
12

on Computer-Aided Design 8 (1989), 547{562.

[HW] S. Huang and O. Wing, \Gate Matrix Partitioning," IEEE Trans. on

Computer-Aided Design 8 (1989), 756{767.

[IO] M. J. Irwin and R.M. Owens, \A Comparison of Four Two-Dimensional

Gate Matrix Tools," Proceedings, Design Automation Conference (1989),

698{701.

[KF] T. Kashiwabara and T. Fujisawa, \An NP-complete Problem on Inter-

val Graphs," Proceedings, International Symposium on Circuits and

Systems (1979), 82{83.

[KL] N. G. Kinnersley and M. A. Langston, \Obstruction Set Isolation for

the Gate Matrix Layout Problem," University of Tennessee Computer

Science Technical Report CS{91{126, 1991.

[LR] M. A. Langston and S. Ramachandramurthi, \Dense Layouts for Series-

Parallel Circuits," Proceedings, Great Lakes Symposium on VLSI (1991),

14{17.

[R] B. A. Reed, \Finding Approximate Separators and Computing Tree

Width Quickly," Proceedings, ACM Symposium on Theory of Com-

puting (1992).

[RS1] N. Robertson and P. D. Seymour, \Graph Minors XIII. The Disjoint

Paths Problem," J. Comb. Th. Ser. B (to appear).

[RS2] , \Graph Minors XVI. Wagner's Conjecture," J. Comb.

Th. Ser. B (to appear).

[SS] C. C. Su and M. Sarrafzadeh, \Optimal Gate Matrix Layout of CMOS

Functional Cells," Integration, the VLSI Journal 9 (1990), 3{23.

[WHW] O.Wing, S. Huang and R. Wang, \Gate Matrix Layout," IEEE Trans.

on Computer-Aided Design 4 (1985), 220{231.

11

References

[AHU] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

[BGLR] H. D. Booth, R. Govindan, M. A. Langston and S. Ramachandra-

murthi, \Cutwidth Approximation in Linear Time," Proceedings, Great

Lakes Symposium on VLSI (1992), 70{73.

[BK] H. Bodlaender and T. Kloks, \Better Algorithms for the Pathwidth

and Treewidth of Graphs," Technical Report, University of Utrecht,

The Netherlands (1990).

[BL] K. S. Booth and G. S. Leuker, \Testing for the Consecutive Ones

Property, Interval Graphs, and Graph Planarity Using PQ-tree Algo-

rithms," J. of Computer and Systems Science 13 (1976), 335{379.

[DKL] N. Deo, M. S. Krishnamoorthy and M. A. Langston, \Exact and

Approximate Solutions for the Gate Matrix Layout Problem," IEEE

Trans. on Computer-Aided Design 6 (1987), 79{84.

[FL1] M. R. Fellows and M. A. Langston, \Nonconstructive Tools for Prov-

ing Polynomial-Time Decidability," J. of the ACM 35 (1988), 727{

739.

[FL2] , \Fast Search Algorithms for Layout Permutation Prob-

lems," Int'l J. Computer Aided VLSI Design 3 (1991), 325{341.

[FL3] , \On Search, Decision and the E�ciency of Polynomial-

Time Algorithms," Journal of Computer and System Sciences (to ap-

pear). (A preliminary version of this paper can be found in Proceed-

ings, ACM Symposium on Theory of Computing (1989), 501{512.)

[HPK] Y-S. Hong, K-H. Park, and M. Kim, \Heuristic Algorithms for Or-

dering the Columns in One-Dimensional Logic Arrays," IEEE Trans.

10

7. Conclusions

Numerous problems in VLSI design are amenable to this approach. We

have illustrated our method with but one example, gate matrix layout. For

instance, linear time algorithms are possible for the minimum cut linear ar-

rangement problem by extending and adding self-reduction to the immersion

test of [BGLR].

We are currently generalizing our methods to more than three tracks.

While three tracks are not su�cient to lay out arbitrarily large circuits, test-

ing for three-track layouts alone is still a promising technique. It is often

possible to layout functional cells in a few tracks in gate matrix style. One

could also synthesize small to medium sized cells. Another possibility is to

partition a large cell into smaller blocks, and layout each individual block

separately [HW]. Some of these applications will be part of our future re-

search.

There is clearly room for improvement in our approach. Better self-

reduction algorithms and general tools to help develop fast tests for obstruc-

tions would be useful. We could improve the self-reduction scheme in at least

two ways. First, we could try to avoid or at least minimize the likelihood

of introducing new obstructions that are not detected by algorithm TEST.

Secondly, we could minimize the number of calls to algorithm TEST. We are

currently exploring some of these new avenues.

9

Table 1: Experimental results with edge probability = 1/2

number of
number of number with a Results from Algorithm TEST:

vertices
random graphs 3-track layout

�

layout possible layout found

8
1000 97 97 96

9
1000 12 12 12

10
1000 5 5 5

11
1000 1 1 1

12
1000 0 0 0

�

determined by dynamic programming .

Table 2: Experimental results with edge probability = 1/3

number of
number of number with a Results from Algorithm TEST:

vertices
random graphs 3-track layout layout possible layout found

8
1000 711 711 707

9
1000 454 455 444

10
1000 221 222 212

11
1000 94 95 85

12
1000 16 17 14

13
1000 6 6 6

14
1000 0 0 0

Table 3: Experimental results with edge probability = 1/4

number of
number of number with a Results from Algorithm TEST:

vertices
random graphs 3-track layout layout possible layout found

8
1000 928 928 922

9
1000 789 790 773

10
1000 620 624 582

11
1000 449 453 405

12
1000 245 251 215

13
1000 121 125 104

14
1000 36 39 29

15
1000 14 15 11

16
1000 3 3 0

17
1000 0 0 0

8

6. Experimental Results

Algorithm TEST and its self-reduction have been implemented. These

methods are extremely fast in practice, indicating that the constants of pro-

portionality are small. We �rst use TEST to decide whether three tracks are

su�cient to layout a given circuit. If one of the six obstructions is found in

the input graph, then we know that a three-track layout is not possible. On

the other hand, if none of the six obstructions is found, then we assume that

a layout is possible and self-reduce to �nd a layout.

Data sets consisting of a thousand graphs of a �xed size, each generated

at random

1

with a speci�ed edge probability were used as input to TEST.

Results from our experiments are presented in the tables on the next page.

The output of our decision algorithm and the layout algorithm are compared

to the optimum solution found by the (extremely slow) algorithm of [DKL].

There are two reasons why our algorithm fails occasionally. The �rst

reason is that the input graph contains an obstruction other than the six for

which we test. In this case, the decision algorithm would say that a layout

is possible, even though a layout does not exist. The second case is when

we inadvertently introduce an extraneous obstruction during self-reduction.

In this situation, we are unable to obtain a three-track layout for the input

circuit even though such a layout is possible. From the tables, we infer that

these failures occur only rarely. In fact, on the whole our methods construct

a layout when any exist over 95% of the time!

1

Of course, a randomly generated graph may not always represent a useful

circuit. However, it is a valuable aid in our study.

7

amortized time. Since a series-parallel graph with n vertices has a maximum

of 2n � 3 edges, each operation is used at most a linear number of times,

guaranteeing that TEST runs in linear time.

5. A Fast Layout Algorithm

Now we describe how algorithm TEST can be used to �nd a layout.

Again, the input circuit is transformed into a graph. We invoke TEST on

the graph in order to decide whether a three-track layout is possible or not.

If none of the six obstructions is found by TEST, then we proceed to �nd

a layout using a technique known as \self-reduction" [FL2]. To accomplish

this, we augment the graph in a systematic way. Each time we augment the

graph, we invoke algorithm TEST in order to con�rm that the augmentation

is valid.

A valid augmentation is one that does not introduce any of the obstruc-

tions detected by algorithm TEST. If the augmentation is invalid, then we

undo it and try a di�erent one. We continue this process until no more valid

augmentations are possible. At this point, the self-reduction is complete and

the graph has the \consecutive ones property" [DKL]. It takes at most O(n

2

)

calls to algorithm TEST to attain this property. It is easy to determine a

layout from such a graph [BL].

Of course, the original graph may contain one of the 104 (sparser) ob-

structions that TEST ignores. More interestingly, it is possible that we

might introduce an obstruction not detected by TEST. (In this case, our

self-reduction would fail to yield a three-track layout when the input circuit

actually has such a layout.) However, this happens extremely rarely, as our

experiments reveal.

6

applying a sequence of the operations in section 2 of TEST to a simple series-

parallel graph G. We say H

0

is an intermediate graph in the transformation

of G to H if G can be reduced to H

0

by applying a pre�x of the sequence of

operations needed to reduce G to H.

Lemma 2: If there is an edge of weight 2 between a pair of vertices u and

v in H, then there is a path of length two or more between u and v in G.

Proof Sketch: Use the fact that an edge of weight 2 is introduced between u

and v in H only if there is a third vertex w such that the edges uw and vw

both exist in an intermediate graph H

0

. 2

Lemma 3: If there is an edge of weight 3 between u and v in H, then u

and v are end-points of some triangle in G.

Proof Sketch: Use lemma 2 and the appropriate transformation in section

2 of TEST. 2

Lemma 4: H is irreducible if and only if H has no vertices of degree one,

and all edges incident on vertices of degree two in H have weight three.

Proof Sketch: If H does not have these properties, then at least one more

transformation is possible. 2

Theorem: G contains graph B as a minor if and only if H is irreducible.

Proof Sketch: Use lemmas 2, 3, 4 and induction on the number of vertices in

H. 2

4.3 Time Complexity

The main operations in TEST are: searching for vertices of minimum de-

gree, deleting vertices and edges, checking for the existence of speci�c edges,

and adding edges. Using an uninitialized adjacency matrix representation

for the graph [AHU], each of these operations can be performed in constant

5

Algorithm TEST

Input : A simple graph G.

Output: YES, if G contains any of the graphs A, B, C, D, E and F.

NO otherwise.

begin procedure

0. Initialize.

for each vertex a in G do

unmark(a)

if degree(a) 2 then set vertex-weight(a) = 0

else set vertex-weight(a) = 1

for each edge ab in G do set edge-weight(ab) = 1

1. hecking for graph .

repeat

identify a minimum degree vertex v in G

if degree(v) 1 then delete v

else if degree(v) = 2 then

let w and x be the two neighbors of v

delete the edges vw and vx, and the vertex v

add the edge wx if it was not already present

until G is empty or irreducible

if G is nonempty then return ES

else restore G and initialize it. o to step 2

2. hecking for graph .

repeat

while G contains a vertex v with degree 1 do delete v

if G contains an unmarked vertex v with degree 2 then

mark v

let u and w be the two neighbors of v

if edge-weight(uv) = 3 and edge-weight(vw) = 3 then

go back to the start of the loop

if edge uw already exists then set edge-weight(uw) = 3

else

introduce edge uw

set edge-weight(uw) = max fedge-weight(uv), edge-weight(vw), 2

delete the edges uv and vw, and the vertex v

until G is empty or irreducible

if G is nonempty then return ES

else restore G and initialize it. o to step 3

3. hecking for graphs ; ; and .

repeat

while G contains a vertex v with degree 1 do delete v

if G contains an unmarked vertex v with degree 2 then

mark v

let u and w be the two neighbors of v

if edge-weight(uv) 3 or edge-weight(vw) 3 then

go back to the top of the loop

if edge uw already exists and

edge-weight(uv) edge-weight(vw) vertex-weight(v) 3 then

if edge-weight(uw) 3 then go back to the top of the loop

if edge-weight(uw) = 3 then set edge-weight(uw) =

if edge uw does not exist or edge-weight(uw) 3 then

introduce the edge uw and set edge-weight(uw) =

minfedge-weight(uv) edge-weight(vw) vertex-weight(v), 3

delete the edges uv and vw, and the vertex v

until G is empty or irreducible

if G is nonempty then return ES else return

end procedure

4

FED

CBA

Figure 1. The six smallest obstructions to GML(3)

degree at most two is crucial to our method. Our algorithm proceeds in

three steps, halting as soon as an obstruction is detected. In step 1, we

look for graph . In step 2, we look for graph . In step 3, we look for

graphs ; ; and . Each step involves �nding a minimum degree vertex,

processing it, and then eliminating or marking it. Algorithm TEST appears

in pseudo-code form on the next page.

4.2 roof of Correctness

Due to space limitations, we shall only sketch a proof of correctness of

section 2 of algorithm TEST (where we look for graph).

Lemma : biconnected graph H is a minor of a graph G if and only if

H is a minor of a biconnected component of G.

Proof Sketch: Use induction on the number of biconnected components of

G. 2

Lemma 1 ensures that vertices of degree 1 can be deleted safely, since B

is biconnected.

In the rest of this section, H is assumed to be a graph produced by

3

to decide whether the input circuit has a layout using or fewer tracks, and

then to obtain a layout if possible. When = 1, GML(k) is trivially solved.

Using the algorithm presented in [BL], it is easy to obtain a two-track layout

if possible, in O(n

2

) time. However, these algorithms do not extend to the

cases when is greater than two.

The smallest non-trivial case is when = 3, and that is the case we

address here. Although the consideration of three-track layouts may at �rst

seem overly restrictive, it is known [LR, SS] that this class of graphs captures

a large collection of circuits likely to be encountered in practice. (Note that

[BK] also addresses the �xed-parameter problem and presents O(n log

2

n)

algorithms. However, their algorithms remain impractical due to their im-

mense constants of proportionality, which are exponential in .)

4. A Fast ecision Algorithm

We have adopted the standard mapping of a circuit into a graph rep-

resenting the interconnection relationships between the nets [DKL]. Each

vertex in the graph corresponds to a net in the circuit. We test only for six

out of the 110 obstructions to a three-track layout [KL]. The six obstructions

are the graphs ; ; ; ; and , shown in Figure 1. These six graphs are

the smallest obstructions to a three-track gate matrix layout.

Given the density of these six obstructions relative to the other 104 pos-

sibilities [KL], it is reasonable to expect that a circuit that cannot be laid

out in three tracks will contain one of them. Our algorithm operates on this

hypothesis.

4. . Algorithm escription

Excluding

4

implies that an input graph must be series-parallel. The

well-known fact that every series-parallel graph has at least two vertices of

2

Thus we are motivated to search elsewhere for genuinely practical solu-

tions. Our approach is to check for the exclusion of only a well-chosen subset

of the complete obstruction set. With a careful selection of obstructions

relevant to the problem at hand, we can often obtain surprisingly e�ective

algorithms.

3. A Representati e ro lem

Gate matrix layout (GML) is a well-studied combinatorial problem that

arises in several VLSI layout styles such as Gate Matrix and Weinberger

Arrays. The input is a circuit consisting of gates and n nets. The usual

objective is to obtain a layout that minimizes the total area of silicon used.

An instance of the gate matrix layout problem consists of a collection of nets

(rows) =

1

;

2

; :::;

n

and their respective connections to a set of gates

(columns) G = G

1

; G

2

; :::; G . We seek a permutation of the columns that

minimizes the number of tracks required to lay out the circuit. More formally,

we are given a n Boolean matrix and a positive integer , and are

asked whether we can permute the columns of so that, if in each row we

change to every 0 lying between the row's leftmost and rightmost 1, then

no column contains more than 1s and s.

Since GML is -Complete [KF], most past research has centered on

the development of fast heuristic algorithms [HPK, WHW etc.]. Most of

these heuristics are simple greedy rules based on some form of the min-cut

algorithm. Simulated annealing approaches have also been reported [IO].

All of these approaches are prone to producing markedly inferior layouts

or to running unacceptably slowly. Alternately, an O(

2

2) time optimal

dynamic programming algorithm is known [DKL].

In the �xed-parameter version of GML, denoted GML(), the maximum

number of tracks allowed for a layout is �xed at some constant . The goal is

1

. ntro uction

VLSI layout abounds in -Complete problems. Consequently, for prac-

tical expedience during layout optimization, attention is frequently restricted

to �xed-parameter problem variants. For many of these variants, the exis-

tence of polynomial-time decision algorithms is known [FL1, R]. The general

approach used is based on graph theory developed in [RS1, RS2]. Unfortu-

nately, these algorithms are nonconstructive and hence impractical (see [FL3]

for details). In this paper, we develop a new technique to obtain practical

layout algorithms. We illustrate the e�ectiveness of our approach using gate

matrix layout as our prototypical example.

Our paper is organized as follows. Section 2 gives an overview of our

approach. In Section 3, we review the gate matrix layout problem. Section

4 presents our algorithm. Section 5 shows how our algorithm can be used to

�nd a layout. Experimental results are presented in Section 6. In Section 7,

we discuss a few conclusions and directions for future work.

2. Technical ac groun

It is known [RS2] that graphs are well-partially-ordered under the minor

operation. It follows that many families of graphs (including those that we

consider here), can be characterized by �nite numbers of forbidden graphs,

henceforth termed \obstructions." It is also known [RS1] that testing an

arbitrary input graph for any �xed obstruction takes at most O(n) time.

Thus such families possess polynomial-time decision decision algorithms that

work as follows: test the input for every obstruction.

Unfortunately, there can be no general scheme to enumerate all the ob-

structions to a given problem [FL3]. Moreover, even when all the obstructions

to a problem are known, it is a daunting task to obtain e�cient tests for each

of them.

Ra ee o in an, ichael A. Langston and

Si harthan Ramachan ramurthi

Department of Computer Science

University of Tennessee

Knoxville, TN 37996{1301

USA

October 9, 1992

A stract

In this paper, we present a practical approach for �nding optimal solutions

for �xed-parameter versions of many VLSI layout problems. To illustrate,

we develop e�cient algorithms for gate matrix layout. Although gate matrix

has become an increasingly popular layout style for CMOS circuits, the com-

binatorial problem at the heart of this style is -complete. Consequently,

the research community has turned to e�cient heuristic algorithms in an

e�ort to �nd near-optimal layouts. We present a very di�erent kind of ap-

proach. Focussing on three-track layouts as a starting point, our algorithms

decide whether an input circuit has such a layout in linear time. They also

�nd a three-track layout if any exist. Extensive experiments demonstrate

the feasibility of our method. We discuss extensions of our approach to other

problems of VLSI design.

�

his research has been supported in part by the ational Science oundation under

grant I { 1 312 and by the ce of aval esearch under contract 0001 {

0{ {1 .

