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Abstract

A complete understanding of communication, language, intentionality and
related mental phenomena will require a theory integrating mechanistic expla-
nations with ethological phenomena. For the foreseeable future, the complexi-
ties of natural life in its natural environment will preclude such an understand-
ing. An approach more conducive to carefully controlled experiments and to
the discovery of deep laws of great generality is to study synthetic life forms in
a synthetic world to which they have become coupled through evolution. This
is the approach of synthetic ethology. Some simple experiments in synthetic
ethology are described, in which we have observed the evolution of communi-
cation in a population of simple machines. We show that even in these simple
worlds communication manifests some of the richness and complexity found
in natural communication. Finally some future directions for research in syn-
thetic ethology are discussed, as well as some issues relevant to both synthetic
ethology and artificial life.

This report is based on a paper delivered at the Artificial Life II Workshop
organized by the Center for Nonlinear Studies at the Los Alamos National
Laboratory and by the Santa Fe Institute, Santa Fe, NM, February 5-9, 1990.



I am an “old bird,” . . . a Stmorg, an “all-knowing Bird of Ages” . . .

— DeMorgan, Budget of Paradozes, 1872, p. 329.

1 The Problem
1.1 Philosophical Insights

Philosophers have studied language, communication and other mental phenom-
ena for many centuries, and yet some of the central issues remain unresolved.
We have in mind questions such as the following: What are the mechanisms
by which language and communication emerge? What is the nature of mental
states, and of their intentionality? How are “worlds” constituted by language
communities? What is the nature of syntax, and how it can emerge from prag-
matics? How is communication related to other aspects of behavior, especially
group behavior? What is the nature of skillful coping in a social context? How
do languages evolve? What is the nature of semantics, and how does a sign
“mean” something? How is thought related to language? Must there be a
“language of thought”? What is the mechanism of communication? In order
to explain out approach, we will focus on just one of these issues: How can a
symbol mean something? Questions such as these have been investigated by
philosophers for about 25 centuries. Although philosophical methods are very
different from those that we propose, we have nevertheless found the insights
of several philosophers to be especially helpful.

It is commonly assumed that the meaning of a word is the thing that it
denotes. Although this works well for proper names (‘Bertrand Russell” denotes
a particular person; ‘Santa Fe’ denotes a particular city), it becomes less and
less satisfactory with increasingly abstract terms. Even for concrete general
terms (‘dog’, ‘mountain’) it is already difficult to say exactly what they denote,
as evidenced by 2500 years of debate over the nature of universals. Verbs are
even more problematic, and a denotational theory of syncategorematic terms,
such as ‘of” and ‘the’, seems hopeless.

In this century denotational theories of meaning came under attack from
Wittgenstein and other “ordinary language” philosophers [24]. They pointed
out that only a small number of linguistic forms can be understood in terms of
their denotation; a more generally applicable theory must ground the meaning
of language in its use in a social context. For example, in a simple question
such as ‘Is there water in the refrigerator?’, the term ‘water’ cannot be taken to
have a simple denotational meaning (such as a certain minimum number of H,O
molecules). Rather, there is a common basis of understanding, grounded in the
speaker’s and hearer’s mutual interests and in the context of the utterance, that
governs the quantity, state, purity, spatial configuration, etc. that a substance
in the refrigerator should have to elicit a truthful “yes” response. To understand
the meaning of ‘water’ we must know the function of the word in its contexts
of use. Even scientific terms (e.g., length, mass, energy) acquire their meaning



through measurement practices that form a common basis of understanding
among scientists.

Heidegger makes very similar points [8, 10, 11], although with a different
emphasis. He shows how our everyday use of language is part of a culturally
constituted nexus of needs, concerns and skillful behavior. In his terms this
nexus is a World, and thus our linguistic behavior both is defined by and con-
tributes to defining our World: consider common expressions such as “the world
of politics” and “the academic world.” Meaning emerges from a shared cultural
background of beliefs, practices, expectations and concerns. (For related ideas
see Preston [18].)

One consequence of these views of language is that the study of language
cannot be separated from the study of its cultural matrix. Thus one might
despair that we will ever have a scientific theory of language. Fortunately, an-
other philosopher has shown a possible way out of this difficulty. Popper has
said, “The main task of the theory of human knowledge is to understand it as
continuous with animal knowledge; and to understand also its discontinuity —
if any — from animal knowledge.” [17] This is a very unconventional view of
epistemology (the theory of knowledge). Traditionally philosophers have lim-
ited their attention to human knowledge, and in particular to its embodiment
in human language. Although Heidegger and others have helped to bring non-
verbal knowledge into the scope of philosophical investigation, Popper goes a
step further, by indicating the importance of animal knowledge.

The importance of Popper’s observation for the study of language and the
mind is that encourages us to study these phenomena in the context of simple
animals in simple environments. Science usually progresses fastest when it is
able to study phenomena in their simplest contexts. We expect this will also
be the case with communication and other mental phenomena: we will learn
more if we study their simplest manifestations, rather than their most complex
(i.e. in humans).

1.2 The Behaviorist Approach

The preceding observations show us why behaviorism failed. First, it suffered
from ecological invalidity. Animals behave in abnormal ways when put in alien
environments. But what could be more alien than a Skinner box? As a result,
the behavior of animals in laboratory situation does little to inform us of their
behavior in their natural environments.

Second, behaviorism investigated little snippets of behavior, such as press-
ing a lever to get some food. But this approach removes these behaviors from
their pragmatic context, which gives them their meaning. The result is an in-
vestigation of meaningless behavior resulting from a lack of pragmatic context.
An example will illustrate the pitfalls of this approach. On the basis of behav-
ioristic tests it had been thought that honey-bees were color-blind. However,
von Frisch showed that in a feeding context they were able to distinguish colors.
In the captive, laboratory context the color of lights was not relevant to the



bees [16].

In principle, of course, we could design experimental situations that mimic
the natural environment in just the relevant ways and simplify it in ways that
don’t perturb the phenomena. Unfortunately, we don’t yet adequately under-
stand the pragmatics of real life, and so we don’t know how to design laboratory
environments that match the natural environments in just the relevant ways.
Therefore, the behaviorist approach is, at very least, premature.

1.3 The Ethological Approach

An alternative approach to the study of communication is found in ethology,
which is in part a reaction against behaviorism. Ethology recognizes that the
behavior of an organism is intimately coupled (through natural selection) with
its environment. Therefore, since removing an organism from its environment
destroys the context for its behavior, ethology advocates studying animals in
their own worlds (or in laboratory situations which closely approximate the
natural environment). Unfortunately there are difficulties with this approach.

First, the real world, especially out in the field, is just too messy; there are
too many variables. Consider some of the factors that could plausibly affect
the behavior of a group of animals: the distribution of other animals and their
behavior, the distribution of plants and their growth, the terrain, the weather,
ambient sounds and odors, disease agents, etc. etc. [21]. Animals are much too
sensitive to their environments to permit a cavalier disregard for any of these
factors.

Second, there are practical and ethical limits to the experiments we can
perform. The ethical limits are most apparent where human behavior is the
subject, but the situation differs only in degree where other animals are con-
cerned. Even in the absence of ethical constraints, control of many variables
is difficult [21]. Some of the experiments we would most like to perform are
completely beyond our capabilities, such as restarting evolution and watching
or manipulating its progress.

These two problems — the large number of variables and our inability to
control them — make it unlikely that deep ethological laws will be discovered
in the field. The history of the other sciences show that deep, universal laws
are most likely to be found when the relevant variables are known and under
experimental control. When this is not the case, the best we can hope for is
statistical correlation; causal understanding will elude us. Of course, I'm not
claiming that empirical ethology is futile, only that it is very hard. Rather I
anticipate that synthetic and empirical ethology are complementary approaches
to the study of behavior, and that there will be a fruitful exchange between
them.



1.4 The Neuropsychological Approach

Behaviorist and ethological investigations of communication are limited in an
additional way: they tell us nothing of the mechanism by which animals com-
municate. They are both based on black-box descriptions of behavior. On the
other hand, deep scientific laws are generally based on a causal understand-
ing of the phenomena. Thus it is important to understand the mechanism
underlying meaning and other mental phenomena [14]. Several disciplines in-
vestigate the mechanisms of cognition. One in neuropsychology. Unfortunately,
the complexity of biological nervous systems is so great that the discovery of
deep laws seems unlikely, at least at the current stage of the science. Further-
more, as we’ve seen, true understanding of communication and other mental
phenomena requires them to be understood in their ecological context. Thus
a complete theory of communication must unite the neuropsychological and
ethological level. This is far beyond the reach of contemporary science.

1.5 The Artificial Intelligence Approach

Another discipline that investigates cognitive mechanisms is artificial intelli-
gence, but with the goal of creating them, rather than studying their naturally
occurring forms. Since Al creates its subject matter, all the variables are in its
control, and so it might seem that Al is an ideal vehicle for studying communi-
cation, meaning and the mind. Unfortunately, as is well known, there’s much
argument about whether Al systems can — even in principle — exhibit genuine
understanding. In other words, it is claimed that since Al systems perform
meaningless (syntactic) symbol manipulation, they lack just the properties we
want to study: meaningful (semantic and pragmatic) symbol use and genuine
intentionality. 1 will briefly review the key points.

The issue can be put this way: Are Al programs really intelligent or do they
merely simulate real intelligence. Several well-known examples make the differ-
ence clear. It has been pointed out that no one gets wet when a meteorologist
simulates a hurricane in a computer; there is an obvious difference between a
real hurricane and a simulated hurricane [19, 20]. Similarly, it is been observed
that thinking, like digestion, is tied to its biological context. The same chem-
ical reactions will not be digestion if they take place in a flask, that is, out if
the context of a stomach serving its functional role in the life of an organism.
By analogy it is claimed that there cannot be any real thinking outside of its
biological context. Just as the flask is not digesting, so the computer is not
thinking. It has also been claimed that computers may be able to simulate
meaningful symbolic activity, but that symbols cannot really mean anything to
a computer. In particular, any meaning born by machine-processed language is
meaning that is derived from our use of the language. The rules we put into the
machine reflect the meaning of the symbols to us; they have no meaning to the
machine. That is, our linguistic behavior has original intentionality; whereas
machines’ linguistic behavior has only derived intentionality [6, 7].



Finally, we recall the previously discussed observations of Wittgenstein
and Heidegger. If language acquires its meaning through use in a socially-
constituted nexus of concerns, expectations and beliefs, then how could a com-
puter truly communicate (i.e., not just simulate communication)? Since com-
puters are not members of societies (either their own or ours), they have no
shared background of needs and concerns. It seems that nothing can be truly
relevant to a computer, but relevance — at least potential relevance — is essential
to meaning.

1.6 Summary

Here is the problem in a nutshell. If we want to understand what makes symbols
meaningful (and related phenomena such as intentionality), then Al — at least as
currently pursued — will not do. If we want genuine meaning and original inten-
tionality, then communication must have real relevance to the communicators.
Furthermore, if we are to understand the pragmatic context of the communica-
tion and preserve ecological validity, then it must occur in the communicators’
natural environment, that to which they have become coupled through natural
selection. Unfortunately, the natural environments of biological organisms are
too complicated for carefully controlled experiments.

2 Synthetic Ethology as a Solution

2.1 Definition of Synthetic Ethology

The goal of synthetic ethology is to integrate mechanistic and ethological ac-
counts of behavior by combining the simplicity and control of behaviorist meth-
ods with the ecological and pragmatic validity of empirical ethology. The idea of
synthetic ethology is simple: Instead of studying animals in the messy natural
world, and instead of ripping animals out of their worlds altogether, we create
artificial worlds and simulated organisms (simorgs') whose behavior is coupled
to those worlds. Since the simulated organisms are simple, we can study men-
tal phenomena in situations in which the mechanism is transparent. In brief,
instead of analyzing the natural world, we synthesize an artificial world more
amenable to scientific investigation. This is really just the standard method of
experimental science.

The idea of synthetic ethology was suggested to me by Braitenberg’s syn-
thetic psychology [2]. 1t can be considered an extension of Braitenberg’s idea
which preserves ecological validity and pragmatic context by requiring that be-
havior be coupled to the environment. We ensure this coupling by having the
simorgs evolve in the artificial world.

!The simorg (simurg, simurgh) was monstrous bird of Persian legend, imagined as rational, having
the power of speech, and of great age.



2.2 Requirements of a Solution

In the following I argue that synthetic ethology does in fact solve the problem
discussed above. First observe that synthetic ethology deals with simple worlds.
Rather than starting with nature in all its glory, as does empirical ethology,
or with denatured nature, as does behaviorism, synthetic ethology deals with
complete, but simple worlds. Complexity is added only as necessary to produce
the phenomena of interest. Yet the worlds are complete, for they provide the
complete environment in which the simorgs “live” or “die.”

Second, observe that because synthetic ethology creates the worlds it stud-
ies, every variable is under the control of the investigator. Further, there are
(so far!) no ethical constraints on our manipulation of the artificial organisms
that live in the computer. Also, the speed of the computer allows evolution to
be observed across thousands of generations. We may create worlds, observe
their evolution, and destroy them at will.

Finally we get to the key characteristic of synthetic ethology. We want to
investigate real, not simulated, communication. But how can we ensure that
linguistic structures really “mean” something? How can we ensure that com-
munication is taking place, and not merely the generation and recognition of
meaningless symbols? As a first approximation, we may say that something is
meaningful if it has relevance to the life of the individual. Perhaps we could
go so far as to say it must be relevant to its survival — even if only indirectly
or potentially. Relevance to the individual cannot be the whole story, however,
since there are many examples of communication that do not benefit the com-
municator (e.g., the prairie dog’s warning call, a mother bird’s feigning injury).
Thus, as a second approximation we can say that something is meaningful if it
is relevant to the survival of the language community. This criterion accords
better with Heidegger’s insights.

Additional support for this criterion comes from ethology, which has had to
grapple with the problem of defining communication [3, 5, 21]. The means that
animals use to communicate, both within and between species, are so varied
that identifying an act as communication becomes problematic. One animal
scratches the bark of a tree; later another animal notes the scratches and goes a
different way. Was it a communication act? The first animal might have been
marking its territory, which is a form of communication, or it might simply
have been sharpening its claws, which is not.

On the one hand we might say that a communication act has occurred
whenever the behavior of one animal influences the behavior of another, but
this definition is useless, since it makes almost every behavior communication.
On the other hand we might say that it is not a communication act unless the
first animal intended to influence the other’s behavior. This criterion requires
us to be able to determine the intent of behaviors, which is very problematic.
If it is questionable to attribute intent to a fly, it is reckless to attribute it to a
simorg. We need a definition of communication that does not appeal to difficult
ideas like “intent.”



A definition of communication that is very consistent with our approach has
been proposed by Burghardt [3, 4]:

Communication is the phenomenon of one organism producing a
signal that, when responded to by another organism, confers some
advantage (or the statistical probability of it) to the signaler or his
group.
This says that communication must be relevant — in an evolutionary sense —
to the signaller. In addition it gives us an operational way of determining if a
communication act has taken place: we can compare the fitness of a population
in the two situations differing only in whether communication is permitted or
suppressed. This is the sort of experiment that can be undertaken in synthetic
ethology, but that is infeasible for empirical ethology.

There is one last observation that we must make about the problem of defin-
ing communication. The word ‘communication’ is a part of ordinary language,
and, as Wittgenstein has shown us, it obtains its meaning from its use, not from
a definition. In its everyday use, communication is characterized by a family
resemblance, not by necessary and sufficient conditions; we should not expect
to be able to find a definition admitting no exceptions. Nevertheless, in the very
non-everyday context of synthetic ethology, we need a definition that can be
applied in novel situations. Although we make significant use of Burghardt’s
definition in the experiments described later, one must keep in mind that it
does not completely capture our everyday use of ‘communication’.

2.3 Making Real Worlds Inside the Computer

The objection may still be made that any communication that might take place
is at best simulated. After all, nothing that takes place in the computer is real,
the argument goes; no one gets wet from a hurricane in a computer. To counter
this objection I would like to suggest a different way of looking at computers.
We are accustomed to thinking of computers as abstract symbol-manipulating
machines, realizations of universal Turing machines. I want to suggest that we
think of computers as programmable mass-energy manipulators. The point is
that the state of the computer is embodied in the distribution of real matter
and energy, and that this matter and energy is redistributed under the control
of the program. In effect, the program defines the laws of nature that hold
within the computer. Suppose a program defines laws that permit (real!) mass-
energy structures form, stabilize, reproduce and evolve in the computer. If
these structures satisfy the formal conditions of life, then they are real life, not
simulated life, since they are composed of real matter and energy. Thus the
computer may be a real niche for real artificial life — not carbon-based, but
electron-based.?

?There is no claim here, however, that the simorgs used in these experiments are alive. See also
Section 5.2.



3 Preliminary Experiments

To illustrate the method of synthetic ethology, 1 will describe several experi-
ments that have been completed. The goal of these experiments was to demon-
strate that genuine communication could evolve in an artificial world. A sec-
ondary goal was to accomplish this with the simplest procedure possible, so
that the phenomena would be most exposed for observation.

3.1 Setup

3.1.1 Environment

What are the minimum requirements on a world that will lead to the emer-
gence of communication? First, it must permit some simorgs to “see” things
that others cannot, otherwise there would be no advantage in communicating.
For example, in the natural world the signaller may perceive something which is
out of the range of the receiver’s senses, or the signaller may be communicating
its own internal state, which is not directly accessible to the receiver. Second,
the environment must provide a physical basis for communication: something
with the signaller can alter and the alteration of which the receiver can de-
tect. Finally, we want the environment to be as simple as possible, so that the
phenomena are manifest.

The solution adopted in these experiments is to give each simorg a local
environment that only it can “see.” The states of the local environments,
which we call situations, are determined by a random process; therefore there
is no way they can be predicted. This means that the only way one simorg
can reliably predict another’s situation is if the second simorg communicates
that information to it. To provide a medium for potential communication
there is also a shared global environment in which any simorg can make or
sense a symbol. Any such symbol replaces the previous contents of the global
environment; there can be only one symbol in the “air” at a time. See Figure
1 for the topology of the environment.

In these experiments the situations and symbols (local and global environ-
ment states) are just natural numbers representing uninterpreted elements of a
finite discrete set. Since we are creating an artificial world, there is no need to
equip it with familiar environmental features such as temperature, water sup-
ply, food supply, etc. We can define the laws of this universe so that the simorgs
will survive only if they interact correctly with the uninterpreted states of this
artificial environment. Although these states have no interpretable “meaning,”
they are not simply syntactic, since they are directly relevant to the continued
persistence (“survival”) of the simorgs.

3.1.2 Simorgs

Next consider the simorgs; they should be as simple as possible, yet be capable
of evolving or learning complex behaviors. Two simple machine models have
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Figure 1: Topology of the Environment

the required characteristics, although there are certainly others; they are finite
state machines (FSMs) and artificial neural networks (ANNs).

Finite state machines get their name from their internal memory, which at
any given time is in one of a finite number of states. In addition, an FSM may
have a finite number of sensors and effectors, the states of which are also finite
in number. The behavior of an FSM is defined by its transition table, which
comprises a finite number of discrete rules. For each sensor state s and each
internal state ¢, the table defines an effector state e and a new internal state ¢’.

FSMs have several disadvantages for synthetic ethology. First, since the
sets of states and rules are discrete, FSMs are characterized by brittle behav-
ior: there is no continuity in their response to stimuli. Also, since the transition
table must define a response for every possible sensor/internal state combina-
tion, the size of the table grows as the product of the number of states (and
hence exponentially in the total number of bits in the memory, sensors and
effectors). Finally, in their usual form, FSMs have no ability to learn (although
a simple kind of FSM learning was implemented in these experiments; see Sec-
tion 3.1.5). On the other hand, FSMs have the advantage that they are well
understood.

ANNs are networks of idealized neurons. In the most common version,
each neuron has a state of activation, which is a real number computed by
applying a fixed nonlinear function to a weighted sum of the activations of
the neurons that are its inputs. The weights determine the interconnection
strengths between neurons, and it is these that are modified by the various
ANN learning algorithms. For our purposes, the ANN has for its input a
finite number of continuous-valued neurons representing the sensor state and
the internal state. Similarly, the output of the net goes back into the internal

10



memory as well as to the effector neurons.

ANNSs have several desirable properties. First, they are characterized by
fluid behavior, since they define continuous functions. Their behavior is thus
more robust than that of FSMs [13]. Also, their structure is defined by the
weight matrix, the size of which increases only quadratically with the number
of sensor, effector and memory neurons (cf. exponential growth for FSM).
Finally, several effective learning algorithms have been invented for ANNs. A
disadvantage of ANNs is that they are not so well understood as FSMs.

Although I believe artificial neural networks will in the long run provide
a better basis for defining behavior, in these experiments FSMs were used,
both because of their simplicity and my prior experience evolving them. The
machines used in these experiment have only one internal (memory) state.
In other words, they have no ability to remember; therefore their response is
completely determined by the current stimulus (i.e., their own situation and
the shared symbol). In effect, each machine is defined by a table mapping
symbol/situation pairs into responses.

There are two kinds of responses, emissions and actions. The effect of an
emission is to change the symbol in the global environment, hence a response
that is an emission must specify the symbol to be emitted. Actions are what
must be accomplished effectively for the simorg to survive. Since we are select-
ing for cooperation we consider a simorg’s action effective only if it matches the
situation of another simorg. Thus a response that is an action must specify a
situation that it is trying to match.

In most of these experiments we place an additional requirement on effec-
tive action, namely that the action match the situation of the last emitter.
This increases the selective pressure in favor of communication. Although one
may find analogs of this in the natural world (e.g., a predator signalling for
appropriate aid in bringing down some prey), the essential point is that we are
making an artificial world and so we can define the laws to suit the needs of
our experiment.

3.1.3 Fitness

The principal goal of the selective criteria is that they lead to the emergence of
communication — without being overly “rigged.” In these experiments the en-
vironment selects for cooperative activity that requires knowledge of something
that cannot be directly perceived, namely another simorg’s local environment.
Specifically, whenever a simorg acts, its action is compared to the situation of
the simorg that most recently emitted. If the two match, then we consider an
effective action to have taken place, and both the emitter and actor are given
a point of credit. Since several simorgs may respond to a given emitter, in
principle a successful emitter can accumulate considerable credit. Each simorg
is given an opportunity to respond several times (in these experiments, 10) be-
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fore all the local environments are changed randomly.® This interval is called a
minor cycle. Credit is accumulated over a major cycle, which comprises several
(typically 5) minor cycles. The resulting total is considered the simorg’s “fit-
ness” for that major cycle, since it measures the number of times the simorg
cooperated successfully. This fitness is the criterion by which simorgs are se-
lected to breed or die.

3.1.4 The Birth and Death Cycle

At the end of each major cycle, one simorg is selected to die and two simorgs
are selected to breed. This keeps the size of the population constant, which
simplifies the simulation and the analysis. Of course, we want the most fit to
be most likely to breed and the least fit to be most likely to die.

For reasons discussed later (Section 3.2.3), we use the fitness to determine
the probability of breeding or dying. Specifically, we make the probability of
breeding proportional to the fitness (credit accumulated over one major cycle):

_ o

Pk = Por

where py is simorg k’s probability of breeding, ¢y is its fitness, P is the popu-
lation size, and o = P! Zle ¢y is the average fitness of the population. (If
a = 0 weset pp, = 1/P.) The probability of dying cannot in general be inversely
proportional to fitness. However, we can make it a monotonically decreasing
first degree polynomial of fitness:

B — o
P(B - a)

where g is the probability of dying and 3 is the fitness of the most fit simorg.
(If o =3 we set g, = 1/P.)

The offspring is derived from its parents by a simplified genetic process.
Each simorg has two transition tables, its genotype and its phenotype. The
genotypes of the parents are used to determine the genotype of their offspring
by a process described below. In general the genotype defines a developmental
process leading to the phenotype, and the phenotype determines the simorg’s
behavior. In these experiments this process is very simple: the initial phenotype
is the genotype. Further, if learning is disabled (see Section 3.1.5), then the
phenotype remains identical to the genotype.

The genotype of a simorg is a transition table, which defines a response
for every symbol/situation pair. Each response is represented, in these experi-
ments, by a pair of numbers, the first of which is 0 or 1, indicating act or emit,

qr =

and the second of which is the situation or symbol that goes with the action

3In these experiments the simorgs were serviced in a regular, cyclic fashion. This means that
communication with one’s nearest neighbors in one direction (say clockwise) are least likely to be
disrupted by other emitters. This may be important in forming “communities” using the same
“language” (code).
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or emission. The genome itself is just a string containing all these pairs; thus
each “gene” defines the response to a given stimulus.

The (unmutated) genotype of the offspring is derived from its parents’ geno-
types by a process called crossover. For purposes of crossover we interpret the
genetic string as a closed loop. Two crossover points 6 and 6’ are selected ran-
domly, and a new genetic string is generated from those of the parents. That
is, between € and 6" the genes will be copied from one parent, and between ¢’
and 6 from the other.

With low probability (0.01 in these experiments) the genetic string may be
mutated after crossover. This means that a randomly selected gene is com-
pletely replaced by a random allele (i.e., a pair of random numbers in the
appropriate ranges).

Readers familiar with genetic algorithms (GAs) [9, 12] will note some dif-
ferences between the genes and genetic operations used in our experiments
and those common in GAs. Our genetic strings are lists of pairs of numbers,
whereas theirs are binary strings. Further, our crossover operation never “splits
its genes,” whereas theirs may occur at any bit position. Finally, our mutation
operation replaces an entire transition table entry, whereas theirs usually alters
a single bit. We have found that our approach leads to faster evolution since
the genetic operations respect the structural units of the genetic string.

3.1.5 Learning

In order to experiment with the effects of learning on the evolution of com-
munication, we have implemented the simplest kind of “single case learning.”
Specifically, whenever a simorg acts ineffectively we change its phenotype so
that it would have acted effectively. That is, suppose that the global envi-
ronment state is v and the local environment state is A, and that under this
stimulus a simorg responds with action X/, but that the situation of the last
emitter is A” £ X'. Then we replace the (v, A) entry of the phenotypic transi-
tion table with the action A”. (Of course, learning alters the phenotype, not
the genotype.) This is a very simple model of learning, and could easily lead
to instability; nevertheless it produces interesting results (see Section 3.2).

3.1.6 Importance of Overlapping Generations

Because we are interested in the influence of learning on the evolution of com-
munication, there is another respect in which we have done things differently
from most genetic algorithms. GAs typically replace the entire population
each generation, with the fitness of the parents determining the frequency with
which their offspring are represented in the new generation. In contrast, we
replace one individual at a time, with fitness determining the probability of
breeding and dying. The difference is significant, because the GA approach
prevents the passage of “cultural” information from one generation to the next
(through learning). We expect that “cultural” phenomena will be central to

13



understanding the interaction of learning and communication. (See also Belew

(1)

3.1.7 Measurements

How can we tell if communication is taking place? As noted previously (Section
2.2), Burghardt’s definition of communication suggests an operational approach
to identifying communication: detect situations in which one simorg produces
a signal, another responds to it, and the result is a likely increase in the fitness
of the signaler or its group.

In our case, fitness is a direct measure of the number of times that an
effective action resulted from a simorg’s response to the last emitter. Therefore,
the average fitness of the population measures the advantage resulting from
actions coincident with apparent communication. But how do we know that
the advantage results from communication, and not other adaptations (as it
may; see 3.2.3)7

I have claimed that synthetic ethology permits a degree of control not pos-
sible in natural ethology, and here is a perfect example. We may start two
evolutionary simulations with the same populations of random simorgs. In one
we suppress communication by writing a random symbol into the global envi-
ronment at every opportunity; in effect this raises the “noise level” to the point
where communication is impossible. In the other simulation we do nothing to
prevent communication. If true communication — as manifested in selective
advantage — is taking place, then the fitness achieved by the two populations
should differ. In particular, the rate of fitness increase should be significantly
greater when communication is not suppressed. This is what we must watch
for.

In these experiments we record several fitness parameters. The most im-
portant is «, the average fitness of the population (smoothed by a rectangular
window of width 50). The second most important is 3, the fitness of the most
fit simorg at the end of each major cycle (similarly smoothed). The figures in
this report show the evolution of «; the evolution of 7 is qualitatively similar.

I am proposing synthetic ethology as a new way to study communication.
Therefore, if by the process just described we find that communication is taking
place, then we must see what the simulation can tell us about it. At this stage
in the research program we have addressed only the most basic questions: What
are the meanings of symbols, and how do they acquire them?

To answer these questions we construct during the simulation a data struc-
ture called a denotation matriz. This has an entry for each symbol/situation
pair, which is incremented whenever there is an apparent communication act
involving that pair. If symbols are being used in a haphazard fashion, then
all the pairs should occur with approximately the same frequency; the matrix
should be quite uniform. On the other hand, if the symbols are being used in a
very systematic way, then we should expect there to be one situation for each
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symbol, and vice versa.* Each row and each column of the denotation matrix
should have a single nonzero entry, and these should all be about equal; this is
a very nonuniform matrix, which we will call the ideal denotation matrix. Thus
systematic use of symbols can be detected (and quantified) by measuring the
variation (or dispersion) of the denotation matrix.

One of the simplest measures of variation is the standard deviation, which is
zero for a uniform distribution, and increases as the distribution spreads around
the mean. However the standard deviation is not convenient for comparing the
uniformity of deviation matrices between simulations, since the mean may vary
from run to run. Instead, we use the coefficient of variation, which measures
the standard deviation (o) in units of the mean (u):

V=o/u.

The coeflicient of variation is 0 for a uniform denotation matrix, and for the
ideal matrix is v/N — 1 (where N is the number of global or local environment
states, which are assumed equal).

Another measure of uniformity is the entropy of a distribution, which is

defined:®
H=-> plogp.
k

This is maximized by the uniform distribution; it is easy to show that its entropy
is log LG, where L is the number of local environment states and GG the number
of global environment states. The minimum entropy H = 0 is achieved by the
“delta distribution” (which makes all the probabilities zero except one). This
is not so interesting, however, as the entropy of the ideal matrix, which is
easily calculated to be log N (for N = L = (). To allow comparisons between
simulation runs, we also use an “disorder measure”:

= H —1
log N
This is a scaled and translated entropy, which has the value 1 for a uniform
matrix, 0 for the ideal matrix, and —1 for the “over structured” delta matrix.
There are a variety of other statistical measures that may be used to quantify
the structure of the denotation matrix. For example, y? will be 0 for the
uniform matrix and maximum for the ideal matrix. Fortunately the results
we have observed so far are robust in that they are qualitatively the same no
matter what statistics are used.

Ui

3.2 Results

Unless otherwise specified, the experiments described here used a population
size P = 100 of finite state machines with 1 internal state. Since the number of

*This is assuming that the number of local environment states equals the number of global
environment states, as it does in most of these experiments. We discuss later consequences of having
unequal numbers of states.

>We use logarithms to the base 2, so that our entropy measure is more easily interpreted.
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Figure 2: Average Fitness, Communication Suppressed and Learning Disabled

local and global environment states were the same, . = G = 8, each machine
was defined by a transition table containing 64 stimulus/response rules. Simu-
lations were generally run for 5000 major cycles (one birth per major cycle).

3.2.1 Effect of Communication on Fitness

Figure 2 shows the evolution of the (smoothed) average fitness («) of a typ-
ical random initial population when communication has been suppressed and
learning has been disabled. It can be observed to have wandered around the
fitness expected for machines that are guessing, & = 6.25. (The analysis may
be found in an earlier report [15].) Linear regression detects a slight upward
trend (&= 1.55 x 107°). This is a stable phenomenon across simulations, and
is explained later (Section 3.2.3).

Figure 3 shows the evolution of the average fitness for the same initial popu-
lation as Figure 2, but with communication permitted (learning still disabled).
Within 5000 major cycles the average fitness reaches v = 11.5, which is sig-
nificantly above the guessing level (o = 6.25). Furthermore, linear regression
shows that the average fitness is increasing over 50 times as fast as when com-
munication was suppressed (& = 8.25x 107 vs. & = 1.55x 107°). We conclude
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that in this experiment communication has a remarkable selective advantage.

Figure 4 shows the evolution of « for the same initial population, but with
communication permitted and learning enabled. The average fitness reached
a level of 55, which is nearly five times that reached without learning and
nearly nine times the level achieved without communication. The rate of fitness
increase was & = 2.31 x 1073, which is almost three times as large as that
without learning, and nearly 150 times as large as that without communication.

We have observed quantitatively similar results in many experiments. Table
1 (adapted from an earlier report [15]) shows average measurements from several
experiments that differ only in initial population.

To better understand the asymptotic behavior of the evolutionary process,
we have run several simulation for ten times as long as those previously de-
scribed. Figure 5 shows the evolution with communication permitted but
learning disabled, and Figure 6 shows the evolution of the same initial pop-
ulation, but with communication permitted and learning enabled. Average
fitness reached a level of approximately 20.°. In the second case (learning per-

SUnder reasonable assumptions the maximum « achievable without learning by a homogeneous
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Table 1: Average Measurements over Several Random Populations

Measurement Comm/Learning
N/N Y/N Y)Y
! 6.31 11.63 59.65

& x 10* 0.36  11.0 28.77
v 0.46 242  2.48
H 581 3.79  3.87
n 0.94 0.26 0.29
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Figure 5: Average Fitness, Communication Permitted and Learning Disabled
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Table 2: Denotation Matrix, Communication Suppressed and Learning Disabled

situation
symbol 0 1 2 3 4 5 6 7

0320 138 189 360 266 354 224 89
1364 130 189 359 261 342 266 75
2 (332 126 184 385 252 365 257 82
3350 125 193 366 257 351 255 08
40340 119 190 354 254 356 225 78
5(328 145 170 343 244 348 217 86
6345 119 194 374 214 361 237 78
70346 149 159 343 242 383 226 83

V = 0.405649

H = 5.863233

1= 0.9560777

mitted) a seems to have reached an equilibrium value (@ = 56.6 in fact). We
can also observe an apparent “genetic catastrophe” at about ¢ = 45000.

The greatly increased fitness that results from not suppressing the signalling
process supports the claim that we are observing genuine communication. The
communication acts have real relevance to the simorgs because they significantly
affect the survival of the signaller and its group (cf. Burghardt’s definition,
Section 2.2).

3.2.2 Analysis of Denotation Matrices

If genuine communication is taking place, then we ought to be able to observe
it in more structured use of symbols; therefore we consider the structure of
the resulting denotation matrices. First consider Table 2; this is the deno-
tation matrix from the same simulation shown in Figure 2. In the absence of
communication and learning we see a very uniform matrix, as measured by its
coeflicient of variation V' = 0.41 and entropy H = 5.87, which is nearly the
maximum possible, 6. This is also reflected in the disorder parameter n = 0.96;
recall that a uniform matrix has n = 1 and an “ideal” matrix has n = 0.

Table 3 shows the denotation matrix that results when communication is
permitted; even to the eye it is much more structured than Table 2. This is
confirmed by our measurements: V = 2.13 (cf. V = 2.65 for the ideal matrix),
H =392, n=0.31.

Finally, Table 4 is the denotation matrix resulting from both communication
and learning. Qualitatively and quantitatively it is very similar to Table 3, but
slightly less structured. In other experiments it was slightly more structured
(see Tables 4 and 6 in our earlier report [15]).

population can be calculated to be 87.5; details are presented elsewhere [15]
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Table 3: Denotation Matrix, Communication Permitted and Learning Disabled

situation
symbol 0 1 2 3 4 5 6 7
0| 695 5749 0 1157 0 2054 101 0
1| 4242 11 1702 0 0 0 1 0
2| 855 0 0 0 0 603 862 20
3 0 0 0 0 1003 430 0 1091
4 0 0 0 0 0 0 2756 464
5 0 0 40 0 548 0 817 0
6 | 1089 90 1 281 346 268 0 62
7 0 201 0 288 0 0 2 0

V =2.129787
H =3.915812
n = 0.3052707

Table 4: Denotation Matrix, Communication Permitted and Learning Enabled

situation

symbol 0 1 2 3 4 5 6 7
0 0 0 2946 0 0 635 4239 3233
1| 2084 0 672 1457 0 6701 8517 1284
2 0 0 646 433 0 230 63 879
3 0 1074 446 46 2315 1623 0 1265
4 | 27850 5504 0 2326 11651 243 3428 20076
51 1301 0 0 854 858 368 0 0
6 | 13519 2676 0 2223 2391 874 0 644
7 356 226 365 107 1357 27 100 1

V = 2.029947

H = 4.208782

n = 0.4029273
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The “ideal” denotation matrix has one symbol for one situation and vice
versa; this is a structure that we might expect to see emerging. For example,
in the denotation matrix in Table 3 there is at least one symbol that predomi-
nantly denotes a single situation: in 86% of its recent uses, symbol 4 denoted
situation 6, in the remainder situation 7. Since these are the only two uses of
symbol 4, it seems likely that the denotation matrix reflects two subpopulations
(of unequal size) using the same symbol for different situations. More nearly
equal subpopulations may be indicated by symbols such as 7, which is used for
situations 1 and 3 with nearly equal frequency.

Symbols being used to denote several situations may also result from their
being used equivocally by a single population; they could reflect an intermediate
stage in the evolution to univocal symbol use. It is difficult to discriminate
between these two possibilities on the basis of just the denotation matrix. Doing
so requires more detailed analysis of the simorgs in the final population, a
process which is straight-forward in synthetic ethology, since we have complete
access to the structure of the simorgs. (Simple examples of this kind of analysis
are presented in our report [15].)

The natural way to interpret the denotation matrix is by rows, which re-
flects the significance of a symbol to a recipient; ethologists sometimes call this
the meaning of a signal [21, 22]. We can also look at the denotation matrix
by columns, which shows the situation a signaller was expressing by a sym-
bol; ethologists call this the symbol’s message [21, 22]. Sometimes the two
are symmetric. For example, in Table 3 the meaning of symbol 4 is usually
(86%) situation 6, and message ‘situation 6’ is usually (61%) represented by
symbol 4. On the other hand, asymmetries may occur. Symbol 6 usually (51%)
means situation 0, but situation 0 is usually (62%) represented by symbol 1.
Conversely, situation 2 is usually (98%) represented by symbol 1, but symbol
1 usually (71%) means situation 0.

Even in a synthetic ethology experiment as simple as this, we may begin
to observe some of the richness and complexity of real communication. For
example, in the actual “language” or code reflected in the evolved denotation
matrix — as opposed to the ideal matrix given by theory — we find that there is
rarely a one-to-one (univocal) correspondence between symbols and situations.
Indeed, it is quite possible that a simorg will attach different significance to a
symbol when it is received or when it is emitted; that is, a simorg need not
associate the same meaning and message to a given symbol. If this is the case
for simorgs, then it would seem foolish to assume that in human languages an
utterance has the same pragmatic significance when it is spoken as when it is
heard.

The denotation matrix captures the actual use of the code by the entire
population over the last 50 major cycles of the simulation. In this sense it is
an irreducible description of the message and meaning associated with every
symbol. It is irreducible because any attempt to ignore the lesser entries and
specify a unique denotational meaning for a symbol will misrepresent the facts
of communication. In fact symbol 4 means situation 7 some (16%) of the time;
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this is part of the overall meaning of symbol 4 in that population at that time.
To say that symbol 4 really means situation 6, and that the rest is noise, is a
misrepresentation of the “language.”

Given that the denotation matrix is the irreducible description of the code,
we see that the evolution of the code is mirrored in the evolution of the de-
notation matrix. Indeed, in the denotation matrix we may see the code as
an emergent nonequilibrium system, which organizes itself by promoting the
fitness of simorgs that behave in accord with its emerging structure [14]. This
emerging structure is measured by the decreasing entropy of the denotation
matrix.

Over time we may observe a changing constellation of meanings associated
with a given symbol, and of symbols representing a given message. We have
already seen that these experiments indicate both synonymous and equivocal
symbols. The experiments also exhibit both context-sensitive emission and
context-sensitive interpretation of symbols. This is because the emission of
a symbol by a simorg may depend on the global environment (providing a
context) as well as its local environment. Similarly, the response of a simorg to
a symbol depends on its situation, which supplies a context. Finally, we observe
that the differing use of symbols in various contexts makes it quite possible for
every simorg to be using a different dialect of the “language” manifest in the
denotation matrix. Even in these simple experiments we can begin to appreciate
the complexity of the relation between symbols and their significance.

3.2.3 Other Observations

In the course of these experiments we have made several observations that
provide some insight into the evolution of communication.

All of our experiments in which communication (and learning) is suppressed
show a slight upward trend in fitness (see Figure 2 and Table 1). This is sur-
prising, since in the absence of communication it would seem that there is no
way to improve on guessing. However, that is not the case, and the way that it
can occur is an interesting demonstration of the force of the evolutionary pro-
cess. To see this, observe that our definition of effective action (Section 3.1.3)
permits a kind of “pseudo-cooperation theough coadaptation.” Specifically, a
simorg is credited whenever its action matches the situation of the last emitter,
which is also credited. Therefore, if the population contains a group of simorgs
that emit only when they are in a fixed subset F of situations, then the pos-
sible states of the last emitter will not be equally likely; specifically states in
I7 will be more likely than the other states. Under these conditions a simorg
can “beat the odds” by always guessing an action in F. The coadaptation of
such “pseudo-cooperating” groups of simorgs seems to account for the increase
of fitness even when communication is suppressed.

We checked this hypothesis in several ways. First, we compared simula-
tions with the usual scoring algorithms to those in which fitness was credited
by a match to any other simorg (vice just the last emitter); this eliminated
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the possibility of pseudo-cooperation. As expected, there was no trend in the
average fitness. Second, we inspected the denotation matrices; doing so showed
that emissions occurred in only a subset of the situations. Third, we calculated
the expected average fitness for homogeneous populations and subsets F of the
observed size. With the parameters we used, and the observed size 3 for F,
we calculated the expected fitness to be o = 20.83; in three simulations we
observed a = 20,29, 21, 23. Together these are strong evidence in favor of the
hypothesis.

Pseudo-cooperation can be eliminated by not favoring a match to the most
recent emitter. Unfortunately, this removes much of the selective pressure to-
ward communication (since for it makes guessing almost as good a strategy as
communication) and therefore slows the simulations. For this reason we have
retained the original scoring rule; in most cases pseudo-cooperation is a low
level effect that is unintrusive and can be ignored.

Another observation arose from earlier, unsuccessful experiments. Recall
that fitness determines the probability of breeding or dying; there is always a
chance that the least fit will breed and that the most fit will die. In earlier
experiments we used a simpler approach: breed the two most fit simorgs and
replace the least fit. Thus the current algorithm is stochastic, whereas the older
one was deterministic (except in the case of fitness ties). The change was made
because we never observed the evolution of communication in the deterministic
situation.

The reason seems to be as follows. Since only the two most fit simorgs breed,
other good, but not great, simorgs are forever excluded from contributing to
the gene pool. Since language is hard to get started, it is to be expected that
nascent communicators will not be as fit as guessers. Language communities
will never evolve, unless they have some chance of breeding, and this seems to
be prevented by the brittleness of the deterministic algorithm.

4 Future Experiments and Anticipated Re-
sults

In this section I discuss briefly possible future experiments and the results we
expect.

4.1 Emergence of Meaning

We began with the problem of how symbols can mean something. In the sim-
plest case, a correlation between symbols (global environment states) and situa-
tions (local environment states) may be interpreted as a semantic relation. This
relation is captured in the denotation matrix. We occasionally find a univocal
or one-to-one correspondence between symbols and situations; in these cases
we can say the symbol “means” the situation and vice versa. More often we
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find more than one symbol associated with a situation (synonymous symbols),
or one symbol associated with more than one situation (an equivocal symbol).

The notion that symbols denote situations is probably wrong (at least an
oversimplification) — an extrapolation from a theory that works pretty well for
proper nouns. The same is probably true for the notion that mental states
represent reality — a theory based on photographic metaphors for the mind. As
we’ve seen, Wittgenstein and others ground meaning in use. Thus, to under-
stand the meaning of a symbol we must know the situations under which an
organism will emit it, and the effect that its reception will have on the recipient.
This requires a deep understanding of the organisms’ behavior, which may be
achievable for simple simorgs.

4.2 Emergence of Syntax

If the selective pressures are sufficiently great, the simorgs are capable of se-
quential behavior, and the number of situations exceeds the number of symbols,
then it is to be expected that simorgs will string several symbols together to
describe a situation. Note that both finite state machines and artificial neural
networks are capable of sequential behavior, since they can both transform an
internal (“mental”) state. In fact, we have already observed such sequential
symbol use with finite state machines, but the results are preliminary. In fu-
ture experiments we hope to answer questions such as these: Will the resulting
languages tend to have a rigid word order, or will they be more like inflected
languages? Will words tend to be used in a context-free way, or will their use
be context-sensitive?

Finite state machines (and other machines based on discrete rules), as well
as neural networks with discrete activity levels, operate in terms of discrete
environment states, and hence discrete symbols. The languages they use will
be like those studied in formal language theory: hard boundaried sets of strings
on finite alphabets. Neural networks with continuous activity levels permit the
sensing and control of continuous environment states. They are capable of
using languages that involve continuous variation (e.g., variation in loudness,
pitch, and various other matters of degree). This includes variation in degree of
grammaticalness (really, normalcy). To what extent will the evolved languages
be discrete? To what extent continuous? Ethological studies [23] suggest that
discreteness — so called “typical intensity” — will emerge to the extent that
communication is noisy, an easy variable to control in synthetic ethology.

5 Issues

Synthetic ethology raises many issues that also pervade the study of artificial

life.
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5.1 Methodological Issues for Synthetic Ethology

What is necessary for a complete artificial world? Must the laws of nature be
similar to ours? Must energy resources be limited? Must entropy increase?
Must motion require energy? Must life require energy? Must there be space
through which organisms can move? Must organisms have bodies? Are we leav-
ing something important out of our simulations? For example, should simorgs
have a physical body? Innate correlations between internal states and internal
states? Coadapting predators? Spatial locality, or other subpopulation gener-
ating devices? More realistic cooperation/competition (e.g. for food)? Most
of these questions can only be answered by running the relevant simulations,
although theory can often give us an idea.

5.2 Are Simorgs Really Alive?

I make no claim that the simorgs used in these experiments are alive: they
are too simple and lack many properties characteristic of life. Nevertheless, as
experiments become more sophisticated, the question will inevitably arise. 1
think it is still premature to answer the question, but here are some relevant
thoughts.

First note that alive, life etc. are ordinary words and so, as Wittgenstein
pointed out, we can expect to get into trouble if we take them out of their
ordinary context. Certainly simorgs (and other computer-based “artificial life”)
are not alive, in any ordinary sense of that word. For example, no one will feel
remorse if we turn off the computer or stop the simulation — although, with
some apprehension, I admit that it is hard to avoid feeling some affection for
a thriving population of simorgs! Nevertheless, there are unlikely to be any
“simorg rights” groups.

The more interesting question is whether there is a technical definition of
life by which simorgs are alive. For example, it seems chauvinistic to build into
a definition of life the requirement that it be based on DNA. Surely there must
be some formal requirements for life that are independent of a specific mate-
rial embodiment. Must we deny a priori the possibility of life forms radically
different from ours? If we admit this possibility, then it is but a small step to
the conclusion that real life is possible inside a computer. After all, in a com-
puter the matter and energy flows in accord with laws, but laws that we define
through our programs. Such a universe is artificial, but still physically real.
It seems plausible that there might evolve in such a universe matter/energy
structures meeting the formal requirements for life. (See also Section 2.3.)

These issues are destined to grow. There is currently the same ambiguity
in the term artificial life (Is it really alive?) as we have grown used to in
artificial intelligence (Is it really intelligent?). In both cases the resolution of
the ambiguity must await an understanding of what it is to be really alive — or
intelligent.
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6 Conclusions

I've argued that a complete understanding of communication, language, in-
tentionality and related mental phenomena will require a theory integrating
mechanistic explanations with ethological phenomena. For the foreseeable fu-
ture, the complexities of natural life in its natural environment will preclude
such an understanding. An approach more conducive to carefully controlled
experiments and to the discovery of deep laws of great generality is to study
synthetic life in synthetic worlds to which they have become coupled through
evolution. This is the approach of synthetic ethology. Next I described some
simple experiments in synthetic ethology, in which we have observed the evolu-
tion of communication in a population of simple machines. Even in these simple
worlds communication manifests some of the richness and complexity found in
natural communication. Finally I discussed some future directions for research
in synthetic ethology, and some issues relevant to both synthetic ethology and
artificial life.
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