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1. ABSTRACT

Graphics Processing Units (GPUs) are gaining wide spread usage
in the field of scientific computing owing to the performance boost
GPUs bring to computation intensive applications. The typical con-
figuration is to integrate GPUs and CPUs in the same system where
the CPUs handle the control flow and part of the computation work-
load, and the GPUs serve as accelerators carry out the bulk of the
data parallel compute workload. In this paper we design and imple-
ment a soft error resilient Hessenberg reduction algorithm on GPU
based hybrid platforms. Our design employs algorithm based fault
tolerance technique, diskless checkpointing and reverse computa-
tion. We detect and correct soft errors on-line without delaying the
detection and correction to the end of the factorization. By utiliz-
ing idle time of the CPUs and overlapping both host side and GPU
side workloads we minimize the observed overhead. Experiment
results validated our design philosophy. Our algorithm introduces
less than 2% performance overhead compared to the non-fault tol-
erant hybrid Hessenberg reduction algorithm.

2. INTRODUCTION

A transient error is an error in a signal or data element which is
transient and caused by factors other than permanent component
failures. Reasons for transient errors range from alpha particles
from package decay, cosmic rays and thermal neutrons. Cosmic
rays were shown to be the most prevailing source for transient er-
rors among these sources [25]. Transient errors may happen in
communication links, digital logic and other places but the most
common situation is errors in semiconductor storage.

Both GPUs and traditional CPUs and their associated memory are
prone to suffer from transient errors. CPU designs continue to fol-
low Moore’s law in order to provide more processing ability. Along
with increasing transistor density, newer CPU designs also adopt
faster clock frequency and lower voltage. More Transistors per unit
area means the size of each transistor gets smaller. For example, the
Intel Ivy Bridge processors are fabricated using the 22 nanometer
process technology. Smaller feature size combined with lower volt-
age to maintain transistor states make it easier to change the tran-
sistor state. The critical charge Q.. which is the lowest electron
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charge needed to change the logical level decreases when the chip
feature size decreases. Higher transistor density also causes higher
heat density which brings more thermal neutrons which contribute
to transient errors as well. General Purpose Graphics Processing
Units (GPGPUs) are gaining more and more popularity in the sci-
entific computing community due to the sizable acceleration they
provide to computation intensive applications. The source of the
huge acceleration is the large amount of data processing transis-
tors inside the GPGPUs. The number of transistors per unit area
in GPGPUs continues to grow according to Moore’s law. The lat-
est NVIDIA GeForce GTX Titan GPGUP is fabricated using the
28 nanometer process and has 7.1 billion transtors on a 551 mm?
die. The same reasons that make conventional CPUs suffer from
transient errors are also present in the case of GPUs.

Transient errors are becoming a challenge in real world applica-
tions. Both CPU main memory and GPU memory are DRAMs
(Dynamic Random-access Memory). Baumann [2] has reported
that the soft error rate (SER) of DRAM is between 1k FIT/chip -
10K FIT/chip range, and stays at the same level over 7 generations
of DRAMSs. FIT(failure in time) is the measurement unit of SER,
one FIT is one soft error in 10° device hours. Michalak et al. [16]
reported that the ASC Q supercomputer at Los Alamos National
Laboratory experience an average of 51.7 soft errors per week over
a period of 7 weeks from September 2004 to October 2004. Haque
et al. [10] assessed the probability of soft errors in NVIDIA GPUs
using a benchmark called MemtestG80. They ran the test on 50000
GPUs and found that about 60% of the GPUs have a soft error prob-
ability higher than 1 x 1073 and a large population with a mean of
2% 1073, Jacob et at. [12, page 33] reported that at 130 nm process
generation DRAM has an SER of 1000 FIT and SRAM 100, 000
FIT.

Soft error and its impact in linear algebra have attracted much atten-
tion of researchers recently. Du et al. [6, 7] proposed an algorithm
to tolerate soft errors in the High Performance LINPACK Bench-
mark (HPL) [5]. Their approach can compute the correct solution
vector to Ax = b in the presence of one or two soft errors over the
course of the factorization. Du et al. [8] also designed a scheme to
tolerate soft errors in the QR factorization on hybrid systems with
GPGPUs. At most one soft error can be tolerated in this fault tol-
erant hybrid QR algorithm. Both the HPL fault tolerant scheme
and QR fault tolerant scheme adopt an post processing approach in
which the erroneous result is corrected through post processing af-
ter the regular factorization. Bronevetsky and Supinski [3] studied
the impact of soft errors on iterative linear algebra methods. They
found that iterative methods are vulnerable to soft errors as well and
exhibit poor soft error detection abilities. In [20] Shantharam et al.



analyzed the propagation pattern of soft errors in iterative methods
by modeling the iterative process with a sequence of sparse matrix-
vector multiplication (SpMV) operations. In [21] Shantharam et
al. proposed a soft error tolerant preconditioned conjugate gradient
algorithm for sparse linear systems. Their method adapted the algo-
rithm based fault tolerance technique to sparse linear systems and
achieved an overhead of 11.3% when no soft error happens. Chen
and Abraham [4] designed a concurrent error detection scheme for
transient errors in the computation of eigenvalues on systolic pro-
cessor arrays using the QR algorithm [9, 22] (not to be confused
with the QR factorization). Kim et al. [13] designed a fault tolerant
Hessenberg reduction algorithm to recover from processor failures
on networks of workstations (NOWs).

In this paper we design and implement a soft error resilient hybrid
Hessenberg reduction algorithm on GPU enabled hybrid architec-
tures. We take advantage of diskless checkpointing, ABFT and re-
verse computation techniques to achieve soft error tolerance while
introducing very little overhead into the non fault tolerant Hessen-
berg reduction algorithm. We further minimized the observable
overhead by carefully overlapping workloads on the host side and
the GPU side. Our fault tolerant algorithm is able to detect and
correct one or more simultaneous soft errors. Once the algorithm
has corrected the simultaneous errors, it continues as normal and
is ready to detect and correct subsequent soft errors. Unlike the
post-processing scheme for LU and QR in [6, 7, 8], our algorithm
detects soft errors on the fly at the end of each iteration. After the
algorithm has detected the errors, it corrects them right away so
the errors don’t propagate and contaminate other matrix elements.
While the post-processing scheme can only correct two soft errors
total during the course of the entire LU or QR factorization, our
fault tolerant Hessenberg algorithm can detect and correct more
than one simultaneous soft errors if the error positions don’t form a
rectangle. Our fault tolerant Hessenberg algorithm also can detect
and correct as many subsequent soft errors as they occur.

The remainder of the paper is organized as follows: in Section 3 we
survey related work, then in Section 4 we explain the Hessenberg
reduction algorithm and its implementation in the MAGMA frame-
work. Section 5 describes our soft error resilient hybrid Hessenberg
reduction algorithm in detail. Section 7 presents experiment results
of the algorithm and provides a theoretical analysis for the perfor-
mance. Section 8 summarizes our work.

3. RELATED WORK

There have been many research efforts in soft error resilient dense
linear algebra operations. Abraham et al. [11] first brought forward
the idea of algorithm based fault tolerance (ABFT) for matrix com-
putations such as matrix-matrix addition, matrix-matrix multiplica-
tion, scalar product and LU-decomposition in multiple processor
systems. They encoded the input matrix to add data redundancy
with checksums. The checksum relationship between the matrix
data and the checksum data is preserved throughout the matrix op-
eration in consideration. Error detection and location are achieved
by examining the checksum relationship at the end of the matrix
operation. To correct the error a rollback is performed and the ma-
trix data are restored to the step right before the error has happened.
Then the erroneous element could be recovered using the checksum
and the fault-free elements. The approach they proposed is a post-
processing one in that the error detection, location and correction
happen after the matrix operation has finished. Luk and Park [15,
14] extended and improved the ABFT approach to tolerate soft er-
rors in the LU factorization, QR factorization and Gaussian elimi-

nation with pairwise pivoting. The improved approach also works
in a post-processing manner. After the matrix operation is finished,
the error detection procedure is performed. If a soft error has been
detected, the error is projected back as a rank-1 perturbation to the
original matrix data. The correct result is obtained through a matrix
factorization update process to the erroneous result. The advantage
of this error model is that no rollback is required, and the time point
when the soft error happened is irrelevant to the recovery process.
No matter when the error happened, it is always projected as a rank-
1 perturbation to the original matrix which produces the same result
as the actual error. The drawback of this error model is that it can
only correct one soft error during the whole factorization.

Plank et al. [13] presented a fault tolerant technique based on check-
sum and reverse computation for matrix computations on networks
of workstations (NOWSs). Their scheme tackles node failures in-
stead of soft errors. A checksum of each processor’s local matrix
data is stored in main memory and regenerated periodically. When
a node failure happens the live processors reverse the computations
since the failure so that the matrix data and the checksum are consis-
tent with each other. Then the lost data on the failed processor are
recovered using the checksum and the data on the live processors.
Chen and Abraham [4] devised methods to detect and locate faulty
processors in the computation of eigenvalues and singular values
on systolic arrays. Their methods take the special properties of
eigenvalue computation and singular value computation are taken
into consideration to make the detection of errors very efficient.

There are also research efforts on soft error resilience in sparse
linear algebra. Shantharam et al. [21] designed a soft error re-
silient preconditioned conjugate gradient method for sparse linear
systems. They adapted the classic ABFT technique for sparse ma-
trices. Their method removed one SpMV operation and replaced
it with a dot product. The SpMV operation is the most compu-
tation intensive routine in an iterative method. By removing this
SpMYV operation they are able to reduce the extra computation and
reduce the overhead incurred by the irregular memory accesses in
the SpMV operation.

In [17] Plank et al. first introduced the idea of diskless check-
pointing which eliminates the disk access bottleneck in the tradi-
tional checkpointing technique. In the traditional checkpointing
technique checkpoints are stored to secondary stable memory usu-
ally in the form of hard drives. Since disk accesses are very slow
compared to floating point computation, frequently writing check-
points to disk incurs a big overhead. With diskless checkpoint the
checkpoints are stored in main memory instead of hard disk. Main
memory access is much faster than hard drive access, so diskless
checkpointing can greatly reduce the memory access overhead.

The Matric Algebra on GPU and Multicore Architectures project
(MAGMA) [24] is a dense linear algebra library for hybrid archi-
tectures with GPUs. The library provides equivalent functionalities
to LAPACK [1] and uses block algorithms similar to those of LA-
PACK. By scheduling workloads with different characteristics to
CPUs and GPUs, the hybrid algorithms are able to take advantage
of both computation units and gain considerable acceleration over
their LAPACK counterparts. The hybrid Hessenberg reduction al-
gorithm in MAGMA also utilizes both CPUs and GPUs in a hybrid
system. This hybrid algorithm is adapted from the LAPCK algo-
rithm in order to separate workloads which are more suitable for
GPUs from workloads that are suitable for CPUs. Details of this
hybrid algorithm will be explained in the next section.



4. HESSENBERG REDUCTION ON GPU EN-
ABLED HYBRID ARCHITECTURES

In this section we describe the Hessenberg reduction algorithm and
its variation as implemented in MAGMA.

4.1 The Unblocked Hessenberg Reduction

A square matrix H in which all entries below the first subdiagonal
are zeros is said to be in upper Hessenberg matrix form. Reduction
of a square matrix A to the Hessenberg form H is an important
intermediate step in the Hessenberg QR algorithm which is used to
compute the eigenvalues of A. Given a square matrix A, we apply a
sequence of orthogonal similarity transformations P; to A:

H=0,'0"-0,'0;"4010:--- 0\ 10x
let Q= 0107+ 0y—10Qn, we have:
H=0"'4A0=0"40

Q; is chosen to be the Householder reflector which eliminates the el-

ements below the first subdiagonal in the i-th column of Qi:ll e Ql_lAQl .

4.2 The Blocked Hessenberg Reduction

The speed of the unblocked Hessenberg reduction algorithm on
modern computers is constrained by the latency of memory ac-
cesses. The blocked Hessenberg reduction algorithm [18] greatly
reduced the arithmetic intensity by grouping nb Householder reflec-
tors and apply the group to A at the same time.

Ui=0102 Qu=1-VTVT

where [ is the identity matrix, V is an N x nb matrix composed
of the Householder vectors, T is an nb x nb upper triangular ma-
trix. This representation of U is called the compact WY represen-
tation [19]. This representation requires less storage to store U
and enables the use of matrix-matrix multiplications in the factor-
ization. Matrix-matrix multiplications are desirable because of its
high arithmetic intensity and efficient implementation on modern
computers with hierarchical memory systems. Algorithm 1 shows
the blocked Hessenberg reduction algorithm as implemented in the
LAPACK DGEHRD routine.

Algorithm 1 Blocked Hessenberg Reduction

1: for i from 1 to [,]lv—b] do

2:  DLAHRD, return V,TandY where Y = AVT

3:  DGEMM: trail(A) = trail(A) =YV T

4:  DLARFB: trail(A) = trail(A) — VT TV Ttrail (A)
5: end for

4.3 Hessenberg Reduction in MAGMA

The hybrid Hessenberg reduction algorithm in MAGMA is an adapted
version of Algorithm 1. Algorithm 2 shows the pseudocode for the
hybrid Hessenberg reduction algorithm [23]. The input matrix A
is stored in LAPACK layout, matrix elements are stored contigu-
ously in column major format. The matrix is logically divide into
block columns, each block column is of size N X nb. The matrix
entries below the first subdiagonal are overwritten with the final Q
matrix. The upper part of the matrix is overwritten with the final
H matrix when the factorization completes. The hybrid algorithm
keeps a copy of the matrix in the GPU memory, all the updates to
the trailing matrix are performed by the GPU in its own memory.
The panel factorization is assigned to the CPU, the next panel to
be factorized is transfered back to the host when both the right up-
date and left update from the previous panel have been applied to

it. Line 5 is an asynchronous data transfer, control is returned to
the CPU immediately after the data transfer is issued so that The
CPU can initiate the next computation kernel. GPUs are able to
do computation in parallel with computation, using asynchronous
data transfer here hides the time cost to transfer the upper part of
the current panel back to the CPU when it is updated and will not
be modified again. The two lines in Algorithm 2 shown in red are
overlapped with each other.

Figure 1 visually illustrates one iteration of Algorithm 2, the rou-
tine called in each step and the data it operates on are pointed out
with a black box. Figure 1(a) shows the state at the beginning of
this iteration. The matrix elements in the yellow triangle and in the
green trapezoid are the final results of the Q matrix and the H ma-
trix. They reside on the host side and will not be modified again.
The red rectangular is the trailing matrix which will be factorized
and updated in this iteration. The first nb columns of the red part
is called a panel which will be factorized next. Figure 1(b) shows
the panel factorization DLAHRD which factorizes the lower part
of@@he current panel. The yellow upper triangular matrix is updated
and contains the final results of H. The red trapezoid contains the
Householder vectors which are the final results in the Q matrix.
Upon completion of DLAHRD both the yellow triangle and the
green trapezoid are on the host side. Figure 1(c) shows the right
update on M. M is the part of the matrix marked by the black
box which consists of the upper part of the current panel and the
upper part of the trailing matrix. This step corresponds to line 5
of Algorithm 2. Upon completion of this step, the nb X nb square
matrix in yellow contains the final results of H, it will not be mod-
ified again. This square matrix is sent back to the host side with
an asynchronous data transfer. Figure 1(d) shows the right update
to G. The G matrix is the lower part of the trailing matrix marked
by the black box. In figure 1(e) the left update to G is applied
through the DLARFB call. After the DLARFB call the matrix A
has a smaller trailing matrix to be factorized in the next iteration.
Figure 1(f) shows the state of the matrix at the end of this iteration.
The rectangular matrix in red is the trailing matrix.

Algorithm 2 Hybrid Hessenberg Reduction

1: Transfer matrix: A on the host — d_A on the GPU

2: for i from 1 to [2-7 do

3:  Send the lower part of the next panel Ppex to the host.

4:  MAGMA_DLAHR2, return V, TandY
where Y = [P,G]VT

5. DGEMM:M=M-MVTV'

6:  Send the leftmost nb columns of M to the host asyn-
chronously.

7: DGEMM:G=G-YV'

8:  DLARFB: trail(A) = trail(A) — VT TV T trail(A)

9: end for

S. SOFT ERROR RESILIENT HESSENBERG
REDUCTION ALGORITHM

something here.

5.1 Failure Model

In this work we consider soft errors which are temporary faults in
the data matrix, the factorization is oblivious to the error and contin-
ues as usual. Without loss of generality, we assume only one error
happens at a single time point. Later we will provide an analysis on
the case where more than one soft error happen simultaneously and
how our soft error resilient algorithm applies to that case. We allow



(a) Beginning of itera-(b) Factorize the panel P
tion

(c) Rightupdate to M (d) Right update to G

(e) Left update to G

(f) End of iteration

Figure 1: One iteration of DGEHRD

the situation where multiple non simultaneous soft errors happen.
Errors which happen in the same iteration are considered simulta-
Neous erTors.

In the MAGMA Hessenberg reduction algorithm, both the CPU and
GPU carry out computation. The CPU is responsible for the panel
factorization, the GPU is responsible for the trailing matrix update.
Both the CPU memory and GPU memory contain part of the final
result or intermediate data that are used to compute the final result.
The lower triangular matrix to the left of the current panel on the
host side contains part of the final result of the Q matrix. The upper
triangular matrix to the left of the current panel on the host side con-
tains the final result of the H matrix. On the GPU the rectangular
matrix to the right of the current panel contains intermediate data
that will be used to compute Q and H. Soft errors in either one of
these parts will cause the factorization to give incorrect result. We
need to detect and correct soft errors in both the CPU memory and
the GPU memory. The algorithm we propose in this work combines
the advantage of ABFT technique and diskless checkpointing tech-
nique. The algorithm also uses reverse computation to roll back the
program data to a previous state.

Depending on the location of the soft error, an error has different
impacts on the result of the factorization. Figure 2 shows the im-
pact of an soft error when it happens in three different location. In
this example, the matrix size N is set to 158, the block size is 32. In
all three figures, the soft error is injected when the first iteration has
finished, and the second iteration has not started yet. Figure 2(a) is

the partitioning of the matrix. Each of the following three figures
shows the heat map of the difference matrix between the error-free
result and the result when an error has happened during the factor-
ization. Black color means the difference is 0. Other colors mean
the difference is bigger than 0. In Figure 2(b), the error occurs at
location (53, 16). This location is marked by an x in region 3 on the
left in Figure 2(a). This error does not propagate as the factoriza-
tion proceeds. We can see that in the final result of the factorization
there is still only one incorrect element (shown as the white dot in
the upper left part of the matrix). In Figure 2(c), the error happens
at location (31,127). This location is marked by an x in region
1 shown in Figure 2(a). This soft error propgates rowwise, and
polluted the entire row in H when the factorization completes. In
Figure 2(d), the error occurs at location (63, 127). This location is
marked by an x in region 2 shown in Figure 2(a). An error in this
region causes the most damage among the three scenarios. When
the factorization completes, almost all the elements after column
32 in H are polluted, and many elements after column 32 in Q are
polluted.

20 40 60 80 100 120 140 20 40 60 80 100 120 140

(a) Partition (b) Error location (53,16)

100 100

120 120

140 140
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(c) Error location (31,127)

20 40 60 80 100 120 140

(d) Error location (63,127)

Figure 2: Propagation pattern of errors at different locations

5.2 Encoding the Input Matrix

To recover from an error we need redundancy information. We add
redundancy to the input matrix by appending an extra column at the
right side of the matrix, and an extra row at the bottom of the matrix.
An element in the extra is the summation of all the elements in the
same row in the input matrix. Similarly an element in the extra
row is the summation of all the elements in the same column of
the original matrix. Figure 3 shows the initial state of the encoded
input matrix.

We define the follow notations: A, cpk is the column of row check-
sums on the right side of the original matrix; A; cpx is the row of
column checksums at the bottom of the original matrix. A is the
original appended with A, cpx on the right side (re for rowwise en-
coded). Ac is the original appended with A; cpk at the bottom (ce



Column of row checksums

Row of column checksums

Figure 3: The encoded initial matrix

for columnwise encoded). Ay, is the original matrix appended with
both A, cpr and A; cpi (fe for fully encoded).

5.3 The Fault Tolerant Algorithm

In this subsection we present and explain two soft error tolerant
Hessenberg reduction algorithms. They differ in the way to detect
soft errors. e is an all one vector: e = (1,1,---,1,1)T. Algorithm 3
and Algorithm 4 are the pseudocodes for the two fault tolerant al-
gorithms.

Algorithm 3 Fault Tolerant Hybrid Hessenberg Reduction

1: Transfer matrix: A on the host — d_A on the GPU
2: Encode the input matrix, expand it with a checksum column
and a checksum row.
3: forifrom 1 to [ %] do
4:  Send the lower part of the next panel Pyex; to the host.
5. MAGMA_DLAHR?2, return V, TandY
where Y = [P,G]VT
6:  Obtain Y, by computing the column checksums of Y:
Yenk ¢ = trail(A)cnk ¢V
7:  Obtain V. by computing the column checksums of V:
Vehk_c = el v
8:  DGEMM:
Mype =M —MVTV,]
9:  Send the leftmost nb columns of M to the host asyn-
chronously.
10:  DGEMM: Gg, = Gp, — YooV,
11:  DLARFB: trail(A)fe = trail(A) e — VeeT TV Ttrail (A)
12:  Compute Sre = Y Are(i) and Sce = Y. Ace (i)
13: if |Sre — Sce| < threshold then

14: Reverse the last left update and right update.
15: Correct the error

16:  endif

17: end for

The input matrix resides on the host side when the algorithm begins,
in Algorithm 3 line 1 sends the input matrix to the GPU. Line 2
encodes the input matrix to obtain Ag. Starting from line 3 the
algorithm enters a for loop, this for loop iterates over the block
columns of A. In each loop the algorithm first sends the lower part
(the part marked by the black box in Figure 4(b)) of the next panel
to the CPU from the GPU in line 4. In line 6 and line 7 the algo-
rithm computes the column checksums for matrix ¥ and matrix V.
This procedure requires two GEMV operations on the GPU. Line 8
applies the right update to matrix M. This line corresponds to
Figure 4(c), matrix My is the matrix marked by the black box in
the figure. Line 10 applies the right update to matrix G. This cor-
responds to Figure 4(d). Line 11 applies the left update from the

(a) Beginning of iteration (b) Factorize the panel

—

(d) Right update to G

(e) Left update to G

(f) End of iteration

Figure 4: One iteration of FT_DGEHRD

panel to matrix G, this operation is illustrated in Figure 4(e).

We prove that after line 11 in Algorithm 3 the column of row check-
sums and the row of column checksums are still valid for the yellow
part and the red part in Figure 4(f). The proof is presented in the
next subsection.

Line 12 through line 16 check for the existence of soft errors. The
algorithm corrects the error if there is any. Line 12 computes the
summations of the checksum row and the checksum column. Since
they contain checksums of the same matrix data along different
directions, the summation of each vector should equal each other.
Taking the rounding error into consideration, we check the differ-
ence against a threshold. If the difference exceeds the threshold we
consider an error has happened. At this point the soft error in the
matrix element has propagated to both the checksum column and
the checksum row, the checksums are not valid any more. Line 14
reverses the last left update and the last right update so that the
checksum column and the checksum row together with the matrix
data are restored to their states at the end of the previous iteration.
The checksum relationship is made valid again. The reverse com-
putation is possible because the intermediate data used to apply the
last last left update and right update are still available at the end of
the iteration. They won’t be destroyed until the next panel factor-
ization. The algorithm then enters the recovery procedure.

Algorithm 4 is different from Algorithm 3 in error detection. In
line 3 the algorithm computes the summation Sy, of the diagonal



elements of the input matrix A. In line 13 the algorithm computes
the summation Sy, of the diagonal elements of the finished part
of matrix H and the trailing matrix. In the Hessenberg reduction,
a similarity transformation is applied to A in every iteration. Sim-
ilarity transformations to a matrix preserves the eigenvalues of the
matrix, which means the summation of the diagonal elements of the
matrix is invariant. explain this better Algorithm 4 uses this prop-
erty to check for soft errors. If Spow and S, are equal within the
limit of rounding error, we say no error has happened. Otherwise
the algorithm enters the recovery procedure.

5.4 The Checksum Relationship

In this subsection we prove the following theorem:

THEOREM 1. The checksum column on the right of matrix A
and the checksum row at the bottom of matrix A are valid at the
end of each iteration.

PROOF. We use Algorithm 3 as an example in the proof. Algo-
rithm 4 updates the matrix and the checksums in exactly the same
way as Algorithm 3 so the proof is also correct for Algorithm 4.

1. The checksum column and the checksum row are valid after
line 2 since they are newly computed.

2. The checksum column and the checksum row are valid after
the right update to the trailing matrix.

b T
A Vv
Aft):Afe_ |:€TA VT |:6TV:|

A
At-e:Afe—LTA VT [V VT
AVT T+ o
fe — |:eTAVT_ [V 14 e]
_ . _[AvTvT  AvTvTe
T eTAVTVT eTAVTV e

[ A Ae] [aAvrvT  AvTVTe

TlefA o] [eTAvTvT eTAVTV e

[ A-AavTvT)  (A-AVTVT)e

T leT(A—-AvTVT) *

3. The checksum column and the checksum row are valid after
the left update to the checksum.

Afe = Afe— LXV} TTVTA A
vrivT
=Afe— LTVTTVT] (A Ael

eTVITVTA eTVTTVTAe
_[A A [vrTviaA  vTTVTAe
“le"A 0 e'VITVTA eTVTTVTAe
[ (A-vTTVTA) (A-VTTVTA)e
T leT(A-VTTVTA) *

A {VTTVTA VTTVTAe]
A

4. According to Mathematical Induction, the checksum row and
the checksum column are valid at the end of each iteration.

O

5.5 Protecting Q

The Q matrix contains the Householder vectors which were used to
apply the similarity transformations to A. These Householder vec-
tors are not protected by the checksums that encode the H matrix,
we should provide protection for Q through other schemes. These
Householder vectors are generated on the host side and stay there
until the entire factorization finishes. They are not modified after
they are generated. Moreover, they are not even read after the it-
eration in which they were generated finishes. Hence it suffices to
maintain a checksum for each row in order to correct an error. But
just like the situation in detecting an soft error in H, we need both
a checksum row and a checksum column to determine the both the
error column index j and error row index i. We keep the checksums
for Q on the host. Q i is the rowwise checksum vector, Q¢ cp is
the columnwise checksum vector.

Figure 5 shows the process for generating and updating the check-
sums for the Q matrix. The dashed line on the left of the matrix is
the column of row checksums for Q. When a new panel factoriza-
tion is finished as the one shown in Figure 5, we compute the row
checksums for the newly finished panel. Then the partial check-
sums for the panel are applied to the dashed line on the left so that
the dashed line protects the entire green part. The dashed line at
the bottom of the matrix is the row of column checksums for Q.
This vector is computed segment by segment. When a new panel
factorization is done on an nb wide panel, an nb long segment of
the column checksums is also generated. The solid line segment
at the bottom of the panel in Figure 5 is the newly generated col-
umn checksum segment for Q. This segment is never changed once
generated.

Our algorithm overlaps the checksum generation for Q with the up-
date to the trailing matrix on the GPU. The checksum generation
involves two GEMV operations. GEMV is a level 1 BLAS oper-
ation which is a memory bound operation. We choose to perform
the checksum generation on the CPU while the GPU is updating the
trailing matrix. The CPU is idle in the non-fault tolerant MAGMA
Hessenberg reduction algorithm, our arrangement hides the time
cost of the checksum generation.

Figure 5: Maintaining the checksums for O

when done explaining the algorithm, prove the checksum relation-
ship invariable. There is still something missing in the algorithm.
Computing the checksum of the panel and sending it to the GPU.

5.6 Recovery

Once we have detected an soft error, we first determine the row in-
dex and the column index of the soft error before we can correct the
error. We recalculate a checksum column A;. chk and a checksum
row A, ;. of the current matrix (the yellow part and the red part



in Figure 4(f)). Then we compare A;ﬁchk and A, cpk, the error row
index i can be determined if A} (i) # A, chk(i). Similarly, the
error column index j can be determined by comparing A’c chk and

Acﬁchk~

The erroneous element can be corrected using the formula A(i, j) =

. k k#£j . .. . k ki .
Ar enic(D) = L= A(i,k) or the formua A(i, j) = Ac_en(j) — Tr=1"7 A (k. )

Since an soft error in the Q matrix does not propagate, we only
examine the checksum relationship once at the end of the factoriza-
tion. The error detection and correction scheme is similar to those
for the H matrix, only that it is carried out once instead of once per
iteration.

6. PERFORMANCE EVALUATION

In this section we give a formal analysis for the overhead of our
fault tolerant Hessenberg reduction algorithm. The fault tolerant
Hessenberg reduction algorithm performs extra floating point oper-
ations and extra data transfers between the host and the GPU in ad-
dition to those in the original MAGMA Hessenberg reduction. The
fault tolerant algorithm also consumes extra storage to keep data
redundancy. So we evaluate the overhead in terms of extra FLOPS,
extra communication and extra storage. We denote the matrix di-
mension as N, the block size as nb, the amount of floating point
operations as FLOP.

After the algorithm transfers the input matrix to the GPU, the algo-
rithm computes the global row checksums and the column check-
sums for the input matrix. This involves two DGEMV operations
onthe GPU: A, cpx =Aeand A, cpk = e A. The amount of floating
operations:

FLOP;,;; =2N(N +N — 1) = 4N> —2N

In every iteration the algorithm computes column checksums for
matrix V. In the i-th iteration the dimension of matrix V is (N —
nb - i) -nb. The accumulated flop count over the course of the fac-
torization is:

FLOP4y
N/nb—1
=Y nb-(N—nb-i+N—nb-i—1)
i=0

= 0(N?)

The amount of floating point operations applied on the right hand
side checksums is:

FLOP; cpx

N/nb—1
= Y {(N—nb-i)-(nb+nb—1)+N-(nb+nb—1)
i=0

+nb-[(N—nb-i)+(N—nb-i)—1]}
— o)

The amount of floating point operations applied on the bottom check-

sums is:

FLOP; chk
N/nb—1
= Y [(N—nb-i)(nb+nb—1)
i=0
+ (N —nb-i)(nb+nb—1)]

= 0(N?)

The amount of floating point operations spent on intermediate re-
sults used by both row checksums and column checksums is:

N/nb—1
FLOPcommon Y, nb-(nb+nb—1)
i=0
=O(N)

Adding all these together we get the total amount of extra floating
point operations performed by the fault tolerant algorithm:

FLOPex(ra
= FLOPim't + FLOPcth + FLOPrfchk + FLOPcfchk + FLOPcommon

=0(N?)

The computation complexity of Hessenberg reduction is FLOP g ~

10/3N3, so the overhead of the fault tolerant Hessenberg reduction
in terms of floating point operation percentage is:

FLOPCXU&
FLOPCXtI'a
~ O(N?)
"~ 10/3N3

3

=100

Overhead =

When N increases the overhead tends to: 0

The computation cost to detect the error in Algorithm 3 requires
two dot product operations, one for the summation of the row check-
sums, one for the summation of the column checksums. The total
cost is given by:

N/nb—1
FLOPp sg1= Y, 2(N+N-—1)=O0(N?)
i=0

The computation cost to detect the error in Algorithm 4 only re-
quires one dot product operation since it only computes the sum-
mation of the diagonal elements. The cost is given by:

N/nb—1
FLOPp g20= Y, (N+N—1)=O0(N?)
i=0

In order to locate the error, a vector of new row checksums and
a vector of new column checksums need to be computed on the
matrix consisting the yellow part and the red part in Figure 2(a).
The cost is given by:

FLOP, =2N(N+N —1) =4N? —2N



Table 1: Detailed specification of the test platform.

CPU GPU
Process model  Intel Xeon E5-2670  NVIDIA Tesla K20c

Clock frequency 2.6 GHz 705.5 MHz

Memory 62 GB 4799.6 MB

Peak DP 10.4 Gflop/s 1.17 Tflop/s
BLAS/LAPACK Intel MKL 11.0 CUBLAS 3.2

(O] Red Hat 4.4.6-4 -
Compiler gcc version 4.4.6 nvee 5.0 V0.2.1221

To correct the error requires a dot product and a subtraction:

FLOPc=N-2+1=N-1

After an error has been detected, the algorithms performs a roll
back by a reverse update which includes a reverse left update and
a reverse right update. Then the pre-factorized panel is retrieved
from the buffer, and the entire iteration is repeated after the error
correction. The amount of overhead is a function of the size of the
trailing matrix. Assume the error happed in the j-th iteration, we
have:

FLOP;ego = FLOPrepeat + FLOPpype;

~N-(N—j-nb)(2nb— 1)+
(N—j-nb)-(N—j-nb)(2nb—1)
+(N—j-nb)-nb-[(N—j-nb)+ (N—j-nb)—1]
+(N—j-nb)-nb-(nb+nb—1)

=O(N?)

Compared with the computation cost of the original Hessenberg
reduction, the extra flop introduced by the fault tolerant algorithm
is very low.

The storage requirement of the fault tolerant Hessenberg reduction
algorithm consists of a panel worth of work space for the interme-
diate result to update the trailing matrix and four columns worth of
space for the checksums:

S=nb-N+4-N

7. EXPERIMENTS

In this section we present performance results of our fault tolerant
algorithm of a series of experiments. The test platform we use con-
sists an Intel Sandy Bridge-EP CPU and a NVIDIA Kepler GPU.
The specifications of the test platform are listed in Table 1 in detail.

7.1 Performance Study

We show and analyze the performance of our algorithm when the
soft error occurs in different regions of the data matrix, and at dif-
ferent time points of the factorization.

Figure 6 shows the overhead in terms of performance in the case
where the soft error occurs in area 1 (see Figure 2(a)). Figure 6(a)
shows the case when no errors happens. We can see that the perfor-
mance overhead is less than 1% for most of the matrix sizes, and
the percentage of the overhead keeps decreasing as the matrix size
increases. The overhead in this case includes the computations on
the checksums, the transfer of newly generated checksums for Q
to the GPU, and the error detection in each iteration. Figure 6(b)
shows the case where the error occurs in the beginning of the fac-
torization (the second iteration). The performance overhead in this

case includes every cost in Figure 6(b), and also includes a reverse
update to the trailing matrix, and a repetition of the faulty iteration.
Among all these costs, the most expensive step is the panel factor-
ization when repeating the faulty iteration. The reason is that the
panel factorization involves lots of GEMV operations on the GPU.
The GPU is fast for data parallel tasks, GEMV is memory bound
and is very slow compared to the trailing matrix update (DGEMM).
So this extra panel factorization incurs a big amount overhead com-
pared to other overhead contributors. Moreover, the size of the
panel which the algorithm re-factorizes is the largest panel (of size
N x nb). For these reasons, we observe the biggest overhead when
the error happens in the first iteration. Figure 6(c) shows the case
where the error occurs in the middle of the factorization (in iteration
(N/nb)/2). The overhead contributors in this graph are the same as
in Figure 6(b), the difference is in this graph the repeated iteration
has a smaller panel and a smaller trailing matrix. The overhead is
reduced significantly because of this. We can see that at the matrix
size 10112 x 10112 the overhead is 1.1% as compared to 2.1% in
Figure 6(b). Figure 6(d) shows the case where the error occurs in
the end of the factorization (the second last iteration). The overhead
in this graph drops to 0.47% at matrix size 10112 x 10112.

Figure 7 shows the performance overhead of the fault tolerant algo-
rithm when the soft error occurs in area 2 (see Figure 2(a)). Fig-
ure 7(b), Figure 7(c), and Figure 7(d) show the cases where the
error happens in the beginning, middle and end of the factorization
respectively. Similar to Figure 6, we observe the trend in which
the later the error occurs, the smaller the relative performance over-
head is. Also the relative performance overhead keeps decreasing
as the matrix size increases, the penalty is 0.61% at matrix size
10112 x 10112.

Figure 8 shows the performance overhead of the fault tolerant algo-
rithm when the soft error occurs in area 3 (see Figure 2(a)). Fig-
ure 8(b), Figure 8(c), and Figure 8(d) show the cases where the
error happens in the beginning, middle and end of the factoriza-
tion respectively. We can see that the performance overhead in
this case is very small. Actually, the performance overhead with
one error happens is close to the case without any failures. There
are two reasons for this phenomenon. Firstly, the error detection
and correction are only carried out once at the end of the factoriza-
tion.Secondly, after an error is detected, only a dot product opera-
tion is required in order to correct the error. In contrast, an error
in either area 1 or 2 requires a reverse update, and a repeated panel
factorization and trailing matrix update (includes a left update and
a right update). We also observe that the time point when the error
happens does not affect the observed overhead. No matter when
the error happened during the factorization, they are only treated
at the end with the same procedure. Therefore they incur the same
amount of overhead.

7.2 Numerical Stability

In this subsection we investigate the numerical behavior of our fault
tolerant Hessenberg algorithm compared with the non-fault tolerant
algorithm.

The block Hessenberg reduction algorithm implemented in MAGMA
is backward stable . The following residual is used to verify the fac-
torization result:
._lla—oHO |
N{A[ly

where A is the input matrix, N is the matrix dimension. Table 2
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Figure 6: Overhead of FT-Hess without failures and with one failure. A1

through Table 4 show the comparison of the residuals as obtained
from our fault tolerant algorithm with one soft error and the original
MAGMA non-fault tolerant algorithm without soft errors.

Table 2 shows the case in which the error occurs in area 1 of the ma-
trix. The first column of residuals are obtained from the MAGMA
routine, the second column of residuals are obtained when the soft
error happens in the beginning of the factorization, the third column
of residuals are obtained when the error occurs in the middle of the
factorization, the fourth column of residuals are obtained when the
soft error occurs at the end of the factorization. We can see that
for every matrix size the residuals from both algorithms are on the
same order. They only vary slightly in magnitude. In some cases
the fault tolerant algorithm even has a smaller residual than the
fault free original algorithm. This phenomenon is an evidence that
our fault tolerant Hessenberg reduction algorithm can successfully

correct soft errors without degrading the stability of the original
algorithm.

Table 3 shows the residuals from the fault tolerant algorithm in the
cases where one soft error occurs and is corrected. In this table the
soft error happens in area 2 of the matrix (see Figure 2(a)). The
second column of residuals shows the case in which the soft er-
ror happens in the beginning of the factorization, the third column
shows the case in which the soft error occurs in the middle of the
factorization. The fourth column of residuals shows the case where
the soft error happens near the end of the factorization. The resid-
uals shown in this table are also only different in magnitude from
the fault free original algorithm. This is consistent with the observa-
tion we made from Table 2, and further confirms our claim that our

fault tolerant Hessenberg reduction algorithm does not introduce
numerical degradation.

Table 4 shows the residuals from the fault tolerant Hessenberg al-
gorithm when the soft error happens in the left part of the matrix
i.e., Q. In this case the final residuals obtained are higher than their
counterparts in the MAGMA routine, but they are still within the
acceptable range. We suspect that this is caused by rounding er-
rors when calculating the checksum of a large number of elements.
Further investigation is needed to interpret and mitigate this effect.

8. CONCLUSION

In this paper we design and implemented a soft error tolerant hy-
brid Hessenberg reduction algorithm. Our algorithm can detect and
correct soft errors which occurred during the course of the factor-
ization. Our fault tolerant algorithm performs error detection and
correction on-line and completely prevents the error from propa-
gating. Our algorithm combines the strength of ABFT and diskless
checkpointing to maintain data redundancy during the factorization.
In the case of an soft error, our algorithm carries out a reverse com-
putation to roll back the program data back to a consistent state and
then correct the soft error. The overhead of our approach is very low
since it mainly utilizes extra computation to detect and correct the
error, the amount of extra memory access is minimized. The per-
formance overhead of our fault tolerant algorithm compared to the
non-fault tolerant MAGMA Hessenberg reduction reaches 0.56%
when no errors happens, and reaches 0.61% when one error hap-
pens. Our fault tolerant algorithm can detect and correct more than
one consecutive errors. Our methodology is general enough so that
we can apply it to other two-sided factorizations. In the future we



Table 2: Numerical Stability A1 top

Matrix Size

MAGMA Hess

FT-Hess B

FT-Hess M

FT-Hess E

1022
2046
3070
4030
5182
6014
7038
8062
9086
10110

6.252980 x 1018
2.629116 x 1018
8.008891 x 10~18
8.478453 x 10~18
1.201234 x 10717
1.589200 x 10~17
1.957300 x 1017
3.765650 x 10~18
6.374555x 10718
1.753614 x 10~17

6.369269 x 1018
2.630569 x 10718
8.014784 x 10~18
8.465195 x 10~18
1.201695 x 1017
1.588111 x 10~17
1.957639 x 10~17
3.763755 x 1018
6.379111 x 10718
1.753520 x 1017

6.243481 x 1018
2.644486 x 1018
8.010240 x 10718
8.474643 x 10~18
1.201397 x 10~17
1.589051 x 1017
1.957776 x 10~17
3.766010 x 1018
6.368058 x 1018
1.753726 x 10717

6.240962 x 1018
2.625012 x 10~18
8.008317 x 1018
8.476308 x 10~18
1.201272 x 10~17
1.589241 x 10~17
1.957325 x 10~17
3.764728 x 10~18
6.374630 x 10718
1.753650 x 1017

Table 3: Numerical Stability A2 bottom

Matrix Size

MAGMA Hess

FT-Hess B

FT-Hess M

FT-Hess E

1022
2046
3070
4030

6.252980 x 1018
2.629116 x 10718
8.008891 x 10~18
8.478453 x 10~18

6.276436 x 1018
2.655281 x 10718
8.002311 x 1018
8.469741 x 10~18

6.252014 x 1018
2.650204 x 1018
7.998726 x 1018
8.474768 x 10~18

6.254011 x 1018
2.627617 x 1018
8.006659 x 10~18
8.479033 x 10~18

5182 1.201234x 10717 1.202468 x 10~17  1.200824 x 10~17  1.201148 x 10~17
6014 1.589200x 1017 1.588116x 10~17  1.589105 x 10717  1.589267 x 10~17
7038  1.957300 x 10717 1.958012x 10717 1.957135x 10~17  1.957146 x 10~17
8062 3.765650 x 10718 3.757575x 1018 3.769064 x 10718  3.765698 x 10~!18
9086 6.374555 x 10718 6.381444 x 10718 6.373613 x 10~18  6.374615x 1018
10110 1.753614 x 10717 1.753192 x 10~17  1.753503 x 10~17  1.753686 x 10~!7

Table 4: Numerical Stability A3 left

Matrix Size

MAGMA Hess

FT-Hess B

FT-Hess M

FT-Hess E

1022
2046
3070
4030
5182
6014
7038
8062
9086
10110

6.252980 x 1018
2.629116 x 1018
8.008891 x 10~18
8.478453 x 1018
1.201234 x 1017
1.589200 x 10~17
1.957300 x 10~17
3.765650 x 10~18
6.374555x 10718
1.753614 x 1017

3.978038 x 1010
1.604774 x 10713
1.957680 x 10~15
1.947312 x 10714
2.516603 x 1015
4.336840 x 10715
2.615821 x 10714
8.987489 x 10~15
2.261822 x 10714
2.430251 x 10714

3.978038 x 10716
1.604774 x 10~15
1.957680 x 1015
1.947312 x 1014
2.516603 x 10~15
4.336840 x 10713
2.615821 x 10714
8.987489 x 10~13
2.261822 x 10714
2.430251 x 10714

3.978038 x 1010
1.604774 x 1015
1.957680 x 1015
1.947312 x 1014
2.516603 x 10~15
4.336840 x 10~13
2.615821 x 10714
8.987489 x 10~15
2.261822 x 10714
2.430251 x 10714

will provide soft error resilience for the rest of the hybrid two-sided
factorizations in MAGMA.
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APPENDIX

A.

SUPPLEMENT

Algorithm 4 Fault Tolerant Hybrid Hessenberg Reduction 2

9:

10:

11:
12:
13:
14:
15:
16:
17:
18:

: Transfer matrix: A on the host — d_A on the GPU
: Encode the input matrix, expand it with a checksum column

and a checksum row.

: Compute Sorig = YA(i, 1)
: for i from 1 to [ 27 do

Send the lower part of the next panel Pyex; to the host.
MAGMA_DLAHR2, return V, TandY
where Y = [P,G]VT
Obtain Y. by computing the column checksums of Y:
Yenk ¢ = trail(A)enk ¢V
Obtain V. by computing the column checksums of V:
Venk_ ¢ = el -V
DGEMM:
Mye = Mye — MV TV,
Send the leftmost nb columns of M to the host asyn-
chronously.
DGEMM: Gy, = G, — YeeVL
DLARFB: trail(A) s, = trail(A) f, — VeeT ' V  trail(A)
Compute Spow = Y A(i, 1)
if |Siow — Sorig| < threshold then
Reverse the last left and right update.
Correct the error
end if
end for
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Figure 7: Overhead of FT-Hess without failures and with one failure. A2
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Figure 8: Overhead of FT-Hess without failures and with one failure. A3
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