SVDPACKC (Version 1.0)
USER’S GUIDE

Michael Berry, Theresa Do, Gavin O’Brien

Vijay Krishna, and Sowmini Varadhan

Computer Science Department

('S-93-194 April 1993

(Revised October 1993)

SVDPACKC (Version 1.0) User’s Guide!

Michael Berry ? Theresa Do? Gavin O'Brien?
Vijay Krishna? Sowmini Varadhan?

October 6, 1993

IThis research was supported by the National Science Foundation under grant
NSF CDA-9115428, and by Apple Computer Inc., Cupertino, CA, under contract
(C24-9100120. This document is also available as Department of Computer Science
Technical Report No. CS-93-194, University of Tennessee, May 1993.

2Department of Computer Science, University of Tennessee, 107 Ayres Hall,
Knoxville, TN, 37996-1301.

Abstract

SVDPACKC comprises four numerical (iterative) methods for computing
the singular value decomposition (SVD) of large sparse matrices using ANSI
C. This software package implements Lanczos and subspace iteration-based
methods for determining several of the largest singular triplets (singular val-
ues and corresponding left- and right-singular vectors) for large sparse matri-
ces. The package has been ported to a variety of machines ranging from su-
percomputers to workstations: CRAY Y-MP, IBM RS/6000-550, DEC 5000~
100, HP 9000-750, SPARCstation 2, and Macintosh II/fx. This document
(1) explains each algorithm in some detail, (i¢) explains the input parame-
ters for each program, (i7i) explains how to compile/execute each program,
and (iv) illustrates the performance of each method when we compute lower
rank approximations to sparse term-document matrices from information re-
trieval applications. A user-friendly software interface to the package for

UNIX-based systems and the Macintosh II/fx is also described.

CONTENTS 1
Contents

1 Introduction 3

2 Applications 5

3 Algorithms 8

3.1 Equivalent Figenvalue Problems 8

3.2 Subspace Iteration (sisl, sis2) 10

3.2.1 Input Parameters L. 13

3.2.2 User-Defined Routines 14

3.3 Trace Minimization Method (tmsl, tms2) 14

3.3.1 Polynomial Acceleration Technique (tms2) 17

3.3.2 Shifting Strategy (tmsl, tms2) 18

3.3.3 Input Parameters L. 19

3.3.4 User-Defined Routines 20

3.4 Single-Vector Lanczos Method (lasl, las2) 21

3.4.1 Input Parameters 23

3.4.2 User-Defined Routines 24

3.5 Block Lanczos Method (blsl, bls2) 24

3.5.1 Input Parameters L. 31

3.5.2 User-Defined Routines 32

4 SVDPACKC Interface 33

5 SVDPACKC Workstation Benchmarks 34

5.1 Sparse Matrix Test Suite 0oL 34

5.2 Machine Specifications 39

53 Resultso 39

6 Future Work 46

7 Acknowledgements 46

CONTENTS 2
8 Appendix A: SVDPACKC Benchmarks 50
9 Appendix B: Sparse Matrix Storage Formats 55
10 Appendix C: Binary Output Files 60

Introduction 3

1 Introduction

The singular value decomposition (SVD) is commonly used in the solution
of unconstrained linear least squares problems, matrix rank estimation, and
canonical correlation analysis. In applications such as information retrieval,
seismic reflection tomography, and real-time signal processing, the solution
to these problems is needed in the shortest possible time. Given the growing
availability of high performance computer systems, there has been great in-
terest in the development of efficient implementations of the singular value
decomposition, in general. In applications such as information retrieval ([12],
[8]), the data matrix whose SVD is sought is usually large and sparse. It is
this particular case that motivated the original Fortran-77 SVDPACK library
[5]. SVDPACKC is a more portable ANSI C implementation of SVD meth-
ods which can be used to determine singular values and singular vectors of
large sparse matrices on a variety of machines. SVDPACKC uses Lanczos,
block-Lanczos, subspace iteration, and trace minimization methods for de-
termining several of the largest singular values and corresponding singular
vectors for unstructured sparse matrices arising from practical applications.
Before discussing specific SVDPACKC routines, we make a few definitions,
and review a few of the fundamental characterizations of the SVD.
Without loss of generality, suppose A is a sparse m by n (m > n) matrix
with rank(A) = r. The singular value decomposition (SVD) of A can be
defined as
A=UxvVT, (1)

where UTU = VIV = [, and ¥ = diag(oy,...,0,), o; > 0 for | <37 < r,
o; =0 for 2 > r+1. The first r columns of the orthogonal matrices U and V'
define the orthonormalized eigenvectors associated with the r nonzero eigen-
values of AAT and AT A, respectively. The singular values of A are defined
as the diagonal elements of ¥ which are the nonnegative square roots of the
n eigenvalues of AAT. The set {u;,o;,v;} is called the i-th singular triplet.
The singular vectors (triplets) corresponding to large (small) singular values
are called large (small) singular vectors (triplets). The development of SVD-
PACKC was primarily motivated by the following problem:

Giiven the sparse m X n matrix A and p < n, determine the p-largest
singular triplets of A as defined by (1).

Introduction 4

To illustrate ways in which the SVD can reveal important information
about the structure of a matrix we state two well-known theorems:

Theorem 1.1 Let the SVD of A be given by (1) and
o1 209220, >0 =-=0,=0,

and let R(A) and N(A) denote the range and null space of A, respectively,
then

1. Rank property: rank(A) =r, N(A) = span{v,41, -+ 0.},
and R(A) = span{uy, -+ ,u,}, where U = [ug uz -+ up] and V =
[v1 Vg -+ vy,

2. Dyadic decomposition: A = Z w; - o - vl

1
=1
3. Norms: ||A||F = o+ -+ + 02, and || A3 = ;.

The rank property, perhaps one of the most valuable aspects of the SVD,
allows us to use the singular values of A as quantitative measures of the
qualitative notion of rank. The dyadic decomposition, which is the rationale
for data reduction or compression in many applications, provides a canon-
ical description of a matrix as a sum of r rank-one matrices of decreasing
importance, as measured by the singular values. The three results in Theo-
rem 1.1 can be combined to yield the following quantification of matrix rank
deficiency (see [18] for a proof):

Theorem 1.2 [Eckart and Young]| Let the SVD of A be given by (1) with
r = rank(A) < p=min(m,n) and define:

k
Ak:Zui-ai-viT with k <r
=1
then

min (A= Bl = A= A} = ot + o 40}

Applications 5

This important result, which indicates that Ay is the best rank-£ approx-
imation (in a least squares sense) to the matrix A, is the basis for concepts
such as data reduction and image enhancement. In fact, Ay is the best ap-
proximation to A for any unitarily invariant norm ([24]). Hence,

min 4= Bl = |4 = Al = 7.

In the next section, we illustrate the applicability of Theorem 1.2 to
problems in information retrieval which motivated the development of SVD-
PACKC. In Section 3, we present two pairs of Lanczos-based routines, (lasl,
las2) and (blsl, bls2), and two pairs of subspace iteration-based routines,
(sisl, sis2) and (tmsl, tms2), for solving equivalent sparse symmetric eigen-
value problems. A script-based user interface for SVDPACKC, which can
be used for test and production runs, is described in Section 4, and in Sec-
tion 5, we illustrate the performance of SVDPACKC on a few workstations
using sparse matrices collected from Apple Computer Inc. in information
retrieval applications. We conclude with a brief list of future enhancements

to SVDPACKC in Section 6.

2 Applications

Sparse linear least squares problems naturally arise in many real-world ap-
plications. The use of the sparse SVD to solve such problems is of current
interest to researchers in fields such as query-based information retrieval and
seismic reflection tomography. In this section we will briefly focus on the
use of SVDPACKC relative to information retrieval models. See [4] for a
discussion of the role SVD plays in seismic tomography applications.

In [8] and [12] a new approach to automatic indexing and retrieval is
discussed. It is designed to overcome a fundamental problem that plagues
existing information retrieval techniques that try to match words of queries
with words of documents. The problem is that users want to retrieve on the
basis of conceptual topic or meaning of a document. There are usually many
ways to express a given concept (synonymy), so the literal terms in a user’s
query may not match those of a relevant document. In addition, most words
have multiple meanings (polysemy), so terms in a user’s query will literally
match terms in irrelevant documents.

Applications 6

The proposed latent semantic indexing (LSI) approach tries to overcome
the problems of word-based access by treating the observed word to text-
object association data as an unreliable estimate of the true, larger pool of
words that could have been associated with each object. It is assumed there
is some underlying latent semantic structure! in word usage data that is
partially obscured by the variability of word choice. Using the SVD defined
in (1), we can estimate this latent structure and remove the obscuring noise.

Specifically, for an m x n term-document matrix A whose m rows and n
columns (m > n) correspond to terms and documents, respectively, we seek
the closest (in a least squares sense) rank-k (k < n) matrix

k
Ak:Zui-ai-viTwithk<r, (2)
i=1

given by Theorem 1.2. The idea is that the matrix A captures the major
associational structure in the matrix and removes the noise. Since relatively
few terms are used as referents to a given document, the rectangular matrix
A = [ai;] is quite sparse. The matrix element «;; indicates the frequency
in which term ¢ occurs in document j. As discussed in [13], each raw term
frequency is usually modified using a sophisticated weighting scheme (e.g.,
entropy weighting) which takes into account the distribution of terms over
documents. Hence, the matrix element a;; may be either an integer or a
rational number. Depending upon the size of the database from which the
term-document is generated, the matrix A can have several thousand rows
and slightly fewer columns. Table 1 lists a few statistics of ten sample sparse
term-document matrices that have been generated®. We note that y, and p.
are the average number of nonzeros per row and column, respectively. The
Density of each sparse matrix listed in Table 1 is defined to be the ratio

(Rows x Columns) / (Nonzeros).
By using the reduced model in (2), usually with & = an (a <.01), minor
differences in terminology are virtually ignored. Moreover, the closeness of
objects is determined by the overall pattern of term usage, so documents

! Semantic structure refers to the correlation structure in the way in which individual
words appear in documents; semantic implies only the fact that terms in a document may
be taken as referents to the document itself or to its topic.

2Special thanks to Sue Dumais from Bell Communications Research (Bellcore), Morris-
town, NJ, and Dulce Ponceleon from Apple Computer Inc., Cupertino, CA for providing
all term-document matrices mentioned in this document.

Applications 7

Data | Source | Columns | Rows | Nonzeros | Density | p. Ly

ADI | Bellcore 82 374 1343 438 | 16.0 | 4.0
APP1 | Apple 44 | 3206 7722 0.05|175.5 | 24
APP2 | Apple 294 | 1472 13442 0.03 | 45.7] 9.1
CISI | Bellcore 1460 | 5143 66340 0.88 | 45.4]12.9
CRAN | Bellcore 1400 | 4997 78942 1.10 | 56.4 | 15.8
MED | Bellcore 1033 | 5831 52012 0.86 | 50.4| 8.9
MAG | Bellcore 425 | 10337 80888 1.80 | 190.3 | 7.8
TECH | Bellcore 6535 | 16637 327244 0.30 | 50.0 | 20.0
NEWS | Bellcore 19660 | 35796 | 1879480 0.02 | 95.6 | 50.0
ENCY | Bellcore 25629 | 56530 | 2843956 0.002 | 110.9 | 50.3

Table 1: Sample sparse term-document matrix specifications.

can be classified together regardless of the precise words that are used to
describe them, and their description depends on a consensus of their term
meanings, thus dampening the effects of polysemy. As a result, terms that
do not actually appear in a document may still be used as referents, if that
is consistent with the major patterns of association in the data. Position in
the reduced space (R(Ay)) then serves as a new kind of semantic indexing.

As discussed in [3] and [8], LSI using the sparse SVD can be more robust
and economical than straight term overlap methods. However, in practice,
one must compute at least 100-200 largest singular values and corresponding
singular vectors of sparse matrices having similar characteristics to those
matrices in Table 1. In addition, it is not necessarily the case that rank(A)
= n for the m x n term-document matrix A, this is due to errors caused
by term extraction, spelling, or duplication of documents. Regarding the
numerical precision of the desired singular triplets for LSI, recent tests using
a few of the databases listed in Table 1 have revealed that the i-th residual,
7;, corresponding to the i-th approximate singular triplet, {u;, &;,;}, need
only satisfy

107 < ||l <1072,

Algorithms 8

where ||7;]|2 is defined by

I7ill2 = [(1AD: — satill3 + | AT — Geol3)2] / [llal3 + llo:13)7 -

Finally, as the desire for using LSI on larger and larger databases or archives
grows, fast algorithms for computing the sparse singular value decomposition
will become of paramount importance.

3 Algorithms

Before presenting algorithms for computing the sparse singular value decom-
position, we note that classical methods for determining the SVD of dense
matrices: the Golub-Kahan-Reinsch method ([15], [18]) and Jacobi-like SVD
methods ([2], [20]) are not optimal for large sparse matrices. Since these
methods apply orthogonal transformations (Householder or Givens) directly
to the sparse matrix A, they incur excessive fill-in and thereby require tremen-
dous amounts of memory. Another drawback to these methods for computing
the SVD of dense matrices is that they will compute all the singular triplets
of A, and hence may be computationally wasteful when only a subset of
singular triplets are desired.

There are two canonical sparse symmetric eigenvalue problems which can
be used to (indirectly) compute the sparse singular value decomposition. In
this section, we present various iterative methods which can be applied to
these sparse symmetric eigenvalue problems.

3.1 Equivalent Eigenvalue Problems

Associated with an mxn (m > n) matrix A is the symmetric (m+n)x(m-+n)

B:(gwg). (3)

If rank(A) = n, it can be easily shown that the eigenvalues of B are the n

matrix

pairs, +o;, where o; is a singular value of A, with (m — n) additional zero
eigenvalues if m > n. The multiplicity of the zero eigenvalue of B is m+n—2r,
where r=rank(A). The following Lemma (see [7] for proof) demonstrates how
the SVD of A is generated from the eigenvalues and eigenvectors of the the
matrix B in (3).

Equivalent Eigenvalue Problems 9

Lemma 3.1 Let A be an m X n (m > n) matriz and B defined by (3).

1. For any positive eigenvalue, o;, of B let (u;, vi)T denote a corresponding
eigenvector of norm /2. Then o; is a singular value of A and u;, v;
are respectively, left and right singular vectors of A corresponding to
ag;.

2. For o; = 0, if B has corresponding orthogonal eigenvectors (uj,vj)T
with v; # 0 and u; # 0 for 3 = 1,...t for some t > 1, then 0 is a
singular value of the matriz A, and the corresponding left and right
singular vectors can be obtained by orthogonalizing these u; and v,
respectively. Otherwise, A has full rank, i.e., rank(A) = n.

The numerical accuracy of the i-th approximate singular triplet (a;, &;, ;) as
determined via the eigensystem of the 2-cyclic® matrix B (provided A > 0)
is then determined by the norm of the eigenpair residual vector r; defined as

Irillz = [[1B s, 8)" = Gelaie,)" Nl2] / [Naalld + N:l13]*
which can also be written as
Irilla = [(1AD: — a3 + |40 — oal1D)2] / [laal3 + el - (4)

Alternatively, we may compute the SVD of A indirectly by the eigen-
pairs of either the n x n matrix AT A or the m x m matrix AAT. Lemma
3.2 illustrates the fundamental relations between these symmetric eigenvalue

problems and the SVD.
Lemma 3.2 Let A be an m X n (m > n) matriz with rank(A) = r.

1. If'V = {vg,0q,...,0.} are linearly independent n X 1 eigenvectors of
ATA so that VI(ATA)WV = diag(o?,02,...,0%0,...,0), then o; is the

1-th nonzero singular value of A corresponding to the right singular
vector v;. The corresponding left singular vector, u;, is then obtained
as u; = iAvi.

3A non-negative irreducible matrix B which is 2-cyclic has 2 eigenvalues of modulus
p(B), where p(B) is the spectral radius of B. See Definition 2.2 on page 35 in [34].

Subspace Iteration (sisl, sis?) 10

2. If U = {uy,uq, ..., u.} are linearly independent m x 1 eigenvectors of

AAT so that UT(AATU = diag(o},02,...,02,0,...,0), then o; is the i-

th nonzero singular value of A corresponding to the left singular vector

u;. The corresponding right singular vector, v;, is then obtained as

vV, = U%ATUZ'.
Computing the SVD of A via the eigensystems of either AT A or AAT may
be adequate for determining several of the largest singular triplets of A, but
the loss of accuracy can be severe for the smallest singular triplets (see [7]).
Whereas the smallest and largest singular values of A are the extremes of the
spectrum of AT A or AAT, the smallest singular values of A lie at the center
of the spectrum of B in (3). For computed eigenpairs of ATA and AAT, the
norms of the i-th eigenpair residuals (corresponding to (4)) are given by

7l = || AT Ad; — &204]|2 / ||9ll2

and
rilla = [|AAT @ — 7|2 / Nl

respectively. Thus, extremely high precision in computed eigenpairs may
be necessary to compute the smallest singular triplets of A. Difficulties in
approximating the smallest singular values by any of the three equivalent
symmetric eigenvalue problems are discussed in [3]. The naming convention
of each SVDPACKC program specfies both the algorithm and the type of
equivalent eigensystem used to approximate singular triplets. Specifically,
all possible entries for the three fields of the four character SVDPACKC root
filename MMTE are given in Table 2. The contents of all binary output files
are listed in Appendix C, Section 10. In the following subsections, we briefly
describe the eight SVDPACKC routines which can be used to approximate
the singular triplets of large sparse matrices. Details of each sparse iterative
method implemented in SVDPACKC are presented in [4].

3.2 Subspace Iteration (sisl, sis2)

Subspace iteration is perhaps one of the simplest algorithms used to solve
large sparse eigenvalue problems. As discussed in [26], it can be viewed as
a block generalization of the classical power method. The simplest version

Subspace Iteration (sisl, sis?) 11

MMTE[. c]
Field Description Possible Entries
MM Method bl = Block Lanczos
(Algorithm) la = Single Vector Lanczos

si = Subspace Iteration
tm = Trace Minimization

T File Type d = Documentation File
p = Input Parameters File
o = Output File
s = Source File
E Eigensystem 1 = Cyclic Matrix B defined by (3)
or 2 = AT A Matrix
Output Channel from | (for comparison purposes)

SVDPACK (Fortran-77) | 2,3,8,9 = Output Channel

Table 2: SVDPACKC program naming convention.

of subspace iteration was introduced by Bauer ([1]) and if adapted to the
matrix B in (3) would involve forming the sequence

Zr = B*Z, |

where Zy = [z1,29,-++,2;5] is an (m + n) x s. If the column vectors, z;, are
normalized separately (as done in the power method), then these vectors will
converge to the dominant eigenvector of B. Thus, the matrix Z; will progres-
sively lose the linear independence of its columns. In order to approximate
the p-largest eigenpairs of B, Bauer demonstrated that linear independence
among the z;’s could be maintained if they were orthogonalized at each step,
say by a modified Gram-Schmidt procedure. However, the convergence rate
of the z;’s to eigenvectors of B would only be linear.

The sophisticated implementation of subspace iteration used in sisl and
sis2 is based on Rutishauser’s ritzit program (see [28]). This particular al-
gorithm incorporates both a Rayleigh-Ritz procedure and acceleration via
Chebyshev polynomials. The iteration which embodies the ritzit program is
given in Table 3. The Rayleigh Quotient matrix, Hy, in step (3) is essentially
the projection of B* onto the span(Z;_;). The three-term recurrence in step

Subspace Iteration (sisl, sis?) 12

(6) follows from the adaptation of the Chebyshev polynomial of degree ¢, say
T,(x), to the interval [—e, €], where e is chosen to be the smallest eigenvalue
of Hk

The primary cost of sisl and sis2 (as with all SVDPACKC routines) lies
in the total number of sparse matrix-vector multiplications required. If s > p
vectors, z;, are used to approximate the p-largest eigenvectors of the (m +
n) x (m + n) matrix B, the cost in floating-point operations per iteration
would be

s % 201+ pr)m 4 2(1 + pe)n] (5)

where p, and p. are the average number of nonzeros per row and column,
respectively. In SVDPACKC, the multiplication of a vector by the matrices A
and AT is determined by subroutines opa and opat, respectively. Subroutine
opb multiplies a vector by the matrix B, which may be given by (3) or ATA
(with possibly a diagonal perturbation or shift).

(1) Compute C, = BZ;_

(2) Factor Cy = QiR

(3) Form Hj = RLR!

(4) Factor Hy = PAIPT

(5) Form Zk = QkPk

(6) Tterate Zk_|_]‘ == % BZk-|—j—1 — Zk_|_]‘_2
=29

Table 3: Subspace iteration as implemented in sisl and sis2.

The orthogonal factorization in step(2) of Table 3 is computed by a mod-
ified Gram-Schmidt procedure. On multiprocessor architectures (especially
those having hierarchical memories), one may achieve high performance (with
a slight increase in the total number of arithmetic operations) by using ei-
ther a block Gram-Schmidt or block Householder orthogonalization method
in step(2). As discussed in [14], significant improvements in the algorithmic
performance of fundamental linear algebra kernels may be gained through
the improved data locality associated with block-based methods. For the
spectral decomposition step (4), larger subspaces, an optimized implementa-

tion of the classical EISPACK ([32]) pair, TRED2 and TQL2. On parallel

Subspace Iteration (sisl, sis?) 13

computers, Cuppen’s algorithm as parallelized by Dongarra and Sorensen
([10]) would be effective for step (4).

3.2.1

Input Parameters

The input parameters for sisl.c and sis2.c are read from the parameter files
sipl and sip2, respectively. These files should contain the following six fields

of constants and switches on a single line:

<name> em numezxtra km eps v

where

<name> is a string defining the name of the dataset.
em is an integer specifying the number of desired triplets.

numeztra is an integer specifying the number of extra vectors to carry
so that the subspace dimension is em + numextra.

km is an integer specifying the maximum number of iterations.

eps is a double specifying the residual tolerance for approximated sin-
gular triplets.

v contains the string TRUE or FALSE to indicate when singular vectors
are needed (TRUE) and when only singular values are needed (FALSE).

As an example,

’belladit’ 10 4 150 1.e-6 TRUE

indicates that the dataset belladit contains the input sparse matrix whose

10-largest singular triplets are sought to 107° accuracy using a subspace

dimension of 14 for no more than 150 iterations.

Trace Minimization Method (tmsl, tms2) 14

3.2.2 User-Defined Routines

For all SVDPACKC programs, the actual sparse matrix is always read from
a file called matrix. You must make sure that this file stores the sparse ma-
trix using an appropriate format such as the Harwell-Boeing sparse matrix
format [11] (see Appendix B, Section 9). All the iterative methods imple-
mented in SVDPACKC do not modify the input matrix A, which is only
referenced through matrix-vector multiplication. For subspace iteration, we
provide opb() and opa() which perform different sparse matrix-vector muli-
tiplications. Table 4 lists these kernels, and where appropriate, their specific
function in each implementation. Note that « is chosen so that B is positive
definite.

‘ code H opb() ‘ opa() ‘
: I A
sisl ||y = l flT ol] x -
sis2 ||y = AT Ax y = Ax

Table 4: Matrix-vector multiplication kernels for sisl and sis2.

In the next section, we discuss an alternative subspace method which
would appear to be more suitable for multiprocessors than subspace iteration
in that the desired singular triplets are iterated upon (for the most part) in
parallel.

3.3 Trace Minimization Method (tmsl, tms2)

Another candidate subspace method for the SVD of sparse matrices is based
upon the trace minimization algorithm discussed in [30] and [37] for the
generalized eigenvalue problem

Hr = \Gx | (6)

Trace Minimization Method (tmsl, tms2) 15

where H and (G are symmetric and G is also positive definite. In order to
compute the SVD of an m x n matrix A, we initially replace H with B, where

B (20))

is positive definite, or set H = ATA. Since we need only consider equiv-

~ is chosen so that

alent standard symmetric eigenvalue problems (see Section 3.1), we simply
define G = I,,4, (or I, if H = AT A). Accordingly, our appropriate trace
minimization SVD scheme is then based upon the following theorem which
is a direct consequence of the Courant-Fischer theorem (see [35]). Without
loss of generality, let us assume that H = B, G = m+n and consider the
associated symmetric eigensystem of order m + n (tmsl).

Theorem 3.1 Let B be as given in (7) and let Y be the set of all (m+n) x p
matrices Y for which YTY = I,. Then

P
intrace(YTBY) = py — Y. o
min trace() =py ;a ,
where o; is a singular value of A, \; = v+ o; is an eigenvalue of B, and
012092 ...2 0p.

Given an (m + n) x p matrix Y which forms a section of the eigenvalue
problem

Bz =)z, (8)

le.,
YIBYy =% vy =1, , (9)
S = diag(61, 52, . 6p)
tmsl finds a sequence of iterates Y41 = F(Y%), whez’e both Y} and Yi14 Nform
a section of (8), and have the property trace(Y, BY;11) < trace(Y,! BY}).
From Theorem 3.1, the matrix Y in (9) which minimizes trace(YTBY) is
the matrix of B-eigenvectors associated with the p-smallest eigenvalues of
the problem (8). As discussed in [30] and [37], F'(Y) can be chosen so that
global convergence is assured. Moreover, (8) can be regarded as the quadratic
minimization problem

minimize trace(YTBY) (10)

Trace Minimization Method (tmsl, tms2) 16

subject to the constraints

Yy =1, . (11)

Using Lagrange multipliers, this quadratic minimization problem leads to
solving the (m 4+ n + p) x (m + n + p) system of linear equations

L) 0= &

so that Yy11 = Vi — ANk will be an optimal subspace iterate.
Since the matrix B is positive definite (by construction), one can alter-
natively consider the independent (parallel) subproblems

minimize trace((y(k) — d;k))TB(y(k) — d(k))) (13)

J

subject to the constraints
k .
YId =0, j=1,2,....p,

(%)

where djk = Aye;, €; 1s a vector composed of all zeros except for the value

1 in the j-th component, and Y, = [y@,ygk), . .,y]()k)]. The corrections Ay,
in this case are selected to be orthogonal to the previous estimates Y (11),
i.e., so that (see [22])

ALY, =0.
We then recast (12) as

B Y, dF) By .
(Y}cT Ok) (]l = :(y)] 7]:1727---7}77 (14)

where 2[is a vector of order p reflecting the Lagrange multipliers.

The solution of the p systems of linear equations in (14) can be done in
parallel by either a direct or iterative solver. Since the original matrix A is
assumed to be large, sparse, and without any particular sparsity structure
(pattern of nonzeros) we use an iterative method (conjugate gradient) within
tmsl and tms2.

Trace Minimization Method (tmsl, tms2) 17

3.3.1 Polynomial Acceleration Technique (tms2)

The Chebyshev acceleration strategy used within subspace iteration (see Sec-
tion 3.2) is also used in tms2. However, to dampen unwanted singular values
of A in this context we must solve the generalized eigenvalue problem (as
opposed to (8))
1
Py(A)

where P,(z) = T,(x) + €ln4n, T,(x) is the Chebyshev polynomial of degree
q, and ¢ is chosen so that P,(ATA) is (symmetric) positive definite. The
appropriate quadratic minimization problem similar to (13) for (15) can be

P (AT Az (15)

Tr =

expressed as

minimize trace((y(k) — d(k))T(y(k) — d('k))) (16)

J J

subject to the constraints
YTP, AT =0, j=1,2,....p.

In effect, we then approximate the smallest singular values of A (or eigenval-
ues of B) as the largest eigenvalues of the matrix P,(ATA) whose gaps are
considerably larger than those of the eigenvalues of AT A.

Although the additional number of sparse matrix-vector multiplications
associated with the multiplication by P,(ATA) will be significant for high
degrees ¢, the system of equations via Lagrange multipliers in (14) becomes
much easier to solve, i.e.,

I P, (AT A)Y;, AP\ (Y
(i/kTPq(ATA) 0 Jl - 6 7]—1,2,---,}7- (17)

(k+1)

It is easy to show that the updated eigenvector approximation, y;" ", is

determined by
g =y —d = Py (AT A VT PHAT AT VIR (AT AR
Thus, we need not employ the use of an iterative solver for determining

Yi11 since the matrix {YkTPqQ(B)Yk} - is of order p and using the orthogonal

factorization

Pq(ATA)i/k = Qé)

Trace Minimization Method (tmsl, tms2) 18

we have

Y PAAT Y] = TR

q

The control of the polynomial degree, g, is determined by the strategy
discussed in [28] and [3] for damping the unwanted singular values of A which
correspond to a particular choice for H in (6). We note that tms2 with the
choice H = AT A can be used to approximate the p-smallest singular values
of A, whereas the choice H = 21 — AT A (y any least upper bound for 7,,,,)
will enable tms2 to approximate the p-largest singular values of A. tmsl,
which determines the eigensystem of the matrix Bin (7), does not currently
employ polynomial acceleration.

3.3.2 Shifting Strategy (tmsl, tms2)

As discussed in [30], we can also accelerate the convergence of the Y}, to eigen-
vectors of B (and hence singular vectors of A) by incorporating Ritz shifts
(see [26]) into both tmsl and tms2. Specifically, we modify the symmetric
eigenvalue problem in (8) as

(B—v D)z =\ — i)z =12, (18)

where V](k) = &;k) is the j-th approximate eigenvalue (9) from the k-th TRSVD
iteration, and A, z; are an exact eigenpair of B. In other words, we simply
use our most recent approximations to the eigenvalues of B from our k-th
iteration as Ritz shifts. As was shown by Wilkinson in [36], the Rayleigh quo-
tient iteration associated with (18) will ultimately achieve cubic convergence

to v —o;, where o; is an exact singular value of A, provided 0

J
close to v — o;. However, since we have V](k+1) < V](k) for all k& (see Theorem

is sufficiently

3.1), i.e., we approximate eigenvalues of B from above, B — V](k)[will not
be positive definite and thus we cannot guarantee the convergence of this
shifted method for any particular singular triplet 7. However, the strategy
outlined in [4] has been quite successful in maintaining global convergence
with shifting.

The logic of tms2 which appropriately utilizes polynomial (Chebyshev)
acceleration prior to Ritz shifting is outlined in [4]. It is important to note
that once shifting has been invoked (Step (4)) tms2 abandons the use of
Chebyshev polynomials Pq(B) and solves shifted systems (B replaced by B—

Trace Minimization Method (tmsl, tms2) 19

V](k)[) of the form in (12). The context switch from either non-accelerated or
polynomial-accelerated trace minimization iterations to trace minimization
iterations with Ritz shifting is accomplished by monitoring the reduction of
the residuals (4) for isolated eigenvalues or clusters of eigenvalues (see [4]).

(k)

For an isolated eigenvalue approximation &;", which is detected say after
ko tms2 iterations, we monitor succeeding iterations (k > kq), and determine

if the norm of the current residual (Hr;k)Hg) is less than a chosen order of

magnitude (n = 1077, for a small integer ¢) of Hr;kO)HQ. Thus, the parameter
n serves as our control for the context switch from polynomial-based acceler-
ation to shift-based acceleraton. The value of n will naturally depend upon
the desired accuracy of the singular triplets sought, since we would like to
produce suitable shifts (1] = 7,) for fast convergence of yj to an eigenvector
of B. For most problems considered thus far, optimal convergence rates can
be obtained with = 107!, 10°.

3.3.3 Input Parameters

The input parameters for tmsl.c and tms2.c are read from the parameter files
tmpl and tmp2, respectively. These files should contain the following eight
fields of constants and switches on a single line:

<name> p s job tol red v maxi
where
e <name> is a string defining the name of the dataset.
e pis an integer specifying the number of desired triplets.

e sis an integer specifying the dimension of the subspace to use.

job is an integer specifying the type of acceleraton to be used.

gob = 0: No acceleration strategy used.
job = 1: Ritz-shifting used.
jgob = 2: Chebyshev polynomials and Ritz-shifting used.

tol is a double specifying the residual tolerance for approximated sin-
gular triplets.

Trace Minimization Method (tmsl, tms2) 20

e red is a double specifying the residual reduction factor to initiate Ritz-
shifting (when job = 1,2).

e v contains the string TRUE or FALSE to indicate when singular vectors
are needed (TRUE) and when only singular values are needed (FALSE).

e maxi is an integer specifying the maximum number of iterations.
As an example,
’belladit’ 10 12 1 1.e-6 1.0e0 TRUE 80

indicates that the dataset belladit contains the input sparse matrix whose
10-largest singular triplets are sought to 107¢ accuracy using a subspace
dimension of 12 for no more than 80 trace minimization iterations. Ritz-
shifting acceleration is used and all residual errors for clustered or isolated
approximate singular values must be a factor of 1.0e0 smaller than their
initial residual errors prior to Ritz-shifting.

3.3.4 User-Defined Routines

For trace minimization, we provide opb() and opat() which perform the
sparse matrix-vector mulitiplications listed in Table 5.

‘Code H opb() ‘ opat() ‘

tmsl y:[XT gl]:z; y= ATz

tms2 ||y = AT Ax y= ATz

Table 5: Matrix-vector multiplication kernels for tmsl and tms2.

Single-Vector Lanczos Method (lasl, las?) 21

3.4 Single-Vector Lanczos Method (lasl, las2)

Other popular methods for solving large, sparse, symmetric eigenproblems
originate from a method attributed to Lanczos (1950). This method gen-
erates a sequence of tridiagonal matrices T with the property that the ex-
tremal eigenvalues of the j x j matrix 7} are progressively better estimates
of the original matrix B’s extremal eigenvalues. Suppose we consider the
(m+n) x (m+n) 2-cyclic matrix B given in (3), where A is the m X n ma-
trix whose singular triplets are sought, and let v; be a randomly generated
starting (m + n) x 1 vector such that ||vi]lz = 1. For j = 1,2,...,1 define
the corresponding Lanczos matrices T; using the following recursion ([25]).
Define 3; = 0, and vg = 0. Then, for ¢ = 1,2, ...,[define Lanczos vectors w;
and scalars «; and 3,41 where

ﬁi-l-lwi-l-l = Bwi — oWw; — ﬁiwi_l 5 and (19)
o; = wl (Bw; — Bav;_y)

|Bit1] = ||Bw; — ciw; — Biwi—q]]2 -

For each 7, the corresponding Lanczos matrix 7} is defined as a real symmet-
ric, tridiagonal matrix having diagonal entries a; (1 < ¢ < j), and subdiago-
nal (superdiagonal) entries G411 (1 <0< (j — 1)), i.e.,

ay P
B2 a2 B3
T; = S : (20)
Bj
Bj oy

By definition, the vectors a;w; and B;w;_; in (19) are respectively, the or-
thogonal projections of Bw; onto the most recent w; and w;_;. Hence for
each 7, the next Lanczos vector w;;4 is obtained by orthogonalizing Bw,; with
respect to w; and w;_y. The resulting «;, 3,11 obtained in these orthogonal-
izations define the corresponding Lanczos matrices. If we rewrite (19) in
matrix form, then for each j we have

BW; = WiT; + Biniwine; (21)
where W, = [wy, ws, ..., w;] is the n x j matrix whose k-th column is the k-th

Lanczos vector, and ejT is the j-th column of the n x n identity matrix. Thus,

Single-Vector Lanczos Method (lasl, las?) 22

the Lanczos recursion (21) generates a family of real symmetric tridiagonal
matrices related to both B and w;. Table 6 outlines the basic Lanczos
procedure for computing the eigenvalues and eigenvectors of the symmetric
2-cyclic matrix B.

(1) Use any variant of the Lanczos recursion (19) to generate
a family of real symmetric tridiagonal matrices, T} (j = 1,2, ..., q).
(2) For some k < ¢, compute relevant eigenvalues of Tj.
(3) Select some or all of these eigenvalues as approximations to the
eigenvalues of the matrix B, and hence singular values of A.
(4) For each eigenvalue A compute a corresponding unit eigenvector
z such that Tyz = Az. Map such vectors into corresponding
Ritz vectors y = W,z, which are then used as approximations
to the desired eigenvectors (singular vectors) of the matrix B (A).

Table 6: Single-vector Lanczos recursion used in lasl and las2.

As with the previous SVDPACKC methods, the matrix B is only refer-
enced through matrix-vector multiplication in Table 6. At each iteration,
the basic Lanczos recursion requires only the two most recently-generated
vectors, although for finite-precision arithmetic modifications suggested by
Parlett and Scott [27], and Simon [31] require additional Lanczos vectors to
be readily accessible via secondary storage.

In one sense, the Lanczos procedure can be viewed as the Gram-Schmidt
orthogonalization of the set of Krylov vectors wy, Bwy, ..., B¥'w,. Alterna-
tively, span {W;} is a Krylov subspace for the matrix B, and the Lanczos
procedure is a mechanism for generating orthonormal bases for these Krylov
subspaces and for computing the orthogonal projection of B onto these sub-
spaces. Computing the eigenvalues of the T}’s is equivalent to computing the
best approximations to the eigenvalues and eigenvectors of B restricted to
the corresponding Krylov subspaces. The accuracy of these approximations
have been studied in detail by Kaniel ([21]) and more recently by Saad (][29]).
Saad improved the original error bounds of Kaniel, however, but these re-
sults still indicate deterioration of accuracy of the computed eigenvalues and

Single-Vector Lanczos Method (lasl, las?) 23

of the corresponding Ritz vectors as we move to the interior of the spectrum
of B.

In using finite-precision arithmetic, any practical Lanczos procedure must
address problems created by losses in the orthogonality of the Lanczos vec-
tors, w;. Such problems include the occurrence of numerically-multiple eigen-
values of T} (for large j) for simple eigenvalues of B, and the appearance
of spurious eigenvalues among the computed eigenvalues for some T;. Ap-
proaches to deal with these problems range from two different extremes.
The total reorthogonalization of every Lanczos vector with respect to ev-
ery previously-generated Lanczos vector is one extreme ([16]). The other
approach accepts the loss in orthogonality and then deals with these prob-
lems directly. Regarding storage requirements, supercomputers such as the
CRAY-25/4-128 with 128 megawords (1024 million bytes) of core memory
may be sufficient for most Lanczos recursions requiring total reorthogonaliza-
tion (for m x n matrices in which mn < 107). On the other hand, a Lanczos
procedure with no reorthogonalization needs only the two most recently-
generated Lanczos vectors at each stage, and hence has minimal computer
storage requirements. Such a procedure must track (see [7]) the spurious
eigenvalues of B (singular values of A) associated with the loss of orthogo-
nality in the Lanczos vectors, w;.

lasl and las2 implement a single-vector Lanczos algorithm (19) equipped
with a selective reorthogonalization strategy. Both programs evolved from
the LANSO program (Version 1, April 1989) designed by Parlett and his col-
leagues at The University of California at Berkeley ([27], [31]). The original
LANSO program was primarily designed for the standard and generalized
symmetric eigenvalue problem. lasl and las2are adaptations of LANSO when
eigensystems of the 2-cyclic matrix B defined in (3) and B = AT A, respec-
tively, are desired.

3.4.1 Input Parameters

The input parameters for lasl.c and las2.c are read from the parameter files
lapl and lap2, respectively. These files should contain the following seven
fields of constants and switches on a single line:

<name> lanmazx mazprs endl endr vectors kappa

where

Block Lanczos Method (blsl, bls2) 24

e <name> is a string defining the name of the dataset.

o [anmax is an integer specifying the maximum number of Lanczos iter-
ations allowed.

e maxprs is an integer which indicates the number of singular triplets of
A (eigenpairs of the equivalent matrix B) desired.

o endl endr are integers specifying the two end-points of an interval within
which all unwanted eigenvalues of the particular matrix B lie.

e vectors contains the string TRUE or FALSE to indicate when singular
triplets are needed (TRUE) and when only singular values are needed
(FALSE).

e kappa is a double containing the relative accuracy of Ritz values ac-
ceptable as eigenvalues of the matrix B.

As an example,
'belladit’ 50 10 -1.e-30 1.e-30 TRUE 1.0e-6

indicates that the dataset belladit contains the input sparse matrix whose
10-largest singular triplets are sought to 107¢ accuracy using a Krylov sub-
space of dimension less than or equal to 50. Here we also suppress the extrac-
tion of (computationally) zero Ritz values in the interval [—107%°, 1073].

3.4.2 User-Defined Routines

For our single-vector Lanczos programs, we provide opb() and opa() which
perform the sparse matrix-vector mulitiplications listed in Table 7.

3.5 Block Lanczos Method (blsl, bls2)

As subspace iteration is the block generalization of the classical power method
for computing eigenpairs, we now consider a block analogue of the single
vector Lanczos recursion given in (19). Exploiting the structure of the matrix
B in (3), the following Lemma presents an alternative form for the Lanczos
recursion (19).

Block Lanczos Method (blsl, bls2) 25

‘ code H opb() ‘ opa() ‘
0 A
lasl ||y = l AT g] x -
las2 ||y = AT Az y = Ax

Table 7: Matrix-vector multiplication kernels for lasl and las2.

Lemma 3.3 Let A be an m xn (m > n) matriz and B defined by (3). Apply
the Lanczos recursion specified by (19) to B with a starting vector u = (u,0)"
such that ||t||z = 1. Then the diagonal entries of the real symmetric tridi-
agonal Lanzcos matrices generated are all identically zero, and the Lanzcos
recursion in (19) reduces to the following. Define u; = u, vo =0, and 31 = 0.
For1=1,2,....k we then obtain the Lanczos recursions

Baivi = ATu; — Boiqviy

22
Baiyitipr = Av; — Bosu; . (22)

The Lanczos recursion (22), however, can only compute the distinct singular
values of an m x n matrix A and not their multiplicities.

Following the block Lanczos recursion for the sparse symmetric eigenvalue
problem ([33], [19]), (22) may be represented in matrix form as

A", = i+ 2
AV = Updy + Zi, (23)

where U, = [wr, -« ugl, Vi, = [v1, -+, vk], Ji is a k x k bidiagonal matrix
with Ji[j,7] = B2; and Ji[j,J + 1] = Baj41, and Zg, 7, contain remainder
terms. It is easy to show that the nonzero singular values of .J; are the same
as the positive eigenvalues of

. _ [O J

Block Lanczos Method (blsl, bls2) 26

For the block analogue of (23), we make the simple substitutions
u; < U, v &V,

where U; is m x b, V; is n x b, and b is the current block size. The matrix .J
is now a block upper bidiagonal matrix of order bk

s, RT
S, RT
R
Sk

where the S;’s and R;’s are b x b upper-triangular matrices. If U;’s and V;’s

form mutually orthogonal sets of bk vectors so that U i and \A/k are orthonormal
matrices, then the singular values of the matrix J; will be identical to those
of the original m x n matrix A. In essence, the 2-cyclic matrix K} in (24) is
the projection of the vectors defined by

Uy O

O Vg
onto the Krylov subspace generated by the 2-cyclic matrix B in (3). Given
the upper block bidiagonal matrix Ji, we approximate the singular triplets
of A by first computing the singular triplets of J;. To determine the left

and right singular vectors of A from those of J;, we must retain the Lanczos
vectors in Uy and Vj. Specifically, if {O'Z(k), y(k), Zl(k)} is the i-th singular triplet

of Ji, then the approximation to the i-th singular triplet of A is given by
{O'Z(k), Ukyl(k), ‘A/kzl(k)}, where Ukyl(k), \A/kzl(k) are the left and right approximate
singular vectors, respectively. The computation of singular triplets for Jj
requires two phases. The first phase reduces Ji to bidiagonal form, say By,
where
ar B
az [
B = o , (26)
Bok—1
bk
via a finite sequence of orthogonal transformations (thus preserving the sin-
gular values of Ji). The second phase reduces By to diagonal form by a
modified QR algorithm. This diagonalization procedure is discussed in de-

tail in [18]. The resulting diagonalized By will yield the approximate singular

Block Lanczos Method (blsl, bls2) 27

values of A and the corresponding left and right singular vectors are deter-
mined by products of all the left and right transformations (respectively)
used in both phases of the SVD of J.

There are a few options for the reduction of J; to the bidiagonal matrix,
Bg. Golub, Luk, and Overton in [17] advocated the use of either band House-
holder or band Givens methods which in effect chase off (or zero) elements on
the diagonals above the first super-diagonal of J;,. We note that the algorithm
for diagonalizing By typically requires in excess of 8(bk)? multiplications
(with standard Givens rotations) and thus may dominate any savings in the
reduction to bidiagonal form. In either reduction (bi-diagonalization or diag-
onalization), the computations are primarily sequential and offer limited data
locality or parallelism for possible exploitation on a multiprocessor architec-
ture. For this reason, we adopt the single vector Lanczos bi-diagonalization
recursion by (22) and (23) in blsl for reducing the upper block bidiagonal
matrix J; to bidiagonal form (By), i.e.,

JI'Q = PB],
WP = OBy, (27)
or
Jypj = ajq; + Bic1gi-a
Jla; = ap;+ Bipisr (28)

where P = {p1,p2, ..., pp} and Q= {q1,G2, - - -, o} are orthonormal matri-
ces or order bk x bk and the a;’s and 3;’s are defined by (26). The recursions
in (28) require band matrix-vector multiplications which can be easily ex-
ploited by optimized level-2 BLAS routines ([9]) now resident in optimized
mathematical libraries on most high-performance computers. For orthogo-
nalization of the outermost Lanczos vectors, {U;} and {V;}, as well as the
innermost Lanczos vectors, {p;} and {¢;}, we have chosen to apply a com-
plete or total reorthogonalization ([16]) strategy to insure robustness in our
triplet approximations for the matrix A.

As an alternative to the outer recursion in Table 8, which is derived
from the equivalent eigenvalue in the 2-cyclic matrix B, Table 10 depicts the
simplified outer block Lanczos recursion for approximating the eigensystem
of ATA (bls2). Combining the equations in (23), we obtain

AT AV, = Vi H,,

Block Lanczos Method (blsl, bls2) 28

where Hj, = JkTJk is the k& x k symmetric block tridiagonal matrix

s$1 RT
Ry S RT
_ R2 . .
T
Rk—l
Rp_1 S

having block size b. bls2 applies the block Lanczos recursion ([16]) in Ta-
ble 10 for computing the eigenpairs of the n x n symmetric positive definite
matrix ATA. The tridiagonalization of H) via an inner Lanczos recursion
follows from simple modifications to Table 9. Analogous to the diagonaliza-
tion of By in (25), the computation of eigenpairs of the resulting tridiagonal
matrix in this case can be performed via a QR-based symmetric eigensolver.

(1) [Formation of J]

Choose Vi (n x b and orthonormal) and ¢ = max {bk}.
Compute Wy = AVi. (Py = Uy = 0 initially)
Orthogonalize W, against Uy (i.e., W, = (I — UoUL)W).

For¢=2,3,...,k do: (k= [¢/b])

) Compute Y; = ATU,_; — Vi_15;_4,
) Orthogonalize Y; against {Vj}iZt,
) Factor Y; = V;R,;_1,

) Compute W, = AV, — Ui_lRiT_l,

) Orthogonalize W; against {U,}:Z},
) Factor W; = U, S;.

Table 8: Hybrid Lanczos outer iteration used in blsl.

The conservation of computer memory for blsl and bls2is insured by en-
forcing an upper bound, ¢, for the order (bk) of any Ji, constructed (see Table

Block Lanczos Method (blsl, bls2) 29

(2) [Bidiagonalization of Ji, Formation of By]

Choose p1 (|[p1]l2 = 1),
Compute t, = Jkph oy = HtlH%

Fori=1,2,...,ndo: (R =5bxk)

(while a; # 0) do:

qj = i/,
(2a) Compute z; = JLq; — a;p;, 4
(2b) Orthogonalize z; against {p;}1_,,

ﬁj = HZ]H%

(while 3; # 0) do:

pi+1 = 2/ B,
(2¢) Compute {41 = Jypjr1 — 845,
(2d) Orthogonalize t;41 against {q¢}/_,
it = |[tjsalf2-

Table 9: Hybrid Lanczos inner iteration used in blsl.

8). This technique was suggested by Golub, Luk, and Overton in [17], and
by Cullum and Donath in [6]. Given a block size b (usually b < p, where p
is the desired number of triplets), the number of diagonal blocks, d, for J,
is defined as |¢/b], where |-| denotes truncation of the mantissa. If d < 2,
one may reset b = ¢/2 and then redefine d = [¢/b] so that J, maintains the
block upper bidiagonal form in (25).

As mentioned above, we may compute the SVD of the bidiagonal matrix
By by a modified QR algorithm. Using (27) we may write

B, = QL PT |

so that))
Jy = QQEPTPT |

Block Lanczos Method (blsl, bls2) 30

(1) [Formation of symmetric block tridiagonal matrix Hy]

Choose Vi (n x b and orthonormal) and ¢ = max {bk}.
Compute S; = VI ATAV,. (Vo, RI = 0 initially)

Fori=2,3... k do: (k= [¢/b])

) Compute Yi1 = ATA‘/i—l — Vo151 — ‘/i—lRZT_Qa
) Orthogonalize Y;_; against {V;}iZ},

) Factor Y;_; = V;R;_y,

) Compute S; = VTATAV,.

Table 10: Hybrid Lanczos outer iteration used in bls2.

where ¥ = diag {oy,09,...,0,}, and o; is an approximation to an exact
singular value of the original m x n sparse matrix A. Hence, via (23) ap-
proximations to the i-th left and right singular vectors corresponding to o;
are given by

u; = Uk@@'a
v, = ViPp;i, (30)

where p;, G; are the i-th columns of P, Q, respectively. Suppose that before
restarting the outer iteration in Table 8 we have determined that py singular
triplets are acceptable to a user-supplied tolerance for the residual error de-
fined in (4). Then, we update the values of the block size (b), the maximum
allowable order for Ji (¢), the number of diagonal blocks for J; (d), and the
number of triplets yet to be found (p) as follows:

bnew - bold — Po if b Z Polds (31)
= min {byd , Pora — po} otherwise,
Crew = ©Cold — Po,

Prnew = Pold — Po ,
dnew — Lcnew/bnewj .

Block Lanczos Method (blsl, bls2) 31

All converged left and right singular vector approximations are respectively
stored in matrices Uy and Vj so that

Uo = (U0|ﬂ1,ﬂ2,...,ﬂp0)7

‘/0 = (‘/0|617627"'7ﬁp0) 9

where Uy = V5 = 0 initially (prior to any restart). To estimate the accuracy
of our approximate singular triplets in say iteration [, we may conveniently
estimate the residual (4) for some o by ||yk|2 of Step (la) in Table 8 for
iteration [+1, where y; is the k-th column of the n xb matrix Y;. Hence, at the
start of iteration [4+ 1 we can determine the accuracy of our approximations
from iteration /.

As with the other SVDPACKC methods, blsl and bls2 only access the
sparse matrices A and AT through sparse matrix-vector multiplications. Some
efficiency, however, is gained in the outer (block) Lanczos iterations by the
multiplication of b vectors (Steps (1a), (1b) in Table 8) rather than by a sin-
gle vector. These dense vectors may be stored in a fast local memory (cache)
of any hierarchical memory-based architecture, and thus yield more effective
data reuse. The total reorthogonalization strategy and deflation of converged
singular vector approximations is accomplished in Steps (1b), (le) in Table
8 and Steps (2b), (2d) in Table 9. A stable variant of Gram-Schmidt orthog-
onalization ([28]), which requires efficient dense matrix-vector muliplication
(level-2 BLLAS) routines ([9]), is used to produce the orthogonal projections
of Y (ie., Ri_y) and W; (i.e., S;) onto V*+ and UL, respectively, where
V=W,V,....,Vicy) and U = (Up, Uy,...,Ui_1) .

The convergence of the block Lanczos recursion (23) in the approximation
of the b-largest singular values of the matrix A is analyzed in [3]. Although
the bound in [3] is somewhat tighter than that which was considered by
Underwood in [33] for the symmetric eigenvalue problem, both results clearly
indicate the desire for b (block size) to be chosen so that o; — 0,4, is as large
as possible.

3.5.1 Input Parameters

The input parameters for blsl.c and bls2.c are read from the parameter files
blpl and blp2, respectively. These files should contain the following seven
fields of constants and switches on a single line:

Block Lanczos Method (blsl, bls2) 32

<name> mazxit nc nb nums tol vtf

where

<name> is a string defining the name of the dataset.

maxit is an integer specifying the maximum number of (outer) block
Lanczos iterations allowed.

ne is an integer specifying the upper bound for the Krylov subspace
generated via the outer iteration.

nb is an integer specifying the initial block size for the outer iteration.
nums is an integer specifying the number of singular triplets desired.

tol is a double specifying the residual tolerance for approximated sin-
gular triplets.

vtf contains the string TRUE or FALSE to indicate when singular vectors
are needed (TRUE) and when only singular values are needed (FALSE).

As an example,

’belladit’ 40 60 4 10 1.0e-6 TRUE

indicates that the dataset belladit contains the input sparse matrix whose

10-largest singular triplets are sought to 107° accuracy using a maximum
Krylov subspace dimension of 60 for no more than 40 iterations. The initial
block size to be used is 4. In general, the initial block size should at least be
as large as the greatest multiplicity of any singular value of A.

3.5.2 User-Defined Routines

For our block Lanczos programs, we provide opb (), opa(), and opat () which

perform the sparse matrix-vector mulitiplications listed in Table 11. Note
that the opm() routine performs multiplications of the appropriate matrix B
times a block of dense vectors (X).

SVDPACKC Interface 33

‘code H Opb()‘ opm () ‘ opa() ‘ opat() ‘

blsl - - y=Ar|y= ATz

bls2 ||y =ATAz | Y = ATAX |y = Ax -

Table 11: Matrix-vector multiplication kernels for blsl and bls2.

4 SVDPACKC Interface

Before presenting our SVDPACKC benchmarks in Section 5, we illustrate
how a simple yet effective interface allows users to easily generate a se-
ries of experiments using any or all of the SVDPACKC codes. Using the
UNIX*pattern scanning and processing language, awk, and stream editor,
sed, two scripts (svdrun, svdsum) for executing and tabulating the output of
SVDPACKC programs have been developed. Equivalent versions of svdrun
and svdsum for release 3.3 of the Macintosh Programmer’s Workshop (MPW)
environment on the Macintosh I1/fx are also available.

svdrun is designed to aid in the selection of parameters (see Section 4.2)
for each method, and svdsum produces <input file>.sumn files (where n
is an integer) of tabulated output data for simplified performance compar-
isons. svdrun reads a tabulated set of parameters from a user-specified input
file, and invokes the corresponding SVDPACKC routines. For the input file
svdin, svdsum generates svdin.sumn files from the output files produced
by the individual SVDPACKC runs. As illustrated by the sample svdrun
input file, svdin, in Figure 1, a user can specify a sequence of experiments in
order to (i.) compare the performance of different algorithms on one or more
datasets, or (i1.) determine the effects of parameter choices for a particular
algorithm.

Figures 1 through 3 illustrate (i.) and (¢i.) for the term-document ma-
trix, BELLADIT, provided in the SVDPACKC software distribution package.

4UNIX is a trademark of AT&T Bell Laboratories.

SVDPACKC Workstation Benchmarks 34

Generating several summary files similar to svdin.suml and svdin.sum2
in Figures 2 and 3, respectively, not only allows the user to observe trends
in SVDPACKC performance across machines and/or datasets, but also cre-
ates formal benchmark characterizations for future reference and compari-
son. svdrun is portable to any UNIX-based programming environment with
only modifications (related to the Fortran compiler and its options), and
the svdsum script processes all output files residing in a current or remote
working directory.

5 SVDPACKC Workstation Benchmarks

In this section, we present sample SVDPACKC benchmarks on workstations
such as the Macintosh 11/fx and Sun-4/490. Model SVD problems using the
sparse matrix test suite defined in Table 12 are solved. These benchmarks
illustrate the typical elapsed user CPU time expired by the 8 SVDPACKC
programs when computing several of the largest singular triplets of realsparse
matrices arising from applications such as information retrieval. For all the
experiments reported, we use 64-bit arithmetic and seek triplets whose resid-
uals (4) are no larger than 107%. On both the Macintosh II/fx and Sun-4,/490,
we use the svdrun script (see Section 4) to execute each SVDPACKC pro-
gram on the test suite in Table 12.

5.1 Sparse Matrix Test Suite

The 29 matrices listed in Table 12, which arise from information retrieval and
linear programming applications, were obtained from Apple Computer Inc.,
Cupertino. CA. The first 13 datasets (APPLE1 through WMURRAYC2) are term-
document matrices which can be used for information retrieval applications
(see Section 2). The 16 remaining sparse rectangular matrices were extracted
from a set of linear programming test problems compiled at Stanford Uni-
versity [23]. From Table 12, we can see that all of these matrices are less
than 1% dense. We note that u, and p,. are the average number of nonzeros
per row and column, respectively. The Density of each sparse matrix listed
in Table 12 is defined to be the ratio (Rows x Columns) / (Nonzeros).

Sparse Matrix Test Suite 35

Input file used for SVDRUN script

#
DESCRIPTION OF FIELDS:

#
NUM --> Run number (1,2,3,...).
#
CDE --> SVDPACKC code (i.e. lasl, blsl, las2, bls2, etc.).
#
FNM --> Sparse Matrix datafile (i.e. appl, app2, etc.).
#
MXI --> Maximum number of iterations for method.
#
TRP --> Number of singular triplets desired.
#
SUB --> Maximum subspace dimension.
#
BSZ --> Initial blocksize size (if applicable).
#
ACC --> Accuracy (residual tolerance)
#
VEC --> Compute singular vectors also? (TRUE/FALSE)

#
NUM CDE FNM MXI TRP SUB BSZ ACC VEC
______ —_— —_— —_— —_— —_— —_— —_—
1 lasl appl 200 10 1.0e-6 TRUE
2 las2 appl 44 10 1.0e-6 TRUE
3 blsl appl 200 10 40 2 1.0e-6 TRUE
4 bls2 appl 200 10 40 4 1.0e-6 TRUE
5 lasl app2 200 10 1.0e-6 TRUE
6 las2 app2 200 10 1.0e-6 TRUE
7 blsl app2 200 10 40 2 1.0e-6 TRUE

Figure 1: Sample input file, svdin, used by svdrun script for SVDPACKC
user interface.

Sparse Matrix Test Suite 36

I PROGRAM Il lasi | las2 | blsi | bls2 | sis1

e ——_——— -
I DATASETS Il ’belladit’ | ’belladit’ | ’belladit’ | ’belladit’ | ’belladit’

b m o o e
| FILENAME || belladit.outl | belladit.out2 | belladit.out3 | belladit.out4 | belladit.outb
b m o o e
I DATE Il Feb 19 1993 | Feb 19 1993 | Feb 19 1993 | Feb 19 1993 | Feb 19 1993

| MAX. NO. OF ITERATIONS || 50 | 44 | 80 | 40 | 150

| ORDER OF EIGENSYSTEM || 456 | 82 | 456 | 82 | 456

| ROW DIMENSION OF 4 || 374 | 374 | 374 | 374 | 374

| COLUMN DIMENSION OF 4 || 82 | 82 | 82 | 82 | 82

| AUXILLARY MEMORY (BYTES) || 4.47+05 | 2.34+05 | 622088 | 168688 | 3354784

| WANT S-VECTORS? [T/F1 || T | T | T | T | T

| NO. OF STEPS/ITERATIONS || 50 | 44 | 5 | 20 | 127

I TOLERANCE Il 1.00-06 | 1.00-06 | 1.00-06 | 1.00-06 | 1.00e-06

| USER CPU TIME (SECS) || 6.30-01 | 2.70-01 | 6.17+00 | 9.70-01 | 3.55e+00

| NO. OF TRIPLETS FOUND || 13 | 10 | 10 | 10 | 10

| NO. OF TRIPLETS SOUGHT || 10 | 10 | 10 | 10 | 10

| NO. MULTIPLICATIONS BY A|| 64 | 65 | 291 | 325 | 3088

|NO. MULT. BY TRANSPOSE(A)|| 64 | 55 | 273 | 315 | 3088

o e e e e e e e e e e e e e e e e e e e
| LEFT END OF INTERVAL || -1.00-30 | -1.00-30 I - I - I -

| RIGHT END OF INTERVAL || 1.00-30 | 1.00-30 I - I - I -

m o o e
I INITIAL BLOCKSIZE I - I - | 4 | 5 | 14

I FINAL BLOCKSIZE I - I - I 1 I 1 | 4

| MAXIMUM SUBSPACE BOUND || - I - | 60 | 20 I -

| FINAL SUBSPACE BOUND || - I - | 51 | 11 I -

b m o o e
| MAX CHEBYSHEV DEGREE || - I - I - I - | 14

b m o o e
| JOB PARM FOR THS1(2) || - I - I - I - I -

| RESID. REDUCTION TOL. || - I - I - I - I -

b m o o e

Figure 2: svdin.suml file generated by svdrun script using output files
generated by svdrun script.

Sparse Matrix Test Suite 37

| PROGRAM || sis2 | tms1 | tms2
e
| DATASETS] *belladit’ | ’belladit’ | ’belladit’
e
I FILENAME || belladit.out6 | belladit.out7 | belladit.out8
e ——————————————————
I DATE [| Feb 19 1993 | Feb 19 1993 | Feb 19 1993

| MAX. NO. OF ITERATIONS || 80 | 80 | 80

| ORDER OF EIGENSYSTEM || 82 | 456 | 82

| ROW DIMENSION OF &4 || 374 | 374 | 374

| COLUMN DIMENSION OF & || 82 | 82 | 82

| AUXILLARY MEMORY(BYTES) || 634688 | 182804 | 71268

| WANT S-VECTORS? [T/F1 || T [T | T

| NO. OF STEPS/ITERATIONS || 35 | 25 | 18

I TOLERANCE [l 1.00e-06 | 7.80+01 | 7.80+01

| USER CPU TIME (SECS) || 8.20e-01 | 6.98+00 | 1.77+00

| NO. OF TRIPLETS FOUND || 10 | 10 | 10

| NO. OF TRIPLETS SOUGHT || 10 | 10 | 10

| NO. MULTIPLICATIONS BY All 992 | 1179 | 755

INO. MULT. BY TRANSPOSE(A) || 992 | 1427 | 745
e
| LEFT END OF INTERVAL || - I - I -

| RIGHT END OF INTERVAL || - I - I -
e
I INITIAL BLOCKSIZE [l 18 | 12 [12

I FINAL BLOCKSIZE [l 8 | 2 [2

| MAXIMUM SUBSPACE BOUND || - I - I -

| FINAL SUBSPACE BOUND || - I - I -
e
| MAX CHEBYSHEV DEGREE || 2 I - | 0
e
| JOB PARM FOR TMS1(2) [- | 1 | 1

| RESID. REDUCTION TOL. || - | 1.00+00 | 1.00+00
e

Figure 3: svdin.sum2 file generated by svdrun script using output files
generated by svdrun script.

Sparse Matrix Test Suite 38

Data Application | Columns | Rows | Nonzeros | Density | p. Ly
APPLE1 IR 441 3206 7722 0.05|175.5 | 24
APPLE2 IR 294 | 1472 13442 0.03 | 45.7] 9.1
ATGC2 IR 238 | 3253 54440 0.07 | 228.7 | 16.7
CASSERES IR 117 | 1453 21597 0.13 | 184.6 | 14.9
DULCEC2 IR 94 | 1299 10285 0.08 | 1094 | 7.9
KASSC2 IR 112 | 1982 19115 0.09 | 170.7 | 9.6
LATERAL2 IR 747 | 2695 47115 0.02 | 63.1|174
LATERALS IR 47 | 1614 43061 0.04 | 57.6 | 26.7
MILLER2 IR 283 | 3642 60505 0.06 | 213.8 | 16.6
VARIETYC1 IR 107 | 2252 14915 0.06 | 139.4 | 6.6
VARIETYC2 IR 107 | 1567 13545 0.08 | 126.6 | 8.6
WMURRAYC1 IR 242 | 2869 25456 0.04 | 105.2 | 8.9
WMURRAYC2 IR 242 | 1997 23172 0.05| 979|119
APFIRO LP 28 32 88 0.09 3.1 2.8
BEACONFD LP 174 262 3476 0.08 | 19.9|13.3
DEGEN2 LP 445 534 4449 0.02 99| 83
E226 LP 224 282 2767 0.04 | 124 | 9.8
ETAMACRO LP 401 688 2489 0.009 6.2 3.6
FFFFF800 LP 525 854 6235 001 | 11.9] 7.3
GROW15 LP 301 645 5665 0.03| 18.8| 838
NZFRI LP 624 | 3521 15903 0.007 | 254 | 4.5
PILOT4 LP 411 | 1000 5145 0.01 | 125] 5.1
SCFXM1 LP 331 457 2612 0.02 79 5.7
SCTAP1 LP 301 480 2052 0.01 6.8 | 4.3
SCSD6 LP 148 | 1350 5666 0.03 | 38.2| 4.2
SEBA LP 516 | 1028 4874 0.009 94| 4.7
SHELL LP 537 | 1775 4900 0.005 9.11] 2.8
STAIR LP 357 467 3857 0.02 | 10.8| 8.3
STANDATA LP 360 | 1075 3038 0.008 841 2.8

Table 12: SVDPACKC Sparse Matrix Test Suite. IR = Information Re-

trieval, LP = Linear Programming.

Machine Specifications 39

5.2 Machine Specifications

Some of the machine specifications for the workstations used in our bench-
mark experiments are given in Table 5.2. It is advisable to always use the
math coprocessor (MC68881) for SVDPACKC on the Macintosh II/fx. With-
out floating-point hardware, SVDPACKC programs can exhaust as much as
6 times the normal CPU seconds required with a coprocessor.

Model Macintosh I1/fx Sun-4/490
0OS System 7; MPW 3.3 Sun OS 4.1
Memory 32 Mbytes RAM 32 Mbytes RAM
C Compiler MPW C GNU C (gec)
Compiler -mc68020 -mc68881 -0
Options -elems881

Linpack

MFLOPS (N=100) 0.37 3.6

Table 13: Machine Specifications for SVDPACKC Benchmarks.

5.3 Results

The elapsed user CPU times (in seconds) for SVDPACKC routines executed
on the Macintosh I1/fx are illustrated in Figures 4 through 8. We also provide
tabulated results for both the Macintosh II/fx and Sun-4/490 in Tables 14
through 18 in Appendix A (Section 8) along with the number of approximated
singular triplets, p, having residual norms (4) no larger than 107°. Figures 4
through 7 (and Tables 14 through 17) reflect timings using the IR matrices
from Table 12, while Figure 8 (and Table 18) show elapsed user CPU times
for sis?2 and las?2 on the 16 LP matrices from Table 12. The input parameters

Results 40

used for each SVDPACKC routine in our benchmarks are provided in the
svdin.bench file®.

As observed in [4] and [5], las2 is by far the fastest sequential method
for computing several of the largest singular triplets of large sparse matrices.
This, of course, assumes there is no loss of accuracy in approximating eigen-
pairs of the matrix AT A, which is the case for the matrices comprising our
test suite in Table 12. Among competitive Lanczos-based SVDPACKC meth-
ods for computing several of the largest singular triplets of the IR matrices,
las? is on average 5 and 9 times faster than lasl and bls2, respectively, on the
Macintosh II/fx. On the Sun-4/490, las2 is about 4 and 6 times faster than
lasl and bls2, respectively. Among subspace iteration-based methods, we ob-
serve sis2 to be on average about 3.5 and 1.5 times faster than sisl and tms2,
respectively on the Macintosh II/fx. On the Sun-4/490, sis2 is on average
about 3.5 and 2.25 times faster than sisl and tms2, respectively. However,
las? is still about 8 and 5 times faster than sis2 across both machines consid-
ered.

For the 16 LP matrices, we find (see Figure 8 and Table 18) the most
competitive methods from the Lanczos-based group {lasl, las2, blsl, bls2}
and subspace iteration-based group {sisl, sis2, tmsl, tms2} to be las2 and sis2,
respectively. On both the Macintosh II/fx and Sun-4/490, las2 is on average
5 times faster than sis2 when computing as many as 50 of the largest singular
triplets for the LP matrices arising from linear programming applications.

From Figures 4 and 8 (and Tables 14 and 18), we also observe that las2 on
the Macintosh I1/fx averages from 3.75 to 7.8 times slower than las2 on the
Sun-4/490. This reflects a significant cost-performance benefit given the
affordability and availability of Macintosh computers.

> ASCII file in SVDPACKC distribution package.

Datasets

Results

41

WMURRAY C2

WMURRAYC1

VARIETYC2

VARIETYC1

MILLER2

LATERALS

LATERAL?2

KASSC2

DULCE2

CASSERES

ATGC2

APPLE?2

APPLE1

B (3740)

| (2960.0)

I (3530)

| (28300)

m (774

| (796.0)

W (830

| (1050.0)

I (330)

| (1160.0)
I (5/2.0)

| (81L0)
I (5620)

| (1060.0)

m (%)

| (1090.0)

m (710
1 (5060)
I (1580)

| (768.0)

. (2640)

| (7520)

I (1800)
1 (3490)
I (199

O (67.9)

OLASL
mLAS?

0 500 1000 1500

2000 2500

User CPU Time (seconds)

Figure 4: User CPU time (in seconds) expired by the single-vector Lanczos
methods (lasl, las2) on the Macintosh II/fx when computing singular triplets
of the IR matrices.

Datasets

Results

42

WMURRAY C2

WMURRAYC1

VARIETYC2

VARIETYC1

MILLER2

LATERALS

LATERAL2

KASSC2

DULCE2

CASSERES

ATGC2

APPLE2

APPLE1

. (2470.0)

I (1410.0)

| (9800.0)

Il (7440)
7 (29400)
Il (697.0)

| (4330.0)
I (2450.0)

| (13000.0)

I (6550.0)

| (11000.0)

| (11900.0)

I (3650.0)

| (8770.0)

. (8300)

| (3500.0)
(5530 DOBLS1
1 (1800.0) BBLS
I (11000)

| (2980.0)
I (2000.0)

| (53800)

. (9756)

| (3580.0)

0 (446)

0 (2700)
0 ' ' ' ' 50IOO ' ' ' ' lO(I)OO

User CPU Time (seconds)

Figure 5: User CPU time (in seconds) expired by the block Lanczos methods
(bls1, bls2) on the Macintosh 1I/fx when computing singular triplets of the
IR matrices.

Datasets

Results

43

WMURRAY C2

WMURRAYC1

VARIETYC2

VARIETYC1

MILLER2

LATERALS

LATERALZ2

KASSC2

DULCE2

CASSERES

ATGC2

APPLE2

APPLEL

N (1850.0)

| (8940.0)

. (20500)

| (11100.0)

 (63:40)
1 (28200
- (7520
1 (29900)
I (2400.0)

I (5290.0)

| (7940.0)

I (3330.0)

| (13400.0)

| (9380.0)

. (5240)

| (3130.0)

W (4640)
] (1890.0)
I (11000)

| (4500.0)

I (20200)

. (10900)

| (33400)

1(65.9)
0 (284.0)

0SIS1
mSIS2

| (6470.0)

T T T T
0 5000

T
10000

User CPU Time (seconds)

Figure 6: User CPU time (in seconds) expired by the subspace iteration
methods (sisl, sis2) on the Macintosh I1/fx when computing singular triplets
of the IR matrices.

Datasets

Results

44

B (£0100)

WMURRAYC2

| (25800.0)

WMURRAYC1 (40300)

| (37000.0)

W (12500)

VARIETYC2

| (99300)

B (14900)

VARIETYC1

| (17400.0)

W (6940)

MILLER?2

| (37100.0)

I (6500.0)

LATERALS

| (35300.0)

I (7750.0)

LATERAL2

B (14800)

KASSC2

| (13800.0)

W (10300)

DULCE2

| (8420.0)

. (24000)

CASSERES

| (10600.0)

1 (3420

ATGC2

| (28900.0)

OTMSL
BTMS2

| (28900.0)

rpoLEp I (21400)

| (13500.0)

W (853

APPLEL
1 (9630)

User CPU Time (seconds)

Figure 7: User CPU time (in seconds) expired by the trace minimization
methods (tmsl, tms2) on the Macintosh II/fx when computing singular

triplets of the IR matrices.

Datasets

Results

45

STANDATA

STAIR

SHELL

SEBA

SCTAPL

SC3D6

SCRXM1

PILOT4

NZFR

GROW15

[
_— (130)

— (20)

1 (19700)

(10300)

— (3170)

| (6730)

- (120)
1
m (139

(411.0)

[
1]
m (B3

(154.0)
(2720)

1 (139%0)

(954.0)

| (11600)

— (1680)
1]
(345.0)

(5030)

| (18300)

(2780)
(4120)

|

FFFFF800

ETAMACRO

E226

DEGEN2

BEACONFD

APFIRO

O

(156.0)

1 (547.0)

(819)
(2020)
(69.1)

(7110)

|IHII

(1080)
]

(1030)
(279)
i

(4300)

m|AS?
RN,

—T—
1500

1000
User CPU Time (seconds)

Figure 8: User CPU time (in seconds) expired by sis2 and las2 on the Mac-
intosh I1/fx when computing singular triplets of the LP matrices.

Future Work 46

6 Future Work

For determining the singular value decomposition of extremely large sparse
matrices using a modest computing environment, we anticipate the devel-
opment of an out-of-core distributed version of SVDPACKC which ports to
a heterogeneous network of workstations. Implementations on massively-
parallel computer systems such as the MasPar MP-2 and Thinking Machines
CM-5 are planned as well. Future algorithmic concerns include the use of
alternative re-orthogonalization strategies for blsl and bls2, and the develop-
ment of techniques for computing large rank updates to the singular value
decomposition of unstructured sparse matrices.

The original SVDPACK Fortran-77 source code and documentation may
be obtained through the NETLIB facility maintained by the University of
Tennessee and Oak Ridge National Laboratory. Users should send the elec-
tronic mail message send index from svdpack to netlib@ornl.gov to get a
listing of the methods and associated files composing the library. The SVD-
PACKC library should be available in NETLIB by Summer 1993.

7 Acknowledgements

The authors would like to thank Dulce Ponceleon at Apple Computer Inc.,
Cupertino, CA, for her collaborative efforts in constructing the test suite of
sparse matrices from information retrieval applications.

References

[1] BAUER, F. L. Das Verfahren der Treppeniteration und verwandte Ver-
fahren zur Losung algebraischer Eigenwertprobleme. ZAMP 8 (1957),
214-235.

[2] BERRY, M., AND SAMEH, A. An overview of parallel algorithms for
the singular value and dense symmetric eigenvalue problems. Journal of

Computational and Applied Mathematics 27 (1989), 191-213.

[3] BERRY, M. W. Multiprocessor Sparse SVD Algorithms and Applica-
tions. PhD thesis, University of Illinois at Urbana-Champaign, Urbana,
IL, 1990.

REFERENCES 47

[4]

[5]

[10]

[11]

[12]

[13]

BERRY, M. W. Large scale singular value computations. International
Journal of Supercomputer Applications 6, 1 (1992), 13-49.

BERRY, M. W. SVDPACK: A Fortran-77 software library for the sparse
singular value decomposition. Tech. Rep. CS-92-159, University of Ten-
nessee, Knoxville, TN, June 1992.

Currum, J. K., AND DoNaTH, W. E. A block Lanczos algorithm
for computing the q algebraically largest eigenvalues and corresponding
eigenspace of large sparse real symmetric matrices. In Proceedings of

1974 IEEE Conf. on Decision and Control (1974), pp. 505-509.

Currum, J. K., AND WILLOUGHBY, R. A. Lanczos Algorithm

for Large Symmetric Figenvalue Computations, Volume 1 Theory.
Birkhauser, Boston, 1985.

DEERWESTER, S., DuMals, S., FURNAS, G., LANDAUER, T., AND
HARSHMAN, R. Indexing by latent semantic analysis. Journal of the
American Society for Information Science 41,6 (1990), 391-407.

DONGARRA, J., CrOZ, J. D., HAMMARLING, S., AND HANSON, R.

An extended set of fortran basic linear algebra subprograms. ACM
Transactions on Mathematical Software 14,1 (1988), 1-17.

DONGARRA, J., AND SORENSEN, D. A fast algorithm for the sym-

metric eigenvalue problem. SIAM Journal of Statistical and Scientific
Computing 8, 2 (1987), s139-s154.

Durr, I. S., GRIMES, R. G., AND LEWIS, J. G. Sparse matrix test
problems. ACM Trans. Math. Software 15 (1989), 1-14.

Dumais, S., FurNaAs, G., AND LANDAUER, T. Using latent semantic
analysis to improve access to textual information. In Proceedings of
Computer Human Interaction 88 (1988).

Dumais, S. T. Improving the retrieval of information form external
sources. Behavior Research Methods, Instruments, & Computers 23, 2
(1991), 229-236.

REFERENCES 48

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

GALLIVAN, K., JALBY, J., AND MEIER, U. The use of BLAS3 in
linear algebra on a parallel processor with a hierarchical memory. SIAM

J. Sci. Stat. 18,6 (1987), 1079-1084.

GoruB, G., AND KAHAN, W. Calculating the singular values and
pseudoinverse of a matrix. SIAM Journal of Numerical Analysis 2, 3

(1965), 205-224.

GoLUB, G., AND LoaN, C. V. Matriz Computations, second ed. Johns-
Hopkins, Baltimore, 1989.

GoruB, G., Luk, F., AND OVERTON, M. A block Lanczos method
for computing the singular values and corresponding singular vectors
of a matrix. ACM Transactions on Mathematical Software 7,2 (1981),
149-169.

GoLUB, G., AND REINSCH, C. Singular value decomposition and least
squares solutions. In Handbook for Automatic Computation I, Linear

Algebra. Springer-Verlag, New York, 1971.

GoruB, G. H., AND UNDERWOOD, R. R. The block Lanczos method
for computing eigenvalues. In Mathematical Software Il1l. Academic

Press, New York, 1977, pp. 361-377.

HESTENES, M. R. Inversion of matrices by biorthogonalization and
related results. Journal of the Society for Industrial and Applied Math-
ematics 6 (1958), 51-90.

KANIEL, S. Estimates for some computational techniques in linear al-

gebra. Math. Comp. 20 (1966), 369-378.

LUENBERGER, D. G. Introduction to Linear and Nonliner Program-
ming. Addison-Wesley, Reading, MA, 1973.

LusTiG, I. J. An analysis of an available set of linear programming test
problems. Tech. Rep. SOL 87-11, Department of Operations Research,
Stanford University, Stanford, CA, August 1987.

MIRSKY, L. Symmetric gage functions and unitarilly invariant norms.

Quarterly Journal of Mathematics 11 (1960), 50-59.

REFERENCES 49

[25]

[26]

[27]

28]

[29]

[30]

31]

32]

Paige, C. C. Error analysis of the Lanczos algorithms for tridiagonal-
izing a symmetric matrix. J. Inst. Math. Appl. 18 (1976), 341-349.

PARLETT, B. The Symmetric Figenvalue Problem. Prentice Hall, En-
glewood Cliffs, NJ, 1980.

PARLETT, B., AND ScoTT, D. The Lanczos algorithm with selective
reorthogonalization. Math. Comp. 33 (1979), 217-238.

RUTISHAUSER, H. Simultaneous iteration method for symmetric ma-
trices. Numer. Math. 16 (1970), 205-223.

SAAD, Y. On the rates of convergence of the Lanczos and the block-
Lanczos methods. SIAM J. Numer. Anal. 17 (1980), 687-706.

SAMEH, A. H., AND WISNIEWSKI, J. A. A trace minimization algo-
rithm for the generalized eigenvalue problem. SIAM Journal of Numer-

ical Analysis 19, 6 (1982), 1243-1259.

SIMON, H. Analysis of the symmetric Lanczos algorithm with reorthog-
onalization methods. Lin. Alg. and Its. Appl. 61 (1984), 101-131.

SMITH, B., ET AL. Matriz Eigensystem Routines - FISPACK Guide,
second ed. Spinger-Verlag, Berlin, 1976.

UNDERWOOD, R. R. An iterative block Lanczos method for the solution
of large sparse symmetric eigenproblem. PhD thesis, Stanford University,

Stanford, CA, 1975.

VARGA, R. S. Matriz [terative Analysis. Prentice Hall, Englewood
Cliffs, NJ, 1962.

WILKINSON, J. H. The Algebraic Eigenvalue Problem. Clarendon Press,
Oxford, 1965.

WILKINSON, J. H. Inverse iteration in theory and in practice. In
Symposia Mathematica X. Academic Press, London, 1972.

WISNIEWSKI, J. A. On solving the large sparse generalized eigenvalue
problem. PhD thesis, University of Illinois at Urbana-Champaign, Ur-
bana, 1L, 1981.

Appendix A: SVDPACKC Benchmarks 50
8 Appendix A: SVDPACKC Benchmarks
las1 las2

Matrix p | Sun-4/490 | Mac. I1I/fx | Sun-4/490 | Mac. 1I/fx
APPLE1 10 64.1 67.3 4.1 19.9
APPLE2 50 275.0 349.0 45.3 180.0
ATGC2 50 136.0 752.0 61.2 264.0
CASSERES 50 134.0 768.0 35.0 158.0
DULCEC2 50 86.5 506.0 14.0 71.0
KASSC2 50 180.0 1090.0 21.8 99.7
LATERAL2 50 154.0 1060.0 73.8 562.0
LATERALS 75 500.0 811.0 224.0 542.0
MILLER2 50 215.0 1160.0 89.5 343.0
VARIETYC1 50 175.0 1050.0 18.0 83.0
VARIETYC2 50 139.0 796.0 16.6 77.4
WMURRAYC1 75 645.0 2830.0 78.6 383.0
WMURRAYC2 75 524.0 2960.0 71.8 374.0
Total Time (sec) 3227.6 14191.3 753.7 3157.0
Average Time (sec) 248.3 1091.6 57.9 242.8

Table 14: User CPU time (in seconds) expired by the single-vector Lanc-
zos methods (lasl, las2) on the Sun-4/490 and the Macintosh II/fx when

computing the p-largest singular triplets for the IR matrices.

Appendix A: SVDPACKC Benchmarks 51
bls1 bls2

Matrix p | Sun-4/490 | Mac. I1I/fx | Sun-4/490 | Mac. 1I/fx
APPLE1 10 47.5 270.0 9.78 44.6
APPLE2 50 588.0 3580.0 244.0 975.0
ATGC2 50 840.0 5380.0 333.0 2000.0
CASSERES 50 599.0 2980.0 247.0 1100.0
DULCEC2 50 268.0 1800.0 107.0 533.0
KASSC2 50 674.0 3500.0 209.0 830.0
LATERAL2 50 1320.0 8770.0 598.0 3680.0
LATERALS 75 1780.0 11900.0 1080.0 6550.0
MILLER2 50 1660.0 11000.0 405.0 2450.0
VARIETYC1 50 671.0 4330.0 183.0 697.0
VARIETYC2 50 532.0 2940.0 163.0 744.0
WMURRAYC1 75 2670.0 13000.0 718.0 4410.0
WMURRAYC2 75 1500.0 9800.0 538.0 2470.0
Total Time (sec) 13149.5 79250.0 4834.7 26483.6
Average Time (sec) 1011.5 6096.1 371.9 2037.2

Table 15: User CPU time (in seconds) expired by the block Lanczos methods
(bls1, bls2) on the Sun-4/490 and the Macintosh II/fx when computing the
p-largest singular triplets for the IR matrices.

Appendix A: SVDPACKC Benchmarks 52
sisl sis2

Matrix p | Sun-4/490 | Mac. I1I/fx | Sun-4/490 | Mac. 1I/fx
APPLE1 10 47.1 284.0 11.4 65.8
APPLE2 50 556.0 3340.0 177.0 1090.0
ATGC2 50 1160.0 6470.0 380.0 2020.0
CASSERES 50 781.0 4500.0 194.0 1100.0
DULCEC2 50 300.0 1890.0 74.4 464.0
KASSC2 50 529.0 3130.0 143.0 824.0
LATERAL2 50 1650.0 9380.0 579.0 3330.0
LATERALS 75 2300.0 13400.0 876.0 5290.0
MILLER2 50 1390.0 7940.0 422.0 2400.0
VARIETYC1 50 487.0 2990.0 124.0 752.0
VARIETYC2 50 374.0 2320.0 103.0 634.0
WMURRAYC1 75 1890.0 11100.0 352.0 2050.0
WMURRAYC2 75 1520.0 8940.0 315.0 1850.0
Total Time (sec) 12984.1 75684.0 3750.8 21869.8
Average Time (sec) 998.7 5821.8 288.5 1682.3

Table 16: User CPU time (in seconds) expired by the subspace iteration
methods (sisl, sis2) on the Sun-4/490 and the Macintosh 11/fx when com-
puting the p-largest singular triplets for the IR matrices.

Appendix A: SVDPACKC Benchmarks 53
tmsl tms2

Matrix p | Sun-4/490 | Mac. I1I/fx | Sun-4/490 | Mac. 1I/fx
APPLE1 10 139.0 963.0 15.0 85.3
APPLE2 50 1840.0 13500.0 320.0 2140.0
ATGC2 50 4160.0 28900.0 1090.0 342.0
CASSERES 50 1470.0 10600.0 401.0 2400.0
DULCEC2 50 1110.0 8420.0 158.0 1030.0
KASSC2 50 1850.0 13800.0 253.0 1480.0
LATERAL2 50 4180.0 28900.0 1190.0 7760.0
LATERALS 75 4740.0 35300.0 1830.0 6800.0
MILLER2 50 5430.0 37100.0 958.0 964.0
VARIETYC1 50 2350.0 17400.0 242.0 1490.0
VARIETYC2 50 134.0 9930.0 194.0 1250.0
WMURRAYC1 75 7220.0 37000.0 655.0 4030.0
WMURRAYC2 75 3520.0 25800.0 1120.0 4010.0
Total Time (sec) 38143.0 267613.0 8426.0 33781.3
Average Time (sec) 2934.0 20585.6 648.1 2598.6

Table 17: User CPU time (in seconds) expired by the trace minimization
methods (tmsl, tms2) on the Sun-4/490 and the Macintosh I1/fx when com-
puting the p-largest singular triplets for the IR matrices.

Appendix A: SVDPACKC Benchmarks 54
sis2 las2

Matrix p | Sun-4/490 | Mac. II/fx | Sun-4/490 | Mac. 1I/fx
APFIRO 10 370 2.78 190 1.42
BEACONFD 50 55.3 430.0 13.6 103.0
DEGEN2 50 93.9 711.0 13.9 108.0
E226 50 26.1 202.0 9.40 69.1
ETAMACRO 50 69.1 547.0 11.4 81.9
FFFFF800 50 55.4 412.0 21.4 156.0
GROW15 50 240.0 1830.0 35.3 278.0
NZFRI 50 47.7 503.0 38.3 345.0
PILOT4 50 148.0 1160.0 22.2 168.0
SCFXM1 50 33.8 272.0 9.20 73.1
SCSD6 50 129.0 954.0 20.8 154.0
SCTAP1 50 50.4 411.0 9.14 73.6
SEBA 50 86.6 673.0 16.0 122.0
SHELL 50 179.0 1390.0 41.8 317.0
STAIR 50 137.0 1030.0 35.0 292.0
STANDATA 50 253.0 1970.0 26.0 183.0
Total Time (sec) 1604.7 12497.8 323.6 2525.1
Average Time (sec) 100.3 781.1 20.2 157.8

Table 18: User CPU time (in seconds) expired by sis2 and las2 on the Sun-
4/490 and the Macintosh I1/fx when computing the p-largest singular triplets

for the LP matrices.

Appendix B: Sparse Matrix Storage Formats 55

9 Appendix B: Sparse Matrix Storage For-
mats

All matrices in the original Harwell-Boeing sparse matrix test collection are
stored in a column oriented compact format (Fortran-77 influence) where
only the entries corresponding to nonzero values are stored. The row indices
and corresponding nonzero numerical values are stored by columns with a
column start vector pointing to the beginning of each column. Symmetric,
skew symmetric, and Hermitian matrices have only the entries of the lower
triangle (including the diagonal) stored. Right-hand-side vectors for linear
systems are stored in a full arrays (not necessary for SVDPACKC use).

Each matrix is written in a standard format with a 4 line header record
followed by up to 4 logical records containing, in order, the column start
pointers, the row indices, the numerical values, and the right-hand-side ma-
trix. The records containing the numerical values and right-hand-side ma-
trix are optional. The right-hand-side matrix can only be present when the
numerical values are present. All lines are restricted to 80 columns. For
SVDPACKC routines, you need only supply the column start pointers, row
indices, and numerical values of all nonzeros

The header record consists of 4 lines of data. The first line contains the
72 character title and a 8 character key by ehich the matrices are referenced.
The second line contains the number of lines for each of the following 4
records as well as the total number of lines, excluding the header record, for
the matrix. The third line contains a 3 character string denoting the matrix
type as well as the number of rows, columns, nonzeroes, and right-hand-sides
vectors for the matrix. The fourth line contains the 4 variable formats for
the following 4 logical records. The exact formats are

Line 1 (A72, A8)
Col. 1 - 72 Title
Col. 73 - 80 Key

Line 2 (5I14)

Col. 1 - 14 Total No. of lines excluding header
Col. 15 - 28 No. of lines for pointers

Col. 29 - 42 No. of lines for row indices

Col. 43 - 56 No. of lines for numerical values

Appendix B: Sparse Matrix Storage Formats

56

Col. 57 - 70 No. of lines right-hand-sides

Line 3 (A3, 11x, 4I14)

Col.
Col.
Col.
Col.
Col.

Line
Col.
Col.
Col.
Col.

The 3 character type field describes the matrix type.
following table lists the allowed values for each of the 3
characters. As an example of the type field ‘rsa’ denotes that

the matrix is real, symmetric and assembled.

1 -
15 -
29 -
43 -
57 -

3 Matrix
28 No. of
42 No. of
56 No. of
70 No. of

type

rows

columns
nonzeroes
right-hand-sides

4 (2A16, 2A20)
1 - 16 Format for pointers

17 - 32 Format for row indices

33 - 52 Format for numerical values
53 - 72 Format for right-hand-sides

First Character: r Real Matrix

c Complex Matrix

p Pattern Only (no values supplied)

Second Character: s Symmetric
u Unsymmetric
h Hermitian

z Skew symmetric

r Rectangular

Third Character: a Assembled
f Unassembled Finite Elements

Appendix B: Sparse Matrix Storage Formats 57

For SVDPACKC, several of the fields specified above are not necessary
for input via the fscanf() C function. For example, in las2 the required
header information is read via following lines

fscanf (fp_in2, "%72clk*si*sl*s1d)1d)1d)*d",
title, &nrow, &ncol, &nnzero);
fscanf (fp_in2, "U*s Y*s %*s %*s");

An appropriate header for any of the SVDPACKC codes might look like

Bellcore ADI Linguistics Data belladit
#
rra 374 82 1343 0

(1018) (1018) (8£10.3) (8£10.3)

Notice that the information in the second header line of the original Fortran
Harwell-Boeing format (line counts) is not needed by SVDPACKC and we
simply replace that line by a single character (such as #). Although the
formats listed in the fourth header line are also not required by SVDPACKC,
their presence specifies, for example, the number of decimal digits contained
in the numerical values.

Before providing an example of the Compressed Column Storage (CCS)
format used in the Harwell-Boeing format, we review the 3 arrays used to
define an arbitrary sparse matrix. The CCS format is specified by the 3
arrays {value, rowind, pointr}, where rowind stores the row indices of each
nonzero, and pointr stores the index of the elements in value which start
a column of of the matrix A, as they are traversed in a column-wise fashion.
The rowind vector stores the row indexes of the elements in the value array.
That is, if val(k) = A;; then rowind[k] = ¢, for ¢ = 1,2,...,m, and j =
1,2,...,n for m rows and n columns. The pointr array stores the locations
in the value array that start a column, that is, if value[k] = A;; then
pointer[i] < k < pointr[i+ 1]. By convention, we define pointr[n+ 1] =
nnz + 1, where nnz is the number of nonzeros in the m x n matrix A. The
storage savings for this approach is significant. Instead of storing m x n
elements, we need only 2 x nnz + n 4 1 storage locations. To be compatible
with the original Fortran-based sparse format, SVDPACKC routines assume
that the integer values read into the pointr and rowind arrays satisfy 1 <
pointr, rowind < nnz + 1 rather than 0 < pointr, rowind < nnz.

Appendix B: Sparse Matrix Storage Formats 58

The following lines from las2 demonstrate how the CCS arrays are read
via fcanf (). The elements of arrays rowind and point are decremented by
1 so that both arrays having starting index 0 within las2.

for (i = 0; i <= ncol; i++) fscanf(fp_in2, "%1d", &pointr[il]);
for (i = 0; i < ncol; i++) pointr[i] -= 1;

/* define last element of pointr in case it is not */
pointr[i] = nnzero;

for (i = 0; i < nnzero; i++) fscanf(fp_in2, "%1d", &rowind[i]);
for (1 = 0; 1 < nnzero; i++) rowind[i] -= 1;
for (i = 0; i < nnzero; i++) fscanf(fp_in2, "}1lf", &valuel[il]);

Consider the following 6 x 6 matrix A, where

1

Il
OO WO WO
= 00 O 1 © O
O O oo
jeniiNeRE S B =Ry el
o O Ot OO
— W o O Wwo

The CCS format for the matrix A above is given by

value |10 |33 197|184 |8(|8---9]123|13]-1
rowind | 11124123563 [4---5]6|[2] 5] 6

| pointr [1[4[8[10[13]17]20],

and a corresponding input file for SVDPACKC is given below. Note that
SVDPACKC does not require fields in the header to match those in the
specifications of the original Harwell-Boeing (Fortran) header. Alternative
sparse matrix formats can be used, of course, with SVDPACKC. An analo-
gous Compressed Row Storage (CRS) format based on row-wise traversal is
another possibility.

Appendix B: Sparse Matrix Storage Formats

59

Sample Input Matrix for SVDPACKC sample
#
rra 6 6 18 0
(816) (816) (8£6.2) (8£6.2)
1 4 8 10 13 17 20
1 2 4 2 3 5 6 3
4 5 1 4 5 6 2 5
6

10.00 3.00 3.00 9.00 7.00 8.00 4.00 8.00
8.00 7.00 7.00 9.00 -2.00 5.00 9.00 2.00
3.00 13.00 -1.00

Appendix C: Binary Output Files 60

10 Appendix C: Binary Output Files

The binary output files generated by SVDPACKC primarily contain the ap-
proximate singular values and corresponding singular vectors. In the table
below, we list the contents of each binary output file of the form MMvN, where
N = 1,2, and MM defines the method used (see Table 2 in Section 3.2). Let
u;, 05, v; denote the i-th largest singular triplet for an m x n sparse matrix
so that oy > 09 > -+ > 0, and let k denote the number of singular triplets
written to file.

Filename Contents (in order)
blvi Up, V1, U, Ve, e ooy Uk, Uk
blv2 Up, V1, U, Ve, e ooy Uk, Uk
lavi m+n

Js (No. of Lanczos steps)
kappa (Residual Tolerance)

Vs Vk—145--.,02,0U1
Uk, Ufp—15.. .45 U2, U]
lav2 n

Js (No. of Lanczos steps)
kappa (Residual Tolerance)

Vs Vk—145--.,02,0U1

Uk, Ufp—15.. .45 U2, U]
sivl Uy, V1, U, Vg, o vy Uk, Vf
siv2 Uy, V1, U, Vg, o vy Uk, Vf
tmvl Up, V1, U, Ve, e ooy Uk, Uk

tmv2 Up, V1, U, Ve, e ooy Uk, Uk

