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Abstract

Finite field arithmetic lies at the heart of erasure codes that protect storage systems from failures. This arithmetic
defines addition and multiplication over a closed set of numbers such that every number has a unique multiplicative
inverse. For storage systems, the size of these sets is typically a power of two, and the finite fields most often
employed are Galois Fields, denoted GF (2w). There are many ways to implement finite field arithmetic in software,
plus a few tricks to aid performance. In this paper, we describe the various implementations and tricks, in tutorial-
level detail, as they specifically apply to erasure coded storage systems. We also introduce an open-source Galois
Field field arithmetic library called “GF-Complete” that implements all of these techniques and tricks, and give a
rough performance evaluation.
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1 Introduction
Erasure codes provide fault-tolerance for nearly all of today’s storage systems, from RAID [1, 12, 11] to cloud [3, 9, 28]
and archival storage systems [29, 32]. Most erasure codes, such as the well-known Reed-Solomon erasure codes, are
based on finite field arithmetic [27]. A typical erasure coding scenario is depicted in Figure 1. In this scenario, k
pieces of data, which are typically large buffers of bytes, are stored in such a way that they fail independently. This
can be on a secondary storage medium like disk, or in physically disparate primary storage media. These pieces of data
are encoded onto m additional storage buffers, which are called “coding” buffers. If the erasure code is “Maximum
Distance Separable (MDS),” data may be recalculated from any k of the n = k+m storage buffers; thus, loss of any m
buffers causes no data loss as long as the position of the missing buffers is known (i.e., i is known for all missing Di).
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Figure 1: Typical erasure coding scenario, where k large storage buffers are encoded onto m additional storage buffers
such that the failure of up to m of the n = k +m buffers may be tolerated.

Many erasure codes, including the very popular Reed-Solomon codes, are defined to work on finite sets of numbers.
These are often called words or symbols, and are stored in binary as w-bit numbers. The erasure code logically
encodes k words onto m words in such a way that the loss of any m words (of the k+m total words) may be tolerated
without data loss. When such a code is implemented in a real storage system, each storage buffer, Di and Cj , is
typically partitioned into words, di,0, di,1, . . . and cj,0, cj,1, . . ., and each collection of one word from each storage
region (di,x and cj,x) is encoded together. Because of this partitioning, the number of bits per word, w, is constrained
so that words fit easily into machine words, and collections of words fit neatly into blocks. As a result, w is typically
a power of two; in other words, w ∈ {4, 8, 16, 32, 64, 128} for most codes.

The choice of w is typically dictated by parameters of the coding system. For example, Reed-Solomon codes only
have the MDS property when n ≤ 2w + 1 [18]. Regenerating codes require w to be big enough that the probability
of non-regeneration is extremely small [5]. The HAIL storage system employs w ≥ 32 to blend security and fault-
tolerance [15]. Code designers typically attempt to minimize w, because implementations of small values of w perform
faster than those of large values [24].

A standard depiction of erasure codes is drawn in Figure 2. The erasure code is expressed as a matrix-vector
product, where a Generator matrix is applied to a vector composed of the k words of data to yield a “codeword”
composed of the k data words and the m coding words. All elements of the system are w-bit words, and an MDS code
guarantees that any m elements of the codeword may be lost without losing data.

Since all of the elements of the system are w-bit words, the matrix-vector product must be calculated using finite
field arithmetic. This arithmetic defines addition and multiplication over the closed set of w-bit numbers such that each
number has a unique multiplicative inverse. In other words, for each non-zero number i, there is a unique number j
such that i ∗ j = 1. The canonical arithmetic for these systems is Galois Field arithmetic, denoted GF (2w).

While the mechanics and properties of Galois Field arithmetic are well-known and well documented, there are a
variety of ways in which these codes may be implemented in software, and there are a variety of implementation
decisions that affect performance. The purpose of this paper is to present all of these implementation techniques and
decision points, especially as they pertain to erasure coded storage systems. Additionally, we have implemented an
open-source library in C for finite field arithmetic, called GF-Complete. This library includes all implementation
techniques discussed in the paper and is available on the Internet for no charge. We evaluate the performance of this
library on commodity processors so that potential users can have a rough idea of how the various implementations can
work in storage installations.
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Figure 2: Typical depiction of an erasure code as a matrix vector product, where all elements of the system are w-bit
words.

2 Reference Material and Related Work
Much of the material in this paper is covered in greater depth by other sources. Standard texts on coding theory provide
complete treatments of Galois Field arithmetic and Reed-Solomon coding for error and erasure correction [21, 18, 33,
19]. Plank’s tutorial on Reed-Solomon coding [22] presents the material specifically for the storage practitioner, and
provides details on using discrete logarithms to implement Galois Fields. Blömer, et al. use bit matrices to implement
Galois Fields [2], and Greenan, et al. provide thorough discussions of table-based implementations and composite
operations [6]. Techniques that apply effectively to large values of w are given detailed treatments by Lopez, et al.
and Luo, et al., and Anvin poineered the use of large computer words to perform multiple finite field operations of
smaller words [14, 1, 15]. The use of SIMD instructions for fast region operations was first presented by Li and Huan-
Yan [13], and then by Anvin [1]. It was given a more complete treatment by Plank, et al. [23]. Some techniques, such
as the generalizations of the SHIFT technique, lazy generation of tables and the alternate mappings of field elements
to memory are implementation techniques that are new to this work. The open source library, further consideration of
vector instructions and performance evaluation are new as well.

3 The Requirements of Finite Field Arithmetic in Storage Systems
In order to realize the matrix-vector product of Figure 2, a finite field arithmetic implementation must perform addition
and multiplication of w-bit numbers. When failures occur, the generator matrix is massaged into a decoding matrix,
which typically requires a matrix inversion. To perform the inversion, one must be able to perform division of w-bit
numbers, either directly or by multiplying by the multiplicative inverse of a number.

Additionally, real storage installations look more like Figure 3 than Figure 2. The identity matrix is managed
implicitly, and the vector and product parts of the equation are not single numbers, but large storage buffers. Although
they are partitioned into single numbers, it is typically much more efficient to add the buffers together as a whole, and
to multiply whole buffers by single constants.

Thus, a finite field arithmetic library should support the following operations:

• uintw t add(uintw t a, uintw t b);
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Figure 3: Erasure codes as they typically apply to real storage installations.

• uintw t multiply(uintw t a, uintw t b);

• uintw t divide(uintw t a, uintw t b);

• void add region(void *a, void *b, void *sum, int bytes);

• void multiply region(uintw t a, void *b, void *product, int bytes, bool add);

The parameter types uintw t are unsigned integer types represented as w-bit words, such as uint8 t or uint64 t

in C, which represent unsigned 8 and 64-bit integers respectively. The add parameter of multiply region() specifies
whether the product region should simply be set to the product of a and b, or whether that product should be added to
existing contents of product using exclusive-or.

While the performance of all operations should be good, the truly important ones are the region operations. This
is because the single operations are only employed for creating and massaging the generator matrix, both infrequent
operations. The majority of time in erasure coding is spent in the region operations, as megabytes to gigabytes of data
are typically encoded or decoded using a single matrix.

4 Galois Field Arithmetic Summarized: Bits and Polynomials
It would be convenient if modular arithmetic would suffice to implement finite fields, which is the case when the
number of elements in the field is a prime number. For erasure codes, however, the number of elements is a power of
two, which means that modular arithmetic cannot be employed because no even number has a multiplicative inverse.

Instead, we rely on Galois Fields, which we summarize here. A Galois Field GF (2w) has 2w elements. Depending
on the scenario, we represent each element in one of four ways:

• As a decimal number between 0 and 2w − 1.

• As a hexadecimal number between 0 and 2w − 1.

• As a binary number with w digits.

• As a polynomial of degree w − 1, whose coefficients are binary.
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To determine an element’s polynomial representation, one starts with the binary representation: the coefficient of the
term xi is equal to the i-th digit of the binary representation. This is called the standard basis representation [15].
Figure 4 shows sample representations in each format for the numbers 0, 1, 2, 5, 7, 10, 11 and 13 in GF (24). We use
these numbers as examples in the descriptions that follow.

Decimal Hexadecimal Binary Polynomial
0 0x0 0000 0
1 0x1 0001 1
2 0x2 0010 x
5 0x5 0101 x2 + 1
7 0x7 0111 x2 + x+ 1

10 0xa 1010 x3 + x
11 0xb 1011 x3 + x+ 1
13 0xd 1101 x3 + x2 + 1

Figure 4: Examples of the four representations of some elements of GF (24).

For those unfamiliar with polynomial representations, we stress that the polynomial is never evaluated. Rather, it is
simply used as a representation because of its properties with respect to addition, multiplication and division. For an
element a, we denote its polynomial representation as a(x):

a = a(x) =

w−1∑
i=0

aix
i, (1)

where ai is equal to the i-th digit in the binary representation of a.
Addition of two elements in GF (2w) corresponds to addition of their polynomials, where coefficients are added

modulo two. For example, 10 + 13 is equal to 7:

10 + 13 = (x3 + x) + (x3 + x2 + 1) = x2 + x+ 1 = 7.

Thus, addition is conveniently equivalent to the bitwise XOR operation on the binary representation. It also has the
property that addition equals subtraction, and any element added to itself equals zero.

Multiplication on the other hand is more complex. When we multiply two numbers a and b, we start by multiplying
their polynomials a(x) and b(x). To differentiate this polynomial multiplication from other kinds of multiplication
in this paper, we call it carry-free multiplication and denote it with the operator ⊗. If the product of a carry-free
multiplication has a degree less than w, then multiplication in GF (2w) is equal to carry-free multiplication. For
example, it is easy to see that the product of 2 and 5 in GF (24) is equal to 10:

2⊗ 5 = (x)(x2 + 1) = x3 + x = 10.

However, the carry-free multiplication can result in a polynomial with a larger degree. For example, consider
multiplying 10 and 13:
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10⊗ 13 = (x3 + x)(x3 + x2 + 1)

= x3(x3 + x2 + 1) + x(x3 + x2 + 1)

= (x6 + x5 + x3) + (x4 + x3 + x)

= x6 + x5 + x4 + x.

When this happens, we reduce the product p(x) to an equivalent polynomial p′(x) whose degree is less than w
using a special polynomial of degree w called the irreducible polynomial, IP . We will not dwell on the construction
of IP . Its main property is that it cannot be factored into smaller polynomials, and that property of irreducibility is
central to multiplication.

To reduce p(x) to p′(x), we take it modulo the irreducible polynomial. Formally, we find some polynomial e(x)
such that:

p(x) = e(x)IP(x) + p′(x).

The irreducibility of IP guarantees that e(x) and p′(x) always exist and are unique.
Algorithmically, we can find p′(x) using the following simple steps:

Input: Polynomial p(x)
Output: Reduced polynomial p′(x)
while TRUE do

d = degree(p(x)) ;
if d < w then

p′(x)← p(x) ;
return p′(x) ;

end
p(x)← p(x) + x(d−w)IP(x) ; // Reduce the degree of p(x), guaranteeing termination

end

For example, a irreducible polynomial for GF (24) is x4+x+1 [33]. We use this polynomial to reduce the product
of 10 and 13 in the table below:

p(x) d xd−wIP(x) New p(x) = p(x) + xd−wIP(x)
x6 + x5 + x4 + x 6 x6 + x3 + x2 x5 + x4 + x3 + x2 + x

x5 + x4 + x3 + x2 + x 5 x5 + x2 + x x4 + x3

x4 + x3 4 x4 + x+ 1 x3 + x+ 1

Thus, p′(x) = x3 + x+ 1, and the product of 10 and 13 is 11.
There are tables of irreducible polynomials for all practical values of w [33]. For the values of w that are important

for erasure coding, we list irreducible polynomials in Figure 5. The polynomials denoted “standard” are ones that are
employed in current popular libraries for Galois Field arithmetic [31, 20, 26]. The “alternate” polynomials are given
only in hexadecimal, and have better properties than the standard ones in certain situations, as described in Section 6.2.

6



w Standard irreducible polynomial for GF (2w) In hexadecimal Alternate
4 x4 + x+ 1 0x13
8 x8 + x4 + x3 + x2 + 1 0x11d

16 x16 + x12 + x3 + x+ 1 0x1100b 0x1002d
32 x32 + x22 + x2 + x+ 1 0x400007 0xc5
64 x64 + x4 + x3 + x+ 1 0x1b

128 x128 + x7 + x2 + x+ 1 0x 87

Figure 5: Irreducible polynomials for GF (2w), for values of w that are practical for erasure coding. For w ≥ 32, we
omit the leading bit in the hexadecimal representation, because in practical implementations, the bit does not fit into
the machine word used to implement the number.

5 Representing Elements and Basic Operations
The unsigned integer representation of a number may be employed conveniently for all four representations of elements
in GF (2w). Basic computer bit operations can then implement some of the basic arithmetic operations in the field. For
example, both add() and add region() may be implemented by the exclusive-or operation (XOR), which is supported
by all computer architectures, usually in units of 64 and up to 256 bits per instruction.

Multiplication by xi is equivalent to bit-shifting a number left by i bits, and determining the value of ai is equivalent
to checking the value of the ith bit of the binary representation of p(x). Thus, when we use Equation 2 to define carry-
free multiplication, we may use standard computer bit operations to both multiply by xi and reduce the product.

a⊗ b =

w−1∑
i=0

ai(x
ib). (2)

We demonstrate the multiplication of 10 and 13 in GF (24) using the binary representations of the numbers in
Figure 6. In this figure, and others that involve binary, we use C notation for left-shift (<<) and right-shift (<<), and
⊕ for exclusive-or.

Action Bit operations on binary words Result
Carry-free multiplication of 10 and 13 (1101 << 3)⊕ (1101 << 1) 1110010
First reduction step: adding x2IP(x) 1110010⊕ (10011 << 2) 111110
Second reduction step: adding xIP(x) 111110⊕ (10011 << 1) 11000
Third reduction step: adding IP(x) 11000⊕ 10011 1011

Figure 6: Multiplying 10 and 13 in GF (24) using computer bit operations.
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6 Implementations of multiply()

6.1 The SHIFT Implementation: Directly from the Definition
Armed with this information, we may implement the multiplication algorithm detailed in Section 4 above very simply.
We call this implementation SHIFT; its implementation in C for GF (28) is shown in Figure 7. We also include a
detailed example of how the C code multiplies 230 and 178 to yield the product 248 in GF (28).

Figure 7: The SHIFT implementation in C of multiply() in GF (28), plus an example of multiplying a = 230
and b = 178 to yield p = 248. The second for loop starts at 14 because the highest possible degree for p(x) is 14.

Compared to the other implementations detailed below, this implementation has several practical problems. It
requires O(w) operations, and inconveniently, the product of the carry-free multiplication must be stored in a word
whose size is 2w bits. Therefore, we do not recommend that this implementation be used in any setting where
performance is a concern.

However, it is a good first step toward understanding many of the other implementations. Formally, when we
multiply a and b, the SHIFT algorithm creates p(x) with the following formula:

p(x) = reduce(a⊗ b)

6.2 The CARRY-FREE Implementation: Using a carry-free multiplication instruction
Some computer architectures include an instruction that performs a carry-free multiplication. For example, Intel’s
pclmulqdq instruction performs a carry-free multiplication of two 64-bit numbers and places the result into a 128-bit
vector. With this instruction, we can implement multiply() much more efficiently than with SHIFT. Its performance,
however, depends on the structure of the irreducible polynomial.
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We describe how it works, first with polynomials, and second with C code. Let us represent the irreducible poly-
nomial as xw + pp(x), and let ppd be equal to w minus the degree of pp(x). For example, in GF (24), pp(x) = x+ 1
and ppd = 3.

Let p(x) be a polynomial whose degree is equal to d ≥ w. We may represent p as the sum of two polynomials:

p(x) = phigh(x)x
w + plow (x),

where phigh(x) and plow (x) have degrees less than w. Consider the product of phigh(x) and the irreducible polynomial,
which may be calculated with carry-free multiplication. The coefficients of xd−i for 0 ≤ i < ppd will be equal for
both p(x) and this product. Therefore, their sum reduces p(x) by ppd terms.

Now, suppose that p(x) is the product of a(x) and b(x), which are elements of GF (2w). The maximum degree
of p(x) is 2w − 2, which means that we have a maximum of w − 1 terms to reduce so that the product’s degree is
less than w. Using carry-free multiplication, we may reduce p(x) by ppd terms. Therefore, if we perform dw−1ppd

e such
reductions, our result will be an element of GF (2w).

We illustrate by multiplying 10 = x3 + x and 13 = x3 + x2 + 1 in GF (24). Let p(x) be their product. Then:

p(x) = x6 + x5 + x4 + x = (x2 + x+ 1)x4 + x

phigh(x) = x2 + x+ 1

plow (x) = x

To reduce p(x) by ppd = 3 terms, we multiply phigh(x) by the irreducible polynomial:

phigh(x)IP (x) = (x2 + x+ 1)(x4 + x+ 1)

= x2(x4 + x+ 1) + x(x4 + x+ 1) + (x4 + x+ 1)

= (x6 + x3 + x2) + (x5 + x2 + x) + (x4 + x+ 1)

= x6 + x5 + x4 + x3 + 1

Adding this to p(x) reduces p(x) by 3 powers of x, and the result is the product in GF (24): x3 + x+ 1 = 11.
Thus, using the “standard” irreducible polynomials from Figure 5, we may reduce any product in one step for w =

4, two steps for w ∈ {8, 64, 128} and four steps for w ∈ {16, 32}. If we use the “alternate” irreducible polynomials
for w ∈ {16, 32}, then we can reduce any product in two steps.

The C code in Figure 8 shows an implementation of CARRY-FREE for GF (28). It assumes that the procedure
cfm(a,b) returns the result of a carry-free multiplication of a and b. The first cfm() call creates the polynomial
product of a and b. The bit shifts in the second and third calls create phigh(x), which is multiplied by the irreducible
polynomial, and then added to the product with exclusive-or. The first of these zeros bits 11 through 14 in the product.
The second zeros bits 8 through 10.

The right side of Figure 8 shows a concrete example of multiplying a = 230 and b = 178 to yield p = 248
in GF (28). Bits 11 through 14 are highlighted in the first step of the reduction, and bits 8 through 10 are highlighted
in the second step.

6.3 The TABLE Implementation: Multiplication Tables
Galois field multiplications, like normal multiplications, can be implemented easily using precalculated multiplication
tables. When w ≤ 8, one can store a complete multiplication table in 216 bytes, or 64 KB. Most practical implemen-
tations of Reed-Solomon coding for disk systems smaller than 256 drives employ multiplication and division tables
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uint16_t IP = 0x11d;

uint16_t 

multiply(uint8_t a, uint8_t b)

{

  uint16_t p;

  p = cfm(a, b);

  p ^= cfm((p >> 8), IP);

  p ^= cfm((p >> 8), IP);

  return p;

}

Figure 8: The CARRY-FREE implementation in C of multiply() in GF (28). This assumes that cfm(a,b) returns the
result of a carry-free multiplication of a and b.

in this manner [30, 26]. When w = 16, a full multiplication table requires 232 2-byte entries, which requires 8 GB
of storage. This is typically too large, so most implementations of Reed-Solomon coding do not use multiplication
and division tables for GF (216). However, as detailed in Section 8.3 we can still use multiplication tables for mul-
tiply region() for larger values of w if we create a single row of the full multiplication table corresponding to the
constant by which the region is being multiplied.

6.4 The LOG-TABLE Implementation: Using Discrete Logarithms
There is an additional property of an irreducible polynomial called “primitiveness.” If IP is primitive, then each non-
zero number in GF (2w) is equal to xl for some 0 ≤ l < 2w − 1. For example, in GF (24), 1 = x0, 2 = x1, 8 = x3

and 3 = 8× 2 = x4. All of the polynomials in Table 5 are primitive as well as irreducible.
The number l is called the discrete logarithm. We show the discrete logarithms for all non-zero elements of GF (22

4

)
below:

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Discrete log 0 1 4 2 8 5 10 3 14 9 7 6 13 11 12

Discrete logarithms may be used to implement multiplication and division efficiently. The mathematics are quite
simple, and are analogous to multiplication and division using logarithms in real numbers:

If a = xl and b = xm, then ab = xl+m.

Thus, we maintain two tables: one of discrete logarithms, and one of inverse logarithms. To calculate the product
of a and b, we first compute r = log a+ log b (using standard addition, not XOR), looking up the discrete logarithms
in the table. We then look up r in the inverse logarithm table to find z = antilog r. Using the examples above, to
multiply 3 by 4, we add their discrete logarithms (4 + 2 = 6) and take the inverse of the result: x6 = 12.

Because x2w−1 = 1, the logarithms cycle every 2w − 1 elements. This is important, because the sum of the
discrete logarithms can be greater than 2w − 1. For example, when we multiply 10 and 13 in GF (22

4

), the sum of
their logarithms is 9 + 13 = 22. We can subtract 2w − 1 = 15 from the sum to yield the logarithm of the result:
22− 15 = 7, and log 11 = 7, so the product of 10 and 13 in GF (24) is 11.
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uint16_t multiply(uint16_t a, uint16_t b)

{

  if (a == 0 || b == 0) return 0;

  return inverse[(uint32_t)log[a] + (uint32_t)log[b]];

}

Figure 9: The LOG-TABLE implementation in C of multiply() in GF (216). The inverse table must have 2w+1 − 3
elements. One may instead take the sum modulo 2w − 1, and then inverse only needs 2w − 1 elements.

The simplest C code for LOG-TABLE in GF (216) is displayed in Figure 9. However, there are some subtleties in
this implementation. First, if the discrete logarithm table holds 16-bit unsigned integers, then the sum of the logs must
be a larger data type, as the sum can exceed 216 − 1. Second, since the sum is a number between 0 and 2(2w − 2), the
inverse table must have 2w+1 − 3 entries, of which the last 2w − 2 are copies of the first 2w − 2. This is because as
noted above, the logarithms cycle every 2w − 1 elements.

The inverse table may be shrunk by taking the sum modulo 2w − 1, trading off decreased space (saving 2w − 2
entries) for added time (the modulo instruction).

To create the tables, one starts with a = 1, whose discrete logarithm is zero, and one then successively multiplies a
by 2 using SHIFT, incrementing the discrete logarithm by one, until a equals one again. More detail on this process,
including the C code to calculate products and generate the tables, may be found in [22].

To perform division (ab ), we simply compute log a − log b = r and look up the inverse logarithm for r. Now,
the inverse table must have elements for −(2w − 2) to 2w − 2, or one must perform the same modulo operation as
in multiplication to reduce the size of the table to 2w − 1 entries. If one uses the larger table, then one may use the
same table for multiplication and division, so long as it has a total of 2w+1 − 2 elements; The base pointer for the
division table needs to be set 2w − 1 elements higher than the base pointer for the multiplication table (this is done in
Figure 10).

6.4.1 LOG-ZERO: Trading quite a bit of space for one “if” statement

For an even more severe space-time tradeoff, we may eliminate the if statement in Figure 9 by defining log[0] to have
a sentinel value equal to (2w+1 − 2). We explain this in two steps. First, suppose we wish to modify the if statement
in Figure 9 so that it instead reads “if (b == 0) return 0.” To do so, we add an extra 2w+1 − 2 elements to the inverse
table, whose entries are all zero. To visualize how this works, we show the logarithm and inverse tables for GF (24)
in Figure 10.

We demonstrate how these tables work with four concrete examples:

• Multiplying 10 and 13. The discrete logarithms are 9 and 13, whose sum is 22. The product may thus be found
in element 22 of the inverse table for multiplication, which is 11.

• Dividing 11 by 10. The discrete logarithms are 7 and 9, whose difference is -2. The quotient may thus be found
in element -2 of the inverse table for division, which is 13.

• Multiplying 9 and 0. The discrete logarithm for 0 has been set to (2w+1 − 2) = 30. The sum of the logarithms
is thus 44, which is the last element of the inverse table. The product is therefore 0.

• Dividing 0 by 9. Now the difference of the logarithms is 16, and element 16 of the inverse table for division is
equal to zero.
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Figure 10: An example of laying out the logarithm and inverse tables using LOG-ZERO in GF (24). When using
these tables, one may eliminate the check for (a == 0) in the implementations for both multiplication and division.

An important subtlety is that the values in logarithm table elements must be big enough to represent the sentinel
value. For example, when w = 8, the sentinel value is bigger than 2w − 1, and the logarithm table must hold 16-bit
integers rather than eight-bit integers. The inverse table, on the other hand, may still hold 8-bit integers.

We call this optimization LOG-ZERO. It has been described previously by Greenan [6] and Luo [15]. It may be
extended further to remove the final if statement completely by expanding the inverse table to include twice the value
of the sentinel. In Figure 10, that would be element 60. In this case, all of the elements from the previous end of the
table to this last element are unused, and it is up to the programmer to make use of them for some other purpose. This
extension only applies to multiplication and not division, since division by zero is undefined. Additionally, when using
this technique for multiply region(), one typically treats multiplication by zero as a special case, and this extension is
not necessary.

6.5 The SPLIT-TABLE Implementation: Using the Distributive Property to Lower Memory
Usage

The distributive property of multiplication applies to Galois Fields:

(x+ y)z = xz + yz.

We leverage this in the SPLIT-TABLE implementation as follows. Suppose a is an element of GF (28). We may
treat a as the sum of two terms, either in its polynomial or binary representation:

Polynomial Binary
a(x) = ahigh(x)x

4 + alow (x) a = (ahigh << 4)⊕ alow

In the polynomial representation, ahigh and alow are polynomials of degree less than four. In the binary represen-
tation, they are four-bit numbers. We multiply a and b by splitting the eight bits of a into its two four-bit compo-
nents ahigh and alow , and then using them to look up (ahighx

4)b and alowb in two different lookup tables. The two
products are added to yield the result.

For example, let’s return to multiplying 230 and 178 in GF (28). In binary, 230 equals 11100110. Therefore,
230 = 11100000⊕ 00000110 = (1110 << 4)⊕ 0110. We may use two lookup tables to calculate the product 248:

00000110× 178 = 139(10001011)

11100000× 178 = 115(01110011)

139⊕ 115 = 248(11111000)
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The advantage of this approach is that the lookup tables are smaller than for the TABLE implementation. For
example, instead of requiring one 256×256 table, multiplication in GF (28) with SPLIT-TABLE requires two 16×256
tables.

To define SPLIT-TABLE generally, we use the polynomial representation of numbers. Let agi (x) be a polynomial
of degree less than g. Then a polynomial a(x) ∈ GF (2w) may be defined as a sum of these polynomials:

a(x) =

dwg e−1∑
i=0

agi (x)x
gi. (3)

For SPLIT-TABLE, we choose two values of g — one for a and one for b — and call them ga and gb. We define a
and b as sums of smaller polynomials, and define their product as sums of the products of the smaller polynomials.
Formally:

ab = a(x)b(x) =

 w
ga
−1∑

i=0

agai (x)xgai

 w
gb
−1∑

j=0

bgbj (x)xgbj


=

w
ga
−1∑

i=0

w
gb
−1∑

j=0

agai (x)bgbj (x)xgai+gbj

In the example above, ga = 4 and gb = 8, and therefore the product is the sum of two sub-products. Consider a
second, more complex example, where ga = gb = 8, and we multiply a and b in GF (232). Then:

ab = a(x)b(x) =

3∑
i=0

3∑
j=0

a8i (x)b
8
j (x)x

8i+8j

Multiplying out, the product is a sum of 16 terms:

ab = a80(x)b
8
0(x) + a80(x)b

8
1(x)x

8 + a80(x)b
8
2(x)x

16 + a80(x)b
8
3(x)x

24 +
a81(x)b

8
0(x)x

8 + a81(x)b
8
1(x)x

16 + a81(x)b
8
2(x)x

24 + a81(x)b
8
3(x)x

32 +
a82(x)b

8
0(x)x

16 + a82(x)b
8
1(x)x

24 + a82(x)b
8
2(x)x

32 + a82(x)b
8
3(x)x

40 +
a83(x)b

8
0(x)x

24 + a83(x)b
8
1(x)x

32 + a83(x)b
8
2(x)x

40 + a83(x)b
8
3(x)x

48.

Each a8i (x) and b8j (x) is an 8-bit number, so each product may be calculated with a 256× 256 element table. Since
each product is an element of GF (232), these tables hold 32-bit words. Only one table is needed for each value of x8i,
which means a total of seven tables, or 7(4)(256)(256) = 1.75MB. One may similarly use ga = gb = 8 to implement
multiplication in GF (264) by computing 64 sums of terms that may be looked up in 15 tables of 28 × 28 elements.
The total memory requirement for this approach is just 7.5 MB.

SPLIT-TABLE is an important technique for a variety of reasons. Without a carry-free instruction like pclmulqdq,
the version above with ga = gb = 8 is the fastest way to perform multiply() in GF (232). This is the implementation
used in version 1.2A of the jerasure erasure-coding library [26]. When ga = 4 and gb = w, SPLIT-TABLE may be
employed to leverage the pshufb instruction to perform multiply region() at cache line speeds (see section 8.4),
as first reported by Li and Huan-yan [13] and then leveraged by Anvin to implement RAID-6 decoding in the Linux
kernel [1].
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Figure 11: The BYTWOp implementation in GF (24). The left side is an implementation in C. The right side demon-
strates how a = 10 (1010) times b = 13 (1101) equals = 11 (1011).

6.6 The BYTWOp and BYTWOb Implementations: Incrementally reducing the product.
The BYTWO implementations are best motivated with an example. Let a and b be numbers in GF (24). The polynomial
representation of a is a3x

3 + a2x
2 + a1x + a0, where each ai is a zero or one. Then the SHIFT implementation

calculates ab by evaluating the following equation:

ab = reduce(((a3b)x
3 + (a2b)x

2 + (a1b)x+ a0b).

Thus, reduce() must work on a polynomial of degree up to six, which requires more than w bits to store. The
BYTWOp implementation computes the product incrementally, calling reduce() at each step. It is defined in Equation 4.

ab = a0b+ reduce(x(a1b+ reduce(x(a2b+ reduce(xa3b))))). (4)

By calling reduce() each time we multiply by x, we never have to use numbers that are greater than w bits. We
call this BYTWOp because the polynomial x is equal to the decimal number 2, and thus we are really incrementally
multiplying the product by two. To hammer this point home, equation 5 shows the decimal representation of BYTWOp:

ab = a0b⊕ 2(a1b⊕ 2(a2b⊕ 2(a3b))) (5)

The left side of Figure 11 shows a C implementation of BYTWOp in GF (2w), and the right side demonstrates how
10 ∗ 13 = 11 is calculated with this implementation. Obviously, for fixed values of w, one may unroll the while loop
completely, thereby improving performance further.
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Figure 12: The BYTWOb implementation in GF (24). The left side is an implementation in C. The right side demon-
strates how a = 10 (1010) times b = 13 (1101) equals 11 (1011).

Instead of incrementally multiplying the product by two, we can instead multiply b by two incrementally. This is
the BYTWOb implementation. It is based on equations 6 (polynomial) and 7 (decimal).

ab = a0b+ a1(reduce(bx)) + a2(reduce(bx
2)) + a3(reduce(bx

3)). (6)
ab = a0b⊕ a1(2b)⊕ a2(4b)⊕ a3(8b). (7)

As with BYTWOp, we show an implementation of BYTWOb in C and demonstrate how it calculates 10 ∗ 13 = 11
in GF (24). An important difference between BYTWOp and BYTWOb is that the loop in BYTWOb terminates after it
sees the highest one bit in a. Therefore, the loop only executes once when a equals two, regardless of the value of w.
This implementation was leveraged by Anvin to implement RAID-6 encoding in the Linux kernel, where values are
successively multiplied by two very quickly [1]. Please see Section 8.5 for how Anvin also multiplies multiple words
by two in just a few machine instructions.

6.7 The GROUP Implementation: Adding table lookups to SHIFT
While the implementation of SHIFT is simple, it can be very slow, particularly for large fields, requiring w iterations
for multiplication in GF (2w). The number of iterations can be sped up by shifting multiple bits at a time, and using a
small table lookup to compute each product; we call this the GROUP implementation. By doing so, reduction becomes
a bit more complex as well, so, as with previous implementations, we illustrate the GROUP implementation with an
example. Suppose we are are again multiplying a = 230 and b = 178 in GF (28). Instead of viewing a as eight bits,
we may view it as four two-bit numbers:

230 = (11100110) = |11|10|01|10| = |3|2|1|2|

We then create a four-element table, M , which holds the product of b and zero through three, and we use that table
to calculate the carry-free multiplication with three shifts and XORs. The process is illustrated in Figure 13. By using
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the multiplication table to aggregate SHIFT operations, we perform the carry-free multiplication two bits at a time,
rather than one.

Figure 13: Using a four-element multiplication table to calculate a⊗ b when a = 230 and b = 178.

We may also create a four-element table, R, from the irreducible polynomial, which allows us to reduce the product
back to eight bits by operating on two bits at a time, rather than one, as illustrated in Figure 13, where we show how
230⊗ 178 reduces to 248.

Figure 14: Using a four-element reducing table to reduce a⊗ b when a = 230 and b = 178.

Extrapolating from this example, we define the GROUP optimization using two parameters, gm and gr. These are
the numbers of bits in the indices of the multiplication and reducing tables respectively. In our example above, they
both equal two. There are tradeoffs in the size of these values. Bigger values of gm and gr allow us to perform carry-
free multiplication and reduction in fewer steps, but are of size 2gm and 2gr respectively. Moreover, the multiplication
table needs to be created anew for each value of b, which argues for smaller values of gm. The reducing table, on the
other hand, is created from the irreducible polynomial, and therefore only needs to be created once for all values of b.
Thus, it makes sense for gr to be bigger than gm.

We remark that when creating the R table, it is not always the case that the element in index i is equal to i⊗ IP , as
it is in Figure 14. Instead, the element in index i needs to be equal to x⊗ IP for whatever value of x makes the first gm
bits of the product equal i. For example, suppose we use the irreducible polynomial x4+x3+1 to implement GF (24),
and we set gm = 2. Then, 2⊗ IP equals x5 + x4 + x, or 110010 in binary. Thus, 110010 goes into index 3 of R, and
not into index 2.

As with SHIFT, the carry-free multiplication step of GROUP creates a word that is longer than w bits. When
gm = gr, we may alternate multiplication and reduction so that we only deal with w-bit words. The process is a bit
subtle, so we give a detailed example in Figure 15, which again multiplies 230 by 178 in GF (28) when gm = gr = 2.
We split a into two-bit indices, |3|2|1|2|, and build M from b as before. We assume that R has been created already;
however it only holds the smallest eight bits, rather than ten bits as in Figure 14.
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Figure 15: When gm = gr, we can alternate multiplying and reducing so that we only have to use w-bit words in the
GROUP calculation. In this example, we multiply 230 and 178 in GF (24).

To perform the calculation, we incrementally build a product p, starting with the value zero. We split p into two
parts, l and r, which are two and six bits respectively. We then perform each step of multiplication as follows. We
shift r two bits to the left, XOR it with M [3] and with R[l] to yield the next value of p. We split that into l and r
and repeat the process with the next word of a. In other words, we shift r two bits to the left, and XOR it with M [2]
and R[l] to yield the next value of p. We perform this step two more times, using M [1] and finally M [2], to yield the
final product.

We may perform similar optimizations when gr is a multiple of gm. For example, if gr = 2gm, then we perform
two multiplications and one reduction at each iteration.

GROUP was used by Luo et al. to perform multiplications of large words w ∈ {32, 64} in HAIL [15]. We note
that BYTWOp is in fact equivalent to GROUP with gm = gr = 1.

6.8 The COMPOSITE Implementation: A Different Kind of Field
Composite Galois Fields [6, 15] are denoted GF ((2l)k), and implement finite fields for w = lk. Unlike the other
implementations in this paper, composite Galois Fields implement a different finite field. In other words, GF ((2l)k) 6=
GF (2lk). However, they have the appropriate properties, and can thus be used in applications that require finite fields.

As with GF (2w), numbers in GF ((2l)k) have four representations: decimal, hexadecimal, binary and polynomial.
However, instead of a w− 1-degree polynomial with binary coefficients, the polynomial is a k− 1 degree polynomial
whose coefficients are elements of GF (2l). For example, the numbers 230 and 178 in GF ((24)2) would have the
following polynomial representations.

230 = |1110|0110| = 14x+ 6

178 = |1011|0010| = 11x+ 2

Addition and multiplication are defined similarly to GF (2w). As before, addition is equal to XOR. Multiplication
is standard polynomial multiplication, where the arithmetic for the coefficients is in GF (2l), and the product is taken
modulo a irreducible polynomial of degree k. Irreducible polynomials for many w, k, l combinations may be found
in [15].

When we restrict our attention to k = 2, and GF (2l) is implemented with the “standard” irreducible polynomials
from Figure 5, the following are irreducible polynomials for GF ((2l)2):
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GF ((24)2) : x2 + 2x+ 1

GF ((28)2) : x2 + 3x+ 1

GF ((216)2) : x2 + 2x+ 1

GF ((232)2) : x2 + 2x+ 1

To demonstrate multiplication, we multiply 230 and 178 in GF ((24)2):

(230)(178) = (14x+ 6)(11x+ 2)

= (14 ∗ 11)x2 + (14 ∗ x+ 11 ∗ 6)x+ (6 ∗ 2)
= 8x2 + (15 + 15)x+ 12

= 8x2 + 12

To reduce this, we multiply the irreducible polynomial by eight and add it to the product:

= 8x2 + 12 + 8(x2 + 2x+ 1)

= 8x2 + 12 + 8x2 + 3x+ 8

= 3x+ 4

= |0011|0100| = 0x34 = 52.

When the irreducible polynomial is of the form x2 + sx+ 1, we may generalize multiplication as follows:

p = ab

p1x+ p0 = (a1x+ a0)(b1x+ b0)

= a1b1x
2 + a1b0x+ a0b1x+ a0b0

We take this modulo the irreducible polynomial by adding a1b1 times the irreducible polynomial:

p1x+ p0 = a1b1x
2 + a1b0x+ a0b1x+ a0b0 + a1b1(x

2 + sx+ 1)

= (a1b0 + a0b1 + a1b1s)x+ (a0b0 + a1b1)

Therefore:

p1 = a1b0 + a0b1 + a1b1s (8)
p0 = a0b0 + a1b1 (9)

This allows us to implement multiplication in GF ((2l)2) with five multiplications in GF (2l) and three XOR
operations. For large field sizes, this may be the most efficient way to perform multiplication. It also has interesting
implications for implementing multiply region(), as discussed in Section 8.6.3 below.
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6.9 Using Bit Matrices
In the specification of Cauchy Reed-Solomon coding, Blömer represents an element a in GF (2w) with a w × w
bit-matrix [2]. Each column i (0 ≤ i < w) contains the binary representation of axi. Then, the product of the
matrix representations of a and b is equal to the matrix representation of ab. Additionally, if one turns a number’s
binary representation into a column vector, the product of a’s matrix with b’s vector yields the column vector of ab.
Functionally, this is equivalent to BYTWOb. Figure 16 illustrates both types of multiplication for the values 10 and 13
in GF (24). By convention, the numbers are mapped to column vectors with low bits above high bits. In that way, the
matrix representation of one is an identity matrix.

Figure 16: Matrix-matrix and matrix-vector multiplication to implement multiplication in GF (24).

Because this is functionally equivalent to BYTWOb, we do not give it a name or include it in the summary below.
However, employing bit matrices can facilitate division (see section 7.1), or fast region operations, because only XOR
is required (see section 8.6.1).

6.10 Single Multiplication Summary
Figure 17 summarizes the implementation techniques we have described for multiply().

7 Division
When w is small, division is most easily accomplished by creating a division table at the same time as the multiplication
table in section 6.3. As detailed in Section 6.4, division in LOG-TABLE is identical to multiplication, except the
logarithms are subtracted rather than added. When w is too large to use TABLE or LOG-TABLE, we have to resort to
other, more expensive techniques that calculate the inverse of a number. Then, to divide a by b, we multiply a by b’s
inverse.

7.1 Inverse using bit matrices
An convenient feature of the bit matrix representation of GF (2w) is that inverting a number’s bit matrix yields the bit
matrix of the number’s inverse. When a field is too large to store logarithm tables, this method of finding a number’s
inverse becomes a practical alternative.

7.2 Euclid’s Algorithm
A different way to find an element’s inverse is to employ the extended version of Euclid’s algorithm [4], which finds
the inverse of an element b using multiplication and addition. Euclid’s algorithm proceeds iteratively and uses the
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Technique Running Time Complexity Space Overhead
SHIFT O(w) O(1)
CARRY-FREE O(1) O(1)
TABLE O(1) O(22w)
LOG-TABLE O(1) O(2w) to O(2w+2)

SPLIT-TABLE O
(

w
ga
× w

gb

)
O
(
(ga + gb)2

(gagb)
)

GROUP O
(

w
gm

+ w
gr

+ 2gm
)

O(2gm + 2gr )

BYTWOp O(w) O(1)
BYTWOb O(1) to O(w), depending on a O(1)
COMPOSITE O(Complexity of the base field) Overhead of the base field.

Figure 17: Summary of the running time complexity and space requirements for different Galois field multiplication
techniques.

polynomial representation of field elements. The goal is to find a sequence of elements E0, E1, ... such that the degree
of Ei+1 is smaller than the degree of Ei, and Ei+1 = Ei−1 − ciEi for some element ci. We start with E0 = IP
and E1 = b, and we continue until Ei = 1. This is guaranteed to work because of the “irreducible” property of the
irreducible polynomial [21].

We use the Ei and ci to calculate the inverse in the following way. We may write each Ei as a linear combination
of E0 and E1: Ei = yiE0 + ziE1. Clearly, y0 = 1, z0 = 0, y1 = 0 and z1 = 1. We use the fact that Ei+1 =
Ei−1 − ciEi to calculate yi+1 and zi+1:

yi+1 = yi−1 − ciyi

zi+1 = zi−1 − cizi

When we’re done, we’ve reached a point where Ei = 1. Therefore:

1 = yiE0 + ziE1

= yiIP + zib

= reduce(yiIP) + reduce(zib)

= 0 + reduce(zib)

Therefore, zi is the inverse of b. All that remains is to find the ci, which can be done with the following iterative steps:

• Set ci = 0.

• While the degree of Ei−1 − ciEi is greater than or equal to the degree of Ei, do the following:

• Let d be the degree of Ei−1 − ciEi and d′ be the degree of Ei.

• Set ci = ci−1 + xd−d′
.
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i Ei yi zi ci Ei+1 = Ei−1 − ciEi

0 x4 + x+ 1 1 0 − −
1 x3 + x2 + 1 0 1 x+ 1 x2

2 x2 1 x+ 1 x+ 1 1
3 1 x+ 1 (x+ 1)(x+ 1)− 1 = x2 − −

Figure 18: Using Euclid’s algorithm to calculate the inverse of 13 in GF (24).

For example, suppose Ei−1 = x4 + x + 1 and Ei = x3 + x2 + 1. The steps above calculate ci = x + 1,
and Ei+1 = x2. We use this calculation for a concrete example in Figure 18. In this example, we calculate the inverse
of 13 = x3 + x2 + 1 in GF (24). Since E3 = 1, the inverse of 13 is equal to z3 = x2 = 4.

The running time of Euclid’s algorithm is O(w). With composite fields, Euclid’s algorithm is a little more complex,
since coefficients of the xi terms may be larger than one. However, it is a straightforward modification that employs
division in the base field to calculate each ci.

8 Multiplying a Region by a Constant
The most costly operation in erasure coding applications is multiplying a large region of bytes by a constant in GF (2w).
There are considerations and tricks that can be applied to make multiplying a region by a constant much faster than
performing single multiplications for every word in the region. Some of these concern memory; some reduce instruc-
tion count, and some employ operations on large words to operate on multiple smaller words simultaneously. We
detail them all below, going from simplest to most complex. Each implements multiply region(uintw t a, void *b,
void *p, int bytes , bool add ).

8.1 Only One Table Lookup
The first optimization is obvious. In implementations that require table lookups, one only needs to look up the values
for a once, rather than for every multiplication. This reduces the instruction count of calling multiply() for every w-bit
word in b.

8.2 Double-Tables and Quad-Tables
Consider w = 4. The multiplication table for this value of w is a 16 × 16 table of 4-bit quantities, which works well
for implementing multiply(). With multiply region(), one may consider each group of 8 bits in b to be two 4-bit
words and employ a single 16 × 256 table to look up the product of a with both words simultaneously. We call this
a Double-Table, whose size is 2w

8 × 2w ∗ 22w bytes. The Double-Table for w = 4 uses 4 KB; for w = 8, it occupies
32 MB.

For w = 4, one may even employ a Quad-Table, which operates on two bytes at a time by multiplying four 4-bit
words by a simultaneously, since the size of this table is only 2 MB.

8.3 Lazy Table Creation
In the TABLE implementation, a single call to multiply region() does not use the entire multiplication table, but instead
only uses the row of the table that corresponds to a. Rather than storing the entire multiplication table in memory, a
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lazy implementation of TABLE creates the proper row of the table at the beginning of each call to multiply region().
If the size of the region is large enough, the cost of creating the row of the table is amortized, and the lazy TABLE
implementation may outperform other implementations. It may even outperform a non-lazy TABLE implementation
due to cache considerations.

For example, when w = 16, a full multiplication table requires 232 16-bit words, occupying 8 GB of memory, which
is prohibitively large. However, a single row of the table may be stored in 216 16-bit words, or just 128 KB. Using this
table, the product of every two bytes of b may be calculated with one table lookup, as opposed to two lookups and
some arithmetic when employing LOG-TABLE. Similarly, one may implement a lazy Double-Table in GF (28) or a
lazy Quad-Table in GF (24) in the same 128 KB.

Finally, we may incorporate laziness very effectively with the SPLIT-TABLE implementations when gb = w. At
the beginning of the multiply region() operation, we must create w

ga
tables, each of which contains 2ga elements

of GF (2w). Then, each word of the product region is calculated with w
ga

table lookups and XORs.
For example, a lazy implementation of SPLIT-TABLE in GF (232) with ga = 8 and gb = 32 requires four 256-

element tables which must be created at the beginning of the multiply region() operation. Then, every 32-bit word in
the product region may be calculated with four table lookups, and either three or four XOR’s (depending on the value
of add). We will see below in Sections 8.4 and 8.6.2 that setting ga to four can yield additional improvements due to
vector instructions.

Finally, with the GROUP implementation, the multiplication table may be calculated once at the beginning of each
multiply region() operation, and thus gm may be bigger than it is for multiply().

8.4 Small Table Lookup with Vector Instructions
Intel’s Streaming SIMD Instructions [10] have has become ubiquitous in today’s commodity microprocessors. They
are supported in CPUs sold by Intel, AMD, Transmeta and VIA; the ARM instruction set supports similar instructions.
Although differences in the instruction set prevent the use of Intel code directly on ARM chips, techniques described
here can be applied to ARM processors as well. Compiler support for these instructions have been developed as well;
however, leveraging these instructions for Galois Field arithmetic requires too much application-specific knowledge
for the compilers.

The basic data type of the SIMD instructions is a 128-bit word, and we can leverage the following instructions to
optimize the performance of multiply region():

• mm and si128(a, b) and mm xor si128(a, b) perform bitwise AND and bitwise XOR on 128-bit words a and b
respectively.

• mm srli epi64(a, b) treats a as two 64-bit words, and right shifts each by b bits. mm slli epi64(a, b) performs
left shifts instead.

• mm shuffle epi8(a, b) (also known as pshufb) is the real enabling SIMD instruction for Galois Fields. Both a
and b are 128-bit variables partitioned into sixteen individual bytes. The operation treats a as a 16-element table
of bytes, and b as 16 indices, and it returns a 128-bit vector composed of 16 simultaneous table lookups, one for
each index in b.

This last instruction has a profound impact on implementing multiply region(), because it allows us to perform
16 simultaneous table lookups of a 16-element table of bytes. We give a very concrete example in Figure 19. Here
we want to multiply a region b of 16 bytes by the number 7 in GF (24). We create a 16 element table, table1, which
is a multiplication table for the number 7, and then a second table table2, which is identical to table1, except all the
entries are shifted four bits to the left. Additionally, we have a bit mask, mask1, which isolates the rightmost four bits
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in each byte, and a second mask mask2 which isolates the leftmost four bits. All elements in Figure 19 are shown in
hexadecimal.

Figure 19: Using SIMD instructions to perform multiply region() of a 128-bit region b by 7 in GF (24). The 128-bit
vectors are denoted as 16 two-digit numbers in hexadecimal.

The first instruction performs a 128-bit AND operation on b and mask1, which isolates the rightmost four bits of
each byte. The second instruction performs the 16 simultaneous table lookups, to multiply each of the rightmost four
bits by seven in GF (24). The third through fifth instructions isolate the leftmost four bits, shift them right by four
bits and then use them to perform 16 simultaneous table lookups to multiply them by seven in GF (24). The final
instruction combines the two products and completes the operation.

Thus, after setting up the tables and masks, we may perform 16 bytes worth of multiplications in six vector opera-
tions, which is a drastic improvement over the previous TABLE implementation.

We may implement SPLIT-TABLE in GF (28) in an almost identical fashion. We set ga to 4 and gb to 8, which
means that multiplication requires two 16-byte tables – one for the high four bits of each byte and one for the low four
bits. These two tables are used in place of table1 and table2 in Figure 19.

For larger w, we may leverage mm shuffle epi8() similarly, but some difficulties arise because the vectors may
only represent 16-element tables of bytes, and not tables of larger elements. We discuss how to use memory layout to
leverage these instructions below in section 8.6.2.

8.5 Anvin’s Optimization for multiplying by two in parallel
For the restricted case of multiplying a region of elements of GF (2w) by the number two, Anvin unearthed a brilliant
optimization [1]. We illustrate in Figure 20, which shows the C code and a concrete example of multiplying a 64-bit
integer b, that holds eight numbers in GF (28), by two.

The variable IP holds eight copies of the irreducible polynomial for GF (28), minus the x8 terms. M1 creates the
variable tmp1, which holds all eight numbers in b, shifted one bit to the left. M2 isolates the highest bits of each byte
of b, which are stored in tmp2. tmp3 creates a bitmask from tmp2 in the following way: if the high bit of a byte is set
in tmp2, then all of the bits for that byte are set in tmp3. tmp3 is then used to create tmp4, where each byte is equal
to the irreducible polynomial only if its bit in tmp2 is set. Therefore, the irreducible polynomial is only applied to the
bytes that need it. The final eight products are created by performing the XOR of tmp1 and tmp4.
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uint64_t IP  = 0x1d1d1d1d1d1d1d1d;

uint64_t M1  = 0xfefefefefefefefe;

uint64_t M2  = 0x8080808080808080;

uint64_t mult_by_two(uint64_t b)

{

  uint64_t tmp1, tmp2, tmp3, tmp4;

  tmp1 = (b << 1) & M1;

  tmp2 = b & M2;

  tmp3 = ((tmp2 << 1)-(tmp2 >> 7));

  tmp4 = tmp3 & IP;

  return (tmp1 ^ tmp4);

}

Figure 20: Multiplying eight numbers by two in GF (28) simultaneously using Anvin’s optimization.

In the concrete example, we multiply 8 bytes, of which five are 0xff and the remainder are 0, 1 and 2, by two. The
example illustrates how tmp4 only contains the irreducible polynomial for the bytes whose highest bit is equal to one
(the 0xff bytes).

Anvin’s optimization is employed in Linux’s implementation of RAID-6. Since the central operation in both
BYTWO implementations is to multiply either p or b by two, Anvin’s optimization may be employed to implement
multiply region() by working on regions of 64 bits (using 8-byte integers) or 128 bits (using SIMD instructions) at a
time.

8.6 Alternate mappings of words to memory
The natural way to store elements in a Galois Field is to partition memory so that each sequence of w consecutive
bits is an element of GF (2w). All of the descriptions to this point have assumed this way of storing the elements.
However, there are some improvements to region operations that may be achieved by splitting each element over
multiple regions.

To be precise, suppose that we have n words in GF (2w) that we wish to store in a region of memory, R. We label
the n words a0, . . . , an−1, and we label the individual bits of each ai as ai,0, . . . , ai,w−1. R is composed of nw bits,
which we label r0, . . . , rnw−1. The standard way to store the words in R is consecutively: Bit ai,j is stored in rwi+j .

However, we may define alternate ways to store the bits. We call these alternate mappings, and they are param-
eterized by integers x and y such that w = xy. Then we may partition R into x subregions, R0, . . . , Rx−1 so that
subregion R0 stores bits ai,0 through ai,y−1 for all i, subregion R1 stores bits ai,y through ai,2y−1 for all i, and so on.
To be precise, bit ai,j is stored in r(j/y)∗yn+iy+j%y , where the first term uses integer division.

In Figure 21, we give three example mappings of four words in GF (24). To match our previous examples, we order
the bits in descending order from left to right. The first example has x = 1 and y = 4, and the four words are stored in
consecutive bits. This is the standard mapping. In the second example, there are two subregions: R0, which stores the
first two bits of each word, and R1, which stores the second two bits. The final example has four subregions, where
each subregion Ri stores bit i of each word.

In the following sub-sections, we show how various implementations of multiply region() may be improved with
an alternate mapping. It is important to note that unless backward compatability is required for an application, there
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Figure 21: Three examples of storing four words in GF (2w) in 16 bits of memory.

is no need to “convert” from a standard mapping to an alternate mapping. As long as the same mapping is employed
consistently by an erasure coding application, there is no need to worry about how words are mapped to memory.
The important property is that addition and multiplication of a region by a constant have the correct mathematical
properties. In other words, if a region b is multiplied by a and then multiplied by 1

a , the resulting region should equal
the original b, regardless of what mapping is employed.

8.6.1 Cauchy Reed-Solomon Coding

In Cauchy Reed-Solomon Coding, the mapping chosen is x = w and y = 1 [2]. Thus, there are w subregions, R0, . . . , Rw−1,
and subregion Ri holds the i-th bit of each word. To implement multiply region(a, b, p, wn

8 , add) one employs the
matrix representation of a and vector representation of b described in Section 6.9. The mapping allows one to multiply
multiple words of b incrementally, employing only the XOR operation.

Figure 22: Employing the matrix/vector representation and a mapping where x = w and y = 1 to multiply eight
words of b by a = 10 with XOR operations on bytes.

We draw an example in Figure 22. Here, we multiply b0 through b7 by a = 10 in GF (24). We represent a with a
matrix and the eight words of b as eight column vectors. This employs the mapping where x = 4 and y = 1. Each
row is a byte, and therefore the product matrix may be calculated by performing XORs on bytes. For example, the
first row of the product matrix is calculated as the XOR of the second and fourth rows of b. The second row is the
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XOR of all four rows. Thus, the eight products are calculated with a total of eight XORs on single bytes. Practical
implementations of this mapping make sure that each subregion is at least 128 bits, so that large XOR operations may
be performed.

In Cauchy Reed-Solomon coding, the subregions are called “packets,” and their size is arbitrary. In practical
implementations of Cauchy Reed-Solomon coding, the size of the subregions and the ordering of the XOR opera-
tions have a significant, but hard-to-quantify relationship on the performance of the multiplication, mainly because
of the caches [17, 24]. Moreover, one may reduce the number of XOR operations by leveraging intermediate expres-
sions [7, 8, 25]. This implementation of Galois Field arithmetic has been at the heart of the erasure coding engines
of Oceanstore [29], Cleversafe’s first commercial dispersed storage system, and Microsoft Azure’s implementation of
the LRC erasure code [9].

Cauchy Reed-Solomon codes also allow one to employ values of w that are not powers of two. For example, one
may choose w = 3, and multiply a region of 3 KB by a constant in GF (23) by partitioning the region into three packets
of 1 KB each. Blömer et al recommend using the smallest possible value of w to achieve the best performance [2].

8.6.2 Leveraging Vector Instructions

When one implements GF (216) using the SPLIT-TABLE implementation with ga = 4 and gb = 16, each multiplication
requires four table lookups, where each table holds sixteen 2-byte words. To leverage mm shuffle epi8(), we need to
employ tables that hold sixteen bytes rather than sixteen words. A natural way to do this is to split each 2-byte table
into two 1-byte tables. The first holds the high bytes of each product, and the second holds the low bytes. We name
them T i

high and T i
low for i ∈ {0, 1, 2, 3}.

A straightforward way to employ these tables is to perform eight table lookups per 128-bit vector, as pictured in
Figure 23. To match the SIMD architectures, in this picture, we draw the low bytes and sub-words of each 16-bit word
on the right, and the high bytes and sub-words on the left. Only four of the eight words in the vector are shown, and
each 16-bit word is shown partitioned into four 4-bit words, which are used as indices for mm shuffle epi8() table
lookups. Each set of four-bit indices is used for two table lookups — one in the low table, and one in the high table.

If we employ an alternate mapping, we may improve the performance of this operation by roughly a factor of two.
Consider the mapping where x = 2 and y = 8. Each 16-bit word is split into two bytes, and each byte is stored in a
different vector. Thus, every set of 16 words is split over two 128-bit vectors. One vector stores the high bytes and one
stores the low bytes. Now, we may use the same eight tables, T i

high and T i
low, as before, and perform 16 bytes worth

of table lookups per mm shuffle epi8() operation, rather than eight as in Figure 23.
Figure 24 shows the process. In this figure, we perform 32 bytes of multiplication with eight mm shuffle epi8()

operations, as opposed to 16 bytes in Figure 23. We call this the “alternate” mapping for SPLIT-TABLE, or “Altmap”
for short.

If the standard mapping is required, for example because of backward compatability, it is faster to convert each
32-byte region to the alternate mapping, multiply them using the alternate mapping, and convert them back to the
standard mapping. The exact SIMD instructions to perform this conversion are detailed in [23].

In GF (232), we may use SPLIT-TABLE with ga = 4 and gb = 32, and an alternate mapping with x = 4 and y = 8.
Each 32-bit word is then split across four 16-byte vectors, and 32 lookup tables are required to multiply each 64-byte
chunk of data. As with GF (216), it is faster to convert the standard mapping to the alternate mapping and back again
if the standard mapping is required for an application.

This technique extrapolates to GF (264) as well, although the number of lookup tables blows up to 128.
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Figure 23: Using mm shuffle epi8() to multiply a 16-byte vector b by the constant a in GF (216). Each small box is
a four-bit word, and each 128-bit vector holds words b0 through b7.

8.6.3 Leveraging recursive multiply region() calls in COMPOSITE

As described in Section 6.8, the COMPOSITE implementation employs recursive calls to a smaller Galois Field.
However, if the standard mapping is employed, one cannot implement multiply region() by recursively calling multi-
ply region() on the smaller field, because the elements in the smaller field are interleaved. Instead, when implement-
ing GF ((2l)k), one may use an alternate mapping where x = k and y = l. In that way, when implementing multi-
ply region(), one may recursively call multiply region() on the smaller field.

We illustrate with a concrete example. In this example, we call multiply region(0xa4c5, b, p, 1024, add) in GF ((28)2).
An irreducible polynomial for this field is x2 + 3+ 1. Thus, when we want to perform p = ab in GF ((28)2), we split
each number into two elements in GF (28), and calculate both parts of p with Equations 8 and 9 from Section 6.8:

p1 = a1b0 + a0b1 + 3a1b1

p0 = a0b0 + a1b1

If we employ the standard mapping to represent elements of GF ((28)2), then we are forced to implement mul-
tiply region(0xa4c5, b, p, 1024, add) with the equivalent of calling multiply() 512 times. However, if we employ
the mapping where x = 2 and y = 8, then we may implement multiply region(0xa4c5, b, p, 1024, add) with the
following recursive calls to multiply region() on the subregions of b and p in GF (28):

multiply region(0xc5, b, p, 512, add)
multiply region(0xa4, b+ 512, p, 512, 1)
multiply region(0xa4, b, p+ 512, 512, add)
multiply region(0xc5, b+ 512, p+ 512, 512, 1)
multiply region(multiply(3, 0xa4), b+ 512, p+ 512, 512, 1)
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Figure 24: Using an alternate mapping to multiply two 16-byte vectors b by the constant a in GF (216). Each pair
of 128-bit vectors holds words b0 through bf . Each word is split into two bytes, each of which is stored in a different
vector.

Thus, instead of performing 512 ∗ 5 = 2560 separate multiplications and 512 ∗ 2.5 = 1280 XORs, we simply
perform multiply region five times on 512-byte regions. The alternate mapping therefore can provide significant
performance improvements.

8.7 Region Multiplication Summary
To summarize, we have detailed the following additional performance improvements for implementing multiplication
of a region by a constant.

Technique Performance improvement
SHIFT None
GROUP Lazy Table Creation;
BYTWOp Anvin’s Optimization
BYTWOb Anvin’s Optimization; Alternate mapping (Cauchy Reed-Solomon)
TABLE Small Table Lookup; Quad-Tables; Double-Tables; Lazy Table Creation
LOG-TABLE Only one table lookup
SPLIT-TABLE Small Table Lookup; Lazy Table Creation; Alternate Mapping
COMPOSITE Alternate Mapping

9 Implementation
We have implemented an open-source library called “GF-Complete” that implements all of the techniques described
in this paper. It is open source and available on Bitbucket at https://bitbucket.org/jimplank/gf-complete. All
of the performance numbers in this paper come from this implementation.
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10 Performance
In this section, we perform a rough evaluation of the performance of GF-Complete. The evaluation is “rough” because
there are too many variations in terms of parameters, machines, configurations and usage scenarios to perform a
complete evaluation. Moreover, Greenan et al have demonstrated that machine architectures and usage scenarios
affect the impact of Galois Field implementation in ways that are very difficult to quantify [6]. Therefore, our intent
in this section is to convey a sense of how the implementations perform with respect to basic microbenchmarks, with
the understanding that in more complex systems, the performance of the library impacts the system in ways that are
difficult to quantify.

All of our tests are performed on a standard commodity microprocessor – an Intel Core i7-3770 running at 3.40
GHz – running GNU/Linux in user mode, but in isolation. The machine has 16 GB of RAM and an 8MB Intel Smart
Cache, consisting of 4 x 256 KB L2 caches, and an 8 MB L3 cache. All tests are run on one core, and all SIMD
operations are supported.

10.1 Multiplication
To test multiplication, we populate two 64 KB regions of memory, A and B, with random numbers. We chose that size
because all of the data fits into the L2 cache. For w = 4 and w = 8, this results in 64K random numbers per region,
and for the larger w, it results in 64K(8)

w . We multiply each number ai ∈ A with the corresponding bi ∈ B, and then
repeat the process 5,000 times.
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Figure 25: The performance of multiply() for a wide variety of implementation techniques.

We show the timing results in Figure 25. In the figure, we show results for all values of w, with the implementation
techniques ordered according to their presentation in Section 6. We omit the BYTWO implementations for values of w
greater than 4, because they always perform worse than SHIFT.

The best performing implementations are the TABLE implementations for w ∈ {4, 8} and the LOG-TABLE im-
plementations for w ∈ {8, 16}. For w ≥ 32, the CARRY-FREE implementation significantly outperforms the
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others; however it is important to select a primitive polynomial that allows the reduction to complete in two steps.
For w ∈ {16, 32}, these are the alternate primitive polynomials from Figure 5, which are denoted CARRY-FREE-ALT
in Figure 25.

For the GROUP implementations in w ≥ 32, we enumerated values of gm and gr until we saw declining perfor-
mance, and we plot the best of these, with the values of gm and gr in the axis labels. As noted in Section 6.7, since
the multiplication table is created anew for each multiplication, and the reducing table is created once overall, the best
combination has gm be smaller than gr.

For w = 32, the fastest non-SIMD implementation is COMPOSITE, which uses LOG as the implementation in the
base field. The fastest non-SIMD implementation of a “standard” Galois Field for w = 32 is the SPLIT implementation
where ga = gb = 8, which employs seven 256*256 tables. For w ∈ {64, 128}, the GROUP implementation is the best
implementation without SIMD instructions.
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Figure 26: The memory consumption of each implementation technique.

In Figure 26, we plot the memory consumption of each implementation technique. The Y-axis is a log scale,
meaning each horizontal bar is a factor of ten. Coupled with Figure 25, we can conclude that memory has a significant
impact on performance. For example, in terms of instruction count, TABLE is better than SPLIT-TABLE, which is
better than LOG-TABLE. However, in GF (28), all three implementations perform similarly, because TABLE consumes
much more memory than SPLIT-TABLE, which in turn consumes more memory than LOG-TABLE. In a similar vein,
although LOG-ZERO requires fewer instructions than LOG, its performance is worse when w = 16 because of its
increased memory requirements.

10.2 Division
When TABLE and LOG-TABLE are employed, the speed of division is identical to multiplication. The other implemen-
tations require either Euclid’s method or inverting a bitmatrix. In GF-Complete, the bitmatrix inversion is significantly
slower than Euclid’s method, so we do not include its timings. In Figure 27, we show the fastest division times for each
value of w when Euclid’s algorithm is employed. The testing methodology is the exact same as for multiplication,
except we divide ai by bi, and we never allow bi to be zero.
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Figure 27: The fastest implementations of Euclid’s algorithm for division.

10.3 Multiplying a Region by a Constant
To test the performance of multiply region(), we repeatedly fill regions of memory with random numbers, and then
time the calls to multiply region(). We do this until a total 1 GB of regions have been multiplied. We test region sizes
that are even powers of two, from 1KB to 1GB. Each data point is the average of over ten runs.

The performance of these operations is significantly impacted by the size of the regions as they relate to the various
caches. To demonstrate, Figure 28 shows the performance of three basic operations as the region sizes are varied.
The first is memcpy(); the second is XOR and the third is multiplying a region by two using Anvin’s optimization as
described in Section 8.5. The latter two operations are implemented using the Intel SIMD instructions, so they proceed
128 bits at a time. For multiplication by two, we plot the performance in GF (24); however, the code is identical in
any Galois Field, except for the primitive polynomials and the masks.
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Figure 28: The performance of memcpy(), XOR, and multiplying a region by two in a Galois Field using SIMD
instructions.

The three curves have similar shapes. As the region sizes increase from 1K to 16K, the performance improves as
startup costs are amortized. As the region sizes increase further, the performance drops as the L2 (memcpy() and
XOR), and then the L3 caches (all three curves) are saturated. At that point, the performance is more than a factor of
two slower than the peak performance.

In the graphs that follow, we plot peak performance for the region size that performs the best. When the performance
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exceeds roughly 6 GB/s, the performance is limited by the L3 cache. When the performance is less than that, then it is
limited by the instruction.
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Figure 29: The peak performance multiply region() with SIMD instructions.

In figure 29, we show the peak performance of multiply region(), when the implementations leverage SIMD in-
structions. For every value of w, the best performance is achieved by leveraging mm shuffle epi8() with either TABLE
(w = 4) or SPLIT-TABLE (the other w). For w > 8, the alternate mapping of words to memory in SPLIT-TABLE out-
performs the standard mapping significantly, as the alternate mapping allows us to better leverage mm shuffle epi8().
In particular, when w ≤ 32, the alternate mappings are cache limited.

When w = 4, the CAUCHY implementation, which relies solely upon XOR, is competitive with the TABLE imple-
mentation. This is the implementation technique used by Microsoft in their Azure storage system [9]. The implemen-
tation does not leverage intermediate results, nor does it pay explicit attention to cache optimization [16, 25]. Were it
to do so, its performance may exceed TABLE. As w grows, the performance of CAUCHY declines because it has to
perform relatively more XOR operations. For the values of w greater than 4, CAUCHY is a less attractive alternative.

Even though the BYTWO implementations operate on 128-bit words, their performance is worse than TABLE and
CAUCHY. The COMPOSITE tests in Figure 29 use the best performing region operations in their respective base
fields. Although they perform well, they never outperform the implementations based on mm shuffle epi8(). They
also require an alternate mapping of words to memory so that they may leverage recursive multiply region() calls.
We only show CARRY-FREE results for w ∈ {64, 128}. In neither case is the implementation competitive with the
other implementations.

In figure 30, we show the peak performance of multiply region() without SIMD instructions. The speeds in this
figure are much slower than in figure 29. In all cases except w = 4, the table-based implementations perform the best,
and with the exception of w = 32 and w = 128, tables indexed by 16-bit indices performed the best. Because these
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Figure 30: The peak performance multiply region() without SIMD instructions.

tables are large, they are created lazily, and thus perform best on large regions that can amortize the table creation.
With w = 32, 8-bit tables outperform the 16-bit tables slightly. With w = 128, we did not implement 16-bit tables,
because they would require 8MB of tables to be initialized for each multiply region() call.

When w = 4, the BYTWOb implementation performs the best, as it works on 64 bits at a time, and requires very
few iterations. Unlike BYTWOp, it can terminate iterating early, depending on the value being multiplied; hence, it
performs better than BYTWOp in all instances. As in Figure 29, the ALTMAP versions of COMPOSITE use the best
implementations of multiply region() in the base fields. The implementation for w = 8 is interesting because unlike
the 16-bit table, which requires 128K of memory, the COMPOSITE implementation uses BYTWOb in the base field,
and therefore has no extra memory consumption.

We stress again that these numbers are machine specific, and only give a rough picture of how these implementations
perform in general.

11 Conclusion
In this paper, we have detailed a wide variety of techniques to implement Galois Field arithmetic for erasure coding
applications. Many of them leverage SIMD instructions which are found in today’s microprocessors, and these perform
at speeds that are limited by how fast the machines’ caches may be populated. This paper is accompanied by an open
source library called GF-Complete.
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