low	  and	  we	  must	  seek	  an	  alternative.	  
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We	  do	  not	  propose	  elimination	  of	  HPL	  as	  a	  metric.	  	  We	  believe	  the	  historical	  importance	  
and	  community	  outreach	  value	  of	  HPL	  is	  far	  too	  important	  to	  be	  abandoned.	  	  Instead,	  HPCG	  
will	  serve	  as	  an	  alternative	  ranking	  of	  the	  TOP500	  list,	  in	  a	  similar	  way	  to	  how	  the	  Green	  
500	  [5]	  re-‐ranks	  the	  items	  on	  this	  list.	  
	  
HPCG	  is	  an	  attractive	  option	  because	  it	  contains	  a	  small	  collection	  of	  the	  key	  computation	  
and	  communication	  patterns	  present	  in	  many	  applications.	  	  HPCG	  is	  large	  enough	  to	  be	  
mathematically	  meaningful,	  yet	  small	  enough	  to	  easily	  understand	  and	  use.	  
	  
As	  we	  develop	  HPCG	  we	  will	  incorporate	  thorough	  verification	  processes	  and	  perform	  
extensive	  validation	  against	  real	  applications	  on	  existing	  and	  emerging	  platforms.	  	  
Thorough	  verification	  and	  validation	  will	  improve	  the	  quality	  of	  HPCG	  and	  instill	  
confidence	  in	  HPCG	  as	  a	  valid	  metric.	  
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APPENDIX: PRIMER ON THE PRECONDITIONED CONJUGATE 
GRADIENT METHOD 
 
The linear conjugate gradient (CG) method is a widely used iterative method for solving linear 
systems of equations of the form Ax = b, where A is a large, usually sparse, matrix (or more 
generally a linear operator since only the action of the operator is necessary), b is a dense vector 
with known values and x is the vector whose values are sought as the result of the iterations.  CG 
is effective for symmetric and near-symmetric systems of equations.  It is one member of a broad 
collection of Krylov methods.  CG is the simplest of these methods. 
 
The preconditioned conjugate gradient (PCG) method performs an additional operation at each 
iteration (after a setup phase, which we do not discuss here): Applying the operator M-1, which is 
an easy-to-apply approximation of A-1.  Preconditioning takes on many forms, and the most 
effective preconditioners are often those that use specific knowledge about properties of the 
linear operator.  Even so, a very common computation used in preconditioning is a sparse 
triangular solve.  This kernel is part of the Gauss-Seidel, incomplete Cholesky and incomplete 
LU preconditioners, which in turn are often used as smoothers in multi-level preconditioners. 
Even physics-based preconditioners will often invoke a similar sweep or sparse triangular solver 
as part of their execution.  For this benchmark we use a local symmetric Gauss-Seidel 
preconditioner, which computes a forward and back triangular solve for a block of rows of the 
matrix A as determined by an additive Schwarz decomposition for parallel distributed memory 
computation. 
 
Each PCG iteration requires these basic operations: 
 

1. One matrix-vector product (w := Ay),  where A is the original matrix, y is a known vector 
and w is computed. 

2. One preconditioner application (w :=M-1y), where M-1 is an easy-to-apply approximation 
of A-1, y is a known vector and w is computed.  Note that M-1 is typically not directly 
formed. 

3. Three vector updates (w := αy+βz), where y and z are known vectors, α and β are known 
scalar values and w is computed. 

4. Two vector inner products (α := yTz), where y and z are known vectors and the scalar α is 
computed. 

 
A typical distributed memory parallel implementation of PCG uses the single-program-multiple-
data (SPMD) pattern, usually implemented on top of MPI.  Data is distributed by giving a block 
of rows of the matrix A, and the corresponding entries of the vectors x and b to each MPI 
process. 
 
The key communication patterns in PCG are: 
 

1. Neighborhood collective: Each MPI process contributes to computing its portion of the 
vector w := Ay by using its own portion of y and by collecting the remote values of y 
needed from other processors (it will need a y value for each column in its rows that has 
at least one nonzero entry).  Because many of our problems are discrete differential 
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equations, the remote y values form a halo or ghost region that surrounds the boundary of 
the portion of the physical domain that is assigned to the given MPI process.  In order to 
compute w each MPI process must exchange values with its neighbors.   
 
This is a collective operation since for any meaningful problem each MPI process will 
exchange values with at least one other process.  However, each process only exchanges 
values within its neighborhood. 
 

2. All-reduce collective: Vector inner products α := yTz  are a collective operation.  
Typically each MPI process computes the local portion of the dot product or norm.  Then 
the values are exchanged (using one of many possible collective algorithms) so that each 
processor eventually receives the entire result. 
 
In a straightforward PCG implementation this computation is synchronous, meaning that 
an MPI process must wait for the final value α to arrive before proceeding to the 
computational step.  On large systems, or systems with high variability in communication 
or computation costs, synchronous all-reduce steps can become the single biggest 
impediment to scalability.  Good performance of synchronous all-reduce operations is 
often the most important feature that comes from purchasing a high-end parallel system 
vs. building a comparably sized commodity cluster.



 

 

	  


