
Constructive Complexity 1Karl Abrahamson1 Michael R. Fellows2Michael A. Langston3 Bernard M.E. Moret41Department of Computer Science, Washington State University, Pullman, WA 991642Department of Computer Science, University of Victoria, Victoria V8W 3P6, B.C. (Canada)3Department of Computer Science, University of Tennessee, Knoxville, TN 379964Department of Computer Science, University of New Mexico, Albuquerque, NM 87131AbstractPowerful and widely applicable, yet inherently non-constructive, tools have re-cently become available for classifying decision problems as solvable in polyno-mial time, as a result of the work of Robertson and Seymour. These develop-ments challenge the established view that equates tractability with polynomial-time solvability, since the existence of an inaccessible algorithm is of very littlehelp in solving a problem. In this paper, we attempt to provide the foundationsfor a constructive theory of complexity, in which membership of a problem insome complexity class indeed implies that we can �nd out how to solve thatproblem within the stated bounds. Our approach is based on relations, ratherthan on sets; we make much use of self-reducibility and oracle machines, bothconventional and \blind," to derive a series of results which establish a structuresimilar to that of classical complexity theory, but in which we are in fact ableto prove results which remain conjectural within the classical theory.1 IntroductionPowerful and widely applicable, yet inherently non-constructive, tools have recently be-come available for classifying decision problems as solvable in polynomial time, as a resultof the work of Robertson and Seymour [RS1, RS2] (see also [Jo]). When applicable, thecombinatorial �nite-basis theorems at the core of these developments are non-constructiveon two distinct levels. First, a polynomial-time algorithm is only shown to exist: no ef-fective procedure for �nding the algorithm is established. Secondly, even if known, thealgorithm only decides: it uncovers nothing like \natural evidence." Examples of the latterhad been rare; one of the few such is primality testing, where the existence of a factor canbe established without, however, yielding a method for �nding said factor. Moreover, therehad been a tendency to assume that there is no signi�cant distinction between decisionand construction for sequential polynomial time [KUW]. However, there is now a
ood of1This research is supported in part by the Washington State Technology Center, by the National ScienceFoundation under grant MIP{8603879, by the O�ce of Naval Research under contracts N00014{88{K{0343and N00014{88{K{0456, and by the NSERC of Canada.1

polynomial-time algorithms based on well-partial-order theory that produce no natural evi-dence [FL1, FL2, NT]. For example, determining whether a graph has a knotless embeddingin 3-space (i.e., one in which no cycle traces out a nontrivial knot) is decidable in cubictime [FL2], although no recursive method is known for producing such an embedding evenwhen one is known to exist. What is worse (from a computer scientist's point of view), thenon-constructive character of these theorems is inherent, as they are independent of stan-dard theories of arithmetic [FRS]; thus attempts at \constructivizing" these results [FL4]may yield practical algorithms in some cases, but cannot succeed over the entire range ofapplication.These developments cast a shadow on the traditional view that equates the tractabil-ity of a problem with the existence of a polynomial-time algorithm to solve the prob-lem. This view was satisfactory as long as existence of such algorithms was demonstratedconstructively; however, the use of the existential quanti�er is �nally \catching up" withthe algorithm community. The second level of non-constructiveness|the lack of naturalevidence|has been troubling theoreticians for some time: how does one trust an algorithmthat only provides one-bit answers? Even when the answer is uniformly \yes", naturalevidence may be hard to come by. (For instance, we know that all planar graphs are 4-colorable and can check planarity in linear time, but are as yet unable to �nd a 4-coloringin linear time.) Robertson and Seymour's results further emphasize the distinction betweendeciding a problem and obtaining natural evidence for it.All of this encourages us to consider ways in which some of the foundations of complexitytheory might be alternatively formulated from a constructive point of view. (We intendthe term \constructive" to convey an informal idea of our goals; this is not to be confusedwith a constructivist approach [Be], which would certainly answer our requirements, butmay well prove too constrictive. However, our intent is certainly constructivist, in thatwe intend to substitute for simple existence certain acceptable styles of proof based on\natural" evidence.)We base our development on the relationships between the three aspects of a decisionproblem: evidence checking, decision, and searching (or evidence construction). The heartof our constructive formulation is to provide for each problem to be equipped with its ownset of allowable proofs, in much the same manner as the usual de�nition of NP-membership[GJ]; moreover, in deterministic classes, the proof itself should be constructible. Thisleads us to a formalization based on evidence generators and evidence checkers|exactlyas in classical complexity theory, but where the checker is given as part of the problemspeci�cation rather than discovered as part of the solution. In other words, we come to the\Algorithm Shop" prepared to accept only certain types of evidence.The result of this approach is a formulation based on relations, rather than on setsas in the classical formulation. This formulation provides a natural perspective on self-reducibility and oracle complexity [Ba, Ko, Sn, So, Va], concepts which have recently re-ceived renewed scrutiny. We de�ne oracle mechanisms through which we can ask interestingquestions about the value of proofs and the nature of non-constructiveness; we manage toanswer some of these questions, including one which remains a conjecture in its classical2

setting.2 Problems and Complexity ClassesIn classical complexity theory, a decision problem is a language (or set) over some alphabet,L � ��; the main question concerning a language is the decision problem: given some stringx, is it an element of the language L? However, since a simple \yes" or \no" answer clearlylacks credibility, one may require that the algorithm also produce a proof for its answer,within some prespeci�ed acceptability criteria. Such a proof|or sketch of one|is termedevidence and the problem of deciding membership as well as producing evidence is called asearch (or certi�cate construction) problem. Finally, in order for such a proof to be of use,it must be concise and easily checked; the problem of verifying a proof for some given stringis the checking problem. In a relational setting, all three versions admit a particularlysimple formulation; for a �xed relation R � �� � ��:� Checking: given (x; y), does (x; y) 2 R?� Deciding: given x, does there exist a y such that (x; y) 2 R?� Searching: given x, �nd a y such that (x; y) 2 R.For the most part, the decision and search versions of a problem have been held to be ofcomparable complexity, as such is indeed the case for many problems (witness the notion ofNP-completeness and NP-equivalence); as to checking, classical complexity theory has onlyconsidered it in the case of non-deterministic classes. Schnorr [Sn] has studied the relation-ship between the decision and search versions of a problem and attempted to characterizedthis relationship for decision problems within NP ; Sch�oning [So] has proposed a modelof computation (robust oracle machines) under which decision automatically incorporateschecking; other authors have also investigated the search version of decision problems andproposed mechanisms for its characterization [Ba, Ko, Le, etc.]. We go one step further and(essentially) ignore the decision version, concentrating instead on the checking and searchversions and their relationship.De�nition 1: A decision problem is a pair � = (I;M), where M is a checker and I is theset of \yes" instances. 2The checker M de�nes a relation between yes instances and acceptable evidence for them,providing a concise and explicit description of the relation. Moreover, this formulation onlyallows problems for which a checker can be speci�ed, thereby avoiding existence problems.However, in the following, we shall generally use the relational formalism explicitly; in thatformalism, given relation R, the set of acceptable instances of the problem is the domainof the relation, which we denote D(R).This de�nition makes a problem into a subjective a�air: two di�erent computer scien-tists may come to the \Algorithm Shop" with di�erent checkers and thus require di�erent3

evidence-generating algorithms|to the point where one may be satis�ed with a constant-time generator and the other may require an exponential-time one. Many classical problems(such as the known NP-complete problems) have \obvious" evidence|what we shall callnatural evidence; for instance, the natural evidence for the satis�ability problem is a satis-fying truth assignment.Solving such a problem entails two steps: generating suitable evidence and then checkingthe answer with the help of the evidence; this sequence of steps is our constructive versionof the classical decision problem. (Indeed, to reduce our version to the classical one, justreduce the checker to a trivial one which simply echoes the �rst bit of the evidence string.)Thus the complexity of such problems is simply the complexity of their search and checkingcomponents, which motivates our de�nition of complexity classes.De�nition 2: A constructive complexity class is a pair of classical complexity classes,(C1; C2), where C1 denotes the resource bounds within which the evidence generator mustrun and C2 the bounds for the checker. Resource bounds are de�ned with respect to theclassical statement of the problem, i.e., with respect to the size of the domain elements; fornondeterministic classes, C1 is omitted, thereby denoting that the evidence generator maysimply guess the evidence. 2For instance, we shall de�ne the class Pc to be the pair (P;P), thus requiring both generatorand checker to run in polynomial time; in other words, Pc is the class of all P-checkableand P-searchable relations. In contrast, we shall de�ne NPc simply as the class of all P-checkable relations, placing no constraints on the generation of evidence. (But note that,since the complexity of checking is de�ned with respect to the domain of the relation, thepolynomial-time bound on checking translates into a polynomial-time bound on the lengthof acceptable evidence.)De�nition 3: A problem (I;M) belongs to a class (C1; C2) if and only if the relationde�ned by M on I is both C1-searchable and C2-checkable. 2These general de�nitions only serve as guidelines in de�ning interesting constructive com-plexity classes. Counterparts of some classical complexity classes immediately suggest them-selves: since all non-deterministic classes are based on the existence of checkable evidence,they �t very naturally within our framework. Thus, for instance, we de�ne� NLOGSPACE c = (|;LOGSPACE)� NPc = (|;P)� NEXP c = (|; EXP)(Note that, even if NEXP = EXP|i.e, NEXP is EXP-decidable|, it does not follow thatNEXP is EXP-searchable; indeed, there exists a relativization where the �rst statement istrue but the second false [IT]. In contrast,NP is P-decidable if and only if it is P-searchable.This contrast|an aspect of upward separation|adds interest to our de�nitions ofNPc andNEXP c.) Deterministic classes, on the other hand, may be characterized by giving generatorand checker the same resource bounds: 4

� LOGSPACEc = (LOGSPACE ;LOGSPACE)� Pc = (P;P)� PSPACEc = (PSPACE;PSPACE)The principal tool in the study of complexity classes is the reduction. Many-one re-ductions between decision problems are particularly simple in the classical framework: onesimply maps instances of one problem into instances of the other, respecting the parti-tion into yes and no instances, so that the original instance is accepted if and only if thetransformed one is. However, in our context, such reductions are both insu�cient and toostringent: we require evidence to go along with the \answer," but can also use this evidenceto \correct any error" made during the forward transformation. In essence, the goal of aconstructive reduction is to recover evidence for the problem at hand from the evidencegleaned for the transformed instance. Thus a many-one reduction between two problems isgiven by a pair of maps; similar mechanisms have been proposed by Levin [Le] for trans-formations among search problems and by Krentel [Kr] (who calls his \metric reductions")for transformations among optimization problems, where the solution is the value of theoptimal solution. Note that the strict preservation of the partition into yes and no instancesis no longer required: we must continue to map yes instances into yes instances, but canalso a�ord to map no instances into yes instances, as we shall be able to invalidate theapparent \yes" answer when attempting to check the evidence.De�nition 4: A constructive (many-one) transformation from problem (relation) R1 toproblem R2 is a pair of functions (f; g), such that1. x 2 D(R1) =) f(x) 2 D(R2); and2. x 2 D(R1) _ (f(x); y0) 2 R2 =) (x; g(x; y0)) 2 R1. 2(Note that, for obvious reasons, the evidence-transforming map, g, must take the originalinstance as argument as well as the evidence for the transformed instance.) With eachcomplexity class we associate a suitable class of transformations by bounding the resourcesavailable for the computation of the two maps: for instance, transformations within NPcmust run in polynomial time and transformations within Pc or NLOGSPACEc in logarithmicspace.Theorem 1: Constructive many-one reductions are transitive. 2For both resource bounds mentioned above, the proof is trivial.Equipped with many-one reductions, we can proceed to de�ne, in the obvious way, anotion of completeness for our classes. Note that a desirable consequence of our de�nitionswould be that a problem complete for some class in the classical setting remains completefor the constructive version of the class when equipped with the natural checker, if available.5

Since the notion of natural checker is rather vague, we establish this result for some speci�cclasses.Let SAT/Nat be the satis�ability problem (in conjunctive normal form) equipped withthe natural checker which requires a truth assignment as evidence; similarly, let CV/Nat bethe circuit value problem (see [La]) equipped with evidence consisting of the output of eachgate and let GR/Nat be the graph reachability problem (see [Sa]) equipped with evidenceconsisting of the sequence of edges connecting the two endpoints.Theorem 2:1. SAT/Nat is NPc-complete.2. CV/Nat is Pc-complete.3. GR/Nat is NLOGSPACEc-complete. 2Proof: We only sketch the proof of the �rst assertion; the others use a similar technique,taking advantage of the fact that the generic reductions used in the classical proofs areconstructive.That SAT/Nat is in NPc is obvious. Denote by �(M;x) the formula produced byCook's transformation when run on a polynomial-time nondeterministic Turing machineM and input string x. Now let � be some arbitrary problem in NPc; then there existssome evidence generator for �, which can be given by a polynomial-time nondeterministicTuring machine M 0. Let f(x) = �(M 0; x) and let g(x; y0) be the output produced by M 0 inthe computation described by the truth assignment y0 for the formula �(M 0; x). Then thepair (f; g) is easily seen to be a constructive, many-one, polynomial-time reduction from �to SAT/Nat. Q.E.D.The polynomial-time reductions found in the NP-completeness literature are generally con-structive, in terms of natural evidence. Thus, for example, the vertex cover problem withnatural evidence (namely, the vertex cover) is NPc-complete. Similar comments apply forP-complete problems and NLOGSPACE-complete problems. A natural question at this pointis whether or not the following statement holds, for a classical complexity class C and itsconstructive counterpart Cc:� is Cc-complete if and only if � 2 Cc and D(�) is C-complete.The only if part would obviously hold if we had required our constructive reductions topreserve the partition between yes and no instances. The if part can be interpreted asfollows in the case of C = NP. We know that weak probabilistic evidence exists for allproblems in NP, as a form of zero-knowledge proof exists for all such sets [BC, GMW]; wealso suspect that, for some sets in NP (such as the set of composite numbers), some formsof evidence (factors in our example) are harder to �nd than others (e.g., witnesses of thetype used by Rabin [Ra]). Thus the if part would imply that there exists weak deterministicevidence for membership in an NP-complete set.6

3 Self-Reducibility and Oracle ComplexityConstructive complexity is closely tied to the issue of self-reducibility. Self-reducibilityitself plays an important role in classical complexity theory (see, e.g. [Ba]), but lacks anatural de�nition in that framework (whence the large number of distinct de�nitions). Inour constructive formulation, however, self-reducibility has a very natural de�nition, which,moreover, very neatly ties together the three facets of a decision problem.De�nition 5: A problem � in some class (C1; C2) is (Turing) self-reducible if it is C2-searchable with the help of an oracle for D(�). 2In other words, a problem self-reduces if it can be searched as fast as it can be checked withthe help of a decision oracle; all three facets of a decision problem indeed come togetherin this de�nition. In the case of NPc problems, our de�nition simply states that suchproblems self-reduce if they can be solved in polynomial time with the help of an oracle fortheir decision version; such a de�nition coincides with the self-1-helpers of Ko [Ko] and theself-computable witnesses of Balcazar [Ba].A natural question to ask about reducibility is whether D(�) is really an appropriateoracle for �: would not a more powerful oracle set make the search easier? We can showthat such is not the case and that, in fact, our choice of oracle is in some sense optimal.De�nition 6: � has oracle complexity at most f(n) if there is a deterministic oracle algo-rithm, using any �xed oracle, that makes at most f(n) oracle queries on inputs of length nand produces acceptable evidence for �. 2We restrict the oracle algorithm to run within appropriate resource bounds: such as poly-nomial time for problems in NPc and logarithmic space for problems within Pc.The oracle complexity of some speci�c problems in NPc has recently been investigated.Rivest and Shamir [RSh] show that the oracle complexity of the language of compositenumbers with natural evidence (i.e., factors) is at most n=3+O(1). Luks [Lu] has shown thatgraph isomorphism with natural evidence has oracle complexity O(pn). Using the canonicalforms technique of Miller [Mi], the isomorphism problems for groups, Latin squares, andSteiner triple systems have oracle complexity O(log2 n).The following theorems summarize some properties of oracle complexity and demon-strate that our choice of oracle is optimal. We have restricted our purview to the threeclasses NP , P , and LOGSPACE , as they are the most interesting from a practical standpointand as they are also representative of the behavior of other complexity classes. The �rsttwo theorems have trivial proofs.Theorem 3:(1) If some NPc-complete problem has logarithmic oracle complexity, then P = NP .(2) If some Pc-complete problem has logarithmic oracle complexity, then P = LOGSPACE .(3) If someNLOGSPACEc-complete problem has logarithmic oracle complexity, thenNLOGSPACE =LOGSPACE . 27

Theorem 4: If some NPc-complete (Pc-complete, NLOGSPACEc-complete) problem haspolylogarithmic oracle complexity, then so do all problems in NPc (Pc, NLOGSPACE c). 2The next theorem indicates that the best possible oracle need never be outside the com-plexity class in which the problem sits.Theorem 5: If � 2 NPc (Pc, NLOGSPACE c) has oracle complexity less than or equal tof(n) with some �xed oracle A, then oracle complexity no greater than f(n) can be achievedfor � using an NP-complete (P-complete, NLOGSPACE-complete) oracle. 2Proof: Note that f(n) must be P-time constructible for � 2 NPc, with similar conditionsfor the other two classes. We only sketch the proof. If the oracle set A sits within theclass, but is not complete for it, we can simply reduce A to a complete set within the classand thus replace each query to A by an equivalent query to the complete set. If the set Adoes not sit within the class, A can be replaced by a set A0 consisting of pre�xes of thosecomputation records of the oracle algorithm that produce acceptable evidence. Q.E.D.We can pursue the consequences of this last result in terms of oracle choice. Our �rstcorollary establishes that self-reduction is optimal for complete problems; its proof followsimmediately from our last theorem.Corollary 1: If a problem is complete for one of these three classes, then it self-reducesas e�ciently as it reduces to any oracle at all. 2Since it is easy to provide at least one self-reduction, it follows that complete problems forthese three classes, in our constructive formalism, always self-reduce; such is not the case inthe classical setting. Our second corollary shows that self-reduction can only be suboptimalfor \incomplete" problems.Corollary 2:(1) If a problem in NPc is found that self-reduces less e�ciently than it does to a givenoracle, then P 6= NP.(2) If a problem in Pc is found that self-reduces less e�ciently than it does to a givenoracle, then P 6= LOGSPACE .(3) If a problem in NLOGSPACE c is found that self-reduces less e�ciently than it does toa given oracle, then NLOGSPACE 6= LOGSPACE . 2Note that problems obeying the hypotheses cannot be complete (by our previous corollary)nor can they belong to a lower complexity class; hence they are incomplete problems (inthe terminology of [GJ]).Theorem 4 and Corollary 1 can be used as circumstantial evidence that a problem isnot complete. For example, since group isomorphism has polylogarithmic oracle complexity,Theorem 4 suggests that it is highly unlikely that group isomorphism with natural evidence8

is NPc-complete. Luks' oracle algorithm for graph isomorphism, together with Corollary 1,provides evidence (further to that of [GMW]) that graph isomorphism is not NP-complete,since no one knows of a self-reduction using a sublinear number of queries.Oracle complexity can be a useful tool in the design of algorithms. Consider the problemof determining whether a given graph has a vertex cover of size at most k, for any �xedk. The results of Robertson and Seymour immediately imply that there exists a quadratic-time algorithm for this problem. Using this (unknown) decision algorithm as an oracle,we can develop a cubic time search algorithm for the problem, which we then turn into asimple linear-time algorithm by eliminating the unknown decision oracle. Select any edge(u; v); delete u and, using the oracle, ask whether the remaining graph has a vertex coverof size at most k � 1. If so, put u in the vertex cover and recur; otherwise, put v in thevertex cover and recur. In k queries, a vertex cover has been generated when any exists.Now one can eliminate the oracle by trying all 2k possible sequences of responses; since 2kis a constant, the resulting algorithm runs in linear time for each value of k. Better yet, weknow the algorithm!4 Blind Oracles and ReductionsMany natural self-reduction algorithms actually make no essential use of the input [FL3].Formalizing this observation provides another perspective on oracle algorithms and a wayto measure their e�ciency.De�nition 7: A blind oracle algorithm is an oracle algorithm which has only access to thelength of the input, not the input itself; on a query to the oracle, the input is automaticallypre�xed to the query. 2Thus a blind oracle algorithm attempting to produce evidence for string x only has accessto the value jxj; however, on query string y, the oracle actually decides membership for thestring xy.De�nition 8: The blind oracle complexity of a problem R, call it boc(R), is the minimumnumber of oracle calls made to some �xed, but unrestricted language by an oracle algorithm(running within appropriate resource bounds) which uncovers acceptable evidence for theproblem. 2Information-theoretic arguments immediately give lower bounds on blind oracle complexity.For example, if R is the equality relation, we clearly have boc(R) = n. More interestingare bounds for some standard NP-complete problems.Theorem 6: Let VC/Nat be the vertex cover problem with natural evidence (the cover)and HC/Nat the Hamiltonian circuit problem with natural evidence (the circuit).&log nbn=2c � 1!' � boc(VC/Nat) � &log nbn=2c!+ logn'9

�log(1 + n!2n)� � boc(HC/Nat) � (n� 1)dlog(n� 1)eHence boc(VC/Nat) 2 �(n) and boc(HC/Nat) 2 �(n logn) 2Proof: The upper bounds are derived from simple oracle algorithms for each problem(that for VC actually �nds a minimal cover for the problem). The lower bounds come fromsimple counts of the number of distinct possible arrangements that may have to be checkedto identify a solution. Q.E.D.Is blind oracle complexity preserved in some sense through reductions? The main prob-lem here is that our reductions are not themselves blind and so defeat the blindness of theoracle algorithms by giving them a description of the input as a side-e�ect. We need a typeof reduction which preserves blindness (such is theory!). Such a reduction must perforceuse a very di�erent mechanism from that of constructive many-one reductions. Let us usean anthropomorphic analogy. In the latter style of reduction, the scientist with the newproblem calls upon a scientist with a known complete problem, who then serves as a one-shot oracle: the �rst communicates to the second the transformed instance and the secondreturns to the �rst suitable evidence for the transformed instance. The second scientistacts in mysterious ways (i.e., unknown to the �rst) and thus has attributes of deity. Butin a blind reduction, neither scientist is allowed to see the input and yet the instance giventhe �rst scientist must be transformed into the instance given the second; both scientiststhen sit at the same level, as humble supplicants to some all-powerful deity. The reductiongoes as follows: the �rst scientist asks the oracle to carry out the transformation x! f(x)implicitly (neither x nor f(x) will be made known), then uses the oracle algorithm pro-vided by the second scientist to establish a certi�cate y0 for the unknown f(x), and �nallyapplies g to recover evidence y for instance x from the known values of y0 and jxj. Since theoracle algorithm of the second scientist assumes knowledge of the instance size, in this casejf(x)j, it is imperative that jf(x)j be computable from jxj; hence a blind reduction mustbe uniform with respect to instance sizes. Note that what gets communicated in the blindreduction is the oracle protocol, whereas what gets communicated in the normal many-onereduction is the (transformed) instance.De�nition 9: A blind (constructive) many-one reduction is a many-one constructive re-duction, (f; g), where the �rst map, f , is length-uniform (i.e., jf(x)j depends only on jxj)and the second map, g, only has access to the size of the original input. 2Now we can check that blind reductions indeed preserve blind oracle complexity; we statethis only for the case of most interest to us.Lemma 1: If R1 2 NPc blindly reduces to R2 2 NPc and R2 has polylogarithmic oraclecomplexity, so does R1. 2The proof is obvious from our anthropomorphic discussion above.10

With a blind transformation, we can de�ne blind completeness in the obvious way.Perhaps surprisingly, blindness does not appear to a�ect the power of reductions verymuch, as the following claim shows.Claim 1: All known NP-complete sets are the domains of blindly NPc-complete relations.2Obviously, we cannot o�er a proof of this statement; we simply remark that all knownreductions between NP-complete problems can easily be made length-uniform and that,in all of these reductions, the evidence assumes such characteristic form that, armed onlywith the length of the original instance and evidence for the transformed instance, we caneasily reconstruct evidence for the original instance. (This obviously is strongly reminiscentof the observation that all known reductions among NP-complete problems can be madeweakly parsimonious, so that the number of di�erent certi�cates for one problem can easilybe recovered from the number of di�erent certi�cates for the transformed instance.)A fundamental question in classical complexity theory concerns the density of sets invarious classes (recall that the density of a set is the rate of growth of its membership as afunction of the length of the elements). A set S is sparse if jfxjx 2 S; jxj = ngj � p(jxj)for some polynomial p; it has subexponential density (or is semi-sparse) if jfxjx 2 S; jxj =ngj 2 O(2logkn), for some positive integer k. It is widely suspected that NP-complete setsmust have exponential density; however, all that is known at this time is that NP-completesets cannot be sparse unless P = NP (even their complexity cores cannot at present beshown to have more than subexponential density [OS]). Blind oracles allow us to prove inour context a much stronger result about density.Theorem 7: There is no blindly NPc-complete relation with domain of subexponentialdensity. 2Proof: We have shown that VC/Nat has linear blind oracle complexity, which is not apolylogarithmic function. Hence the domain of VC/Nat has density greater than subexpo-nential. Since polylogarithmic oracle complexity is preserved through blind reductions, itfollows than no other NPc-complete problem can have a domain of subexponential density.Q.E.D.Combining this result with a proof for our claim would allow us to transfer our conclusionto NP-complete sets; it might also help in characterizing the relationship between the setsNP and POLYLOGSPAC calE.5 ConclusionsWe have presented a proposal for a constructive theory of complexity. By examining re-ducibility and oracle algorithms, we have been able to establish a number of simple resultswhich show that our theory has a sound basis and holds much promise. Indeed, through11

the use of blind oracle methods, we have been able to prove within our framework a muchstronger result than has been shown to date in the classical theory.Much work obviously remains to be done. Problems of particular interest to us at thistime include a further study of the relationship between decision, checking, and search. Forinstance, Schnorr [Sn] conjectures that there exist P-decidable predicates that are not P-searchable if we require particularly concise evidence; this is the type of question that maybe advantageously addressed within our framework. Another problem of special interest isthe characterization of blindly complete relations in a variety of classes and the connectionsbetween blind reductions and communication complexity. Of potential interest is a studyof the higher classes of complexity (PSPACE, EXP); although these classes can hardly bedeemed constructive from a practical standpoint (any relation that is not P-checkable isonly \solvable" in some abstract sense), the greater resources which they make availablemay enable us to derive some interesting results with respect to reducibility.Acknowledgements: We would like to thank Len Adleman, Eric Allender, Juris Hartma-nis, Richard Karp, Gene Luks, Steve Mahaney, and Doug Stinson for helpful conversationsand encouragement.6 References[Ba] J.L. Balcazar, \Self-reducibility," Proc. Symp. on Theoretical Aspects of Comp. Sci.STACS-87 (1987), 136{147.[BC] G. Brassard and C. Crepeau, \Nontransitive Transfer of Con�dence: A Perfect Zero-Knowledge Interactive Protocol for SAT and Beyond," Proc. 27th Symp. on Founda-tions of Comp. Sci. FOCS-86 (1986), 188{195.[Be] M. Beeson. Foundations of Constructive Mathematics. Springer-Verlag, 1980.[FL1] M. R. Fellows and M. A. Langston, \Nonconstructive Advances in Polynomial-TimeComplexity," Info. Proc. Letters 26 (1987), 157{162.[FL2] M. R. Fellows and M. A. Langston, \Nonconstructive Tools for Proving Polynomial-Time Decidability," J. of the ACM 35 (1988), 727{739.[FL3] M. R. Fellows and M. A. Langston, \Fast Self-Reduction Algorithms for Combina-torial Problems of VLSI design," Proc. 3rd Aegean Workshop on Computing (1988),278{287.[FL4] M. R. Fellows and M. A. Langston, \On Search, Decision, and the E�ciency ofPolynomial-Time Algorithms," Proc. 21st Ann. ACM Symp. on Theory of Comput-ing STOC-89 (1989), 501{512.[FRS] H. Friedman, N. Robertson and P. D. Seymour, \The Metamathematics of the GraphMinor Theorem," in Applications of Logic to Combinatorics, American Math. Soc.,Providence, RI, to appear. 12

[GJ] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theoryof NP-Completeness. W. H. Freeman, San Francisco, 1979.[GMW] O. Goldreich, S. Micali and A. Wigderson, \Proofs that Yield Nothing but theirValidity and a Methodology of Cryptographic Protocol Design,," Proc. 27th Symp.on Foundations of Comp. Sci. FOCS-86 (1986), 174{187.[IT] R. Impagliazzo and E. Tardos, private communication reported by E. Allender.[Jo] D. S. Johnson, \The Many Faces of Polynomial Time," in \The NP-CompletenessColumn: An Ongoing Guide," J. of Algorithms 8 (1987), 285{303.[KUW] R. M. Karp, E. Upfal and A. Wigderson, \Are Search and Decision Problems Com-putationally Equivalent," Proc. 17th ACM Symp. on Theory of Computing STOC-85(1985), 464{475.Ko] Ker-I Ko, \On Helping by Robust Oracle Machines," Theoret. Comp. Sci. 52 (1987),15{36.[Kr] M. Krentel, \The Complexity of Optimization Problems," Ph.D. Dissertation, Dept.of Comp. Sci., Cornell U., 1987.[La] R. E. Ladner, \The Circuit Value Problem is Log-Space Complete for P ," SIGACTNews 7 (1975), 18{20.[Le] L.A. Levin, \Universal Sequential Search Problems," Problemy Peredachi Informatsii9 (1973), 115{116 (in Russian).[Lu] E. M. Luks, private communication.[Mi] G. L. Miller, \On the nlogn Isomorphism Technique," Proc. 10th ACM Symp. onTheory of Computing STOC-78 (1978), 51{58.[NT] J. Nesetril and R. Thomas, \Well Quasi Orderings, Long Games and a CombinatorialStudy of Undecidability," Contemporary Mathematics 65 (1987), 281{293.[OS] P. Orponen and U. Sch�oning, \The Density and Complexity of Polynomial Cores forIntractable Sets," Inf. and Control 70 (1986), 54{68.[Ra] M. O. Rabin, \Probabilistic Algorithms for Testing Primality," J. Number Theory 12(1980), 128{138.[RS1] N. Robertson and P. Seymour, \Disjoint paths|a survey," SIAM J. Alg. Disc. Meth.6 (1985), 300{305.[RS2] N. Robertson and P. Seymour, \Graph minors|a survey," in Surveys in Combina-torics (I. Anderson, ed.), Cambridge Univ. Press (1985), 153-171.13

[RSh] R. L. Rivest and A. Shamir, \E�cient Factoring Based on Partial Information,"Eurocrypt 85, Lecture Notes in Computer Science 219, 31{34.[Sa] W.J. Savitch, \Nondeterministic logn Space," Proc. 8th Ann. Princeton Conf. onInformation Sciences and Systems (1974), 21{23.[Sn] C. Schnorr, \On Self-Transformable Combinatorial Problems," Math. Progr. Study14 (1981), 225{243.[So] U. Sch�oning, \Robust Algorithms: A Di�erent Approach to Oracles," Theoret. Comp.Sci. 40 (1985), 57{66.[Va] L. Valiant, \Relative Complexity of Checking and Evaluating," U. of Leeds Tech.Report, 1974.

14

