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Figure 1. Divide Lists into Blocks
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Figure 2. Block Sorting
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not even addressed) are time optimal only for values of k � n=(log

2

n). More importantly,

such schemes are not space optimal for any �xed k.

We note that, from a practical standpoint, more streamlined sorting implementations

may be possible. It is known from [HL2] that methods exist by which the obvious merge

sort strategy can be replaced with more sophisticated sorting schemes that exploit merging

in nontrivial ways. In that setting, for example, the worst-case constant of proportionality of

the direct merge sort strategy is lowered from 7n log n (plus lower order terms) to 2.5n log n

(plus lower order terms). Whether these more complicated techniques can be e�ciently

parallelized remains an open question.

Finally, from a more purely theoretical perspective, one might ask whether our methods

can be extended to sub-logarithmic time merging. Because 
(log n) time is known to be

a lower bound for merging on an EREW PRAM, our algorithms are the best possible (to

within a constant factor) for this model. Asymptotically faster time-space optimal algorithms

may exist, however, for more powerful models. For example, it is an open question whether

time-space optimal merging can be accomplished in O(n=k + log log n) time on a CREW

PRAM.
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as \tie breakers" whenever equal tails are compared. The displacement computing step can

be modi�ed in a similar manner, by �rst stabilizing the bitonic merge (indices and o�sets

are already available) and then handling the two (now asymmetric) types of pairs of series

in slightly di�erent fashions in that L1 records must now receive priority over L2 records.

The local merging step is stabilized by replacing the relatively simple but unstable in-place

algorithm with the more complicated but stable in-place scheme. Only an extra pointer is

needed to stabilize the implementation details (in the event that the L3 and L4 sublists each

have a copy of the same key).

5. Extensions to Sorting and Open Problems

In this paper, we have presented for the �rst time parallel merging algorithms that are

asymptotically time-space optimal. Moreover, our methods assume only the EREW PRAM

model. Although n must be large enough so that the inequality k � n=(log n) is satis�ed for

optimality, we observe that our algorithms are e�cient

5

for any value of n, suggesting that

they may have practical merit even for relatively small inputs. Also, for the sake of complete

generality, our algorithms modify neither the key nor any other part of a record.

These time-space optimal parallel merging algorithms naturally lead to time-space opti-

mal parallel sorting algorithms, providing improvements over the best previously-published

PRAM methods designed for a bounded number of processors. For example, the recent

EREW merging and sorting schemes proposed in [AS] (where the issue of duplicate keys is

5

A parallel method is e�cient if its speedup is within a polylogarithmic factor of the

optimum.
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This completes the description of our parallel method. In summary, the total time spent

is O(n=k+log n) and the total extra space used is O(k). Therefore, this method is time-space

optimal for any value of k � n=(log n), thereby meeting our stated goal.

4. Insuring Stability

It is often desirable that merging (and sorting) algorithms be stable, by which we mean

that records with identical keys retain their original relative order after the algorithm is

completed. Stability is a property that has extracted a heavy price in terms of increased

complexity for sequential algorithms that operate in both optimal time and space simul-

taneously. The linear-time, in-place stable sequential merging algorithm with the lowest

currently-known worst-case constant of proportionality is presented in [HL2], and is based

largely on the unstable method that proved useful in guiding our thinking in devising the

parallel algorithm presented in the last section. As one rough measure of the intricacy re-

quired to ensure stability in a sequential setting, we note that the worst-case constant of

proportionality jumps from 3.125n (plus lower order terms) for the unstable algorithm of

[HL1] to 7n (plus lower order terms) for the stable scheme of [HL2], where these values reect

an upper bound on the number of key comparisons plus record exchanges required.

Fortunately, however, the parallel procedure we have already presented can be made

stable with relatively little e�ort. The only unstable routines in our main algorithm are

found in the steps for block sorting, displacement computing and local merging. Instability

in the block sorting step can be remedied by stabilizing the bitonic merge. To accomplish

this, we need only specify that the block indices (which are already available) are to be used
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Thus this �nal step requires O(n=k) time and constant extra space per processor.

Implementation Details. Although the details necessary to handle lists and sublists of

arbitrary sizes is the most intricate part of the sequential method, these details are quite

simple for our parallel algorithm. We �rst fragment the input list L = L1 L2 into the form

L3 L4 L5 L6, where both L3 and L5 contain an integral multiple of n=k records, and where

L4 and L6 each contain strictly less than n=k (even, possibly, zero) records. With parallel

rotations, it is easy to transform the list into the form L3 L5 L4 L6 assuming the tail of L4 is

less than or equal to the tail of L6 (or the form L3 L5 L6 L4 if it is greater). We now invoke

the main parallel algorithm on L3 L5, yielding the sorted sublist L7. Ignoring obvious ways

to streamline the remainder of this procedure, it is su�cient at this point merely next to

invoke the sequential algorithm on L4 L6, yielding the sorted sublist L8. Thus L8 can be

viewed as at most one block of size n=k followed by at most one block of size strictly less

than n=k. We now complete the merge by invoking the main parallel algorithm on L7 L8,

with every processor except possibly the last handling a block of size n=k. Even though

the last block may have an unusual size at this step, it causes no problems for the main

algorithm because its (large) tail ensures that it need not be moved during block sorting and

because its (rightmost) position ensures that it need not be treated as a member of a �rst

series when any pair of series is merged.

The time and space requirements necessary for implementation details are therefore

bounded by those of the main parallel algorithm.
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from this if processor i is handling the last block of the �rst series, instructing it instead to

copy its last Y record to the former location of the �rst Z record. At the same time, the

processor of the second series copies its �rst Z record to the former location of the last Y

record of the �rst (portion of a) block in the �rst series. Continuing in this fashion, therefore,

the data movement sequence is right-to-left for the blocks in the �rst series, but left-to-right

for the second.

Of course, when block i of the �rst series is �lled, the processor of the second block must

shift its attention to block i+ 1, and so on. If k is small enough (no greater than O(log n)),

then the displacement table can simply be searched; if k is larger than this, then the table

may contain too many identical entries, and we invoke a preprocessing routine to condense it

(again with the aid of broadcasting). The timing of the �rst and second series operations are

interleaved (rather than simultaneous), because some processors will in general be handling

portions of blocks of both types of series.

When the data movement phase is �nished, each block will contain the correct pre�x

from the opposite series, but in reverse order. A �nal subblock reversal completes this step.

Series splitting, therefore, requires O(n=k + log n) time and constant extra space per

processor.

Local Merging. We employ the aforementioned linear-time, in-place sequential merge from

[HL1]. The completion of this merge is depicted in Figure 6.

INSERT FIGURE 6
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O(n=k) time and O(k) extra space, the value of its second series pointer is its displacement

table entry, E

i

.

Thus displacement computing can be accomplished in O(n=k + log n) time and constant

extra space per processor.

Series Splitting. At this point, processor i can easily determine from the entries in the

displacement table the number of its records that are to be displaced to the block to its

right (E

i

), as well as the number of records that it is to receive from the block to its left

(E

i�1

) and from the second series (E

i

� E

i�1

). Thus we now seek to split, in parallel, the

second series among the blocks of the �rst series. We accomplish this e�ciently in constant

extra space with the use of block rotations (each of which is e�ected with a sequence of three

sublist reversals), followed by the desired data movement, followed by one last reversal. We

illustrate this procedure in Figure 5, with the aid of some additional notation.

INSERT FIGURE 5

Letting i denote the index of an arbitrary processor with records in the �rst series only,

we use X

i

to denote its �rst n=k �E

i

records (that is, those to remain in this block) and Y

i

to denote the remaining E

i

records (that is, those to be displaced to the right). We use Z to

denote the contents of the portion of a block that constitutes the second series. Processor

i �rst reverses X

i

and Y

i

together, then each separately, thereby completing the rotation.

Processor i then initiates data movement, employing a single extra storage cell to copy safely

the last record of Y

i

to the location formerly occupied by the last record of Y

i+1

. We deviate
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For the second and each subsequent phase, processors proceed as in the �rst phase, but

now with new o�sets and selected records based on the proper subseries into which their

block's tails are to be merged and the number of other tails that are also to be merged there.

Processors continue to iterate this procedure until each has determined where its block's

tail would go if it were merged with the other tails and the second series. Note that some

processors may be employed in as few as log

k

m phases, each requiring O(log k) time, while

others may simultaneously be employed in as many as log

2

m phases, each requiring constant

time. In general, letting the sequence k

1

; k

2

; :::; k

l

denote the number of tails in any chain of

recursive calls, we observe that k

1

�k

2

� :::�k

l

is O(m), and hence log k

1

+log k

2

+ :::+log k

l

is O(logm). Therefore, O(log n) time and O(k) extra space has been consumed up to this

point.

Let l

i

(1 � l

i

� m + p) denote the location that the tail of the block of processor i

(f � i < f + p) would occupy in a sublist containing the p tails and the entire second series

if such a sublist were available. Processor i now computes l

0

i

= l

i

� (i� f)� 1, to eliminate

the e�ect of its block's tail and all preceding tails. It next employs two pointers to compare

a record in its block, beginning at location n=k (its tail), to a record in the second series,

beginning at location l

0

i

, repeatedly decrementing the pointer that points to the larger key

for l

0

i

iterations. (We insist that each processor works from right to left in its interval of the

second series in order to avoid memory conicts, and that processor i keeps track of l

0

i�1

and

l

0

i+1

, relying on broadcasting by the leftmost processor if degeneracy in an interval occurs).

When processor i has �nished decrementing its two pointers in this fashion, a task requiring
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where each of their block's tails would need to go if they were merged with the m < n=k

records of the second series. To accomplish this, we now present a technique that is perhaps

best described as a sequence of phases of operations.

In the �rst phase, each processor with records in the �rst series sets aside a copy of its

block's tail and its index (an integer between f and f + p � 1, inclusive). Each also sets

aside two pieces of information from the second series: processor i (f � i < f + p) computes

and saves a copy of the o�set h = (i � f + 1)(m=p) and a copy of the hth record of the

second series. We can now merge the 2p elements made up of p tails and p selected records

(dragging along the indices and the o�sets) by reversing in parallel the selected records and

then invoking a bitonic merge, a task requiring O(log p) time and O(p) extra space.

After this, each processor with records in the �rst series examines the two keys in its

temporary storage. If a processor �nds a tail, then (with the use of the tail's index) it

reports its own index to the processor handling the block from which the tail originated.

Thus every processor can determine from the movement of its block's tail just how many

of the records selected from the second series are smaller, and therefore which of the p

subseries of the second series, each subseries of size m=p, to merge into next. In order for a

processor to be able to determine how many other tails are to be merged into the same next

subseries as its block's tail, each one compares its next subseries with that of its neighbors.

If the comparison reveals a subseries boundary, then broadcasting is used to inform the other

processors of the location of this boundary (as we did when broadcasting a breaker's location

in the series delimiting step).
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entry to be stored at each processor. In this table we seek to enumerate, for each processor

with a block (or portion thereof) from the �rst series, the number of records from the second

series that would displace records in that block if there were no other records in the �rst

series. Thus a displacement table is of immediate use in the next step (series splitting),

because processor i needs only to know its entry, E

i

, and the entry for processor i� 1, E

i�1

.

From these two values it is easy for processor i to determine the number of its records that

are to be displaced by records from the left (namely, E

i�1

) and the number that are to be

displaced by records from the second series (namely, E

i

� E

i�1

).

INSERT FIGURE 4

As with the block sorting step, things are relatively simple if one is willing to settle for

a CREW algorithm. For example, we could begin by directing each processor whose block

contains records from the �rst series to perform a binary search on the second series. In

order to compute the displacement table entries e�ciently on the EREW model, we adopt a

considerably more complicated strategy. In particular, we must solve a nontrivial processor

allocation problem [SV]. We agree with the sentiment expressed by others (see, for example,

[BH, KR]) that details relevant to this thorny subject warrant a careful exposition.

For an arbitrary pair of series, let f denote the index of the processor handling the �rst

record in the �rst series, and let p denote the number of blocks with records in that series.

Thus processor f + p is responsible for the second series. We seek to direct the p processors

with records in the �rst series to work in unison and without memory conicts to determine
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portion of an L1 block followed by zero or more full L1 blocks and a portion of an L2 block,

or a portion of an L2 block followed by zero or more full L2 blocks and a portion of an L1

block, and because these two con�gurations are symmetric, we shall henceforth address only

the former case in this and subsequent �gures.

INSERT FIGURE 3

For a processor to determine whether its block contains a second series, it simply compares

its head to its left neighbor's tail. If this comparison reveals that the processor does contain

such a series, then it invokes a binary search to locate its breaker (it must have one | recall

that the blocks were �rst sorted by their tails) and broadcasts

4

the breaker's location �rst

to its left and then to its right. By this means, a processor learns the location of the breaker

to its immediate right and the location of the breaker to its immediate left.

From this it follows that every processor can correctly delimit the one or two pairs of

series that are relevant to the contents of its block in O(log(n=k) + log k) time and constant

extra space per processor.

Displacement Computing. Recall that our goal is to reorganize the �le so that local

merging is possible as a �nal step. This requires an e�cient parallel means for splitting

each pair of series among the processors that are in charge of the pair's blocks. In order to

accomplish this, we shall now introduce what we term a displacement table, with one table

4

A convenient algorithm for this type of broadcasting can for example be found in [Ul,

page 234], where it is termed a \data distribution algorithm." Alternately, such broadcasting

can be e�ciently accomplished with parallel pre�x computation.
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After this merge is completed, each processor knows the index of the block it is to receive.

With the use of but one extra storage cell per processor, it is now a simple matter for the

processors to acquire their respective new blocks in parallel without memory conicts, one

record at a time (say, from the �rst record in a block to the last). This task requires O(n=k)

time and O(k) extra space.

This completes the block sorting step, and has required O(n=k+log k) time and constant

extra space per processor. See Figure 2.

INSERT FIGURE 2

Series Delimiting. As with the sequential method, it is helpful at this point to think of

the list as containing a collection of pairs of series of records, with each pair of series to be

merged. (Of course, we cannot now merely mimic the sequential series merging step. If there

are large series, then it would take too long to merge them; if there are large blocks, then it

would take too long to sort any type of internal bu�er.) We require a somewhat more re�ned

de�nition of \series," however, because we must insist that pairs of series do not overlap one

another. The �rst and second series of any given pair meet as before, where the tail of block

i exceeds the head of block i + 1. To determine where pairs meet each other, we now use

the term \breaker" to denote the �rst record of block i+ 1 that is no smaller than the tail

of block i. Thus the �rst series of a pair needs only to begin with a breaker, and the second

series of that pair needs only to end with the record immediately preceding the next breaker.

This notion is illustrated in Figure 3. Because each pair of series is made up either of a
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requiring a careful coordination of all processors to achieve e�ciently the desired reorgani-

zation of the �le.

To facilitate discussion, let us temporarily assume that the number of records in each of

the two sublists in L is evenly divisible by k. We shall refer to a record or block from the

�rst sublist of L as an L1 record or an L1 block. We shall use the terms L2 record and L2

block in an analogous fashion for elements from the second sublist.

Block Sorting. We �rst view L as a sequence of k blocks, each of size n=k. See Figure 1,

in which we employ a handy pictorial representation for L, using the vertical axis to indicate

increasing key values and the horizontal axis to indicate increasing record indices.

INSERT FIGURE 1

We seek to sort these blocks by their tails. This is a relatively simple chore if one is willing

to settle for a concurrent-read exclusive-write (CREW) algorithm. For example, we could

begin by directing each L1 (L2) processor to perform a binary search on the L2 (L1) sublist,

comparing its block's tail against the tails in that sublist. In order to sort the blocks e�ciently

on the EREW model, we adopt a slightly more complex strategy.

We �rst direct each processor to set aside a copy of the tail of its block and its index (an

integer between 1 and k, inclusive). We can now merge the k tail copies (dragging along

the indices) by reversing in parallel the copies from the second sublist and then invoking the

well-known bitonic merge [Ba], a task requiring O(log k) time and O(k) total extra space.
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comprises three steps: block sorting, series merging and bu er sorting. Unfortunately, these

steps do not appear to permit a direct parallelization, at least not one that requires only

constant extra space per processor. In particular, the internal bu�er is instrumental in the

series merging step, dictating a block size of �(
n
) that in turn severely limits what can be

accomplished e�ciently in parallel.

Optimistically, however, observe that if we could only devise a time-space optimal method

to:

(1) use bigger blocks (namely, one block for each of the k processors, giving rise to a block

size of n=k, a value that might be unboundedly greater than
n
) and

(2) reorganize the �le so that the problem is reduced to one of k local merges (that is,

replace the contents of each block with two sublists, one from each of the two original

sublists in L, so that the largest key in block i is no greater than the smallest key in

block i+ 1, for 1 � i < k),

then we could complete a time-space optimal merge of L by simply directing each processor

to merge the contents of its own block using the algorithm sketched in the last section. This

observation is the genesis of the parallel method we shall now present.

Ignoring for the moment implementation details for dealing with lists and sublists of ar-

bitrary sizes (these details will be addressed at the end of this section), our parallel method

comprises these �ve steps: block sorting, series delimiting, displacement computing, series

splitting and local merging. Since the last step of our algorithm (local merging) is easy from

a parallel standpoint, it is not surprising that the earlier steps are relatively complicated,
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the head of block 2 and terminates with the tail of block i, i � 2, where block i is the �rst

block such that the key of the tail of block i exceeds the key of the head of block i+ 1. The

second series consists solely of the records of block i+ 1. The bu�er is used to merge these

two series. That is, the leftmost unmerged record in the �rst series is repeatedly compared

to the leftmost unmerged record in the second, with the smaller-keyed record swapped with

the leftmost bu�er element. Ties are broken in favor of the leftmost series. (In general, the

bu�er may be broken into two pieces as the merge progresses.) This task is halted when the

tail of block i has been moved to its �nal position.

The next two series of records to be merged are now located. This time, the �rst begins

with the leftmost unmerged record of block i + 1 and terminates as before for some j � i.

The second consists solely of the records of block j + 1. The merge is resumed until the

tail of block j has been moved. This process of locating series of records and merging them

is continued until a point is reached at which only one such series exists, which is merely

shifted left, leaving the bu�er in the last block.

The �nal step is to sort the bu�er, thereby completing the merge of L.

O(n) time su�ces for this entire procedure, because each step requires at most linear

time. O(1) space su�ces as well, since the bu�er was internal to the list, and since only a

handful of additional pointers and counters are necessary.

3. ime-Space Optimal Parallel Merging on the ERE PRAM Model

Note that, exclusive of implementation details for extracting the internal bu�er and

for handling lists and sublists of arbitrary sizes, the sequential algorithm just described
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methods.

We note that, for the sake of complete generality, we allow neither the key nor any other

part of a record to be modi�ed by our algorithms. Such is necessary, for example, when

records are write-protected or when there is no explicit key �eld within each record, but

instead a record's key is a function of one or more of its data �elds.

Let L denote a list containing two sublists to be merged, each with its keys in nondecreas-

ing order. We shall make a few simplifying assumptions about L to facilitate the discussion.

(See [HL1] for a complete exposition of the algorithm, an example, and the O(
n
) time and

O(1) space implementation details necessary for handling arbitrary inputs.)

We assume that n is a perfect square, and that the records of L have already been

permuted so that
n
largest-keyed records are at the front of the list (their relative order

there is immaterial), followed by the remainders of the two sublists, each of which we now

assume contains an integral multiple of
n
records in nondecreasing order. Therefore, we

can view L as a series of
n
blocks, each of size

n
. The leading block will be used as an

internal bu�er to aid in the merge.

The �rst step is to sort the
n
� 1 rightmost blocks by their tails (rightmost elements),

after which their tails form a nondecreasing key sequence. (In this setting, selection sort

requires only O(n) key comparisons and record exchanges.) Records within a block retain

their original relative order.

The second step, which is the most complex, is to direct a sequence of series merges. An

initial pair of series of records to be merged is located as follows. The �rst series begins with
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to sorting and open topics for future research are discussed in the �nal section.

2. A Review of ime-Space Optimal Sequential Merging

To simplify the presentation of our time-space optimal parallel algorithm in the next

section, it is useful �rst to review at least briey the recently-published and relatively simple

linear-time, in-place sequential merge from [HL1]. Expectedly, some of the operations that

are easy to perform sequentially are di�cult to perform in parallel. Interestingly, on the

other hand, some of the operations that are di�cult to perform sequentially are easy to

perform in parallel. On the whole, however, it turns out that a direct parallelization of this

novel sequential method is not possible. Nevertheless, its overall structure can be used to

guide our thinking so that, with the aid of our parallel displacement table technique to be

presented later, we can direct all available processors to work e�ciently in unison.

The (sequential) optimality attained with respect to both time and space inherently

relies on the related notions of block rearranging and internal bu ering. To get a feel for

the general way in which such a strategy works, it is helpful to view a list containing n

records as a collection of �(
n
) blocks, each of size �(

n
). This approach allows us to

employ one block as the (internal) bu�er to aid in resequencing the other blocks of the two

sorted sublists and then merging these blocks into one sorted list. Since only the contents

of the bu�er and the relative order of the blocks need ever be out of sequence, linear time is

su�cient to achieve order by straight-selection sorting [Kn] both the bu�er and the blocks

(each sort involves O(
n
) keys). We refer the interested reader to [HL1{HL4] for extensive

background, related results and additional details on block rearranging and internal bu�ering
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to work such as that described in [RS], in which constant extra space is employed at each

processor, but the number of processors is assumed to be �(n

2

).) Moreover, as an attractive

side e�ect of attempting to minimize extra space, a bounded number of processors reects

more faithfully any real parallel computing environment.

In this paper, we present for the �rst time a parallel merging algorithm that, on an

exclusive-read exclusive-write (EREW) PRAM, merges two sorted lists in O(n=k + log n)

time and constant extra space per processor, and hence is time-space optimal for any value

of k � n=(log n). We also describe how this gives rise to a stable

3

version of our parallel

merging algorithm that is similarly time-space optimal on an EREW PRAM. We observe

that (our technique for achieving) stability incurs two penalties: a slightly more complicated

algorithm and somewhat larger constants of proportionality. These two parallel merges

naturally lead to time-space optimal parallel sorting algorithms.

In the next section, we briey review the main features of a recently-published linear-time

in-place sequential merge. Although a direct parallelization of this method is not possible,

its overall structure is helpful in simplifying the presentation of our parallel algorithm, which

we describe in detail in Section 3. As we demonstrate in that section, a major factor in our

algorithm's asymptotic time-space optimality is the introduction of a useful technique that

is based on what we dub a displacement table. We next move on to the subject of stable

merging, describing in Section 4 how some relatively simple modi�cations to our parallel

merge can be exploited to yield a stable time-space optimal parallel algorithm. Extensions

3

A merging algorithm is stable if it preserves the original relative order of records with

identical keys.



3

processing systems when the number of processors is bounded.

None of the previously published parallel merging and sorting strategies are time-space

optimal . That is, none achieve optimal speedup and, at the same time, require only a con-

stant amount of extra space per processor even when the number of processors is �xed. We

remark that, from a consideration of time alone, these algorithms represent an acceptable

approach, mirroring one reason for the popularity of the parallel random-access machine

(PRAM) model. Speci�cally, if the number of processors is �xed, then as the problem size

grows, an C algorithm can be \scaled down," so that each real processor needs merely to

emulate multiple virtual processors, thereby accounting for the massive parallelism inherent

in the design of the algorithm. Unfortunately, however, space requirements in this scenario

tend to \blow up," unless the extra space required by each real processor is constant, in-

dependent of the growing problem size. Added cause for concern is that, even if enough

global memory is available, the more shared memory accesses a program makes the more

message tra�c is placed on whatever interconnection network is used to realize the shared

memory, with an attendant downgrading of the overall system's performance. Incorporating

secondary memory devices into this picture naturally leads to additional problems [RB], to

be avoided as long as main memory need not be squandered on temporary extra storage.

From the foregoing discussion, we conclude that any genuine attempt to minimize extra

space dictates that the total number of extra storage cells required by each processor be

constant, even when the number of processors available is bounded by some constant, k,

whose value is independent from the size of a problem instance, n. (This is in contrast



2

1. Introduction

The quest for e�cient parallel merging and sorting algorithms has been a long-standing

topic of intense interest, as evidenced by the impressive volume of literature published on

this subject (see, for example, [Ak, BDHM, LDM] for recent surveys). Much of the focus

has been on the search for methods that are optimal in the classic sense that asymptotically

optimal speedup is attained

1

. Indeed, a number of parallel algorithms have been proposed

that are optimal under this criterion, including those found in [AKS, AS, BH, BS, Co, Kr,

SV, Va].

Curiously, and quite unlike the case for sequential algorithms, very little attention seems

to have been paid to space management issues. Some of this phenomenon can perhaps be

attributed to the fact that much of what is known about parallel algorithms is relatively

new. Accordingly, less time has elapsed for practical problems of implementation to become

widely known. (See, for example, the formidable di�culties in memory management that

have recently been encountered when an attempt has been made to implement C-style

algorithms

2

on hypercubes with 16 and 256 nodes [BB].) Another contributing factor may

be that memory has become so inexpensive during the last few years that it is often easy

simply to ignore it. In any event, space utilization continues to be a critical aspect in many

applications, even for sequential processing; this criticality is only heightened in parallel

1

A parallel method attains asymptotically optimal speedup if the product of the number

of processors it employs and the amount of time it takes is within a constant factor of the

time required by a fastest sequential algorithm.

2

A problem is said to be in C if it possesses a parallel algorithm that, for any problem

instance of size n, employs a number of processors bounded by some polynomial function of

n and requires an amount of time bounded by some polylogarithmic function of n.
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