
References

[1] G. S. Almasi and A. Gottlieb, Highly Parallel Computing, Benjamin/Cummings Pub-

lishing Company, 1989.

[2] K. E. Batcher, \Sorting Networks and Their Application," Proc. AFIPS 1968 SJCC , pp.

307{314, 1968.

[3] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha,

\A Comparison of Sorting Algorithms for the Connection Machine CM-2", Proceedings

3rd Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 3{16, 1991.

[4] X. Guan and M. A. Langston, \Time-Space Optimal Parallel Merging and Sorting,"

IEEE Transactions on Computers, Vol. 40, pp. 596{602, 1991.

[5] B-C Huang and M. A. Langston, \Practical In-Place Merging," Communications of the

ACM Vol. 31, pp. 348{352, 1988.

[6] R. M. Karp and V. Ramachandran, \A Survey of Parallel Algorithms for Shared-Memory

Machines," Technical Report UCB/CSD 88/408, Computer Science Division, University

of California at Berkeley, 1988.

[7] C. P. Kruskal, L. Rudolph and M. Snir, \A Complexity Theory of E�cient Parallel

Algorithms," Theoretical Computer Science, Vol. 71, pp. 95{132, 1990.

23

As already noted, a signi�cant drawback of the S81 is its synchronization overhead. The

less tasks must cooperate with each other, the better suited the algorithm is for MIMD exe-

cution. The transferral of data between processors will necessitate some amount of synchro-

nization. Barrier synchronization is, perhaps, the wrong type of synchronization primitive

to be used in non-numeric parallel algorithms. A better synchronization scheme would be to

have only those processors that are cooperating with each other synchronize together. Alas,

programming, and debugging, with such synchronization could easily become a monumental

task. Distributed-memory MIMD machines can employ their message passing facilities to

synchronize only those tasks that need to cooperate closely as well as share data between

processors. The connection network of such a system would also be able to move more

e�ciently large amounts of data between processors.

When algorithms call for very close cooperation between processes, SIMD machines o�er

synchronized execution. Without having to coordinate multiple synchronization points over

tens of thousands of processors, the CM-2 is relatively simple to program. Machines like

the CM-2 may not, however, perform well on array accesses, if-then-else statements and

loops of di�ering iteration lengths. This is regrettable since non-numeric algorithms tend to

contain these programming structures in abundance.

With the gracious support of the National Science Foundation, we have recently pur-

chased a CM-5 from Thinking Machines. This machine is intended to combine many of the

best features of the MIMD and SIMD models, and is expected to be a fertile testbed for

future experimental work along the lines reported here.

Acknowledgment

We wish to thank an anonymous referee, whose insightful comments on the idiosyncrasies of

the CM-2 architecture and whose careful critique of the original version of this paper have

helped us to streamline and clarify this presentation.

22

nor as likely to depend solely on local operations. For this reason, non-numeric algorithms

and their implementations exhibit a more balanced usage of computing resources and are

well suited for studies of how the limited resources of actual machines may be utilized. The

transformation of an algorithm from the Sequent Symmetry S81 to the Connection Machine

CM-2 has helped illustrate that performance depends heavily on how these resources are

handled by each machine.

6.1 Some Lessons Learned

There is much to be said for and against each of the architectures we have studied in this

paper. In particular:

� Large-scale data movement is hampered by the single data bus design of the S81 while

the router network of the CM-2 is able to move data between di�erent processors

without much apparent di�culty.

� Memory management on the CM-2 can be primitive, despite other advanced architec-

tural features of the machine.

� Explicit user-placed synchronizations needed in the MIMD model and the inability to

process di�erent parallel tasks under the SIMDmodel are major drawbacks for complex

non-numeric algorithms such as ours.

6.2 Architectural Performance

The wealth of built-in functions that are designed with e�cient data movement in mind are

a large advantage of the CM-2 over the S81. The scan function and it's many incarnations

alleviate a large burden from the programmer and allow a somewhat higher level of pro-

gramming to be done on the CM-2. Having to emulate some of these same functions on the

S81 led us to appreciate the amount of e�ort that was saved through their use.

21

5.4 Task Synchronizations

Because of the limited types of S81 runtime data available, the precise amount of time taken

by barrier synchronization cannot easily be determined. The best estimate that we were able

to �nd was by running the merge code with only the m_sync calls intact. The number of loop

iterations for data movement steps were approximated based on the size of data and number

of processors being used. Times from these experiments ranged from 10% to 25% of the total

execution times for the full merge with corresponding amounts of data and corresponding

numbers of processors. This method of timing is not able to take into account the actual

overhead time that processor interactions inict on execution time. Thus, we assume that

the sync times can be much higher in practice, especially as more processors are added.

While the execution time on a �xed number of processors doubled as the merge data

size was doubled, doubling the number of processors for a �xed data set size did not cut

the execution time in half. The impact of synchronization overhead is most apparent when

comparing the execution times of steps 4 and 5 from Table 2. Both execute approximately

the same number of data moves, yet the �fth step executes in 1/3 the time of the fourth

step. There is no synchronization required in the local merge, where the data movement

between processors in the fourth step is heavily synchronized.

Although the CM-2 does not require explicit processor synchronization, overhead is

charged to the user for the SIMD lockstep mode of operation. There appears to be no

accurate way of determining such overhead costs.

6 Conclusions

Most widely-studied parallel numeric computations have well-ordered patterns of memory

access and processor cooperation. The performance of numeric codes tends to depend to a

great extent on local operations. Non-numeric algorithms are generally not as predictable

20

in e�ect 4 separate merges that must be executed in the �nal step of the algorithm with no

overlap possible.

When the data sets are very small, there is a good chance that all processors will contain

a short list. If there are no processors holding two lists of su�cient size, the full in-place

merge is not executed|rather a bu�er merge is performed|and the total execution time is

kept small. As the total number of items grows, the likelihood of all processors having small

lists decreases while there is still a good chance that at least one processor will have a short

list (especially those processors that contain breakers).

Two other inherent SIMD serializations occur when using the C* where...else construct

and arrays. The execution of the where clause is followed by the execution of the else clause

by the appropriate processors. Again, no overlapping of separate executions is possible.

Access to array elements with a variable index is serialized by the front end processor.

This is a critical architectural concern. A master index is iterated through all possible array

index values and only those processors that have a matching index value are allowed to

execute. Thus, in principle, an operation that appears to be O(1) is really O(n).

This is where the local merge time really su�ers on the CM-2. An obvious way to try to

reduce this time is with the use of local arrays at each processor. Indeed, implementations

of simple not-in-place merge and sort routines using local arrays prove to be an order of

magnitude faster at this step (as long as enough local memory is available). The use of local

arrays will not generalize to the parallel algorithm as a whole, however, because memory

access errors develop (for example, during the displacement table building step). Only

specialized array handling libraries can correct this fundamental problem. Unfortunately,

such libraries are not widely distributed for general use; accordingly, we did not use them in

this study.

19

all 16 processors on the board into the same memory. By eliminating all but one processor

performing the local merge, this last step of the algorithm exhibited a 20% average decrease in

execution time from previous timings with all 16 PEs. The more than doubling of execution

time when doubling the data size remained, however.

After conducting many separate experiments to trace the cause of this problem, it turns

out that it is based on memory access on the CM-2. (One such experiment had each processor

loop through n=k iterations performing a swap of two local locations from a large parallel

variable. As the size of the parallel variable doubled, the runtime of this simple code also

increased fourfold or more.)

Several consultations with experts at Thinking Machines uncovered that access patterns

are highly non-optimal. We were advised that our only alternative was to augment the C*

code with memory access functions available in CM-2 assembler (PARIS). Given our focus, we

of course avoided such a low-level �x. Observe that this is exactly the sort of result we sought

to uncover: the state of the art is still that one cannot reasonably expect straightforward,

high-level transformation from one architecture to another without big disappointments in

performance.

5.3 Single Instruction Limitations

As mentioned earlier, the �nal step comprises two distinct merge phases due to the duplicate

nature of the data held in processors that contain breaker records. The SIMD paradigm

requires that these two merges be executed in serial, one following the other across all the

processors with breaker records. (Those processors without breakers remain idle during the

execution of the second merge.) Additionally, within the local merge itself, there are two

distinct merge routines: one for those processors that contain a very small list to be merged

and the in-place merge for all others. Due to the lockstep execution mode of the CM-2, these

must be run in a serial across all the processors participating in the merge. Thus, there are

18

be moved between processors that are not necessarily located in close vicinity to each other.

Folk wisdom holds that communication should be kept to an absolute minimum, and should

be done over the smallest proximity of processors whenever possible. Nevertheless, the CM-

2 routing network was able to shu�e large amounts of data between processors without

much danger of running into the collision possibilities inherent in the single data bus on the

S81. Moreover, the relatively low number of keys assigned per processor signi�cantly reduces

the number of data transfer instructions that need to be executed. (The largest data ratio

achievable on the CM-2 was 128 keys per processor while the largest ratio on the S81 was

524288 keys per processor.)

On the S81, bus and memory contention can be reduced by performing the local merge on

data held in the cache. The three intermediate steps of the algorithm require data transfer

and cooperation between processors that are within the same series pair. Since data located

between breaker records will remain between those breaker positions after the �nal merge

completes, the more breakers contained in the data the tighter the data locality will be

within these three steps. The large number of synchronizations required in the fourth step

contribute to the large amount of time spent there.

The CM-2 performs well in these intermediate steps by being able to perform intrachip

communication. Since processors are grouped 16 to a node, when the number of breaker

records is very high, much of the required data transfers can take place between processors

on the same chip and the same memory module.

One surprise in all this was the small percentage of time the Symmetry required for the

local merge. In this step, all data can be manipulated within a processor's cache. As the

algorithm rolls through the data, the in-place merge has a very predictable memory access

pattern that makes for very high cache hit ratios. It was similarly surprising that the local

merge took the most time on the CM-2. One explanation put forth was the serialization

imposed by the SIMD model (more on this later). Another possibility was the contention of

17

users. Dramatically better timing results would have been possible if certain sections of our

algorithms were microcoded (as was done, for example, in [3]). But this was not our goal.

We sought instead to identify algorithmic bottlenecks of the transformation process.

More interesting than any sort of a direct comparison of execution times between the

two machines is a comparison of the strengths and weaknesses of both models by how each

performed on the various steps of the algorithm.

On the S81, the execution times roughly double as the amount of data doubles for a �xed

number of processors, while the execution times do not decrease by half when the number of

processors is doubled and the input size is �xed. This suggests that certain features of this

machine (discussed in x 5.4) do not scale very well with the addition of extra processors for

algorithms such as this.

The parallel merge has quite the opposite e�ect on the CM-2. Twice as many processors

take half as long on the same data sets. Yet, when the number of processors is held constant,

a doubling of the data resulted in a quadrupling or more of the execution time. Uncovering

causes of this behavior (discussed in x 5.2) has been illuminating.

5.2 Data Locality and Cache E�ects

Data locality is often claimed to be one of the most important factors in (sequential and)

parallel computations. Indeed, this is seen quite well in the step timings (Table 2) on the

S81. The �rst and fourth steps move large numbers of keys from all over memory to di�erent

memory locations. This can swamp the single data bus. The processor cache is not able to

alleviate this problem even though the movement of data is done in an orderly, predictable

manner that could be made use of in a cache prefetch scheme. Since it has little or no e�ect

on the execution of this step the loading of the cache may slow down these portions of the

code.

One might assume that the CM-2 would also su�er from this problem since data must

16

Execution Time Percent of

Task (in seconds) total time

Step 1 (Sort by tails) 1.81 2

Step 2 (Locate breakers) 0.07 0

Step 3 (Distribution Table computation) 1.85 3

Step 4 (Block rotation and Data movement) 6.35 8

Step 5 (Local merge) 63.87 86

Overhead (function calls, etc.) 0.46 1

Total 74.41 100

Table 4: Sample CM-2 Step Times

500000 1000000 1500000 2000000

Number of Keys

0

20

40

60

80

T
im

e
(s

ec
on

ds
)

Total execution time

Figure 2: CM-2 Timing Results (16384 processors)

15

Number of Total number of keys merged

processors
32768 65536 131072 262144 524288 1048576 2097152

16384
0.45 0.51 0.79 1.66 5.23 20.21 74.41

Table 3: Total CM-2 Execution Time

processors.

With 16384 processors, a maximum of 2

21

(2,097,152) integer (4 byte) keys were allowed,

matching nicely with the S81 limit. This bound gives a ratio of 128 keys per processor, and

was the upper limit on this ratio no matter how many processors were employed. (In other

experiments it was found that programs with fewer statements could compute with larger

data sets.)

Table 3 lists the total amount of execution time (in seconds) spent on the parallel merge

using 16384 processors with di�ering data set sizes. The results shown are based on the

average of �ve random data sets and were generated on a 16384 processor CM-2 making full

utilization of the machine and its connected resources. These results were obtained through

the standard CM-2 timing routines of CM_start_timer(1) and CM_stop_timer(1). Real

time, CM time, front end virtual time (displayed here) and percentage of CM and front end

utilization are reported by these routines. Table 4 shows the time taken by each individual

step of the computations from merging 2097152 keys with 16384 processors. Figure 2 gives

a graphical representation of the CM-2 execution times.

5 Inter retation of Results

5.1 Initial emarks

Conversions from one architecture to another are unattractive if one must hack with low-

level tools. Thus all our methods were implemented in high-level languages accessible to all

14

parallel variable. The same broadcast can be done in a downward direction by placing large

values instead of zeroes and performing a MIN scan. C* is designed to provide this type of

segmented scan without having to rely on the values of the data to delimit the segments.

Unfortunately, this feature was not implemented on the CM-2 we had available for our tests.

The use of a parallel scan as a broadcasting function led to an improvement in how the

broadcasting of data could be done in the S81 code. Rather than the complicated algorithm

originally proposed in [4], a form of parallel pre�x and segmented scan was implemented.

This approach sped up processing of the broadcast portions of the code by about 10%.

Although this savings is insigni�cant in the overall execution time, the resultant code is

considerably simpler.

Another form of scan operation are the reduction operators in C*. These operators

reduce a parallel variable to a scalar value by combining the values of the parallel variable

according to the given operation. Summation and bitwise logical operations, along with MIN

and MAX are among the possible combining operations of the reduction operators.

The sorting of tail keys in the �rst step of the merge algorithm was performed by another

specialized function, rank. The rank function returns a parallel variable of the same size as

the given parallel variable. This returned variable holds the rank of the data values in the

corresponding positions. This variable is then used as an index to swap the blocks.

4.3 Com utational Ex erience on the C -2

The CM-2 was not as exible in allowing variation in run-time parameters. Once the size of

the data was determined, the number of processors was the only other parameter that could

be adjusted. The choices allowed on the test hardware were 8192 or 16384. Irrespective

of the number of processors, we discovered that the timing results were remarkably well

correlated to the number of keys allocated per processor. That is, the execution times for

merging 32768 keys on 8192 processors was the same as merging twice as many on 16384

13

variables used in C*. Since each element of a parallel variable is thought to be assigned to a

di�erent processor, accessing elements that are not held by the requesting processor must be

indexed. This indexing is placed before the variable name to distinguish it from the usual

array indexing. (This left-indexing is executed as an indirect memory addressing into the

shared memory, not an array indexing operation.) The where statement is the C* equivalent

of a parallel if-then-else. Only those processors that evaluate the conditional statement

as true are allowed to execute the where clause statements. Following this, if there is an

else clause, those processors that had been idle for the where clause are then activated to

execute.

The C* function library includes routines that can perform computation on parallel

variables and transmit data at the same time. The scan operation is the most generic

of such operations and is easily adapted to perform other, similar tasks. Parallel pre�x

operations are computed with the combination of the scan operator and the speci�cation

of how to combine elements of the parallel variable. Possible combiner functions are MIN,

ADD, MULTIPLY and logical AND. The direction of a scan operation is determined by

the user. The upward direction scans from the lowest processor index to highest and the

downward direction is from highest to lowest.

The broadcasting of breaker values in the second step of the merge was performed by the

scan facilities on the CM-2. To accomplish a scan that would only broadcast values from

a single processor to all processors in the series, but not to others outside the series, each

broadcasting processor assigned the broadcast value to the appropriate parallel variable.

(The broadcast values were all local indices and were monotonically increasing as were the

processor identi�cation numbers.) All other processors placed a zero value in this same

parallel variable. The scan then performed a MAX scan in the upward direction. Since

the values to be broadcast were greater than zero, they replaced all the zero entries. The

broadcast segment would be halted when the next non-zero element was reached within the

12

each new iteration. Similarly, any loop structure that could execute on di�erent processors

with di�ering iteration counts had to be handled in a similar way. Crafting a method for

simulating di�erent length loops within the SIMD framework was straightforward.

Although each processor in the CM-2 must execute the same instruction that all other

processors are executing, it is possible to specify that only selected processors execute state-

ments while all others remain idle. A boolean parallel variable was declared and each element

used to designate whether or not the loop on the corresponding processor had �nished its

iterations. Only those processors that had not �nished were chosen to continue executing the

bodies of the loops. After every iteration, each active processor would check to see if it had

completed the loop executions. If it had, the ag was reset to false and the processor would

become idle. When all the processors ags were false, every processor would proceed to the

next program step. The checking of all ags was performed using a boolean OR reduction

operator (|=) illustrated below.

For example, the following MIMD parallel code

i = j;

while (a[i] <= temp) {

if (b[k] > a[i]) k--;

i++;

}

would be coded as

i = j;

more = ([i]a <= temp);

while (|= more)

where (more) {

if ([k]b > [i]a) k--;

i++;

more = ([i]a <= temp);

}

on the CM-2 where more is the boolean parallel variable used to indicate which processors

have more iterations to complete. Note the reversal of the variable-index order for parallel

11

data access patterns and length of messages, is typically 80 million to 250 million accesses

per second on a fully con�gured system.

4.2 Code Conversion

C*, the Thinking Machines data parallel version of the C language, was used to implement

the parallel merge on the CM-2. In C*, data spread across the CM processors are placed in

parallel variables. Each parallel variable has a shape that is determined by the dimensionality

of the data and the number of elements in each dimension. Though variables in more than

one shape can be declared, a C* program generally works with only one shape at a time

(the current shape). To operate on a particular parallel variable, the shape of that variable

must be made the current shape. The parallel variable holding the data to be merged was

one dimensional, and larger than the number of processors at hand. (If the current shape

holds more data elements than processors are available, then multiple virtual processors are

simulated at each real processor.) Additional local variables to be used in each processor

were declared to be of shape physical, which is the intrinsic shape that allocates a single

element of the parallel variable to each physical processor. By using these variables as the

current shape, we were able to implement the algorithm without using virtual processors.

The major problem in coding the MIMD implementation was the number of synchro-

nization points that had to be included in the code and the coordination of the multiple

tasks in executing the same number of barrier synchronizations at the proper times. With

a SIMD machine, the synchronizations are done automatically. While this makes coding of

processes that are tightly coordinated much simpler, it does impose some restrictions on the

capabilities of the machine that must be overcome.

For instance, the C* language does not support parallel for-loops. In the conversion of

the code from the S81 to the CM-2, all such loops needed to be \hand coded" by initializing

the counter, incrementing it and checking to see if the exit conditions had been reached before

10

500000 1000000 1500000 2000000

Number of keys

0

5

10

15

20

T
im

e
(s

ec
on

ds
)

Total execution time

Figure 1: S81 Timing Results (16 processors)

xtension to t e I o el

4.1 The Connection achine C -2

The CM-2 is a data parallel computer. Systems may contain as many as 65536 bit-serial

processors each with 64 Kbits of local bit-addressable memory. Groups of 16 processors are

contained within a single chip as a node that is in turn connected to other nodes in the

system through a hypercube con�gured router network. A standard serial computer acts

as a front end processor executing the serial portions of the user's code and controlling the

execution of the parallel code on the CM-2.

The bit-serial processors are proprietary to Thinking Machines, Corporation. CM-2 mod-

els may also be equipped with oating point chips connected to groups of 32 processors. The

data communication router network on the CM-2 is used for general, point-to-point proces-

sor communication. The data throughput rate on the router network, though depending on

9

Number of Total number of keys merged

processors
32768 65536 131072 262144 524288 1048576 2097152

2
1.11 2.23 4.16 8.78 17.59 35.43 71.75

4
0.76 1.40 2.80 5.30 11.13 20.63 40.26

8
0.54 0.94 1.67 3.25 6.25 12.68 24.58

16
0.62 0.87 1.37 2.36 4.75 8.44 16.68

Table 1: Total S81 Execution Time

Execution Time Percent of

Task (in seconds) total time

Step 1 (Sort by tails) 4.49 27

Step 2 (Locate breakers) 0.00 0

Step 3 (Distribution Table computation) 1.04 6

Step 4 (Block rotation and Data movement) 7.77 47

Step 5 (Local merge) 2.47 15

Overhead (function calls, etc.) 0.91 5

Total 16.68 100

Table 2: Sample S81 Step Times

microsecond counter usclk was used to time the test runs.

Table 2 shows the average amount of time spent on each step using 16 processors with

2097152 elements to be merged. This timing was done to determine how each step was

performing in relation to the others. Those steps that were taking the most time could then

be looked at more closely for bottlenecks and coding ine�ciencies.

The graph in Figure 1 shows the relation of the overall total execution time on a di�ering

number of keys on 16 processors.

The parallel merge exhibited very predictable behavior on the S81. A doubling of the

data size resulted in a doubling of the execution time for a �xed number of processors. While

we were satis�ed with this result overall, we were somewhat surprised at the low e�ciency

synchronization forces on the computation.

8

This is very often not the case, however, as our debugging experiences have made clear.

For example, without the second m_sync, other S81 users may preempt some but not all

executions of the assignment to num so that the value num receives in the delayed processors

is incorrect.

The full potential of the machine's MIMD nature is realized in the local merging phase.

Once all the local pointers have been computed, each processor can perform its own separate

in-place merge on data that will not be accessed by other processors. Because processors

that contain breakers must execute up to two local merges, one �nal m_sync point is used

to ensure all processors have �nished before the merge is completed.

Our experimentations brought forth some unexpected results. We illustrate with the

following anecdote. Initial runs of the Sequent code revealed that the parallel version of

the merge was curiously slow, even slower than the sequential version no matter how many

processors were used. Since O(1) extra storage per processor is su�cient in theory, the

preliminary coding had employed only one extra memory location to be used for swapping.

But six is also O(1), and with just a half dozen extra swapping locations and 1/6 the number

of synchronizations it became routine to get parallel execution times that were respectable.

3.3 Com utational Ex erience on the S81

The architecture and programming of the Sequent Symmetry allowed for many di�erent

variations in parameter values under which to test the parallel merge algorithm. A maximum

of 2

21

(2,097,152) integer (4 byte) keys could be merged.

Table 1 shows the total amount of time spent (in seconds) by the parallel merge for a

select number of processors over a number of data sizes. The times listed include the time

for synchronizations (which are frequently ignored in the literature) and represent average

times taken from �ve di�erent randomly generated data sets. Outside activity on the target

machine was non-existent or at a minimum when the test runs were timed. The 32-bit

7

point in the code. After the processors have executed the barrier synchronization command,

all processors are allowed to proceed with their next instruction. The coordination of the

synchronizations can be a chore in itself for the programmer. Since each call to m_sync is

identical to every other call, processes can actually be synchronized at di�erent points in

the program. For example, after the blocks are sorted by their tails and the breakers are

found among the blocks, any blocks that are situated after the �nal breaker are already

in sorted order and the processors that are handling those blocks need not participate in

any following execution. Once these processors are identi�ed, it is an easy matter to ensure

that they do not execute any further code that may move the records they are holding

and consequently unsort them. However, because the remaining active processors must

cooperate among themselves, there still remains a number of synchronization points that

must be met and passed. If reciprocal m_sync instructions are not programmed in for those

processors that have �nished processing early, the synchronization of the whole program

will be compromised and the system can easily become deadlocked. Adding processors only

magni�es the di�culty of tracking down and debugging this kind of error.

Since calls to m_sync involve a function call and its attendant overhead, it is tempting

to omit a synchronization point to reduce execution time, especially when you have code of

the form

m_sync();

num = blanks[myid-1];

m_sync();

if (temp != key[i]) blanks[myid]--;

where num is local to the processor, blanks is a shared variable and myid holds the local pro-

cessor identi�cation number. Since the last statement of this code modi�es blanks[myid],

the second m_sync is necessary even though only one statement is executed after the previous

m_sync. A user might expect that a single statement should be executed by all processors

in the same amount of time, especially one that directly follows a synchronization point.

6

3.2 Im lementation Details

Having been designed with the shared-memory MIMD model in mind, the implementation

of the aforementioned parallel merge onto the S81 was not di�cult. The C language was

chosen, augmented with Sequent Parallel Programming Library routines needed to perform

communication and synchronization.

Two categories of variables can be used: shared or private. The data to be merged and

the auxiliary variables whose values are to be used by more than a single processor are de-

clared to be shared. All others are private and treated as if they were local to each processor.

Each processor knows its own identi�cation number in relation to all other processors; con-

sequently, the indices for the boundaries on the blocks of the �les that are under any one

processor's control are easily calculated.

PRAM models typically assume a lockstep execution of instructions ([1, 6, 7]). In real

MIMD machines, no such lockstep is usually enforced. Each processor is given its assignment

and allowed to run the instructions asynchronously. Should a sharing of data or other

cooperation between tasks on separate processors be necessary, the program must provide

some method of synchronization between the cooperating processors. For the parallel merge

implemented on the Sequent Symmetry there is a large amount of cooperation required

among processors within the �rst four steps of the algorithm. Many portions of the code

require processors to use the values of pointers and counters held by a neighboring processor.

Nearly every one of these types of access must be preceded and/or followed by a global barrier

synchronization to ensure that processors do not violate EREW restrictions. The choice

of barrier synchronization over other methods is based on availability and programming

simplicity. Subsequent coding of portions of the merge algorithm using locks in place of

barriers resulted in much slower execution times.

The barrier synchronization m_sync is used to synchronize all processors to a single

5

The third step computes the number of records in each �rst series block that would be

displaced by records from the second series if there were no other �rst series blocks. This

value is held in a displacement table. Block i can use these table values to determine exactly

how many records will be displaced by records from block i� 1 and how many will actually

be displaced by records from the second series.

The fourth step distributes the records of the second series among the blocks of the

�rst series as well as shifting displaced records between the �rst series blocks. This step is

accomplished through a succession of local block rotations followed by appropriate parallel

data movements between processors.

The �fth and �nal step (local merging) is implemented as a choice between two time-space

optimal merges [5] dependent on the relative sizes of the two sub�les held by the processor.

Processors with breaker records may need to perform separate merges for the portions of

data located on either side of the breaker's position.

n I I le entation

3.1 The Se uent Symmetry

The Sequent Symmetry is a tightly-coupled multiprocessor with a shared common memory.

The CPUs, memory modules and I/O controllers are all attached to a single high-speed bus.

A maximum of 30 processors can be incorporated in a Model S81 system.

The con�guration we tested, located at Argonne National Labs, employs Intel 80386

processors with Intel 80387 and Weitek WTL 3167 oating point coprocessors. System

memory contains 32 Mbytes; each processor is equipped with 64 Kbytes of cache. The 64-bit

system bus has a channel bandwidth of 80 Mbytes per second. The actual data transfer rate

achievable is 53.5 Mbytes per second.

4

Re ie of i e- ace ti al arallel er in

For the reader's bene�t, we now briey outline the time-space optimal parallel merge we

have implemented. The method we describe is robust, ensuring time-space optimality even

on the weak EREW PRAM model. It can be used in time-space optimal sorting as well

with a straightforward sort-by-merging approach. We refer the reader to [4] for a complete

description of these techniques.

In what follows, we assume a �le with a total of n records is input containing two sorted

sub�les to be merged. We let k denote the number of processors available. For simplicity,

we assume each of the two sublists is evenly divisible by k.

The parallel merge comprises �ve steps. The �rst four reduce the problem to one of local

merges at each processor (the last step). The data to be merged is viewed as k blocks, each

block of size n=k, and each block managed by a distinct processor.

The �rst step is to sort the blocks by their tails (largest keyed records). This is accom-

plished by extracting a copy of each tail and its corresponding processor index, and sorting

these with a bitonic merge [2]. Blocks are moved to the appropriate memory locations using

the processor indices that were sorted along with the tail values.

The second step divides the data into pairs of series. Boundaries of the series pairs are

located at breakers (such a breaker is the �rst record in block i+ 1 whose key is no smaller

than that of the tail of block i). The �rst series of a pair contain records that follow a breaker

and are all from the same original sublist. The second series in the pair will end with the

record just before the next breaker. When a processor determines that it has a breaker in

its block, the index of the breaker is broadcast to the other processors. Thus, each processor

can determine the boundaries of the series pairs around it and whether or not the block it

holds is in the �rst or second series of a pair. It should be noted that processors that contain

breaker records will have both a second series and a �rst series in their block of data.

3

Intro uction

The purpose of this paper is to study design and implementation issues for non-numeric

parallel algorithms on real MIMD and SIMD machines. As opposed to oating-point inten-

sive codes, non-numeric algorithms are fairly unpredictable with respect to memory accesses,

non-local data requirements and processor cooperation. We center our investigation on the

merge and sort algorithms from [4]. These methods are attractive because of their scalability

with respect to both time and space. That is, they ensure time-space optimality, so that

optimal speedup is attained

1

and yet they require only a constant amount of extra space

even when the number of processors is �xed.

Our representative MIMD and SIMD machines are the Sequent Symmetry S81 and the

Connection Machine CM-2, respectively. The S81 employs a handful of fairly powerful

processors; the CM-2 uses tens of thousands of relatively simple ones. The S81 connects its

processors to a shared memory through a common bus; the CM-2 connects its processors in a

hybrid binary hypercube fashion with memory distributed among the individual processors.

To our knowledge there has been no previously published case study describing the con-

version of shared-memory parallel codes to the data parallel paradigm. We develop tech-

niques that have been helpful for us and that may be useful in future conversions of this

nature. In addition to our discussion of implementation issues, we present sample timing

results from both machines. We emphasize that our goal is not to �ne-tune our codes to

make them competitive with microcode implementations available elsewhere, but rather to

discover stumbling blocks inherent in the MIMD-to-SIMD program transformation process.

Thus these timing �gures, slow though they may be, are useful in identifying the relative

strengths and weaknesses of these two divergent models.

1

A parallel metho attains asymptotically optimal spee up if the pro uct of the num er of processors

it employs an the amount of time it ta es is within a constant factor of the time re uire y a fastest

se uential al orithm.

2

To Appear in Journal of Parallel Algorithms and Applications

I ersus I Co utation: x erience

it on- u eric arallel l orit s

�

Clay P. Breshears and Michael A. Langston

Department of Computer Science

University of Tennessee

Knoxville, TN 37996-1301

s

c c - c

c c . c

- c .

c c c - ,

c . c c -

, c c c c -

- .

c , - c

c c - c c , cc c -

c . c c

c c c c

.

c c

. c c cc -

c c c

. -

c . c c

c c .

A preliminary ersion of this paper was presente at the th awaii nternational onference on

ystem ciences, hel on the islan of aui, awaii, in anuary, .

his research has een supporte in part y the ational cience oun ation un er rant

{ an y the ce of a al esearch un er contract { { { .

