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Abstract

Constraint satisfaction networks are natural models of the interpretation

of ambiguous stimuli, such as Necker cubes. Previous constraint satisfaction

models have simulated the initial interpretation of a stimulus, but have not

simulated the dynamics of perception, which includes the alternation of inter-

pretations and the phenomena known as bias, adaptation and hysteresis. In

this paper we show that these phenomena can be modeled by a constraint sat-

isfaction network with fatigue, that is, a network in which unit activities decay

in time. Although our model is quite simple, it nevertheless exhibits some key

characteristics of the dynamics of perception.

1 Introduction

Many perceptual and sensorimotor tasks involve simultaneous satisfaction of many

soft constraints (i.e., constraints that should be satis�ed, but need not be), a process

for which connectionist networks are especially appropriate [20, Ch. 1]. In perception

these constraints represent compatibilities and incompatibilities between interpreta-

tions of the features of a stimulus. For example, in the perception of line drawings

as three-dimensional objects, the constraints govern the interpretation of lines and

vertices as edges and corners in space.

Ambiguous stimuli, such as the Necker and Howard cubes, Schroeder's staircase

and Ruben's face/vase, are especially useful in the investigation of perception, since

they reveal some of the underlying mechanism, as pathological cases often do. They

are also relevant to higher cognitive function, since, as instances of the application of
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schemata to sensory data, they facilitate understanding the mind's interpretation of

the world [8, Ch. 4] [23, p. 98].

Feldman [5] described how a connectionist network could exhibit the two interpre-

tations of a Necker cube (the well-known ambiguous representation of a cube in two

dimensions). Rumelhart et al. [13, Ch. 14] [14, Ch. 3] implemented a similar model

to show how a constraint satisfaction model could interpret a stimulus in two consis-

tent and optimal ways (although they claimed their simulation was not intended as

a serious model of the Necker cube).

There is more to the Necker Cube, however, than the potential for two interpreta-

tions. As originally noted by Necker [15], under continued viewing the cube appears

to oscillate between the two interpretations. The dynamics of this process are likely to

be very revealing of the underlying neural mechanisms of perception [11, pp. 67{68].

hile the Rumelhart et al. model successfully interprets the cube in one of the two

maximally consistent ways, it does not attempt to simulate its dynamic properties.

Kawamoto and Anderson [10] do model the dynamics of ambiguous perception, but

they use the \brain-state-in-a-box" model rather than constraint satisfaction, and

they use a highly abstract model of the stimulus.

Necker Cubes, and ambiguous �gures in general, exhibit some reliable experimen-

tal properties, which are summarized by Kawamoto and Anderson [10]:

mbiguity: The stimulus can be interpreted in two or more ways [15].

lternation: An interpretation is stable for a time, but then switches spontaneously

to the other interpretation [15].

Initial ias: The probability of an interpretation of an ambiguous stimulus is a

direct function of the similarity of that stimulus to an unambiguous stimulus

with that interpretation [17, 12].

uration ias: The relative amount of time spent in an interpretation is a direct

function of the probability it was the initial interpretation [24].

cceleration: The alternation rate increases to an asymptote [3, 4].

a tation: Adaptation to an unambiguous stimulus increases the probability of

an alternative interpretation of an ambiguous stimulus [7, 25].

ysteresis: resenting a series of stimuli in order, from one unambiguous con�gu-

ration to another, will cause the �rst interpretation to persist beyond the point

in the series where the second would normally be active [1].

In this paper, we will present a model which attempts to expand the constraint

satisfaction model to produce a neural net which approximates these behaviors.
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od

K�ohler observed that \a �gure process seems to have some e ect by which it tends

more and more to block its own way" [11, p. 72]. In our model constraint satisfaction

was combined with fatigue or satiation of the units. The simulation was implemented

by modifying the cs program provided as part of the software package [14] (see

Appendix for details). e brie y review the standard constraint satisfaction model.

The network has units representing the interpretation of the stimulus. The units

have constant external inputs s

i

[0; 1], and time-varying activity levels a

i

(t) [0; 1];

we write a

i

when t is understood. The inputs and activity levels are often treated

as column vectors s and a(t). Constraints between unit activities are represented by

an symmetric matrix , where

ij

=

ji

is positive to the extent that the

interpretations represented by units and are compatible, and negative to the extent

they are incompatible. has a zero diagonal, since a unit imposes no constraints on

itself. The combined input

i

to a unit (at a given time) is an a ne combination of

the external input, the activities of the other units, and a �xed \bias value"

i

:

i

=

i

j

ij

a

j i e

s

i

:

Here

e

and

i

are parameters (called and in [14, Ch. 3]) that control

the relative strength of the external (stimulus) and internal activity sources. More

concisely,

c =

i

( a b)

e

s: (1)

The Rumelhart et al. model [13, Ch. 14] [14, Ch. 3] uses a discrete time simulation in

which unit activity is updated asynchronously according to the di erence e uation:

a

0

i

= a

i

(

i

; a

i

); (2)

where

( ; a) =

(1 � a); 0

a; otherwise

:

It's easy to show that this model implements a hill-climbing algorithm in \goodness"

of constraint satisfaction:

= a a s a b a (3)

=

ij

a

i ij

a

j

i

s

i

a

i

i

i

a

i

: (4)

Most aspects of the cs model were retained in our model; the chief change is the

addition of a new state variable associated with each unit,

i

[0; 1], representing the

unit's energy, which is multiplied by the activation level of the unit in each cycle:

a

0

i

=

i

[a

i

(

i

; a

i

)]: (5)

3



The combined input c is computed by . 1 (although in the program any negative

values of are multiplied by , a factor for adjusting strength of inhibition; see

Appendix). nergy is modi�ed by the di erence e uation

0

i

=

i

(a

i

);

where is the fatigue rate (set to some relatively small value; see Appendix). Also,

i

is constrained to be in [0; 1].

A sigmoid energy derivative was used to prevent the model from tending toward

a stable state in which each alternate interpretation was e ually activated:

(a) = �

arctan

; (6)

where and are horizontal and vertical stretching parameters (see Appendix).

The function (with default and ) is shown in Fig. 1. Note that varying either

or has the same e ect on behavior of the model over time. ehavior of the model

does not seem to depend crucially on . 6; many other functions would work as well.

Since activity now decays spontaneously ( . 5), we can no longer measure con-

straint satisfaction by . 3. Therefore we have found it convenient to monitor

= s b ;

where

i

= a

i i

.

The Necker Cube network was implemented in the same way as in the original cs

model; sixteen units were used, one for each of the two possible con�gurations of each

of the eight vertices, with positive weights between consistent vertex interpretations

and negative weights between inconsistent ones. As in the original model, the two

con�gurations are called (the face in the lower left is closer) and (the face in the

upper right is closer).

tin t od

The most basic re uirement of the model is that it exhibit the overall process re-

ported by Necker: It must interpret the stimulus one way, then spontaneously switch

back and forth without external in uence. To test this, all sixteen units were given

a constant and e ual external input, representing the presentation of a perfectly am-

biguous stimulus. The mean activation of the eight units representing con�guration

was used to measure the strength of interpretation , and likewise for interpretation

. The strengths of the two interpretations are compared over time in Fig. 2. An

interpretation (in this case ) is initially reached and remains essentially stable, but

then after a time the other interpretation spontaneously becomes dominant; as time
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Figure 1: (a), change in unit energy as a function of unit activation.
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Figure 2: Activations of the alternate con�gurations of a Necker Cube over time. The

activations are the means for the eight units each in con�gurations and .
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goes on, the two ip back and forth. The model exhibits these phenomena naturally.

Although the activation level of the dominant con�guration does not remain constant

within a constant interpretation, it remains clearly dominant over the other, and thus

can be said to be reasonably stable.

The relative amount of time spent in each interpretation for a multistable stimulus

is a direct function of the probability that the given con�guration will be initially per-

ceived [10]. In contrast, rice [19] noted that, over time, the dominant con�guration

(the one more likely to be initially perceived) tended to lose its dominance and the

ratio became closer to even. (Sadler and Me erd [21] did not observe this.) To test

these observations, a variety of stimuli were presented to the model, with the sum

of the stimulation to con�guration and the stimulation to con�guration being a

constant 0.6 so that the total external stimulation to the network was a constant (see

Appendix). In other words, the stimulus vector was

s = s (1 � )s ; (7)

where s and s are the (orthogonal) vectors representing unambiguous stimuli in

con�gurations and . This keeps the norm of the stimulus vector constant

as is varied. (In [10], in contrast, the norm is �xed.) The initial probability

was taken by presenting the stimulus s , allowing the model to process 25 cycles,

and measuring the percentage of the 1; 000 presentations that had con�guration

dominant. The overall probability was taken by presenting the stimulus, allowing

the model to process 10; 000 cycles, and measuring the percentage of those cycles

that had con�guration dominant. Fig. 3 shows the percentages as a function of

, the strength of input to the units. As suggested, the initial probabilities vary

in a smooth curve, while the behavior of the model over a longer period of time is

always either relatively even in time spent in each con�guration or settles into only

one con�guration.

The functional relationship between initial probability and relative time in a con-

�guration is shown more directly in Fig. 4. ithin a relatively narrow range of near

50-50 ambiguity, the probabilities are similar; outside of this range, the model may

come to a �rst interpretation either way, but after time will clearly settle into one

interpretation and stay there. The behavior of the model, to a �rst order of approxi-

mation, corresponds to that of human subjects in this respect.

pon continued exposure to an ambiguous stimulus, the rate at which interpre-

tations ip increases to approach an asymptote in human subjects [3, 4]. For the

model, the mean number of cycles between con�guration changes was taken for 10

runs of the model for 10,000 cycles. Fig. 5 shows the behavior of the model. The

number of cycles between interpretation ips shows some variation within a relatively

narrow range. There does not seem to be any pattern to this variation. Although the

overall trend is slightly downward, the slope is negligible. The model cannot be said

to exhibit this phenomenon; over time, the rate at which ips in interpretation take

place seems essentially constant.
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Figure 3: ercent of the time was the dominant interpretation initially (solid line)

and over time (dotted line) as a function of the strength of input to the units (see

Appendix).
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Figure 4: Scatter plot relating probability of initial perception of a �gure as to the

relative time spent in interpretation .
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Figure 5: Number of cycles between interpretation switches over time. The solid line

indicates the trend (linear regression).
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Figure 6: Interpretations of an ambiguous stimulus after adaptation to an unambigu-

ous stimulus.
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The interpretation of an ambiguous �gure can also be in uenced by prior exposure

to similar stimuli. After adaptation to an unambiguous stimulus, an ambiguous

stimulus is more likely to be interpreted as in the alternative con�guration [7]. To

test this, a �gure which was unambiguously was presented to the model for 100

cycles. The model was then given no external input for 5 cycles (a pause between

�gure presentations to approximate the pause used in the experiments), and then was

presented the ambiguous cube. Fig. 6 shows the typical behavior of the model given

these inputs. iven 100 cycles of adaptation, the model went to interpretation

directly in all of 50 trails, excepting two where the model was temporarily caught at

a local maximum.

pon exposure to a succession of stimuli, beginning as unambiguously and end-

ing as unambiguously , humans tend to continue interpreting the stimuli as well

after the point where the stimulus is ambiguous, a phenomenon called h st sis [1].

To test this, the model was given a succession of stimuli, ranging from unambigu-

ously to unambiguously , with the sum of activations remaining 0.6 (see . 7

and Appendix). A stimulus was presented to the network for 5 cycles before being

replaced with the next stimulus. The behavior of the model is shown in Fig. 7. ue

to the leftover activation in the units for con�guration , it continues to dominate

even where clearly has a stronger input and the model would normally have

fallen into con�guration (shown in Fig. 3). This e ect, however, is dependent upon

the stimuli being presented at a su cient rate such that fatigue does not excessively

a ect the dominant units. If the time scale is increased from 5 cycles per stimulus

to 25 cycles, the behavior of the model changes, as shown in Fig. 8. ith su cient

time for unit fatigue to set in, the results are consistent with the adaptation e ect

shown in Fig. 6 rather than with hysteresis; the model, given the ambiguous stimulus,

tends to jump to the alternate con�guration more readily upon this longer exposure

time. e are unaware of research which indicates whether hysteresis is weakened in

humans by extended exposure, but such seems to be a straightforward outcome of

mixing both hysteresis e ects and adaptation e ects in the same model.

ocal maxima may be a problem with constraint satisfaction models (and other

neural network models) [13, Ch. 14] [14, Ch. 3]. Normal constraint satisfaction models

are essentially hill-climbing devices, and thus can get trapped at a peak which is not

the optimal solution. The original cs model did sometimes exhibit this phenomenon.

The fatigue model, however, behaves di erently with regard to local maxima. The

model does not get trapped often, but when it does or is intentionally placed at a

local maximum, it tends to work its way out and back to a global maximum. Fig. 9

shows the model's behavior when placed in a local maximum. In the beginning, the

model is explicitly set to interpret the upper half of the cube as and the lower half

of the cube as . In a reasonably short time, the model resolves the problem and

begins oscillating between the global maxima.

More generally, we may speculate that natural fatigue (or satiation) mechanisms

eliminate stable attractors from neural dynamics, and thus decrease the likelihood
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Figure 7: ehavior of the network exposed to successive stimuli ranging from unam-

biguously to unambiguously : rapid presentations.
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Figure 8: ehavior of the model exposed to successive stimuli ranging from unam-

biguously to unambiguously : slow presentations.
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Figure 9: ehavior of the network when placed at a local maximum representing

inconsistent interpretation of the stimulus. The two fat lines and the two thin lines

should vary together in a consistent interpretation.
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of neural systems being trapped in less-than-optimal e uilibria. For example, even

the simple oscillation of con�gurations (a limit cycle) serves the function of \trying"

alternate interpretations until such time as one is clearly preferable. This is consistent

with K�ohler's [11, pp. 68{69] observation that with prolonged viewing reversals be-

come less orderly, and inconsistent interpretations appear evidence of a perceptual

system seeking a useful con�guration. Freeman and Skarda [6, 22] have proposed a

similar role for chaotic attractors in the olfactory system (see also [2, 9]).

i cu ion

This model for the perception of a Necker Cube was made bymodifying a model which

su ered limitations. Clearly this model is not devoid of limitations, but it appears to

exhibit many of the same phenomena exhibited by human subjects when exposured

to similar stimuli, in a way which is mathematically simple and straightforward.

e have shown that the interpretation of an ambiguous stimulus oscillates between

two consistent con�gurations. e have shown that the behavior of the model varies

signi�cantly in its initial con�guration but is more stable in its eventual con�guration

given a relatively unambiguous stimulus, and that the model exhibits phenomena

of both hysteresis and adaptation in ways which roughly correspond to those of hu-

man subjects. The model does not, however, correspond perfectly, the most notable

exception being that the rate of oscillation does not increase as it does in humans.

There are other attributes of this network that remain untested; for example,

we have not yet attempted to determine the behavior of the model when given a

stimulus that has more than two stable interpretations of roughly e ual \goodness"

( ). Also, we have not attempted to model the observed ability of perceivers to

\force" a reversal, although this could be accomplished by simply injecting a high

activity into one or more of the units. Nor have we attempted experiments analogous

to those discussed by K�ohler [11, pp. 84{101]. Finally, the inability of this model to

exhibit oscillation acceleration, and its behavioral delicacy in hysteresis, suggest there

is some additional e ect with a time scale slower than that of individual con�guration

changes. Adding such an aspect to the model might give a closer approximation to

the phenomena exhibited by humans.

e have shown that this model is capable of achieving a globally maximum satis-

faction of its constraints in situations where the previous cs model would have been

unable, due to being trapped at a local maximum. This method may show promise

as a general method of solving the local maximum problem in constraint satisfaction

models, as well as in other connectionist systems.
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The actual implementation of the model entailed adding new vectors ( )

and (e), and new variables ( oating point) for (fatigue rate; default

= 0.05), and for and (vertical and horizontal stretch

parameters for ; defaults used were 0.5 and 0.05), and (starting value

for elements of e; default = 1.0). The model was found to behave di erently given

di erent input strengths, so

e

( ) had to be increased to 3.0 and

i

( ) reduced

to 0.5 to prevent the model from settling into a stable state of con�guration or .

A linear function tended to allow the model to settle into a stable state halfway

between con�gurations and (with all sixteen units having an activity of 0.5), so

the sigmoidal was used. essening

i

also has this e ect; thus, a new factor

( ) was added (inhibition strength; default = 1.5) to increase the strength of

inhibition and force one con�guration to become dominant. ecause of ualitative

di erences in network behavior given di erent uantities of external input, the sum

of external stimulation to units in and units in was kept to a constant 0.6; thus,

a perfectly ambiguous stimulus consisted of all sixteen units having an input of 0.3.
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