
n=(log n) for optimality, we observe that our algorithms are also e�cient in the usual sense

(their speedup is within a polylogarithmic factor of optimal) for any value of n, suggesting

that they may have practical merit even for relatively small �les. As long as main memory

remains a critical resource in many environments, the quest for techniques that permit the

e�cient use of both time and space continues to be a fertile research domain.

References

[AS] S. G. Akl and N. Santoro, \Optimal Parallel Merging and Sorting Without Memory

Conicts," IEEE Transactions on Computers 36 (1987), 1367{1369.

[GL] X. Guan and M. A. Langston, \Time-Space Optimal Parallel Merging and Sorting,"

IEEE Transactions on Computers 40 (1991), 596{602.

[HL1] B-C Huang and M. A. Langston, \Practical In-Place Merging," Communications of

the ACM 31 (1988), 348{352.

[HL2] B-C Huang and M. A. Langston, \Stable Duplicate-Key Extraction with Optimal

Time and Space Bounds," Acta Informatica 26 (1989), 473{484.

[HL3] B-C Huang and M. A. Langston, \Stable Set and Multiset Operations in Optimal

Time and Space," Proceedings, 7th ACM Symposium on Principles of Database Sys-

tems (1988), 288{293.

10

Therefore, this select algorithm is time-space optimal for any value of k � n=(log n), thereby

meeting our stated goal.

4. Time-Space Optimal Parallel Set Operations

In what follows, suppose we are given the input list L = XY , where X and Y are two

sublists, each sorted on the key, and each containing no duplicates. Since the same key may

naturally appear once in X and once in Y , we insist that, in the spirit of stability, the record

represented in the result of a binary set operation be the one that occurs �rst in L.

We now have stable, time-space optimal parallel subroutines su�cient to perform the

elementary binary set operations. Select is obtained from the work of the last two sections.

Merge is obtained from [GL]. Duplicate-key extract is obtained from an easy modi�cation

to select, in which we replace the �rst step, local selecting, with the local duplicate key

extracting method of [HL2]. (Local duplicate-key extract is actually easier than local select,

because the L1 processors need no information from the L2 list.)

We invoke merge followed by duplicate-key extract to produce X [Y . We perform select

to yield both X \ Y and X � Y . To achieve X � Y , we invoke select on XY producing

X

1

X

2

Y , rotate X

2

and Y to yield X

1

Y X

2

, perform select on Y X

2

producing X

1

Y

1

Y

2

X

2

, and

�nally merge X

1

and Y

1

.

5. Concluding Remarks

Assuming only the weak EREW PRAM model, we have presented for the �rst time

parallel algorithms for the elementary binary set operations that are asymptotically time-

space optimal. As a bonus, these methods immediately extend to multisets (under several

natural de�nitions [HL3]). Although n must be large enough to satisfy the inequality k �

9

block, and to set aside a one-bit otherwise. The processors now need only to compute pre�x

sums on these values, and then to acquire their respective new blocks in parallel without

memory conicts. This completes the block rearranging step, and has requiredO(n=k+log k)

time and constant extra space per processor.

3. Implementation Details.

Suppose that the number of L3 (and hence L4) records is not evenly divisible by k, in

which case the last breaker begins a series with strictly fewer than n=k L3 records. This

series is treated just as any other (although it may be a very short one, lying entirely within

the last block). In blockifying, the L3 records in this series are collected in the last block, so

that this series becomes a (possibly empty) collection of L4 blocks followed by (possibly just

part of) one block containing both L3 and L4 records. After the block rearranging step, we

need only to move the L3 and L4 segments from the last block into their appropriate �nal

positions with parallel rotations.

More generally, suppose that the number of L1 records is not evenly divisible by k. (Note

that the number of L2 records never really needs to be evenly divisible by k.) We transform

L1L2 into the list L1

1

L1

2

L2, where L1

1

contains an integral multiple of n=k records, and

where L1

2

contains strictly fewer than n=k records. We further transform the input into

the list L1

1

L2L1

2

by means of parallel rotations, and invoke the main algorithm on L1

1

L2,

yielding L3

1

L4

1

L2L1

2

. Then a local select of L1

2

against L2 gives L3

1

L4

1

L2L3

2

L4

2

. Parallel

rotations now produce the desired result L3

1

L3

2

L4

1

L4

2

L2 = L3L4L2.

The time and space requirements of these implementation details are thus bounded by

those of the main parallel algorithm. This completes the description of our parallel method.

In summary, the total time spent is O(n=k + log n) and the total extra space used is O(k).

8

If p = 2, then the two blocks have the form L3

i

L4

i

L3

i+1

L4

i+1

, where jL4

i

j = jL3

i+1

j.

Swapping L4

i

with L3

i+1

�nishes the blockifying for this sequence. If p > 2, then we simply

treat the sequence as we earlier did each series, exchanging the roles of L3 and L4 records.

This completes the blockifying step, and has requiredO(n=k+log n) time and constant extra

space per processor.

2

|{z}

L3

f

Y

f

z }| {

1 1 3 3 4

| {z }

L4

f

| {z }

f

6

|{z}

L3

f+1

X

f+1

z}|{

4

Y

f+1

z }| {

4 5 7 7

| {z }

L4

f+1

| {z }

f+1

11 13

| {z }

L3

f+2

X

f+2

z}|{

7 8

Y

f+2

z}|{

8 9

| {z }

L4

f+2

| {z }

f+2

14 15

| {z }

L3

f+3

X

f+3

z }| {

10 10 12 12

| {z }

L4

f+3

| {z }

f+3

Sample Series

Y

f

z }| {

1 1 3 3 4

| {z }

L4

f

2

|{z}

L3

f

| {z }

f

Y

f+1

z }| {

4 5 7 7

X

f+1

z}|{

4

| {z }

L4

f+1

6

|{z}

L3

f+1

| {z }

f+1

Y

f+2

z}|{

8 9

X

f+2

z}|{

7 8

| {z }

L4

f+2

11 13

| {z }

L3

f+2

| {z }

f+2

X

f+3

z }| {

10 10 12 12

| {z }

L4

f+3

14 15

| {z }

L3

f+3

| {z }

f+3

Subblock Permutations

Y

f

z }| {

1 1 3 3 4

X

f+1

z}|{

4

| {z }

f

Y

f+1

z }| {

4 5 7 7

X

f+2

z}|{

7 8

| {z }

f+1

Y

f+2

z}|{

8 9

X

f+3

z }| {

10 10 12 12

| {z }

f+2

| {z }

blocks of L4 records

L3

f

z}|{

2

L3

f+1

z}|{

6

L3

f+2

z }| {

11 13

L3

f+3

z }| {

14 15

| {z }

f+3

| {z }

a block of L3 records

Data Movement

Figure 3. Coalescing the L3 Records of One Series into a Single Block

Block Rearranging. L3 has now become an ordered collection of blocks interspersed with

another ordered collection that constitutes L4. We need only to rearrange these blocks so

that L3 is followed by L4. We direct each processor to set aside a zero-bit if it contains an L3

7

To accomplish the data movement, each processor �rst reverses the contents of its block,

then reverses its X, Y and L3 segments separately, thereby e�ciently permuting its (two

or) three subblocks. Each processor j, f < j � g, now employs a single extra storage cell

to copy safely the �rst record of X

j

to the location formerly occupied by the �rst record of

X

j�1

, while processor f copies the �rst record of its L3 segment to the location formerly

occupied by the �rst record of X

g

. Data movement continues in this fashion, with each

processor moving its L3 records to block g as soon as its X segment is exhausted.

Note that if k is small enough (no greater than O(maxfn=k; log ng)), then the displace-

ment table can merely be searched; if k is larger than this, then the table may contain too

many identical entries, and we invoke a preprocessing routine to condense it (again with the

aid of broadcasting).

After the data movement is �nished, it is necessary to rotate L3

g

with the records moved

into block g from block g + 1. The processing of the series is now completed, as depicted in

Figure 3.

If block g + 1 contains a leading breaker, we next rotate the records in an appropriate

pre�x of this block to ensure that L3 records precede L4 records there.

We can now handle the records not spanned by a series. These records are contained

in zero or more non-overlapping \sequences" (we choose this term to avoid confusion with

\series"), where each sequence begins with a leading breaker and ends with the record

immediately preceding the next trailing breaker. Suppose such a sequence spans p blocks.

Because there are exactly p breakers in these blocks, and because the L3 records before the

�rst breaker and after the last breaker have been moved outside these blocks, there are now

exactly (p � 1)(n=k) L3 records there. Thus, there are exactly n=k L4 records there.

6

algorithm proceeds. In Figure 2, our sample series is shown in more detail (with g set at

f + 3) along with its corresponding displacement table.

breaker

z}|{

2

| {z }

L3

f

1 1 3 3 4

| {z }

L4

f

| {z }

f

6

|{z}

L3

f+1

4 4 5 7 7

| {z }

L4

f+1

| {z }

f+1

11 13

| {z }

L3

f+2

7 8 8 9

| {z }

L4

f+2

| {z }

f+2

14 15

| {z }

L3

f+3

10 10 12 12

| {z }

L4

f+3

| {z }

f+3

breaker

z}|{

16 � � �

| {z }

L3

f+4

� � �

| {z }

f+4

Sample Series

i E

i

f 1

f+1 2

f+2 4

Displacement Table

Figure 2. A More Detailed View of a Sample Series and its Displacement Table

Thus each processor i, f < i < g, now uses the displacement table to determine exactly

how the records in its block are to be rearranged: it is to send jL3

i

j records to block g, send its

�rst E

i�1

L4 records (which we denote byX

i

) to block i� 1, retain its next n=k�jL3

i

j�E

i�1

L4 records (denoted by Y

i

) and receive E

i

L4 records (denoted by X

i+1

) from block i+ 1.

Processors f and g determine similar information: processor f is to send jL3

f

j = E

f

records

to block g and receive the same number of records from block f + 1; processor g is to send

jL4

g

j = E

g�1

records to block g � 1 and receive the same number of records from blocks f

through g � 1. (Note that segments X

f

and Y

g

are empty.)

5

follow it.

� � �L3

�

f

L4

f

L3

f+1

L4

f+1

� � � L3

g�1

L4

g�1

L3

g

L4

g

L3

�

g+1

| {z }

one series

� � �

Figure 1. A Sample Series Obtained in the Series Delimiting Step.

A processor that holds a lone or trailing breaker broadcasts its breaker's location to its

right. After that, a processor that holds a lone or leading breaker broadcasts its breaker's

location to its left. (This type of broadcasting can be e�ciently accomplished on the EREW

PRAM with data distribution algorithms or parallel pre�x computations.) By this means,

a processor learns the location of the lone or trailing breaker to its immediate left and the

location of the lone or leading breaker to its immediate right. This completes the series

delimiting step, and has required O(log(n=k) + log k)) time and constant extra space per

processor.

Blockifying. In this step, we �rst reorganize in parallel the L1 records within every series,

then reorganize in parallel the records in the remainder of the L1 list.

Let us consider our sample series as depicted in Figure 1. We seek to collect the n=k

L3 records in this series in block g (and thus move the L4 records into the other blocks

and subblocks illustrated). It is a simple matter to exchange L3

�

g+1

with the rightmost

jL3

�

g+1

j records in L4

g

. E�ciently coalescing the other L3 records into block g is much

more di�cult. We begin by computing pre�x sums on jL3

�

f

j, jL3

f+1

j, � � �, jL3

g�2

j, jL3

g�1

j

to obtain a \displacement table." Table entry E

i

=

P

i

k=f

jL3

k

j denotes the number of L3

records in blocks indexed f through i that are to move to block g. It turns out that E

i

will also denote the number of L4 records that block i is to receive from block i+ 1 as our

4

of the corresponding L2 processors to preprocess their records (performing the time-space

optimal sequential select against the L1 block, followed by a time-space optimal sequential

duplicate-key extract [HL2]), then instruct the L1 processor to perform its select (at most

n=k L2 records are now needed), and �nally direct the L2 processors to restore their blocks

(two time-space optimal sequential merge operations su�ce).

Thus, letting h denote the number of blocks in L1, the L1 list has now taken on the

form L3

1

L4

1

L3

2

L4

2

:::L3

h

L4

h

. This completes the local selecting step, and has required

O(n=k + log n) time and constant extra space per processor.

Series Delimiting. We now seek to divide L1 into a collection of non-overlapping \series,"

each series with n=k L3 records. To begin this process, we locate special records that we

term \breakers," each of which is the (m(n=k)+1)th L3 record for some integerm. First we

compute pre�x sums on jL3

i

j to �nd these breakers. For example, if

P

g�1

i=1

jL3

i

j < m(n=k)+1

and

P

g

i=1

jL3

i

j � m(n=k)+1, then block g contains themth breaker. We identify three special

types of breakers. If block i contains a breaker, but neither block i�1 nor block i+1 contain

breakers, then the breaker in block i is called a \lone" breaker. If block i�1 and block i both

contain breakers, and if block i+1 does not contain a breaker, then the breaker in block i is

called a \trailing" breaker. If block i and block i+ 1 both contain breakers, and block i� 1

does not contain a breaker, then the breaker in block i is called a \leading" breaker.

These breakers are used to divide L1 into non-overlapping series as follows: each series

begins with a lone or trailing breaker and ends with the record immediately preceding the

next lone or leading breaker. By design, each series contains exactly n=k L3 records. A

sample series is depicted in Figure 1, where we use L3

�

f

to denote L3

f

minus any records

that precede its breaker and L3

�

g+1

to denote L3

g+1

minus its breaker and any records that

3

2. Time-Space Optimal Parallel Select on the ERE PRAM Model

Given two sorted lists L1 and L2, our goal is to transform L1 into two sorted sublists L3

and L4, where L3 consists of the records whose keys are not found in L2, and L4 consists

of the records whose keys are. Thus we accept L = L1L2, and select records from L1 whose

keys are contained in L2, accumulating them in L4, where our output is of the form L3L4L2.

Our parallel algorithm comprises four steps: local selecting, series delimiting, blockifying

and block rearranging. To facilitate discussion, we temporarily assume that the number of

records of each type (L1, L2, L3 and L4) is evenly divisible by k, where k denotes the number

of processors available.

Local Selecting. We �rst view L as a collection of k blocks, each of size n=k, and associate

a distinct processor with each block. We seek to treat each L1 block L1

i

as if it were the

only block in L1, transforming its contents into the form L3

i

L4

i

.

Our �rst task in this step is to determine where each tail (rightmost element) of each

L1 block would go if the tails alone were to be merged with L2. In order to make this

determination e�ciently on the EREW model, we direct each L1 processor to set aside four

extra storage cells (for copies of indices, o�sets and keys) and employing the \phased merge"

as described in the displacement computing step of the merge in [GL]. At most O(log n) time

and O(k) extra space has been consumed up to this point.

As long as an L1 processor doesn't need to consider more than O(n=k) L2 records (a

quantity known by considering the di�erence between where its block's tail would go and

where the tail of the block to its immediate left would go if they were to be merged with

L2), we instruct it to employ the linear-time, in-place sequential select routine from [HL3].

Otherwise, in the case that an L1 block spans several L2 blocks, we �rst enlist the aid

2

1. Introduction

The design and analysis of optimal parallel �le rearrangement algorithms has long been a

topic of wide-spread attention. The vast majority of the published literature has concentrated

on the search for algorithms that are time optimal , that is, those that achieve optimal

speedup (see, for example, [AS]). Unfortunately, space management issues have often taken

a back seat in these e�orts, leaving those who seek to implement optimal parallel algorithms

unable to do so with any reasonable, bounded number of processors.

In recent work, however, parallel merge and sort methods that simultaneously optimize

both time and space have been devised [GL]. Such time-space optimal algorithms attain

optimal speedup, yet require only a constant amount of extra space per processor, even

when the number of processors is �xed. Just what scope of �le rearrangement problems

is amenable to time-space optimal parallel techniques? In this paper we provide a partial

answer to this question, developing time-space optimal parallel algorithms for the elementary

binary set operations, namely, set union, intersection, di�erence and exclusive or.

To accomplish our goal, we devise a new parallel select procedure, reducing the general

problem to one of a series of disjoint local operations, one for each processor, on which we

can exploit sequential methods. Given an EREW PRAM with k processors, our algorithms

operate on two sorted lists of total length n in O(n=k + log n) time and O(k) extra space,

and are thus time-space optimal for any value of k � n=(log n). For the sake of complete

generality, our algorithms are stable (records with identical keys retain their original relative

order), do not modify records (even temporarily) as they execute, and require no information

other than a record's key.

1

Symbols Used

O capital Greek omicron of \big oh" notation

� capital Greek sigma for summations

[set union

\ set intersection

� set exclusive or

iii

Running Head

Parallel File Rearrangement Methods

Communicating Author

Michael A. Langston, (615) 974{3534, langston@cs.utk.edu

Abstract

We present parallel algorithms for the elementary binary set operations that, given an

EREW PRAM with k processors, operate on two sorted lists of total length n in O(n=k +

log n) time and O(k) extra space, and are thus time-space optimal for any value of k �

n=(log n). Our methods are stable, require no information other than a record's key, and do

not modify records as they execute.

ii

Accepted for Publication in ournal of Parallel and Distributed Computing

r r

rr r

�y

Xiaojun Guan Michael A. Langston

Engineering Physics and Mathematics Division Department of Computer Science

Oak Ridge National Laboratory University of Tennessee

Oak Ridge, TN 37831 Knoxville, TN 37996

�

A preliminary version of a portion of this paper was presented at the International

Conference on Databases, Parallel Architectures and Applications (PARBASE{90),

held in Miami Beach, Florida, in March 1990.

y

This research has been supported in part by the National Science Foundation under

grant MIP{8919312 and by the O�ce of Naval Research under contract N00014{90{

J{1855.

i

