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including the frequency distribution of keys, the percentage of duplicate keys present, the

initial sortedness of �les, the break-even point at which less sophisticated schemes for small

sub�les are used, record length, computer architecture and so on.

Optimistically, we observe that even simpler, more e�ective optimal time and space

strategies are very possible. Also, the design and analysis of time-space optimal parallel

algorithms is a subject of obvious importance for future study [GL]. As block rearrangement

strategies become more widely known, we hope that their practical potential for merging,

sorting, duplicate-key extraction and related �le-processing operations will begin to be better

understood.
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n + n=2 + O(

p

n
) comparisons (n to merge, n=2 + O(

p

n
) to search for the correct blocks)

and n exchanges. In general, pass 2k+1� j, 1 � j � k� 1, needs at most (n+

n

2

j

)+O(

p

n
)

comparisons and n exchanges. Therefore, we can balance these leading terms, deriving a

cost for the merging passes bounded above by 2kn < n log

2

n comparisons and n log

2

n

exchanges. Linear time su�ces for the �nal merging and sorting steps. We conclude that

we are guaranteed a worst-case key-comparison and record-exchange grand total not greater

than 2.5 n log

2

n.

This worst-case total compares favorably with average-case key-comparison and record-

exchange totals for popular unstable methods: quick-sort's average-case �gure is a little more

than 1.4 n log

2

n; heap-sort's is about 2.3 n log

2

n. (These values are derived from the analysis

in [Kn1], where we count a single record movement at one third the cost of a two-record

exchange.)

6. Directions for Continued Research

We have presented relatively straightforward and e�cient stable merging and sorting

strategies that simultaneously optimize both time and space (to within a constant factor).

The upper bounds we have derived on constants of proportionality are probably overly

pessimistic, representing extreme and possibly unrealizable cases hardly representative of

expected behavior. On the other hand, we again remind the reader that we have brushed

aside lower-order terms that can be signi�cant in practice, especially for small �les.

Given the obvious importance of merging and sorting, a next logical step along this

general line of investigation might be a thorough testing of careful implementations of these

algorithms. A great number of factors would likely be relevant to such an empirical study,
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INSERT FIGURE 3

After pass 2k, BC has been replaced by BD, where D (like C) contains 2

k

sorted blocks,

each of size 2

k

. However, we can now complete our stable sort of L by stably sorting B,

sorting D with a stable BLOCKSORT , and stably merging B with D. See Figure 4. Thus

the entire strategy runs in O(n log n) time and O(1) extra space.

INSERT FIGURE 4

We observe that major factors that make this scheme so much faster than a direct merge-

sort implementation are these: 1) we extract the internal bu�er only once, not at every merge

operation, 2) we use the bu�er in a novel and very e�cient fashion for passes 1 through k+1

as we break it into advantageously-sized pieces and pass them across the �le, and 3) we avoid

unnecessary record movement by delaying the use of BLOCKSORT until the �nal step.

5.3 Constant of Proportionality Bounds

As in Section 4.5, we focus on key comparisons and record exchanges, concentrating on

the constant of proportionality for the leading (this time, O(n log n)) time complexity term.

Filling the bu�er requires no more than n log

2

p

n
= :5n log

2

n comparisons and only a

linear number of exchanges. (When n is not of the special form, this is the only step whose

time complexity may increase, since a bigger bu�er is used. Even so, the bu�er's size is

no more than doubled, thereby a�ecting at most the linear term.) The �rst merging pass

needs at most n=2 comparisons and n exchanges. In general, pass i, 1 � i � k + 1, needs at

most (n�

n

2

i

) comparisons and n exchanges. The last merging pass, pass 2k, needs at most
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blocks, each of size 2

k

. In pass k + 2, we use B to obtain 2

k�2

sublists, each of size 2

k+2

as

follows. Let X and Y denote a pair of sublists in C to be merged. We �rst locate the block

of X whose head contains the smallest key in X. Let X

1

denote this block. Let Y

1

denote

the corresponding block of Y . (Note: We will search X and Y for these and all remaining

merging blocks as they are needed. Although blocks will always be sorted internally, they

will in general become unordered within a sublist with respect to each other. This turns out

to be advantageous in the long run, requiring but a single BLOCKSORT after the �nal

pass rather than a series of BLOCKSORT 's at each pass that would result in a great deal

of unnecessary record movement.)

X

1

and Y

1

are now merged into the bu�er's block until it is �lled. Whenever a block is

�lled, we must determine the next block to �ll, as follows. If the bu�er is now contained

within one block, then that block is �lled next. Otherwise, the bu�er must be split into two

pieces, one in a block of X and the other in a block of Y . If one piece is a su�x for its block

(both cannot be), then we resume the merge at that block. If not, then each piece must be a

pre�x for its block, and we resume the merge at the block with the smaller tail, ties broken

in favor of the X block. After all blocks of X and Y are merged in this manner, the bu�er

(now in one block) is moved back to its original position and we begin to merge the next

pair of sublists in the same fashion.

This procedure is repeated in every subsequent pass, each time with half as many sublists,

each sublist with twice as many blocks, until pass 2k, which is the last. See Figure 3. In

this step, we have used at most constant extra space and each of the k� 1 passes needs only

linear time.
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on B to see if its key is already present. If so, we go on to scan the next record. If not,

we ROTATE the appropriate segment of L so that B's rightmost record occupies position

i � 1. We then insert the new record into B. As soon as B is �lled, we invoke ROTATE

to make B a pre�x of L. Figure 1 illustrates how this process modi�es our example list of

20 elements. We have used only O(1) extra space, O(n) exchanges and O(n log 2

k

= nk)

comparisons.

INSERT FIGURE 1

In the second step of the algorithm, we use B to conduct the �rst k + 1 passes of a

merging sort. We �rst employ the rightmost bu�er element to conduct a left-to-right pass

of A, producing a sequence of sorted two-record sublists as we go. The second merging

pass is done with the rightmost two remaining bu�er elements, this time producing sorted

four-element sublists, and so on. The size of B ensures that this simple strategy su�ces for

k passes, each doubling the length of the sorted sublists. (Since 2

k

=

k

P

i=1

2

i�1

+ 1, pass i is

performed with 2

i�1

bu�er elements for 1 � i < k, but in pass k we use 2

k�1

+ 1 elements,

one more than we really need.) Now that B is reassembled as a su�x of L, we proceed

to use it in a right-to-left fashion to perform merging pass k + 1. Therefore BA has been

transformed into BC, where C contains 2

k�1

sorted sublists, each of size 2

k+1

. See Figure 2.

No more than O(1) space and O(nk) time has been used.

INSERT FIGURE 2

For the third step of the algorithm, it is helpful to think of C as a collection of 2

k

sorted
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5.2 A Nontrivial Sort-by-Merging Strategy

Consider an environment in which no key is duplicated more than about

p

n
times, which

may be plausible in many settings. With this restriction, we now outline a method to sort

stably by merging so as to bypass much of the overhead involved in a direct merge-sorting

scheme. (Nevertheless, without this restriction, we must endorse instead the direct merge-

sort approach. That is, we have found no general mechanism by which our nontrivial merge-

sort described below can stably handle large numbers of homogeneous blocks in its later

passes without overstepping our professed goal of presenting relatively simple and practical

algorithms.)

To facilitate discussion, suppose that n is of the form 2

2k

+ 2

k

for some positive integer

k. We assume that no single key is represented more than 2

k

times. Consequently, we can

use blocks of size 2

k

since there are more than 2

k

distinct keys available for the bu�er. (No

laborious discussion of implementation details is necessary. If n is not of the proper form,

we merely determine the value of k for which 2

2k

+ 2

k

< n < 2

2(k+1)

+ 2

k+1

. Our restriction

becomes that no single key is represented more than 2

k�1

times, insuring blocks of size of

2

k+1

, which will do.) Figure 1a) depicts such a list with k = 2 and n = 20. Only record keys

are listed, denoted by capital letters. Subscripts are included to keep track of duplicate keys

as the algorithm progresses.

The �rst step of the algorithm is to �ll an internal bu�er of size 2

k

with records having

distinct keys. Thus we seek to convert L into the form BA, where B is the bu�er and

A = L � B such that STABLESORT (L) = STABLEMERGE(B;STABLESORT (A)).

To do this, we perform a left-to-right scan of L, \growing" B as a sorted sublist. The �rst

record of L is placed in B. As we scan the ith record, i > 1, we conduct a binary search
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Curiously, these works focus only on establishing the existence of algorithms, and include

no constant of proportionality analysis. However, we have studied the intricate details of

the general method they use, as described in full in [Tr1], and have found that they yield a

worst-case key-comparison and record-exchange grand total in excess of 15n. Perhaps more

importantly, we observe that our approach is dramatically simpler. As one rough estimate

of the cost of stability, we remark that the key-comparison and record-exchange total of our

underlying, unstable merge was bounded above by 3.5n in [HL1].

5. Stable In-Place Sorting

5.1 The Direct Merge-Sort Approach

We can, naturally, now take the simple course suggested in [Tr2] and directly use our

stable, in-place linear-time merge as a subroutine for merge-sorting. We observe that this

gives rise to a key-comparison and record-exchange total bounded above by 7 n log

2

n, plus

lower order terms (elementary combinatorics guarantees that our merge's sublinear terms,

the largest of which is O(

p

n
log n), give rise to terms of at most O(n) in the resulting \divide

and conquer" merge-sort scheme).

As with the traditional, memory-dependent merge-sort, this scheme will be more e�ective

in practice if we use a less-complicated, quadratic-time sort when sub�le sizes fall below some

established \break-even" point that depends on a number of factors local to a given sorting

environment. Even so, a lot of time will be spent in extracting an internal bu�er at each

call of the merge subroutine. We shall demonstrate in the next subsection that this e�ort

can be avoided as long as no single key is permitted to dominate the �le.
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(the �rst sublist does not become disordered) and fewer than n exchanges (each of the

p

n
� 1 BLOCKSWAP invocations puts

p

n
records in position). For arbitrary list and

sublist sizes, the ROTATE used to move the left small block needs at most n

2

exchanges.

For the series-merging phase, fewer than n comparisons and n exchanges su�ce. Finally,

since we use a binary search to locate the insertion points for merging back the bu�er, this

operation needs only O(

p

n
log n) comparisons and no more than (n �

p

n
) +

p

n

P

i=1

i < 1:5n

exchanges. Therefore, we are guaranteed a worst-case key-comparison and record-exchange

grand total of something less than 6.5n.

For the special case in which we exhaust the �rst sublist before �lling the bu�er, the

only operation whose constant is a�ected is the series-merge, which is implemented with a

series of BLOCKMERGE invocations. In this simple scheme, we work from left to right,

always merging a series of one or more blocks with the single block to its immediate right.

Since there are only s <

p

n
distinct keys in the �rst sublist, we shall in this case employ

two binary searches to locate insertion points for merging (the �rst search on the series or

block from the �rst sublist, the second search on the other) and require only O(

p

n
log n)

comparisons. As for exchanges, we observe that no record is moved to the right more than

once. Each distinct key in the �rst sublist gives rise to at most one invocation of ROTATE,

except when such a key is represented in two distinct �rst-sublist series (it cannot be in three

or more), which can happen at most s=2 times, each time giving rise to at most one more

ROTATE operation. Since each ROTATE moves at most n=s records to the left, a total

of at most n+ 1:5s(n=s) = 2:5n exchanges are required. Hence, we are assured a worst-case

key-comparison and record-exchange grand total bounded above by 7n.

For comparison, consider previously-published methods to solve this problem [SS, Tr2].
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after BLOCKSORT is �nished, when a second-sublist series should precede it.

4.5 Constant of Proportionality Bounds

In an e�ort to measure the practical potential of this stable, optimal time and space

merge, we shall study the number of key comparisons and record exchanges it demands.

These two primitives are generally regarded as by far the most time consuming operations

for internal �le processing, requiring storage-to-storage instructions for many architectures.

Since it is possible to count them independently from the code of any particular imple-

mentation, their total gives a meaningful estimate of the size of the linear-time constant of

proportionality for the algorithm we have devised. (As for the issue of constant extra space,

a careful review of our method reveals that a couple of dozen additional storage cells is all

we need for use as pointers and counters.)

We now proceed to derive a worst-case upper bound on the key-comparison and record-

exchange sum. For simplicity, we allow for a (possibly unrealizable) worst-case scenario,

implying that the �gures we produce may be rather conservative upper bounds. (This is

o�set to some extent, especially for small inputs, by the fact that we are ignoring operations

bounded above by lower-order terms. For example, sorting the bu�er can be accomplished

in-place with heap-sort in O(

p

n
log n) time. In fact, our main idea for achieving stability

needs only O(

p

n
) time.) Let n

1

(n

2

) denote the size of the �rst (second) sublist, and thus

n

1

+ n

2

= n.

Consider the general case, in which there are plenty of distinct keys to �ll the bu�er.

Extracting the bu�er uses at most n

1

comparisons and n

1

exchanges. By selecting blocks

from right to left, our stable BLOCKSORT requires at most

n

2

=

p

n

P

i=1

i < n

2

=2 comparisons
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stable BLOCKSORT described below, it is of no help in the merging phase. Fortunately,

however, such a small number of distinct keys in the �rst sublist ensures that we can, in

O(n) time, stably merge the sorted series of blocks with a left-to-right series of backward

BLOCKMERGE operations, each using the proper insertion point, which is the leftmost

if the left series is from the second sublist, and the rightmost otherwise. Since the bu�er

does not in this scheme end up adjacent to the unmerged su�x of the right series when the

left is exhausted, we use a pointer to indicate this boundary, namely, the location of the

leftmost record in the right series not moved by ROTATE. (Although this method is easy

to implement, it is not perhaps obvious that it takes only linear time. See Section 4.5.) We

then stably merge the bu�er with the remainder of the list with a forward BLOCKMERGE

using leftmost insertion points.

Our BLOCKSORT implementation must be stable. This is easily achieved by �rst

invoking SORT on the bu�er and then using it to \remember" the original block se-

quence. That is, we exchange each bu�er element with the proper block's tail before blocks

are rearranged, and then undo each exchange as the corresponding block is selected by

BLOCKSORT . This simple scheme, a variation of the \segment insertion process" used

in [Tr2], thus restores the tails in time to perform the series-encoding task (as described in

Section 4.3) as the sort progresses.

Finally, for lists and sublists of arbitrary sizes, we employ a method analogous to the one

we used for unstable merging [HL1]. This gives potential rise to one small block (of size less

than b

p

n
c) at the extreme right end of the list, and one at the left end to the immediate

right of the bu�er. For the right block, no modi�cation is necessary. For the left one, we

observe that in general a ROTATE may be necessary to insert the block in its proper place,
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We thus make use of the fact that one or more blocks from the �rst sublist must lie be-

tween the blocks we havemodi�ed, insuring that we can correctly decode the series delimiters

during the series-merging phase. That is, it directly follows that the head of the rightmost

block of a second-sublist series will temporarily have a key strictly greater than that of the

record to its immediate right, while the tail of the leftmost block of a second-sublist series

will temporarily have a key strictly less than that of the tail of the block to its immediate

left. Of course, with this stringent mechanism for de�ning each distinct series to be merged,

we do not employ the simpler criteria used in the unstable merge to locate series. Now, as

we merge, we undo the exchanges that delimit the series and always break ties in favor of

the series from the �rst sublist. O(

p

n
) time and O(1) space are su�cient for this scheme.

4.4 Other Relevant Details

We attempt to load the internal bu�er with distinct-keyed records as follows. We begin

at the right end of the �rst sublist and scan to the left. When a comparison of adjacent

keys reveals that the leftmost copy of a key has been found, that record is coalesced into the

bu�er. Other records are exchanged with the rightmost current bu�er element. Therefore,

the bu�er begins with size zero and grows as we \roll" it to the left. When it has attained

size

p

n
, we invoke ROTATE to left-justify it. At the end of the series-merging phase (the

bu�er is now right-justi�ed), we stably merge the bu�er with the remainder of the list with

a backward BLOCKMERGE using leftmost insertion points.

In the event that we exhaust the �rst sublist without �lling the internal bu�er, we must

employ fewer but larger blocks. Speci�cally, if we obtain only s <

p

n
bu�er elements,

then we use s blocks, each of size at most dn=se. Although this permits the use of the
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the right otherwise.)

Additionally, we must be wary of a few other details that, if neglected, can compromise

stability. For example, we need to load the bu�er with records having distinct keys, if that

is possible, since the bu�er's contents are arbitrarily permuted during the series-merging

phase. Correspondingly, we must provide for the special case in which there are not enough

distinct keys to �ll the bu�er. We also want to make the BLOCKSORT subprogram of the

block-sorting phase stable, because otherwise a large collection of homogeneous blocks may

be unpredictably rearranged. Finally, as with the fundamental, unstable merge [HL1], we

need to specify implementation details for handling lists and sublists of arbitrary sizes.

4.3 The Main Idea

Since the possibility of troublesome homogeneous blocks prevents the use of any simple

scheme for identifying individual blocks as to their origin, we shall seek instead to devise

a strategy by which we can distinguish a series of consecutive blocks from the �rst sublist

from a series of consecutive blocks from the second. To this end, it is enough if we can be

sure of the �rst and last block in every series from the second sublist only.

We shall encode this information in L during the (stable) block-sorting phase and decode

it during the series-merging phase. To encode, we use two memory cells, one to point to the

(post-sorting) position of the leftmost block of the leftmost second-sublist series and one to

point to the (post-sorting) position of the rightmost block of the rightmost second-sublist

series. As the sort phase progresses, we mark each series by exchanging the head of the

rightmost block of one second-sublist series with the tail of the leftmost block of the next

second-sublist series.
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We continue this process of locating series of records and merging them until we reach a

point were only one such series exists, which we merely shift left, leaving the bu�er in the

last block. A sort of the bu�er completes the merge of L.

O(1) space su�ces for this procedure, since the bu�er was internal to the list, and since

only a handful of additional pointers and counters are necessary. O(n) time su�ces as well,

since the block sorting, the series merging and the bu�er sorting each require at most linear

time.

4.2 Obstacles to Stability

The primary problem to be addressed in order to achieve stability is the need to be able

to distinguish blocks as to whether each originated in the �rst or the second sublist. This

is a more di�cult task than it may seem at �rst blush. A number of schemes will do if

each block has di�erent keys at its head and its tail. For example, we could simply make

a temporary swap of the records at the head and tail of a block if and only if it originated

in, say, the second sublist. (Such a swap would be made during the block-sorting phase and

undone during the series-merging phase.) The real problem lies with homogeneous blocks,

those in which every record in the block has the same key as every other record in the block.

To illustrate this conundrum, suppose we know by some arti�ce that block i > 2 originated

in the �rst sublist, but only that block i � 1 is homogeneous. Also, suppose the key of the

tail of block i�1 equals the key of the head of the block i, but is strictly less than the key of

the tail of block i. In this circumstance, stability is jeopardized since we cannot determine

whether the head of block i should be merged to the left or to the right of the records of

block i � 1. (It should go to the left if block i � 1 originated in the second sublist, but to
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time and O(1) space implementation details necessary for handling arbitrary inputs.

Let us suppose that n is a perfect square, and that we have already permuted the records

of L so that

p

n
largest-keyed records are at the front of the list (their relative order there

is immaterial), followed by the remainders of the two sublists, each of which we now assume

contains an integral multiple of

p

n
records in nondecreasing order.

Therefore, we view L as a series of

p

n
blocks, each of size

p

n
. We will use the leading

block as an internal bu�er to aid in the merge. Our �rst step is to invoke BLOCKSORT

on the

p

n
� 1 rightmost blocks, after which their tails form a nondecreasing key sequence.

(In this setting, selection sort requires only O(n) key comparisons and record exchanges.)

Records within a block retain their original relative order.

Next, we locate two series of records to be merged. The �rst series begins with the head

of block 2 and terminates with the tail of block i, i � 2, where block i is the �rst block such

that the key of the tail of block i exceeds the key of the head of block i + 1. The second

series consists solely of the records of block i + 1. We now use the bu�er to merge these

two series. That is, we repeatedly compare the leftmost unmerged record in the �rst series

to the leftmost unmerged record in the second, swapping the smaller-keyed record with the

leftmost bu�er element. Ties are broken in favor of the leftmost series. (In general, the

bu�er may be broken into two pieces as we merge.) We halt this process when the tail of

block i has been moved to its �nal position.

We now locate the next two series of records to be merged. This time, the �rst begins

with the leftmost unmerged record of block i + 1 and terminates as before for some j � i.

The second consists solely of the records of block j + 1. We resume the merge until the tail

of block j has been moved.
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is used to �nd the leftmost insertion point for the leftmost record of the �rst block. That is,

assuming KEY (i + h) < KEY (i) � KEY (i+ h + k � 1), the displacement p is computed

for which KEY (i + h + p) < KEY (i) � KEY (i + h + p + 1), followed by an invocation

of ROTATE(i; h+ p; h). The �rst record of the shorter block and all records to its left are

now merged. The merge is completed by iterating this operation until one of the blocks

is exhausted, resulting in a time complexity of O(h

2

+ k). (There are at most O(h log k)

comparisons. Records from the shorter block are moved no more than h times, while records

from the longer block are moved only once.) Of course, if h > k, then BLOCKMERGE is

better o� to merge the second block backward into the �rst in O(h + k

2

) time.

4. Stable In-Place Merging

4.1 A Review of the Fundamental, Unstable Merge

Suppose L contains two sublists to be merged, each with its keys in nondecreasing order.

In [HL1] we presented a fast and surprisingly simple algorithm for (unstably) merging in lin-

ear time and constant extra space. Even without \tinkering" with it to achieve an especially

e�cient implementation, its average run time on large lists exceeds that of the standard,

widely-used merge (which is free to exploit O(n) temporary extra memory cells) by less than

a factor of two. Aspects that contribute to its straightforwardness include a rearrangement

of blocks before a merging phase is initiated and an e�cient pass of the internal bu�er across

the list to reduce unnecessary record movement.

We now briey review the central features of this O(n) time and O(1) extra space method,

with a number of simplifying assumptions made about L to facilitate discussion. We refer

the reader to [HL1] for a complete exposition of the algorithm, an example, and the O(

p

n
)
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being compared.

From these primitive operations, we construct a few O(1) space useful subprograms for

dealing with blocks. Let us de�ne a block to be a set of records from L with consecutive

indices. The head of a block is the record with the lowest index (or, informally, the \leftmost"

record in the block); the tail of a block is the record with the highest index (the \rightmost"

record in the block). The procedure BLOCKSWAP (i; j; h) exchanges a block of h records

beginning at index i with a block of h records beginning at index j in O(h) time. We

specify that blocks do not partially overlap (i.e., if i 6= j then h � ji� jj) and that, when

BLOCKSWAP is �nished, records within a moved block retain the order they possessed

before BLOCKSWAP was invoked. A block of h records beginning at index i is sorted in

nondecreasing order by the procedure SORT (i; h). The procedure BLOCKSORT (i; h; p)

uses BLOCKSWAP to rearrange the p consecutive blocks, each with h records, beginning

at index i so that their tails are sorted in nondecreasing order. To reduce unnecessary

record movement, an important consideration when records are relatively long, we insist

that BLOCKSORT use the O(p

2

+ ph) time straight selection sort [Kn1].

The procedure ROTATE(i; h; `) rotates (circularly shifts) a block of h records, beginning

at index i; ` places to the left. We assume that ROTATE is implemented in the common

fashion with three sublist reversals, thereby requiring no more than h invocations of SWAP .

Finally, a pair of consecutive blocks, each sorted in nondecreasing order, is merged with

BLOCKMERGE(i; h; k), where the �rst block contains h records beginning at index i and

the second contains k records beginning at index i+h. BLOCKMERGE uses ROTATE to

merge the shorter block into the longer one. For example, if h � k, then BLOCKMERGE

merges the �rst block forward into the second as follows. A binary search of the second block
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selection sorting both the bu�er and the blocks (each sort involves O(

p

n
) keys).

After the unstable method in [Kr] appeared, a stable procedure was proposed in [Ho]

that, unfortunately, had the rather undesirable side-e�ect that records had to be alterable

during its execution. Subsequently, a general algorithm for optimal time and space, stable

merging and sorting was published [Tr1, Tr2], as was a technique for simplifying parts of

its control structure [SS]. For the most part, however, these results have been of academic

interest only, due primarily to their discouraging complexity and their prohibitively large

time-complexity constants of proportionality.

More recent research e�orts have begun to focus on simpler, more practical optimal time

and space internal bu�ering and block rearranging strategies for unstable merging [DD2,

HL1, MU] as well as for extracting duplicates from a sorted list [HL2] and for all of the

binary set and multiset operations on sorted lists [HL3], with potential application to a

number of �le processing problems.

3. Notation, De�nitions and Useful Subprograms

Let L denote a list (internal �le) of n records, indexed from 1 to n. An algorithm for

rearranging the order of the records of L is said to be stable if it ensures that, when it is

done, records with identical keys retain the relative order they had before the algorithm

began. We use KEY (i) as a shorthand to denote the key of the record with index i. Only

the two common O(1) time and space primitive operations are assumed, namely, record

exchanges and key comparisons. The exchange procedure, SWAP (i; j), directs that the ith

and jth records are to be exchanged. The comparison functions, for example KEY (i) <

KEY (j), return the expected Boolean values dependent on the relative values of the keys
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such as tape: larger initial runs mean fewer passes of the �le (the common replacement-

selection method is unstable), and more available memory for bu�er space can mean less

time consumed in each pass.

In the next section, we discuss pertinent background information and related work. Sec-

tion 3 comprises the de�nitions and notational conventions we shall need to present and

analyze our algorithms. In Section 4, we review the fundamental, optimal time and space

unstable merge of [HL1] and de�ne our modi�cations that ensure stability. Also, to provide

an upper bound on the resultant procedure's worst-cast constant of proportionality, we prove

that the total number of key comparisons and record exchanges required never exceeds 7n

(plus lower-order terms). Section 5 extends our work to the problem of optimal time and

space stable sorting in a nontrivial way. We devise an alternative to the obvious merge-sort

strategy, and show that it never needs more than 2.5 n log

2

n (plus lower-order terms) key

comparisons and record exchanges. In the �nal section, we draw a few conclusions from this

e�ort and pose questions that we believe merit further investigation.

2. Related ork

The general approach that we shall employ inherently relies on the notions of internal

bu ering and block rearranging, and can be traced back to the seminal work on unstable

merging described in [Kr]. Simply stated, with this approach we attempt to view a list of n

records as a sequence of O(

p

n
) blocks, each of size O(

p

n
). This allows us to employ one

block as an internal bu�er to aid in rearranging or otherwise manipulating the other blocks

in constant extra space. Since only the contents of the bu�er and the relative order of the

blocks need be out of sequence, linear time is su�cient to perform a merge with the aid of
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in O(1) extra space are either unstable or require 
(n

2

) time. A number of stable merging

schemes that use more than linear time or more than constant extra space have been sug-

gested [Ca, DD1, DD3, DD4, Wo], as have several stable sorting strategies that use more

than O(n log n) time or more than O(1) extra space [De, Mo, Pr, Ri]. Also, a routine that

dynamically alters keys has been de�ned [Ho], but is thus applicable only to �les in which

keys are explicitly stored within records. The only previously-known general method for

stably merging and sorting in both optimal time and optimal extra space [Tr1, Tr2] is widely

regarded as a result of purely theoretical interest [Kn2, Tr3], since it is exceedingly complex

and its time-complexity constant of proportionality is so huge that it hasn't even been de-

rived. (Recent modi�cations have been suggested that simplify parts of this method, but

its overall constant of proportionality remains prohibitively large and unbounded [SS].) This

contrasts poorly with unstable merging, where much progress has been made in achieving

practical and straightforward optimal time and space methods and with unstable sorting,

where the simple heap-sort algorithm su�ces.

The main result of this paper is a relatively simple, e�cient and general scheme for

stable merging (and thus stable merge-sorting) in optimal time and space. Our method

is based on our recently-reported algorithm for fast, in-place unstable merging [HL1]. We

also present an even more streamlined O(n log n) time and O(1) extra space stable sorting

procedure for �les for which there is a reasonable limit on the number of times each key

can appear. Signi�cantly, and unlike previously-reported schemes to solve these problems,

we derive explicit upper bounds on the number of key comparisons and record exchanges

our methods require. Note that these strategies may be especially useful for operations

such as stable polyphase, balanced or cascade merge-sorting with external storage media
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1. Introduction

It is a well-recognized phenomenon that no matter how much main memory (also known

as core memory, directly-addressable memory, non-virtual memory or real memory) is made

available to a collection of users and systems, it seems never to be enough to satisfy everyone

completely. Although main memory is often rather cavalierly regarded as an inexpensive

resource, its availability is in fact critical in many applications. We are reminded of the

following passage by the witty and imaginative science writer D.E.H. Jones [Jo]:

Let's assume that the brain, like most computers, stores intelligence (programs)

and memory (data) in the same form and distributed throughout the same volume.

Then the more space is taken up by data the less is available for programs and

working space. Clearly as life progresses and memories multiply, there must come

a time when programs and working space get squeezed. This must be senility.

Naturally, main memory should be allocated and managed carefully to avoid thrashing

[CD] and other forms of computer senility. This is particularly true for heavily-used opera-

tions like merging and sorting, known to dominate a large portion of all available execution

time over broad classes of computer systems [Kn1]. This is even more evident when per-

forming these operations over enormous external �les. In such an environment, the overall

processing time is frequently determined not by the speed of the algorithm used to process

�le segments internally, but rather by the ways in which available main memory can be used

to accommodate more and larger bu�ers, thereby increasing device and channel parallelism

while decreasing the number of I/O transfers required.

Unfortunately, for stable merging and sorting, the obvious algorithms that work in asymp-

totically optimal time (O(n) and O(n log n), respectively) waste a whopping 
(n) extra

memory cells for temporary storage. Conversely, the conspicuous ways to merge and sort
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