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I am an \old bird," . . . a Simorg, an \all-knowing Bird of Ages" . . .| DeMorgan, Budget of Paradoxes, 1872, p. 329.1 The Problem1.1 Philosophical InsightsPhilosophers have studied language, communication and other mental phenom-ena for many centuries, and yet some of the central issues remain unresolved.We have in mind questions such as the following: What are the mechanismsby which language and communication emerge? What is the nature of mentalstates, and of their intentionality? How are \worlds" constituted by languagecommunities? What is the nature of syntax, and how it can emerge from prag-matics? How is communication related to other aspects of behavior, especiallygroup behavior? What is the nature of skillful coping in a social context? Howdo languages evolve? What is the nature of semantics, and how does a sign\mean" something? How is thought related to language? Must there be a\language of thought"? What is the mechanism of communication? In orderto explain out approach, we will focus on just one of these issues: How can asymbol mean something? Questions such as these have been investigated byphilosophers for about 25 centuries. Although philosophical methods are verydi�erent from those that we propose, we have nevertheless found the insightsof several philosophers to be especially helpful.It is commonly assumed that the meaning of a word is the thing that itdenotes. Although this works well for proper names (`Bertrand Russell' denotesa particular person; `Santa Fe' denotes a particular city), it becomes less andless satisfactory with increasingly abstract terms. Even for concrete generalterms (`dog', `mountain') it is already di�cult to say exactly what they denote,as evidenced by 2500 years of debate over the nature of universals. Verbs areeven more problematic, and a denotational theory of syncategorematic terms,such as `of' and `the', seems hopeless.In this century denotational theories of meaning came under attack fromWittgenstein and other \ordinary language" philosophers [24]. They pointedout that only a small number of linguistic forms can be understood in terms oftheir denotation; a more generally applicable theory must ground the meaningof language in its use in a social context. For example, in a simple questionsuch as `Is there water in the refrigerator?', the term `water' cannot be taken tohave a simple denotational meaning (such as a certain minimum number of H2Omolecules). Rather, there is a common basis of understanding, grounded in thespeaker's and hearer's mutual interests and in the context of the utterance, thatgoverns the quantity, state, purity, spatial con�guration, etc. that a substancein the refrigerator should have to elicit a truthful \yes" response. To understandthe meaning of `water' we must know the function of the word in its contextsof use. Even scienti�c terms (e.g., length, mass, energy) acquire their meaning2



through measurement practices that form a common basis of understandingamong scientists.Heidegger makes very similar points [8, 10, 11], although with a di�erentemphasis. He shows how our everyday use of language is part of a culturallyconstituted nexus of needs, concerns and skillful behavior. In his terms thisnexus is a World, and thus our linguistic behavior both is de�ned by and con-tributes to de�ning our World: consider common expressions such as \the worldof politics" and \the academic world." Meaning emerges from a shared culturalbackground of beliefs, practices, expectations and concerns. (For related ideassee Preston [18].)One consequence of these views of language is that the study of languagecannot be separated from the study of its cultural matrix. Thus one mightdespair that we will ever have a scienti�c theory of language. Fortunately, an-other philosopher has shown a possible way out of this di�culty. Popper hassaid, \The main task of the theory of human knowledge is to understand it ascontinuous with animal knowledge; and to understand also its discontinuity {if any { from animal knowledge." [17] This is a very unconventional view ofepistemology (the theory of knowledge). Traditionally philosophers have lim-ited their attention to human knowledge, and in particular to its embodimentin human language. Although Heidegger and others have helped to bring non-verbal knowledge into the scope of philosophical investigation, Popper goes astep further, by indicating the importance of animal knowledge.The importance of Popper's observation for the study of language and themind is that encourages us to study these phenomena in the context of simpleanimals in simple environments. Science usually progresses fastest when it isable to study phenomena in their simplest contexts. We expect this will alsobe the case with communication and other mental phenomena: we will learnmore if we study their simplest manifestations, rather than their most complex(i.e. in humans).1.2 The Behaviorist ApproachThe preceding observations show us why behaviorism failed. First, it su�eredfrom ecological invalidity. Animals behave in abnormal ways when put in alienenvironments. But what could be more alien than a Skinner box? As a result,the behavior of animals in laboratory situation does little to inform us of theirbehavior in their natural environments.Second, behaviorism investigated little snippets of behavior, such as press-ing a lever to get some food. But this approach removes these behaviors fromtheir pragmatic context, which gives them their meaning. The result is an in-vestigation of meaningless behavior resulting from a lack of pragmatic context.An example will illustrate the pitfalls of this approach. On the basis of behav-ioristic tests it had been thought that honey-bees were color-blind. However,von Frisch showed that in a feeding context they were able to distinguish colors.In the captive, laboratory context the color of lights was not relevant to the3



bees [16].In principle, of course, we could design experimental situations that mimicthe natural environment in just the relevant ways and simplify it in ways thatdon't perturb the phenomena. Unfortunately, we don't yet adequately under-stand the pragmatics of real life, and so we don't know how to design laboratoryenvironments that match the natural environments in just the relevant ways.Therefore, the behaviorist approach is, at very least, premature.1.3 The Ethological ApproachAn alternative approach to the study of communication is found in ethology,which is in part a reaction against behaviorism. Ethology recognizes that thebehavior of an organism is intimately coupled (through natural selection) withits environment. Therefore, since removing an organism from its environmentdestroys the context for its behavior, ethology advocates studying animals intheir own worlds (or in laboratory situations which closely approximate thenatural environment). Unfortunately there are di�culties with this approach.First, the real world, especially out in the �eld, is just too messy; there aretoo many variables. Consider some of the factors that could plausibly a�ectthe behavior of a group of animals: the distribution of other animals and theirbehavior, the distribution of plants and their growth, the terrain, the weather,ambient sounds and odors, disease agents, etc. etc. [21]. Animals are much toosensitive to their environments to permit a cavalier disregard for any of thesefactors.Second, there are practical and ethical limits to the experiments we canperform. The ethical limits are most apparent where human behavior is thesubject, but the situation di�ers only in degree where other animals are con-cerned. Even in the absence of ethical constraints, control of many variablesis di�cult [21]. Some of the experiments we would most like to perform arecompletely beyond our capabilities, such as restarting evolution and watchingor manipulating its progress.These two problems { the large number of variables and our inability tocontrol them { make it unlikely that deep ethological laws will be discoveredin the �eld. The history of the other sciences show that deep, universal lawsare most likely to be found when the relevant variables are known and underexperimental control. When this is not the case, the best we can hope for isstatistical correlation; causal understanding will elude us. Of course, I'm notclaiming that empirical ethology is futile, only that it is very hard. Rather Ianticipate that synthetic and empirical ethology are complementary approachesto the study of behavior, and that there will be a fruitful exchange betweenthem. 4



1.4 The Neuropsychological ApproachBehaviorist and ethological investigations of communication are limited in anadditional way: they tell us nothing of the mechanism by which animals com-municate. They are both based on black-box descriptions of behavior. On theother hand, deep scienti�c laws are generally based on a causal understand-ing of the phenomena. Thus it is important to understand the mechanismunderlying meaning and other mental phenomena [14]. Several disciplines in-vestigate the mechanisms of cognition. One in neuropsychology. Unfortunately,the complexity of biological nervous systems is so great that the discovery ofdeep laws seems unlikely, at least at the current stage of the science. Further-more, as we've seen, true understanding of communication and other mentalphenomena requires them to be understood in their ecological context. Thusa complete theory of communication must unite the neuropsychological andethological level. This is far beyond the reach of contemporary science.1.5 The Arti�cial Intelligence ApproachAnother discipline that investigates cognitive mechanisms is arti�cial intelli-gence, but with the goal of creating them, rather than studying their naturallyoccurring forms. Since AI creates its subject matter, all the variables are in itscontrol, and so it might seem that AI is an ideal vehicle for studying communi-cation, meaning and the mind. Unfortunately, as is well known, there's muchargument about whether AI systems can { even in principle { exhibit genuineunderstanding. In other words, it is claimed that since AI systems performmeaningless (syntactic) symbol manipulation, they lack just the properties wewant to study: meaningful (semantic and pragmatic) symbol use and genuineintentionality. I will brie
y review the key points.The issue can be put this way: Are AI programs really intelligent or do theymerely simulate real intelligence. Several well-known examples make the di�er-ence clear. It has been pointed out that no one gets wet when a meteorologistsimulates a hurricane in a computer; there is an obvious di�erence between areal hurricane and a simulated hurricane [19, 20]. Similarly, it is been observedthat thinking, like digestion, is tied to its biological context. The same chem-ical reactions will not be digestion if they take place in a 
ask, that is, out ifthe context of a stomach serving its functional role in the life of an organism.By analogy it is claimed that there cannot be any real thinking outside of itsbiological context. Just as the 
ask is not digesting, so the computer is notthinking. It has also been claimed that computers may be able to simulatemeaningful symbolic activity, but that symbols cannot really mean anything toa computer. In particular, any meaning born by machine-processed language ismeaning that is derived from our use of the language. The rules we put into themachine re
ect the meaning of the symbols to us; they have no meaning to themachine. That is, our linguistic behavior has original intentionality; whereasmachines' linguistic behavior has only derived intentionality [6, 7].5



Finally, we recall the previously discussed observations of Wittgensteinand Heidegger. If language acquires its meaning through use in a socially-constituted nexus of concerns, expectations and beliefs, then how could a com-puter truly communicate (i.e., not just simulate communication)? Since com-puters are not members of societies (either their own or ours), they have noshared background of needs and concerns. It seems that nothing can be trulyrelevant to a computer, but relevance { at least potential relevance { is essentialto meaning.1.6 SummaryHere is the problem in a nutshell. If we want to understand what makes symbolsmeaningful (and related phenomena such as intentionality), then AI { at least ascurrently pursued { will not do. If we want genuine meaning and original inten-tionality, then communication must have real relevance to the communicators.Furthermore, if we are to understand the pragmatic context of the communica-tion and preserve ecological validity, then it must occur in the communicators'natural environment, that to which they have become coupled through naturalselection. Unfortunately, the natural environments of biological organisms aretoo complicated for carefully controlled experiments.2 Synthetic Ethology as a Solution2.1 De�nition of Synthetic EthologyThe goal of synthetic ethology is to integrate mechanistic and ethological ac-counts of behavior by combining the simplicity and control of behaviorist meth-ods with the ecological and pragmatic validity of empirical ethology. The idea ofsynthetic ethology is simple: Instead of studying animals in the messy naturalworld, and instead of ripping animals out of their worlds altogether, we createarti�cial worlds and simulated organisms (simorgs1) whose behavior is coupledto those worlds. Since the simulated organisms are simple, we can study men-tal phenomena in situations in which the mechanism is transparent. In brief,instead of analyzing the natural world, we synthesize an arti�cial world moreamenable to scienti�c investigation. This is really just the standard method ofexperimental science.The idea of synthetic ethology was suggested to me by Braitenberg's syn-thetic psychology [2]. It can be considered an extension of Braitenberg's ideawhich preserves ecological validity and pragmatic context by requiring that be-havior be coupled to the environment. We ensure this coupling by having thesimorgs evolve in the arti�cial world.1The simorg (simurg, simurgh) was monstrous bird of Persian legend, imagined as rational, havingthe power of speech, and of great age. 6



2.2 Requirements of a SolutionIn the following I argue that synthetic ethology does in fact solve the problemdiscussed above. First observe that synthetic ethology deals with simple worlds.Rather than starting with nature in all its glory, as does empirical ethology,or with denatured nature, as does behaviorism, synthetic ethology deals withcomplete, but simple worlds. Complexity is added only as necessary to producethe phenomena of interest. Yet the worlds are complete, for they provide thecomplete environment in which the simorgs \live" or \die."Second, observe that because synthetic ethology creates the worlds it stud-ies, every variable is under the control of the investigator. Further, there are(so far!) no ethical constraints on our manipulation of the arti�cial organismsthat live in the computer. Also, the speed of the computer allows evolution tobe observed across thousands of generations. We may create worlds, observetheir evolution, and destroy them at will.Finally we get to the key characteristic of synthetic ethology. We want toinvestigate real, not simulated, communication. But how can we ensure thatlinguistic structures really \mean" something? How can we ensure that com-munication is taking place, and not merely the generation and recognition ofmeaningless symbols? As a �rst approximation, we may say that something ismeaningful if it has relevance to the life of the individual. Perhaps we couldgo so far as to say it must be relevant to its survival { even if only indirectlyor potentially. Relevance to the individual cannot be the whole story, however,since there are many examples of communication that do not bene�t the com-municator (e.g., the prairie dog's warning call, a mother bird's feigning injury).Thus, as a second approximation we can say that something is meaningful if itis relevant to the survival of the language community. This criterion accordsbetter with Heidegger's insights.Additional support for this criterion comes from ethology, which has had tograpple with the problem of de�ning communication [3, 5, 21]. The means thatanimals use to communicate, both within and between species, are so variedthat identifying an act as communication becomes problematic. One animalscratches the bark of a tree; later another animal notes the scratches and goes adi�erent way. Was it a communication act? The �rst animal might have beenmarking its territory, which is a form of communication, or it might simplyhave been sharpening its claws, which is not.On the one hand we might say that a communication act has occurredwhenever the behavior of one animal in
uences the behavior of another, butthis de�nition is useless, since it makes almost every behavior communication.On the other hand we might say that it is not a communication act unless the�rst animal intended to in
uence the other's behavior. This criterion requiresus to be able to determine the intent of behaviors, which is very problematic.If it is questionable to attribute intent to a 
y, it is reckless to attribute it to asimorg. We need a de�nition of communication that does not appeal to di�cultideas like \intent." 7



A de�nition of communication that is very consistent with our approach hasbeen proposed by Burghardt [3, 4]:Communication is the phenomenon of one organism producing asignal that, when responded to by another organism, confers someadvantage (or the statistical probability of it) to the signaler or hisgroup.This says that communication must be relevant { in an evolutionary sense {to the signaller. In addition it gives us an operational way of determining if acommunication act has taken place: we can compare the �tness of a populationin the two situations di�ering only in whether communication is permitted orsuppressed. This is the sort of experiment that can be undertaken in syntheticethology, but that is infeasible for empirical ethology.There is one last observation that we must make about the problem of de�n-ing communication. The word `communication' is a part of ordinary language,and, as Wittgenstein has shown us, it obtains its meaning from its use, not froma de�nition. In its everyday use, communication is characterized by a familyresemblance, not by necessary and su�cient conditions; we should not expectto be able to �nd a de�nition admitting no exceptions. Nevertheless, in the verynon-everyday context of synthetic ethology, we need a de�nition that can beapplied in novel situations. Although we make signi�cant use of Burghardt'sde�nition in the experiments described later, one must keep in mind that itdoes not completely capture our everyday use of `communication'.2.3 Making Real Worlds Inside the ComputerThe objection may still be made that any communication that might take placeis at best simulated. After all, nothing that takes place in the computer is real,the argument goes; no one gets wet from a hurricane in a computer. To counterthis objection I would like to suggest a di�erent way of looking at computers.We are accustomed to thinking of computers as abstract symbol-manipulatingmachines, realizations of universal Turing machines. I want to suggest that wethink of computers as programmable mass-energy manipulators. The point isthat the state of the computer is embodied in the distribution of real matterand energy, and that this matter and energy is redistributed under the controlof the program. In e�ect, the program de�nes the laws of nature that holdwithin the computer. Suppose a program de�nes laws that permit (real!) mass-energy structures form, stabilize, reproduce and evolve in the computer. Ifthese structures satisfy the formal conditions of life, then they are real life, notsimulated life, since they are composed of real matter and energy. Thus thecomputer may be a real niche for real arti�cial life { not carbon-based, butelectron-based.22There is no claim here, however, that the simorgs used in these experiments are alive. See alsoSection 5.2. 8



3 Preliminary ExperimentsTo illustrate the method of synthetic ethology, I will describe several experi-ments that have been completed. The goal of these experiments was to demon-strate that genuine communication could evolve in an arti�cial world. A sec-ondary goal was to accomplish this with the simplest procedure possible, sothat the phenomena would be most exposed for observation.3.1 Setup3.1.1 EnvironmentWhat are the minimum requirements on a world that will lead to the emer-gence of communication? First, it must permit some simorgs to \see" thingsthat others cannot, otherwise there would be no advantage in communicating.For example, in the natural world the signaller may perceive something which isout of the range of the receiver's senses, or the signaller may be communicatingits own internal state, which is not directly accessible to the receiver. Second,the environment must provide a physical basis for communication: somethingwith the signaller can alter and the alteration of which the receiver can de-tect. Finally, we want the environment to be as simple as possible, so that thephenomena are manifest.The solution adopted in these experiments is to give each simorg a localenvironment that only it can \see." The states of the local environments,which we call situations, are determined by a random process; therefore thereis no way they can be predicted. This means that the only way one simorgcan reliably predict another's situation is if the second simorg communicatesthat information to it. To provide a medium for potential communicationthere is also a shared global environment in which any simorg can make orsense a symbol. Any such symbol replaces the previous contents of the globalenvironment; there can be only one symbol in the \air" at a time. See Figure1 for the topology of the environment.In these experiments the situations and symbols (local and global environ-ment states) are just natural numbers representing uninterpreted elements of a�nite discrete set. Since we are creating an arti�cial world, there is no need toequip it with familiar environmental features such as temperature, water sup-ply, food supply, etc. We can de�ne the laws of this universe so that the simorgswill survive only if they interact correctly with the uninterpreted states of thisarti�cial environment. Although these states have no interpretable \meaning,"they are not simply syntactic, since they are directly relevant to the continuedpersistence (\survival") of the simorgs.3.1.2 SimorgsNext consider the simorgs; they should be as simple as possible, yet be capableof evolving or learning complex behaviors. Two simple machine models have9



Figure 1: Topology of the Environmentthe required characteristics, although there are certainly others; they are �nitestate machines (FSMs) and arti�cial neural networks (ANNs).Finite state machines get their name from their internal memory, which atany given time is in one of a �nite number of states. In addition, an FSM mayhave a �nite number of sensors and e�ectors, the states of which are also �nitein number. The behavior of an FSM is de�ned by its transition table, whichcomprises a �nite number of discrete rules. For each sensor state s and eachinternal state i, the table de�nes an e�ector state e and a new internal state i0.FSMs have several disadvantages for synthetic ethology. First, since thesets of states and rules are discrete, FSMs are characterized by brittle behav-ior: there is no continuity in their response to stimuli. Also, since the transitiontable must de�ne a response for every possible sensor/internal state combina-tion, the size of the table grows as the product of the number of states (andhence exponentially in the total number of bits in the memory, sensors ande�ectors). Finally, in their usual form, FSMs have no ability to learn (althougha simple kind of FSM learning was implemented in these experiments; see Sec-tion 3.1.5). On the other hand, FSMs have the advantage that they are wellunderstood.ANNs are networks of idealized neurons. In the most common version,each neuron has a state of activation, which is a real number computed byapplying a �xed nonlinear function to a weighted sum of the activations ofthe neurons that are its inputs. The weights determine the interconnectionstrengths between neurons, and it is these that are modi�ed by the variousANN learning algorithms. For our purposes, the ANN has for its input a�nite number of continuous-valued neurons representing the sensor state andthe internal state. Similarly, the output of the net goes back into the internal10



memory as well as to the e�ector neurons.ANNs have several desirable properties. First, they are characterized by
uid behavior, since they de�ne continuous functions. Their behavior is thusmore robust than that of FSMs [13]. Also, their structure is de�ned by theweight matrix, the size of which increases only quadratically with the numberof sensor, e�ector and memory neurons (cf. exponential growth for FSM).Finally, several e�ective learning algorithms have been invented for ANNs. Adisadvantage of ANNs is that they are not so well understood as FSMs.Although I believe arti�cial neural networks will in the long run providea better basis for de�ning behavior, in these experiments FSMs were used,both because of their simplicity and my prior experience evolving them. Themachines used in these experiment have only one internal (memory) state.In other words, they have no ability to remember; therefore their response iscompletely determined by the current stimulus (i.e., their own situation andthe shared symbol). In e�ect, each machine is de�ned by a table mappingsymbol/situation pairs into responses.There are two kinds of responses, emissions and actions. The e�ect of anemission is to change the symbol in the global environment, hence a responsethat is an emission must specify the symbol to be emitted. Actions are whatmust be accomplished e�ectively for the simorg to survive. Since we are select-ing for cooperation we consider a simorg's action e�ective only if it matches thesituation of another simorg. Thus a response that is an action must specify asituation that it is trying to match.In most of these experiments we place an additional requirement on e�ec-tive action, namely that the action match the situation of the last emitter.This increases the selective pressure in favor of communication. Although onemay �nd analogs of this in the natural world (e.g., a predator signalling forappropriate aid in bringing down some prey), the essential point is that we aremaking an arti�cial world and so we can de�ne the laws to suit the needs ofour experiment.3.1.3 FitnessThe principal goal of the selective criteria is that they lead to the emergence ofcommunication { without being overly \rigged." In these experiments the en-vironment selects for cooperative activity that requires knowledge of somethingthat cannot be directly perceived, namely another simorg's local environment.Speci�cally, whenever a simorg acts, its action is compared to the situation ofthe simorg that most recently emitted. If the two match, then we consider ane�ective action to have taken place, and both the emitter and actor are givena point of credit. Since several simorgs may respond to a given emitter, inprinciple a successful emitter can accumulate considerable credit. Each simorgis given an opportunity to respond several times (in these experiments, 10) be-11



fore all the local environments are changed randomly.3 This interval is called aminor cycle. Credit is accumulated over a major cycle, which comprises several(typically 5) minor cycles. The resulting total is considered the simorg's \�t-ness" for that major cycle, since it measures the number of times the simorgcooperated successfully. This �tness is the criterion by which simorgs are se-lected to breed or die.3.1.4 The Birth and Death CycleAt the end of each major cycle, one simorg is selected to die and two simorgsare selected to breed. This keeps the size of the population constant, whichsimpli�es the simulation and the analysis. Of course, we want the most �t tobe most likely to breed and the least �t to be most likely to die.For reasons discussed later (Section 3.2.3), we use the �tness to determinethe probability of breeding or dying. Speci�cally, we make the probability ofbreeding proportional to the �tness (credit accumulated over one major cycle):pk = �kP�where pk is simorg k's probability of breeding, �k is its �tness, P is the popu-lation size, and � = P�1PPk=1 �k is the average �tness of the population. (If� = 0 we set pk = 1=P .) The probability of dying cannot in general be inverselyproportional to �tness. However, we can make it a monotonically decreasing�rst degree polynomial of �tness:qk = � � �kP (� � �)where qk is the probability of dying and � is the �tness of the most �t simorg.(If � = � we set qk = 1=P .)The o�spring is derived from its parents by a simpli�ed genetic process.Each simorg has two transition tables, its genotype and its phenotype. Thegenotypes of the parents are used to determine the genotype of their o�springby a process described below. In general the genotype de�nes a developmentalprocess leading to the phenotype, and the phenotype determines the simorg'sbehavior. In these experiments this process is very simple: the initial phenotypeis the genotype. Further, if learning is disabled (see Section 3.1.5), then thephenotype remains identical to the genotype.The genotype of a simorg is a transition table, which de�nes a responsefor every symbol/situation pair. Each response is represented, in these experi-ments, by a pair of numbers, the �rst of which is 0 or 1, indicating act or emit,and the second of which is the situation or symbol that goes with the action3In these experiments the simorgs were serviced in a regular, cyclic fashion. This means thatcommunication with one's nearest neighbors in one direction (say clockwise) are least likely to bedisrupted by other emitters. This may be important in forming \communities" using the same\language" (code). 12



or emission. The genome itself is just a string containing all these pairs; thuseach \gene" de�nes the response to a given stimulus.The (unmutated) genotype of the o�spring is derived from its parents' geno-types by a process called crossover. For purposes of crossover we interpret thegenetic string as a closed loop. Two crossover points � and �0 are selected ran-domly, and a new genetic string is generated from those of the parents. Thatis, between � and �0 the genes will be copied from one parent, and between �0and � from the other.With low probability (0.01 in these experiments) the genetic string may bemutated after crossover. This means that a randomly selected gene is com-pletely replaced by a random allele (i.e., a pair of random numbers in theappropriate ranges).Readers familiar with genetic algorithms (GAs) [9, 12] will note some dif-ferences between the genes and genetic operations used in our experimentsand those common in GAs. Our genetic strings are lists of pairs of numbers,whereas theirs are binary strings. Further, our crossover operation never \splitsits genes," whereas theirs may occur at any bit position. Finally, our mutationoperation replaces an entire transition table entry, whereas theirs usually altersa single bit. We have found that our approach leads to faster evolution sincethe genetic operations respect the structural units of the genetic string.3.1.5 LearningIn order to experiment with the e�ects of learning on the evolution of com-munication, we have implemented the simplest kind of \single case learning."Speci�cally, whenever a simorg acts ine�ectively we change its phenotype sothat it would have acted e�ectively. That is, suppose that the global envi-ronment state is 
 and the local environment state is �, and that under thisstimulus a simorg responds with action �0, but that the situation of the lastemitter is �00 6= �0. Then we replace the (
; �) entry of the phenotypic transi-tion table with the action �00. (Of course, learning alters the phenotype, notthe genotype.) This is a very simple model of learning, and could easily leadto instability; nevertheless it produces interesting results (see Section 3.2).3.1.6 Importance of Overlapping GenerationsBecause we are interested in the in
uence of learning on the evolution of com-munication, there is another respect in which we have done things di�erentlyfrom most genetic algorithms. GAs typically replace the entire populationeach generation, with the �tness of the parents determining the frequency withwhich their o�spring are represented in the new generation. In contrast, wereplace one individual at a time, with �tness determining the probability ofbreeding and dying. The di�erence is signi�cant, because the GA approachprevents the passage of \cultural" information from one generation to the next(through learning). We expect that \cultural" phenomena will be central to13



understanding the interaction of learning and communication. (See also Belew[1].)3.1.7 MeasurementsHow can we tell if communication is taking place? As noted previously (Section2.2), Burghardt's de�nition of communication suggests an operational approachto identifying communication: detect situations in which one simorg producesa signal, another responds to it, and the result is a likely increase in the �tnessof the signaler or its group.In our case, �tness is a direct measure of the number of times that ane�ective action resulted from a simorg's response to the last emitter. Therefore,the average �tness of the population measures the advantage resulting fromactions coincident with apparent communication. But how do we know thatthe advantage results from communication, and not other adaptations (as itmay; see 3.2.3)?I have claimed that synthetic ethology permits a degree of control not pos-sible in natural ethology, and here is a perfect example. We may start twoevolutionary simulations with the same populations of random simorgs. In onewe suppress communication by writing a random symbol into the global envi-ronment at every opportunity; in e�ect this raises the \noise level" to the pointwhere communication is impossible. In the other simulation we do nothing toprevent communication. If true communication { as manifested in selectiveadvantage { is taking place, then the �tness achieved by the two populationsshould di�er. In particular, the rate of �tness increase should be signi�cantlygreater when communication is not suppressed. This is what we must watchfor.In these experiments we record several �tness parameters. The most im-portant is �, the average �tness of the population (smoothed by a rectangularwindow of width 50). The second most important is �, the �tness of the most�t simorg at the end of each major cycle (similarly smoothed). The �gures inthis report show the evolution of �; the evolution of � is qualitatively similar.I am proposing synthetic ethology as a new way to study communication.Therefore, if by the process just described we �nd that communication is takingplace, then we must see what the simulation can tell us about it. At this stagein the research program we have addressed only the most basic questions: Whatare the meanings of symbols, and how do they acquire them?To answer these questions we construct during the simulation a data struc-ture called a denotation matrix. This has an entry for each symbol/situationpair, which is incremented whenever there is an apparent communication actinvolving that pair. If symbols are being used in a haphazard fashion, thenall the pairs should occur with approximately the same frequency; the matrixshould be quite uniform. On the other hand, if the symbols are being used in avery systematic way, then we should expect there to be one situation for each14



symbol, and vice versa.4 Each row and each column of the denotation matrixshould have a single nonzero entry, and these should all be about equal; this isa very nonuniform matrix, which we will call the ideal denotation matrix. Thussystematic use of symbols can be detected (and quanti�ed) by measuring thevariation (or dispersion) of the denotation matrix.One of the simplest measures of variation is the standard deviation, which iszero for a uniform distribution, and increases as the distribution spreads aroundthe mean. However the standard deviation is not convenient for comparing theuniformity of deviation matrices between simulations, since the mean may varyfrom run to run. Instead, we use the coe�cient of variation, which measuresthe standard deviation (�) in units of the mean (�):V = �=�:The coe�cient of variation is 0 for a uniform denotation matrix, and for theideal matrix is pN � 1 (where N is the number of global or local environmentstates, which are assumed equal).Another measure of uniformity is the entropy of a distribution, which isde�ned:5 H = �Xk pk log pk:This is maximized by the uniform distribution; it is easy to show that its entropyis logLG, where L is the number of local environment states and G the numberof global environment states. The minimum entropy H = 0 is achieved by the\delta distribution" (which makes all the probabilities zero except one). Thisis not so interesting, however, as the entropy of the ideal matrix, which iseasily calculated to be logN (for N = L = G). To allow comparisons betweensimulation runs, we also use an \disorder measure":� = HlogN � 1:This is a scaled and translated entropy, which has the value 1 for a uniformmatrix, 0 for the ideal matrix, and �1 for the \over structured" delta matrix.There are a variety of other statistical measures that may be used to quantifythe structure of the denotation matrix. For example, �2 will be 0 for theuniform matrix and maximum for the ideal matrix. Fortunately the resultswe have observed so far are robust in that they are qualitatively the same nomatter what statistics are used.3.2 ResultsUnless otherwise speci�ed, the experiments described here used a populationsize P = 100 of �nite state machines with 1 internal state. Since the number of4This is assuming that the number of local environment states equals the number of globalenvironment states, as it does in most of these experiments. We discuss later consequences of havingunequal numbers of states.5We use logarithms to the base 2, so that our entropy measure is more easily interpreted.15



Figure 2: Average Fitness, Communication Suppressed and Learning Disabledlocal and global environment states were the same, L = G = 8, each machinewas de�ned by a transition table containing 64 stimulus/response rules. Simu-lations were generally run for 5000 major cycles (one birth per major cycle).3.2.1 E�ect of Communication on FitnessFigure 2 shows the evolution of the (smoothed) average �tness (�) of a typ-ical random initial population when communication has been suppressed andlearning has been disabled. It can be observed to have wandered around the�tness expected for machines that are guessing, � = 6:25. (The analysis maybe found in an earlier report [15].) Linear regression detects a slight upwardtrend ( _� = 1:55� 10�5). This is a stable phenomenon across simulations, andis explained later (Section 3.2.3).Figure 3 shows the evolution of the average �tness for the same initial popu-lation as Figure 2, but with communication permitted (learning still disabled).Within 5000 major cycles the average �tness reaches � = 11:5, which is sig-ni�cantly above the guessing level (� = 6:25). Furthermore, linear regressionshows that the average �tness is increasing over 50 times as fast as when com-munication was suppressed ( _� = 8:25�10�4 vs. _� = 1:55�10�5). We conclude16



Figure 3: Average Fitness, Communication Permitted and Learning Disabled
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Figure 4: Average Fitness, Communication Permitted and Learning Enabledthat in this experiment communication has a remarkable selective advantage.Figure 4 shows the evolution of � for the same initial population, but withcommunication permitted and learning enabled. The average �tness reacheda level of 55, which is nearly �ve times that reached without learning andnearly nine times the level achieved without communication. The rate of �tnessincrease was _� = 2:31 � 10�3, which is almost three times as large as thatwithout learning, and nearly 150 times as large as that without communication.We have observed quantitatively similar results in many experiments. Table1 (adapted from an earlier report [15]) shows average measurements from severalexperiments that di�er only in initial population.To better understand the asymptotic behavior of the evolutionary process,we have run several simulation for ten times as long as those previously de-scribed. Figure 5 shows the evolution with communication permitted butlearning disabled, and Figure 6 shows the evolution of the same initial pop-ulation, but with communication permitted and learning enabled. Average�tness reached a level of approximately 20.6. In the second case (learning per-6Under reasonable assumptions the maximum � achievable without learning by a homogeneous18



Table 1: Average Measurements over Several Random PopulationsMeasurement Comm/LearningN/N Y/N Y/Y� 6.31 11.63 59.65_� � 104 0.36 11.0 28.77V 0.46 2.42 2.48H 5.81 3.79 3.87� 0.94 0.26 0.29

Figure 5: Average Fitness, Communication Permitted and Learning Disabled19



Figure 6: Average Fitness, Communication Permitted and Learning Enabled
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Table 2: Denotation Matrix, Communication Suppressed and Learning Disabledsituationsymbol 0 1 2 3 4 5 6 70 320 138 189 360 266 354 224 891 364 130 189 359 261 342 266 752 332 126 184 385 252 365 257 823 350 125 193 366 257 351 255 984 340 119 190 354 254 356 225 785 328 145 170 343 244 348 217 866 345 119 194 374 214 361 237 787 346 149 159 343 242 383 226 83V = 0:405649H = 5:868233� = 0:9560777mitted) � seems to have reached an equilibrium value (�� = 56:6 in fact). Wecan also observe an apparent \genetic catastrophe" at about t = 45000.The greatly increased �tness that results from not suppressing the signallingprocess supports the claim that we are observing genuine communication. Thecommunication acts have real relevance to the simorgs because they signi�cantlya�ect the survival of the signaller and its group (cf. Burghardt's de�nition,Section 2.2).3.2.2 Analysis of Denotation MatricesIf genuine communication is taking place, then we ought to be able to observeit in more structured use of symbols; therefore we consider the structure ofthe resulting denotation matrices. First consider Table 2; this is the deno-tation matrix from the same simulation shown in Figure 2. In the absence ofcommunication and learning we see a very uniform matrix, as measured by itscoe�cient of variation V = 0:41 and entropy H = 5:87, which is nearly themaximum possible, 6. This is also re
ected in the disorder parameter � = 0:96;recall that a uniform matrix has � = 1 and an \ideal" matrix has � = 0.Table 3 shows the denotation matrix that results when communication ispermitted; even to the eye it is much more structured than Table 2. This iscon�rmed by our measurements: V = 2:13 (cf. V = 2:65 for the ideal matrix),H = 3:92, � = 0:31.Finally, Table 4 is the denotation matrix resulting from both communicationand learning. Qualitatively and quantitatively it is very similar to Table 3, butslightly less structured. In other experiments it was slightly more structured(see Tables 4 and 6 in our earlier report [15]).population can be calculated to be 87.5; details are presented elsewhere [15]21



Table 3: Denotation Matrix, Communication Permitted and Learning Disabledsituationsymbol 0 1 2 3 4 5 6 70 695 5749 0 1157 0 2054 101 01 4242 11 1702 0 0 0 1 02 855 0 0 0 0 603 862 203 0 0 0 0 1003 430 0 10914 0 0 0 0 0 0 2756 4645 0 0 40 0 548 0 817 06 1089 90 1 281 346 268 0 627 0 201 0 288 0 0 2 0V = 2:129787H = 3:915812� = 0:3052707Table 4: Denotation Matrix, Communication Permitted and Learning Enabledsituationsymbol 0 1 2 3 4 5 6 70 0 0 2946 0 0 635 4239 32331 2084 0 672 1457 0 6701 8517 12842 0 0 646 433 0 230 63 8793 0 1074 446 46 2315 1623 0 12654 27850 5504 0 2326 11651 243 3428 200765 1301 0 0 854 858 368 0 06 13519 2676 0 2223 2391 874 0 6447 356 226 365 107 1357 27 100 1V = 2:029947H = 4:208782� = 0:402927322



The \ideal" denotation matrix has one symbol for one situation and viceversa; this is a structure that we might expect to see emerging. For example,in the denotation matrix in Table 3 there is at least one symbol that predomi-nantly denotes a single situation: in 86% of its recent uses, symbol 4 denotedsituation 6, in the remainder situation 7. Since these are the only two uses ofsymbol 4, it seems likely that the denotation matrix re
ects two subpopulations(of unequal size) using the same symbol for di�erent situations. More nearlyequal subpopulations may be indicated by symbols such as 7, which is used forsituations 1 and 3 with nearly equal frequency.Symbols being used to denote several situations may also result from theirbeing used equivocally by a single population; they could re
ect an intermediatestage in the evolution to univocal symbol use. It is di�cult to discriminatebetween these two possibilities on the basis of just the denotation matrix. Doingso requires more detailed analysis of the simorgs in the �nal population, aprocess which is straight-forward in synthetic ethology, since we have completeaccess to the structure of the simorgs. (Simple examples of this kind of analysisare presented in our report [15].)The natural way to interpret the denotation matrix is by rows, which re-
ects the signi�cance of a symbol to a recipient; ethologists sometimes call thisthe meaning of a signal [21, 22]. We can also look at the denotation matrixby columns, which shows the situation a signaller was expressing by a sym-bol; ethologists call this the symbol's message [21, 22]. Sometimes the twoare symmetric. For example, in Table 3 the meaning of symbol 4 is usually(86%) situation 6, and message `situation 6' is usually (61%) represented bysymbol 4. On the other hand, asymmetries may occur. Symbol 6 usually (51%)means situation 0, but situation 0 is usually (62%) represented by symbol 1.Conversely, situation 2 is usually (98%) represented by symbol 1, but symbol1 usually (71%) means situation 0.Even in a synthetic ethology experiment as simple as this, we may beginto observe some of the richness and complexity of real communication. Forexample, in the actual \language" or code re
ected in the evolved denotationmatrix { as opposed to the ideal matrix given by theory { we �nd that there israrely a one-to-one (univocal) correspondence between symbols and situations.Indeed, it is quite possible that a simorg will attach di�erent signi�cance to asymbol when it is received or when it is emitted; that is, a simorg need notassociate the same meaning and message to a given symbol. If this is the casefor simorgs, then it would seem foolish to assume that in human languages anutterance has the same pragmatic signi�cance when it is spoken as when it isheard.The denotation matrix captures the actual use of the code by the entirepopulation over the last 50 major cycles of the simulation. In this sense it isan irreducible description of the message and meaning associated with everysymbol. It is irreducible because any attempt to ignore the lesser entries andspecify a unique denotational meaning for a symbol will misrepresent the factsof communication. In fact symbol 4 means situation 7 some (16%) of the time;23



this is part of the overall meaning of symbol 4 in that population at that time.To say that symbol 4 really means situation 6, and that the rest is noise, is amisrepresentation of the \language."Given that the denotation matrix is the irreducible description of the code,we see that the evolution of the code is mirrored in the evolution of the de-notation matrix. Indeed, in the denotation matrix we may see the code asan emergent nonequilibrium system, which organizes itself by promoting the�tness of simorgs that behave in accord with its emerging structure [14]. Thisemerging structure is measured by the decreasing entropy of the denotationmatrix.Over time we may observe a changing constellation of meanings associatedwith a given symbol, and of symbols representing a given message. We havealready seen that these experiments indicate both synonymous and equivocalsymbols. The experiments also exhibit both context-sensitive emission andcontext-sensitive interpretation of symbols. This is because the emission ofa symbol by a simorg may depend on the global environment (providing acontext) as well as its local environment. Similarly, the response of a simorg toa symbol depends on its situation, which supplies a context. Finally, we observethat the di�ering use of symbols in various contexts makes it quite possible forevery simorg to be using a di�erent dialect of the \language" manifest in thedenotation matrix. Even in these simple experiments we can begin to appreciatethe complexity of the relation between symbols and their signi�cance.3.2.3 Other ObservationsIn the course of these experiments we have made several observations thatprovide some insight into the evolution of communication.All of our experiments in which communication (and learning) is suppressedshow a slight upward trend in �tness (see Figure 2 and Table 1). This is sur-prising, since in the absence of communication it would seem that there is noway to improve on guessing. However, that is not the case, and the way that itcan occur is an interesting demonstration of the force of the evolutionary pro-cess. To see this, observe that our de�nition of e�ective action (Section 3.1.3)permits a kind of \pseudo-cooperation theough coadaptation." Speci�cally, asimorg is credited whenever its action matches the situation of the last emitter,which is also credited. Therefore, if the population contains a group of simorgsthat emit only when they are in a �xed subset E of situations, then the pos-sible states of the last emitter will not be equally likely; speci�cally states inE will be more likely than the other states. Under these conditions a simorgcan \beat the odds" by always guessing an action in E. The coadaptation ofsuch \pseudo-cooperating" groups of simorgs seems to account for the increaseof �tness even when communication is suppressed.We checked this hypothesis in several ways. First, we compared simula-tions with the usual scoring algorithms to those in which �tness was creditedby a match to any other simorg (vice just the last emitter); this eliminated24



the possibility of pseudo-cooperation. As expected, there was no trend in theaverage �tness. Second, we inspected the denotation matrices; doing so showedthat emissions occurred in only a subset of the situations. Third, we calculatedthe expected average �tness for homogeneous populations and subsets E of theobserved size. With the parameters we used, and the observed size 3 for E,we calculated the expected �tness to be � = 20:83; in three simulations weobserved � = 20; 29; 21; 23. Together these are strong evidence in favor of thehypothesis.Pseudo-cooperation can be eliminated by not favoring a match to the mostrecent emitter. Unfortunately, this removes much of the selective pressure to-ward communication (since for it makes guessing almost as good a strategy ascommunication) and therefore slows the simulations. For this reason we haveretained the original scoring rule; in most cases pseudo-cooperation is a lowlevel e�ect that is unintrusive and can be ignored.Another observation arose from earlier, unsuccessful experiments. Recallthat �tness determines the probability of breeding or dying; there is always achance that the least �t will breed and that the most �t will die. In earlierexperiments we used a simpler approach: breed the two most �t simorgs andreplace the least �t. Thus the current algorithm is stochastic, whereas the olderone was deterministic (except in the case of �tness ties). The change was madebecause we never observed the evolution of communication in the deterministicsituation.The reason seems to be as follows. Since only the two most �t simorgs breed,other good, but not great, simorgs are forever excluded from contributing tothe gene pool. Since language is hard to get started, it is to be expected thatnascent communicators will not be as �t as guessers. Language communitieswill never evolve, unless they have some chance of breeding, and this seems tobe prevented by the brittleness of the deterministic algorithm.4 Future Experiments and Anticipated Re-sultsIn this section I discuss brie
y possible future experiments and the results weexpect.4.1 Emergence of MeaningWe began with the problem of how symbols can mean something. In the sim-plest case, a correlation between symbols (global environment states) and situa-tions (local environment states) may be interpreted as a semantic relation. Thisrelation is captured in the denotation matrix. We occasionally �nd a univocalor one-to-one correspondence between symbols and situations; in these caseswe can say the symbol \means" the situation and vice versa. More often we25



�nd more than one symbol associated with a situation (synonymous symbols),or one symbol associated with more than one situation (an equivocal symbol).The notion that symbols denote situations is probably wrong (at least anoversimpli�cation) { an extrapolation from a theory that works pretty well forproper nouns. The same is probably true for the notion that mental statesrepresent reality { a theory based on photographic metaphors for the mind. Aswe've seen, Wittgenstein and others ground meaning in use. Thus, to under-stand the meaning of a symbol we must know the situations under which anorganism will emit it, and the e�ect that its reception will have on the recipient.This requires a deep understanding of the organisms' behavior, which may beachievable for simple simorgs.4.2 Emergence of SyntaxIf the selective pressures are su�ciently great, the simorgs are capable of se-quential behavior, and the number of situations exceeds the number of symbols,then it is to be expected that simorgs will string several symbols together todescribe a situation. Note that both �nite state machines and arti�cial neuralnetworks are capable of sequential behavior, since they can both transform aninternal (\mental") state. In fact, we have already observed such sequentialsymbol use with �nite state machines, but the results are preliminary. In fu-ture experiments we hope to answer questions such as these: Will the resultinglanguages tend to have a rigid word order, or will they be more like in
ectedlanguages? Will words tend to be used in a context-free way, or will their usebe context-sensitive?Finite state machines (and other machines based on discrete rules), as wellas neural networks with discrete activity levels, operate in terms of discreteenvironment states, and hence discrete symbols. The languages they use willbe like those studied in formal language theory: hard boundaried sets of stringson �nite alphabets. Neural networks with continuous activity levels permit thesensing and control of continuous environment states. They are capable ofusing languages that involve continuous variation (e.g., variation in loudness,pitch, and various other matters of degree). This includes variation in degree ofgrammaticalness (really, normalcy). To what extent will the evolved languagesbe discrete? To what extent continuous? Ethological studies [23] suggest thatdiscreteness { so called \typical intensity" { will emerge to the extent thatcommunication is noisy, an easy variable to control in synthetic ethology.5 IssuesSynthetic ethology raises many issues that also pervade the study of arti�ciallife. 26



5.1 Methodological Issues for Synthetic EthologyWhat is necessary for a complete arti�cial world? Must the laws of nature besimilar to ours? Must energy resources be limited? Must entropy increase?Must motion require energy? Must life require energy? Must there be spacethrough which organisms can move? Must organisms have bodies? Are we leav-ing something important out of our simulations? For example, should simorgshave a physical body? Innate correlations between internal states and internalstates? Coadapting predators? Spatial locality, or other subpopulation gener-ating devices? More realistic cooperation/competition (e.g. for food)? Mostof these questions can only be answered by running the relevant simulations,although theory can often give us an idea.5.2 Are Simorgs Really Alive?I make no claim that the simorgs used in these experiments are alive: theyare too simple and lack many properties characteristic of life. Nevertheless, asexperiments become more sophisticated, the question will inevitably arise. Ithink it is still premature to answer the question, but here are some relevantthoughts.First note that alive, life etc. are ordinary words and so, as Wittgensteinpointed out, we can expect to get into trouble if we take them out of theirordinary context. Certainly simorgs (and other computer-based \arti�cial life")are not alive, in any ordinary sense of that word. For example, no one will feelremorse if we turn o� the computer or stop the simulation { although, withsome apprehension, I admit that it is hard to avoid feeling some a�ection fora thriving population of simorgs! Nevertheless, there are unlikely to be any\simorg rights" groups.The more interesting question is whether there is a technical de�nition oflife by which simorgs are alive. For example, it seems chauvinistic to build intoa de�nition of life the requirement that it be based on DNA. Surely there mustbe some formal requirements for life that are independent of a speci�c mate-rial embodiment. Must we deny a priori the possibility of life forms radicallydi�erent from ours? If we admit this possibility, then it is but a small step tothe conclusion that real life is possible inside a computer. After all, in a com-puter the matter and energy 
ows in accord with laws, but laws that we de�nethrough our programs. Such a universe is arti�cial, but still physically real.It seems plausible that there might evolve in such a universe matter/energystructures meeting the formal requirements for life. (See also Section 2.3.)These issues are destined to grow. There is currently the same ambiguityin the term arti�cial life (Is it really alive?) as we have grown used to inarti�cial intelligence (Is it really intelligent?). In both cases the resolution ofthe ambiguity must await an understanding of what it is to be really alive { orintelligent. 27
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