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AbstractSVDPACKC comprises four numerical (iterative) methods for computingthe singular value decomposition (SVD) of large sparse matrices using ANSIC. This software package implements Lanczos and subspace iteration-basedmethods for determining several of the largest singular triplets (singular val-ues and corresponding left- and right-singular vectors) for large sparse matri-ces. The package has been ported to a variety of machines ranging from su-percomputers to workstations: CRAY Y-MP, IBM RS/6000-550, DEC 5000-100, HP 9000-750, SPARCstation 2, and Macintosh II/fx. This document(i) explains each algorithm in some detail, (ii) explains the input parame-ters for each program, (iii) explains how to compile/execute each program,and (iv) illustrates the performance of each method when we compute lowerrank approximations to sparse term-document matrices from information re-trieval applications. A user-friendly software interface to the package forUNIX-based systems and the Macintosh II/fx is also described.
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Introduction 31 IntroductionThe singular value decomposition (SVD) is commonly used in the solutionof unconstrained linear least squares problems, matrix rank estimation, andcanonical correlation analysis. In applications such as information retrieval,seismic reection tomography, and real-time signal processing, the solutionto these problems is needed in the shortest possible time. Given the growingavailability of high performance computer systems, there has been great in-terest in the development of e�cient implementations of the singular valuedecomposition, in general. In applications such as information retrieval ([12],[8]), the data matrix whose SVD is sought is usually large and sparse. It isthis particular case that motivated the original Fortran-77 SVDPACK library[5]. SVDPACKC is a more portable ANSI C implementation of SVD meth-ods which can be used to determine singular values and singular vectors oflarge sparse matrices on a variety of machines. SVDPACKC uses Lanczos,block-Lanczos, subspace iteration, and trace minimization methods for de-termining several of the largest singular values and corresponding singularvectors for unstructured sparse matrices arising from practical applications.Before discussing speci�c SVDPACKC routines, we make a few de�nitions,and review a few of the fundamental characterizations of the SVD.Without loss of generality, suppose A is a sparse m by n (m� n) matrixwith rank(A) = r. The singular value decomposition (SVD) of A can bede�ned as A = U�V T ; (1)where UTU = V TV = In and � = diag(�1; :::; �n), �i > 0 for 1 � i � r,�i = 0 for i � r+1. The �rst r columns of the orthogonal matrices U and Vde�ne the orthonormalized eigenvectors associated with the r nonzero eigen-values of AAT and ATA, respectively. The singular values of A are de�nedas the diagonal elements of � which are the nonnegative square roots of then eigenvalues of AAT . The set fui; �i; vig is called the i-th singular triplet.The singular vectors (triplets) corresponding to large (small) singular valuesare called large (small) singular vectors (triplets). The development of SVD-PACKC was primarily motivated by the following problem:Given the sparse m � n matrix A and p < n, determine the p-largestsingular triplets of A as de�ned by (1).



Introduction 4To illustrate ways in which the SVD can reveal important informationabout the structure of a matrix we state two well-known theorems:Theorem 1.1 Let the SVD of A be given by (1) and�1 � �2 � � � � � �r > �r+1 = � � � = �n = 0 ;and let R(A) and N(A) denote the range and null space of A, respectively,then1. Rank property: rank(A) = r, N(A) � spanfvr+1; � � � ; vng,and R( A) � spanfu1; � � � ; urg, where U = [u1 u2 � � � um] and V =[v1 v2 � � � vn].2. Dyadic decomposition: A = rXi=1 ui � �i � vTi .3. Norms: kAk2F = �21 + � � � + �2r , and kAk22 = �1.The rank property, perhaps one of the most valuable aspects of the SVD,allows us to use the singular values of A as quantitative measures of thequalitative notion of rank. The dyadic decomposition, which is the rationalefor data reduction or compression in many applications, provides a canon-ical description of a matrix as a sum of r rank-one matrices of decreasingimportance, as measured by the singular values. The three results in Theo-rem 1.1 can be combined to yield the following quanti�cation of matrix rankde�ciency (see [18] for a proof):Theorem 1.2 [Eckart and Young] Let the SVD of A be given by (1) withr = rank(A) � p = min(m,n) and de�ne:Ak = kXi=1 ui � �i � vTi with k < r ;then minr(B)=k kA�Bk2F = kA�Akk2F = �2k+1 + � � � + �2p :



Applications 5This important result, which indicates that Ak is the best rank-k approx-imation (in a least squares sense) to the matrix A, is the basis for conceptssuch as data reduction and image enhancement. In fact, Ak is the best ap-proximation to A for any unitarily invariant norm ([24]). Hence,minr(B)=k kA�Bk2 = kA�Akk2 = �k+1:In the next section, we illustrate the applicability of Theorem 1.2 toproblems in information retrieval which motivated the development of SVD-PACKC. In Section 3, we present two pairs of Lanczos-based routines, (las1,las2) and (bls1, bls2), and two pairs of subspace iteration-based routines,(sis1, sis2) and (tms1, tms2), for solving equivalent sparse symmetric eigen-value problems. A script-based user interface for SVDPACKC, which canbe used for test and production runs, is described in Section 4, and in Sec-tion 5, we illustrate the performance of SVDPACKC on a few workstationsusing sparse matrices collected from Apple Computer Inc. in informationretrieval applications. We conclude with a brief list of future enhancementsto SVDPACKC in Section 6.2 ApplicationsSparse linear least squares problems naturally arise in many real-world ap-plications. The use of the sparse SVD to solve such problems is of currentinterest to researchers in �elds such as query-based information retrieval andseismic reection tomography. In this section we will briey focus on theuse of SVDPACKC relative to information retrieval models. See [4] for adiscussion of the role SVD plays in seismic tomography applications.In [8] and [12] a new approach to automatic indexing and retrieval isdiscussed. It is designed to overcome a fundamental problem that plaguesexisting information retrieval techniques that try to match words of querieswith words of documents. The problem is that users want to retrieve on thebasis of conceptual topic or meaning of a document. There are usually manyways to express a given concept (synonymy), so the literal terms in a user'squery may not match those of a relevant document. In addition, most wordshave multiple meanings (polysemy), so terms in a user's query will literallymatch terms in irrelevant documents.



Applications 6The proposed latent semantic indexing (LSI) approach tries to overcomethe problems of word-based access by treating the observed word to text-object association data as an unreliable estimate of the true, larger pool ofwords that could have been associated with each object. It is assumed thereis some underlying latent semantic structure1 in word usage data that ispartially obscured by the variability of word choice. Using the SVD de�nedin (1), we can estimate this latent structure and remove the obscuring noise.Speci�cally, for an m� n term-document matrix A whose m rows and ncolumns (m� n) correspond to terms and documents, respectively, we seekthe closest (in a least squares sense) rank-k (k � n) matrixAk = kXi=1 ui � �i � vTi with k < r ; (2)given by Theorem 1.2. The idea is that the matrix Ak captures the majorassociational structure in the matrix and removes the noise. Since relativelyfew terms are used as referents to a given document, the rectangular matrixA = [aij] is quite sparse. The matrix element aij indicates the frequencyin which term i occurs in document j. As discussed in [13], each raw termfrequency is usually modi�ed using a sophisticated weighting scheme (e.g.,entropy weighting) which takes into account the distribution of terms overdocuments. Hence, the matrix element aij may be either an integer or arational number. Depending upon the size of the database from which theterm-document is generated, the matrix A can have several thousand rowsand slightly fewer columns. Table 1 lists a few statistics of ten sample sparseterm-document matrices that have been generated2. We note that �r and �care the average number of nonzeros per row and column, respectively. TheDensity of each sparse matrix listed in Table 1 is de�ned to be the ratio(Rows � Columns) = (Nonzeros).By using the reduced model in (2), usually with k = �n (� � :01), minordi�erences in terminology are virtually ignored. Moreover, the closeness ofobjects is determined by the overall pattern of term usage, so documents1Semantic structure refers to the correlation structure in the way in which individualwords appear in documents; semantic implies only the fact that terms in a document maybe taken as referents to the document itself or to its topic.2Special thanks to Sue Dumais from Bell Communications Research (Bellcore), Morris-town, NJ, and Dulce Ponceleon from Apple Computer Inc., Cupertino, CA for providingall term-document matrices mentioned in this document.



Applications 7Data Source Columns Rows Nonzeros Density �c �rADI Bellcore 82 374 1343 4.38 16.0 4.0APP1 Apple 44 3206 7722 0.05 175.5 2.4APP2 Apple 294 1472 13442 0.03 45.7 9.1CISI Bellcore 1460 5143 66340 0.88 45.4 12.9CRAN Bellcore 1400 4997 78942 1.10 56.4 15.8MED Bellcore 1033 5831 52012 0.86 50.4 8.9MAG Bellcore 425 10337 80888 1.80 190.3 7.8TECH Bellcore 6535 16637 327244 0.30 50.0 20.0NEWS Bellcore 19660 35796 1879480 0.02 95.6 50.0ENCY Bellcore 25629 56530 2843956 0.002 110.9 50.3Table 1: Sample sparse term-document matrix speci�cations.can be classi�ed together regardless of the precise words that are used todescribe them, and their description depends on a consensus of their termmeanings, thus dampening the e�ects of polysemy. As a result, terms thatdo not actually appear in a document may still be used as referents, if thatis consistent with the major patterns of association in the data. Position inthe reduced space (R(Ak)) then serves as a new kind of semantic indexing.As discussed in [3] and [8], LSI using the sparse SVD can be more robustand economical than straight term overlap methods. However, in practice,one must compute at least 100-200 largest singular values and correspondingsingular vectors of sparse matrices having similar characteristics to thosematrices in Table 1. In addition, it is not necessarily the case that rank(A)= n for the m � n term-document matrix A, this is due to errors causedby term extraction, spelling, or duplication of documents. Regarding thenumerical precision of the desired singular triplets for LSI, recent tests usinga few of the databases listed in Table 1 have revealed that the i-th residual,~ri, corresponding to the i-th approximate singular triplet, f~ui; ~�i; ~vig, needonly satisfy 10�6 � k~rik2 � 10�3;



Algorithms 8where k~rik2 is de�ned byk~rik2 = h(kA~vi � ~�i~uik22 + kAT ~ui � ~�i~vik22) 12 i = hk~uik22 + k~vik22i 12 :Finally, as the desire for using LSI on larger and larger databases or archivesgrows, fast algorithms for computing the sparse singular value decompositionwill become of paramount importance.3 AlgorithmsBefore presenting algorithms for computing the sparse singular value decom-position, we note that classical methods for determining the SVD of densematrices: the Golub-Kahan-Reinsch method ([15], [18]) and Jacobi-like SVDmethods ([2], [20]) are not optimal for large sparse matrices. Since thesemethods apply orthogonal transformations (Householder or Givens) directlyto the sparse matrixA, they incur excessive �ll-in and thereby require tremen-dous amounts of memory. Another drawback to these methods for computingthe SVD of dense matrices is that they will compute all the singular tripletsof A, and hence may be computationally wasteful when only a subset ofsingular triplets are desired.There are two canonical sparse symmetric eigenvalue problems which canbe used to (indirectly) compute the sparse singular value decomposition. Inthis section, we present various iterative methods which can be applied tothese sparse symmetric eigenvalue problems.3.1 Equivalent Eigenvalue ProblemsAssociated with anm�n (m � n) matrixA is the symmetric (m+n)�(m+n)matrix B =  O AAT O ! : (3)If rank(A) = n, it can be easily shown that the eigenvalues of B are the npairs, ��i, where �i is a singular value of A, with (m � n) additional zeroeigenvalues ifm > n. The multiplicity of the zero eigenvalue ofB ism+n�2r,where r=rank(A). The following Lemma (see [7] for proof) demonstrates howthe SVD of A is generated from the eigenvalues and eigenvectors of the thematrix B in (3).



Equivalent Eigenvalue Problems 9Lemma 3.1 Let A be an m� n (m � n) matrix and B de�ned by (3).1. For any positive eigenvalue, �i, of B let (ui; vi)T denote a correspondingeigenvector of norm p2. Then �i is a singular value of A and ui, viare respectively, left and right singular vectors of A corresponding to�i.2. For �i = 0, if B has corresponding orthogonal eigenvectors (uj; vj)Twith vj 6= 0 and uj 6= 0 for j = 1; :::t for some t � 1, then 0 is asingular value of the matrix A, and the corresponding left and rightsingular vectors can be obtained by orthogonalizing these uj and vj,respectively. Otherwise, A has full rank, i.e., rank(A) = n.The numerical accuracy of the i-th approximate singular triplet (~ui; ~�i; ~vi) asdetermined via the eigensystem of the 2-cyclic3 matrix B (provided A � 0)is then determined by the norm of the eigenpair residual vector ri de�ned askrik2 = hkB(~ui; ~vi)T � ~�i(~ui; ~vi)Tk2i = hk~uik22 + k~vik22i 12 ;which can also be written askrik2 = h(kA~vi � ~�i~uik22 + kAT ~ui � ~�i~vik22) 12 i = hk~uik22 + k~vik22i 12 : (4)Alternatively, we may compute the SVD of A indirectly by the eigen-pairs of either the n � n matrix ATA or the m � m matrix AAT . Lemma3.2 illustrates the fundamental relations between these symmetric eigenvalueproblems and the SVD.Lemma 3.2 Let A be an m� n (m � n) matrix with rank(A) = r.1. If V = fv1; v2; :::; vrg are linearly independent n � 1 eigenvectors ofATA so that V T (ATA)V = diag(�21; �22; :::; �2r; 0; :::; 0| {z }n�r ), then �i is thei-th nonzero singular value of A corresponding to the right singularvector vi. The corresponding left singular vector, ui, is then obtainedas ui = 1�iAvi.3A non-negative irreducible matrix B which is 2-cyclic has 2 eigenvalues of modulus�(B), where �(B) is the spectral radius of B. See De�nition 2.2 on page 35 in [34].



Subspace Iteration (sis1, sis2) 102. If U = fu1; u2; :::; urg are linearly independent m � 1 eigenvectors ofAAT so that UT (AAT )U = diag(�21; �22; :::; �2r; 0; :::; 0| {z }m�r ), then �i is the i-th nonzero singular value of A corresponding to the left singular vectorui. The corresponding right singular vector, vi, is then obtained asvi = 1�iATui.Computing the SVD of A via the eigensystems of either ATA or AAT maybe adequate for determining several of the largest singular triplets of A, butthe loss of accuracy can be severe for the smallest singular triplets (see [7]).Whereas the smallest and largest singular values of A are the extremes of thespectrum of ATA or AAT , the smallest singular values of A lie at the centerof the spectrum of B in (3). For computed eigenpairs of ATA and AAT , thenorms of the i-th eigenpair residuals (corresponding to (4)) are given bykrik2 = kATA~vi � ~�2i ~vik2 = k~vik2and krik2 = kAAT ~ui � ~�2i ~uik2 = k~uik2 ;respectively. Thus, extremely high precision in computed eigenpairs maybe necessary to compute the smallest singular triplets of A. Di�culties inapproximating the smallest singular values by any of the three equivalentsymmetric eigenvalue problems are discussed in [3]. The naming conventionof each SVDPACKC program spec�es both the algorithm and the type ofequivalent eigensystem used to approximate singular triplets. Speci�cally,all possible entries for the three �elds of the four character SVDPACKC root�lename MMTE are given in Table 2. The contents of all binary output �lesare listed in Appendix C, Section 10. In the following subsections, we brieydescribe the eight SVDPACKC routines which can be used to approximatethe singular triplets of large sparse matrices. Details of each sparse iterativemethod implemented in SVDPACKC are presented in [4].3.2 Subspace Iteration (sis1, sis2)Subspace iteration is perhaps one of the simplest algorithms used to solvelarge sparse eigenvalue problems. As discussed in [26], it can be viewed asa block generalization of the classical power method. The simplest version



Subspace Iteration (sis1, sis2) 11MMTE[.c]Field Description Possible EntriesMM Method bl � Block Lanczos(Algorithm) la � Single Vector Lanczossi � Subspace Iterationtm � Trace MinimizationT File Type d � Documentation Filep � Input Parameters Fileo � Output Files � Source FileE Eigensystem 1 � Cyclic Matrix B de�ned by (3)or 2 � ATA MatrixOutput Channel from (for comparison purposes)SVDPACK (Fortran-77) 2,3,8,9 � Output ChannelTable 2: SVDPACKC program naming convention.of subspace iteration was introduced by Bauer ([1]) and if adapted to thematrix B in (3) would involve forming the sequenceZk = BkZ0 ;where Z0 = [z1; z2; � � � ; zs] is an (m + n) � s. If the column vectors, zi, arenormalized separately (as done in the power method), then these vectors willconverge to the dominant eigenvector of B. Thus, the matrix Zk will progres-sively lose the linear independence of its columns. In order to approximatethe p-largest eigenpairs of B, Bauer demonstrated that linear independenceamong the zi's could be maintained if they were orthogonalized at each step,say by a modi�ed Gram-Schmidt procedure. However, the convergence rateof the zi's to eigenvectors of B would only be linear.The sophisticated implementation of subspace iteration used in sis1 andsis2 is based on Rutishauser's ritzit program (see [28]). This particular al-gorithm incorporates both a Rayleigh-Ritz procedure and acceleration viaChebyshev polynomials. The iteration which embodies the ritzit program isgiven in Table 3. The Rayleigh Quotient matrix,Hk, in step (3) is essentiallythe projection of B2 onto the span(Zk�1). The three-term recurrence in step



Subspace Iteration (sis1, sis2) 12(6) follows from the adaptation of the Chebyshev polynomial of degree q, sayTq(x), to the interval [�e; e], where e is chosen to be the smallest eigenvalueof Hk.The primary cost of sis1 and sis2 (as with all SVDPACKC routines) liesin the total number of sparse matrix-vector multiplications required. If s � pvectors, zi, are used to approximate the p-largest eigenvectors of the (m +n) � (m + n) matrix B, the cost in oating-point operations per iterationwould be s� [2(1 + �r)m + 2(1 + �c)n] ; (5)where �r and �c are the average number of nonzeros per row and column,respectively. In SVDPACKC, the multiplication of a vector by the matricesAand AT is determined by subroutines opa and opat, respectively. Subroutineopb multiplies a vector by the matrix B, which may be given by (3) or ATA(with possibly a diagonal perturbation or shift).(1) Compute Ck = BZk�1(2) Factor Ck = QkRk(3) Form Hk = RkRTk(4) Factor Hk = Pk�2kP Tk(5) Form Zk = QkPk(6) Iterate Zk+j = 2e BZk+j�1 � Zk+j�2(j = 2; :::; q)Table 3: Subspace iteration as implemented in sis1 and sis2.The orthogonal factorization in step(2) of Table 3 is computed by a mod-i�ed Gram-Schmidt procedure. On multiprocessor architectures (especiallythose having hierarchical memories), one may achieve high performance (witha slight increase in the total number of arithmetic operations) by using ei-ther a block Gram-Schmidt or block Householder orthogonalization methodin step(2). As discussed in [14], signi�cant improvements in the algorithmicperformance of fundamental linear algebra kernels may be gained throughthe improved data locality associated with block-based methods. For thespectral decomposition step (4), larger subspaces, an optimized implementa-tion of the classical EISPACK ([32]) pair, TRED2 and TQL2. On parallel



Subspace Iteration (sis1, sis2) 13computers, Cuppen's algorithm as parallelized by Dongarra and Sorensen([10]) would be e�ective for step (4).3.2.1 Input ParametersThe input parameters for sis1.c and sis2.c are read from the parameter �lessip1 and sip2, respectively. These �les should contain the following six �eldsof constants and switches on a single line:<name> em numextra km eps vwhere� <name> is a string de�ning the name of the dataset.� em is an integer specifying the number of desired triplets.� numextra is an integer specifying the number of extra vectors to carryso that the subspace dimension is em+ numextra.� km is an integer specifying the maximum number of iterations.� eps is a double specifying the residual tolerance for approximated sin-gular triplets.� v contains the string TRUE or FALSE to indicate when singular vectorsare needed (TRUE) and when only singular values are needed (FALSE).As an example,'belladit' 10 4 150 1.e-6 TRUEindicates that the dataset belladit contains the input sparse matrix whose10-largest singular triplets are sought to 10�6 accuracy using a subspacedimension of 14 for no more than 150 iterations.



Trace Minimization Method (tms1, tms2) 143.2.2 User-De�ned RoutinesFor all SVDPACKC programs, the actual sparse matrix is always read froma �le called matrix. You must make sure that this �le stores the sparse ma-trix using an appropriate format such as the Harwell-Boeing sparse matrixformat [11] (see Appendix B, Section 9). All the iterative methods imple-mented in SVDPACKC do not modify the input matrix A, which is onlyreferenced through matrix-vector multiplication. For subspace iteration, weprovide opb() and opa() which perform di�erent sparse matrix-vector muli-tiplications. Table 4 lists these kernels, and where appropriate, their speci�cfunction in each implementation. Note that � is chosen so that B is positivede�nite. code opb() opa()sis1 y = " �I AAT �I # x {sis2 y = ATAx y = AxTable 4: Matrix-vector multiplication kernels for sis1 and sis2.In the next section, we discuss an alternative subspace method whichwould appear to be more suitable for multiprocessors than subspace iterationin that the desired singular triplets are iterated upon (for the most part) inparallel.3.3 Trace Minimization Method (tms1, tms2)Another candidate subspace method for the SVD of sparse matrices is basedupon the trace minimization algorithm discussed in [30] and [37] for thegeneralized eigenvalue problem Hx = �Gx ; (6)



Trace Minimization Method (tms1, tms2) 15where H and G are symmetric and G is also positive de�nite. In order tocompute the SVD of an m�n matrix A, we initially replaceH with ~B, where is chosen so that ~B =  I AAT I ! ; (7)is positive de�nite, or set H = ATA. Since we need only consider equiv-alent standard symmetric eigenvalue problems (see Section 3:1), we simplyde�ne G = Im+n (or In if H = ATA). Accordingly, our appropriate traceminimization SVD scheme is then based upon the following theorem whichis a direct consequence of the Courant-Fischer theorem (see [35]). Withoutloss of generality, let us assume that H = ~B, G = Im+n and consider theassociated symmetric eigensystem of order m+ n (tms1).Theorem 3.1 Let ~B be as given in (7) and let Y be the set of all (m+n)�pmatrices Y for which Y TY = Ip. ThenminY 2Y trace(Y T ~BY ) = p � pXi=1 �i ;where �i is a singular value of A, �i =  � �i is an eigenvalue of ~B, and�1 � �2 � : : : � �p.Given an (m + n) � p matrix Y which forms a section of the eigenvalueproblem ~Bz = �z ; (8)i.e., Y T ~BY = ~� ; Y TY = Ip ; (9)~� = diag(~�1; ~�2; � � � ; ~�p) ;tms1 �nds a sequence of iterates Yk+1 = F (Yk), where both Yk and Yk+1 forma section of (8), and have the property trace(Y Tk+1 ~BYk+1) < trace(Y Tk ~BYk).From Theorem 3.1, the matrix Y in (9) which minimizes trace(Y T ~BY ) isthe matrix of ~B-eigenvectors associated with the p-smallest eigenvalues ofthe problem (8). As discussed in [30] and [37], F (Y ) can be chosen so thatglobal convergence is assured. Moreover, (8) can be regarded as the quadraticminimization problem minimize trace(Y T ~BY ) (10)



Trace Minimization Method (tms1, tms2) 16subject to the constraints Y TY = Ip : (11)Using Lagrange multipliers, this quadratic minimization problem leads tosolving the (m+ n+ p) � (m+ n+ p) system of linear equations ~B YkY Tk 0 ! �kL ! =  ~BYk0 ! ; (12)so that Yk+1 � Yk ��k will be an optimal subspace iterate.Since the matrix ~B is positive de�nite (by construction), one can alter-natively consider the independent (parallel) subproblemsminimize trace( (y(k)j � d(k)j )T ~B(y(k)j � d(k)j ) ) (13)subject to the constraintsY Td(k)j = 0 ; j = 1; 2; : : : ; p;where d(k)j = �kej, ej is a vector composed of all zeros except for the value1 in the j-th component, and Yk = [y(k)1 ; y(k)2 ; : : : ; y(k)p ]. The corrections �kin this case are selected to be orthogonal to the previous estimates Yk (11),i.e., so that (see [22]) �Tk Yk = 0:We then recast (12) as ~B YkY Tk 0 ! d(k)jl ! =  ~By(k)j0 ! ; j = 1; 2; : : : ; p; (14)where 2l is a vector of order p reecting the Lagrange multipliers.The solution of the p systems of linear equations in (14) can be done inparallel by either a direct or iterative solver. Since the original matrix A isassumed to be large, sparse, and without any particular sparsity structure(pattern of nonzeros) we use an iterative method (conjugate gradient) withintms1 and tms2.



Trace Minimization Method (tms1, tms2) 173.3.1 Polynomial Acceleration Technique (tms2)The Chebyshev acceleration strategy used within subspace iteration (see Sec-tion 3:2) is also used in tms2. However, to dampen unwanted singular valuesof A in this context we must solve the generalized eigenvalue problem (asopposed to (8)) x = 1Pq(�)Pq(ATA)x ; (15)where Pq(x) = Tq(x) + �Im+n, Tq(x) is the Chebyshev polynomial of degreeq, and � is chosen so that Pq(ATA) is (symmetric) positive de�nite. Theappropriate quadratic minimization problem similar to (13) for (15) can beexpressed as minimize trace( (y(k)j � d(k)j )T (y(k)j � d(k)j ) ) (16)subject to the constraintsY TPq(ATA)d(k)j = 0 ; j = 1; 2; : : : ; p:In e�ect, we then approximate the smallest singular values of A (or eigenval-ues of ~B) as the largest eigenvalues of the matrix Pq(ATA) whose gaps areconsiderably larger than those of the eigenvalues of ATA.Although the additional number of sparse matrix-vector multiplicationsassociated with the multiplication by Pq(ATA) will be signi�cant for highdegrees q, the system of equations via Lagrange multipliers in (14) becomesmuch easier to solve, i.e., I Pq(ATA)YkY Tk Pq(ATA) 0 ! d(k)jl ! =  y(k)j0 ! ; j = 1; 2; : : : ; p: (17)It is easy to show that the updated eigenvector approximation, y(k+1)j , isdetermined byy(k+1)j = y(k)j � d(k)j = Pq(ATA)Yk hY Tk P 2q (ATA)Yki�1 Y Tk Pq(ATA)y(k)j :Thus, we need not employ the use of an iterative solver for determiningYk+1 since the matrix hY Tk P 2q ( ~B)Yki�1 is of order p and using the orthogonalfactorization Pq(ATA)Yk = Q̂R̂ ;



Trace Minimization Method (tms1, tms2) 18we have hY Tk P 2q (ATA)Yki�1 = R̂�T R̂�1 :The control of the polynomial degree, q, is determined by the strategydiscussed in [28] and [3] for damping the unwanted singular values of A whichcorrespond to a particular choice for H in (6). We note that tms2 with thechoice H = ATA can be used to approximate the p-smallest singular valuesof A, whereas the choice H = 2I�ATA ( any least upper bound for �max)will enable tms2 to approximate the p-largest singular values of A. tms1,which determines the eigensystem of the matrix ~B in (7), does not currentlyemploy polynomial acceleration.3.3.2 Shifting Strategy (tms1, tms2)As discussed in [30], we can also accelerate the convergence of the Yk to eigen-vectors of ~B (and hence singular vectors of A) by incorporating Ritz shifts(see [26]) into both tms1 and tms2. Speci�cally, we modify the symmetriceigenvalue problem in (8) as( ~B � �(k)j I)zj = (�j � �(k)j )zj ; j = 1; 2; : : : ; s ; (18)where �(k)j = ~�(k)j is the j-th approximate eigenvalue (9) from the k-th TRSVDiteration, and �j; zj are an exact eigenpair of ~B. In other words, we simplyuse our most recent approximations to the eigenvalues of ~B from our k-thiteration as Ritz shifts. As was shown by Wilkinson in [36], the Rayleigh quo-tient iteration associated with (18) will ultimately achieve cubic convergenceto ��j, where �j is an exact singular value of A, provided �(k)j is su�cientlyclose to  � �j. However, since we have �(k+1)j < �(k)j for all k (see Theorem3.1), i.e., we approximate eigenvalues of ~B from above, ~B � �(k)j I will notbe positive de�nite and thus we cannot guarantee the convergence of thisshifted method for any particular singular triplet j. However, the strategyoutlined in [4] has been quite successful in maintaining global convergencewith shifting.The logic of tms2 which appropriately utilizes polynomial (Chebyshev)acceleration prior to Ritz shifting is outlined in [4]. It is important to notethat once shifting has been invoked (Step (4)) tms2 abandons the use ofChebyshev polynomials Pq( ~B) and solves shifted systems ( ~B replaced by ~B�



Trace Minimization Method (tms1, tms2) 19�(k)j I) of the form in (12). The context switch from either non-accelerated orpolynomial-accelerated trace minimization iterations to trace minimizationiterations with Ritz shifting is accomplished by monitoring the reduction ofthe residuals (4) for isolated eigenvalues or clusters of eigenvalues (see [4]).For an isolated eigenvalue approximation ~�(k)j , which is detected say afterk0 tms2 iterations, we monitor succeeding iterations (k > k0), and determineif the norm of the current residual (kr(k)j k2) is less than a chosen order ofmagnitude (� = 10�t, for a small integer t) of kr(k0)j k2. Thus, the parameter� serves as our control for the context switch from polynomial-based acceler-ation to shift-based acceleraton. The value of � will naturally depend uponthe desired accuracy of the singular triplets sought, since we would like toproduce suitable shifts (�jk � ~�jk) for fast convergence of yjk to an eigenvectorof ~B. For most problems considered thus far, optimal convergence rates canbe obtained with � = 10�1; 100.3.3.3 Input ParametersThe input parameters for tms1.c and tms2.c are read from the parameter �lestmp1 and tmp2, respectively. These �les should contain the following eight�elds of constants and switches on a single line:<name> p s job tol red v maxiwhere� <name> is a string de�ning the name of the dataset.� p is an integer specifying the number of desired triplets.� s is an integer specifying the dimension of the subspace to use.� job is an integer specifying the type of acceleraton to be used.job = 0: No acceleration strategy used.job = 1: Ritz-shifting used.job = 2: Chebyshev polynomials and Ritz-shifting used.� tol is a double specifying the residual tolerance for approximated sin-gular triplets.



Trace Minimization Method (tms1, tms2) 20� red is a double specifying the residual reduction factor to initiate Ritz-shifting (when job = 1; 2).� v contains the string TRUE or FALSE to indicate when singular vectorsare needed (TRUE) and when only singular values are needed (FALSE).� maxi is an integer specifying the maximum number of iterations.As an example,'belladit' 10 12 1 1.e-6 1.0e0 TRUE 80indicates that the dataset belladit contains the input sparse matrix whose10-largest singular triplets are sought to 10�6 accuracy using a subspacedimension of 12 for no more than 80 trace minimization iterations. Ritz-shifting acceleration is used and all residual errors for clustered or isolatedapproximate singular values must be a factor of 1.0e0 smaller than theirinitial residual errors prior to Ritz-shifting.3.3.4 User-De�ned RoutinesFor trace minimization, we provide opb() and opat() which perform thesparse matrix-vector mulitiplications listed in Table 5.code opb() opat()tms1 y = " 0 AAT 0 # x y = ATxtms2 y = ATAx y = ATxTable 5: Matrix-vector multiplication kernels for tms1 and tms2.



Single-Vector Lanczos Method (las1, las2) 213.4 Single-Vector Lanczos Method (las1, las2)Other popular methods for solving large, sparse, symmetric eigenproblemsoriginate from a method attributed to Lanczos (1950). This method gen-erates a sequence of tridiagonal matrices Tj with the property that the ex-tremal eigenvalues of the j � j matrix Tj are progressively better estimatesof the original matrix B's extremal eigenvalues. Suppose we consider the(m+ n)� (m+ n) 2-cyclic matrix B given in (3), where A is the m� n ma-trix whose singular triplets are sought, and let v1 be a randomly generatedstarting (m + n) � 1 vector such that kv1k2 = 1. For j = 1; 2; :::; l de�nethe corresponding Lanczos matrices Tj using the following recursion ([25]).De�ne �1 � 0, and v0 � 0. Then, for i = 1; 2; :::; l de�ne Lanczos vectors wiand scalars �i and �i+1 where�i+1wi+1 = Bwi � �iwi � �iwi�1 ; and (19)�i = wTi (Bwi � �iwi�1)j�i+1j = kBwi � �iwi � �iwi�1k2 :For each j, the corresponding Lanczos matrix Tj is de�ned as a real symmet-ric, tridiagonal matrix having diagonal entries �i (1 � i � j), and subdiago-nal (superdiagonal) entries �i+1 (1 � i � (j � 1)), i.e.,Tj � 0BBB@ �1 �2�2 �2 �3�3 � �� � �� � �j�j �j 1CCCA : (20)By de�nition, the vectors �iwi and �iwi�1 in (19) are respectively, the or-thogonal projections of Bwi onto the most recent wi and wi�1. Hence foreach i, the next Lanczos vector wi+1 is obtained by orthogonalizing Bwi withrespect to wi and wi�1. The resulting �i, �i+1 obtained in these orthogonal-izations de�ne the corresponding Lanczos matrices. If we rewrite (19) inmatrix form, then for each j we haveBWj = WjTj + �j+1wj+1eTj ; (21)where Wj � [w1; w2; :::; wj] is the n� j matrix whose k-th column is the k-thLanczos vector, and eTj is the j-th column of the n�n identity matrix. Thus,



Single-Vector Lanczos Method (las1, las2) 22the Lanczos recursion (21) generates a family of real symmetric tridiagonalmatrices related to both B and w1. Table 6 outlines the basic Lanczosprocedure for computing the eigenvalues and eigenvectors of the symmetric2-cyclic matrix B.(1) Use any variant of the Lanczos recursion (19) to generatea family of real symmetric tridiagonal matrices, Tj (j = 1; 2; :::; q).(2) For some k � q, compute relevant eigenvalues of Tk.(3) Select some or all of these eigenvalues as approximations to theeigenvalues of the matrix B, and hence singular values of A.(4) For each eigenvalue � compute a corresponding unit eigenvectorz such that Tkz = �z. Map such vectors into correspondingRitz vectors y �Wqz, which are then used as approximationsto the desired eigenvectors (singular vectors) of the matrix B (A).Table 6: Single-vector Lanczos recursion used in las1 and las2.As with the previous SVDPACKC methods, the matrix B is only refer-enced through matrix-vector multiplication in Table 6. At each iteration,the basic Lanczos recursion requires only the two most recently-generatedvectors, although for �nite-precision arithmetic modi�cations suggested byParlett and Scott [27], and Simon [31] require additional Lanczos vectors tobe readily accessible via secondary storage.In one sense, the Lanczos procedure can be viewed as the Gram-Schmidtorthogonalization of the set of Krylov vectors w1; Bw1; :::; Bk�1w1. Alterna-tively, span fWjg is a Krylov subspace for the matrix B, and the Lanczosprocedure is a mechanism for generating orthonormal bases for these Krylovsubspaces and for computing the orthogonal projection of B onto these sub-spaces. Computing the eigenvalues of the Tj's is equivalent to computing thebest approximations to the eigenvalues and eigenvectors of B restricted tothe corresponding Krylov subspaces. The accuracy of these approximationshave been studied in detail by Kaniel ([21]) and more recently by Saad ([29]).Saad improved the original error bounds of Kaniel, however, but these re-sults still indicate deterioration of accuracy of the computed eigenvalues and



Single-Vector Lanczos Method (las1, las2) 23of the corresponding Ritz vectors as we move to the interior of the spectrumof B.In using �nite-precision arithmetic, any practical Lanczos procedure mustaddress problems created by losses in the orthogonality of the Lanczos vec-tors, wi. Such problems include the occurrence of numerically-multiple eigen-values of Tj (for large j) for simple eigenvalues of B, and the appearanceof spurious eigenvalues among the computed eigenvalues for some Tj. Ap-proaches to deal with these problems range from two di�erent extremes.The total reorthogonalization of every Lanczos vector with respect to ev-ery previously-generated Lanczos vector is one extreme ([16]). The otherapproach accepts the loss in orthogonality and then deals with these prob-lems directly. Regarding storage requirements, supercomputers such as theCRAY-2S/4-128 with 128 megawords (1024 million bytes) of core memorymay be su�cient for most Lanczos recursions requiring total reorthogonaliza-tion (for m�n matrices in which mn� 107). On the other hand, a Lanczosprocedure with no reorthogonalization needs only the two most recently-generated Lanczos vectors at each stage, and hence has minimal computerstorage requirements. Such a procedure must track (see [7]) the spuriouseigenvalues of B (singular values of A) associated with the loss of orthogo-nality in the Lanczos vectors, wi.las1 and las2 implement a single-vector Lanczos algorithm (19) equippedwith a selective reorthogonalization strategy. Both programs evolved fromthe LANSO program (Version 1, April 1989) designed by Parlett and his col-leagues at The University of California at Berkeley ([27], [31]). The originalLANSO program was primarily designed for the standard and generalizedsymmetric eigenvalue problem. las1 and las2are adaptations of LANSO wheneigensystems of the 2-cyclic matrix B de�ned in (3) and B = ATA, respec-tively, are desired.3.4.1 Input ParametersThe input parameters for las1.c and las2.c are read from the parameter �leslap1 and lap2, respectively. These �les should contain the following seven�elds of constants and switches on a single line:<name> lanmax maxprs endl endr vectors kappawhere



Block Lanczos Method (bls1, bls2) 24� <name> is a string de�ning the name of the dataset.� lanmax is an integer specifying the maximum number of Lanczos iter-ations allowed.� maxprs is an integer which indicates the number of singular triplets ofA (eigenpairs of the equivalent matrix B) desired.� endl,endr are integers specifying the two end-points of an interval withinwhich all unwanted eigenvalues of the particular matrix B lie.� vectors contains the string TRUE or FALSE to indicate when singulartriplets are needed (TRUE) and when only singular values are needed(FALSE).� kappa is a double containing the relative accuracy of Ritz values ac-ceptable as eigenvalues of the matrix B.As an example,'belladit' 50 10 -1.e-30 1.e-30 TRUE 1.0e-6indicates that the dataset belladit contains the input sparse matrix whose10-largest singular triplets are sought to 10�6 accuracy using a Krylov sub-space of dimension less than or equal to 50. Here we also suppress the extrac-tion of (computationally) zero Ritz values in the interval [�10�30; 10�30].3.4.2 User-De�ned RoutinesFor our single-vector Lanczos programs, we provide opb() and opa() whichperform the sparse matrix-vector mulitiplications listed in Table 7.3.5 Block Lanczos Method (bls1, bls2)As subspace iteration is the block generalization of the classical power methodfor computing eigenpairs, we now consider a block analogue of the singlevector Lanczos recursion given in (19). Exploiting the structure of the matrixB in (3), the following Lemma presents an alternative form for the Lanczosrecursion (19).



Block Lanczos Method (bls1, bls2) 25code opb() opa()las1 y = " 0 AAT 0 # x {las2 y = ATAx y = AxTable 7: Matrix-vector multiplication kernels for las1 and las2.Lemma 3.3 Let A be an m�n (m � n) matrix and B de�ned by (3). Applythe Lanczos recursion speci�ed by (19) to B with a starting vector ~u = (u; 0)Tsuch that k~uk2 = 1. Then the diagonal entries of the real symmetric tridi-agonal Lanzcos matrices generated are all identically zero, and the Lanzcosrecursion in (19) reduces to the following. De�ne u1 � u, v0 � 0, and �1 � 0.For i = 1; 2; :::; k we then obtain the Lanczos recursions�2ivi = ATui � �2i�1vi�1 ;�2i+1ui+1 = Avi � �2iui : (22)The Lanczos recursion (22), however, can only compute the distinct singularvalues of an m� n matrix A and not their multiplicities.Following the block Lanczos recursion for the sparse symmetric eigenvalueproblem ([33], [19]), (22) may be represented in matrix form asAT Ûk = V̂kJTk + Zk ;AV̂k = ÛkJk + ~Zk; (23)where Ûk = [u1; � � � ; uk], V̂k = [v1; � � � ; vk], Jk is a k � k bidiagonal matrixwith Jk[j; j] = �2j and Jk[j; j + 1] = �2j+1, and Zk, ~Zk contain remainderterms. It is easy to show that the nonzero singular values of Jk are the sameas the positive eigenvalues ofKk �  O JkJTk O ! : (24)



Block Lanczos Method (bls1, bls2) 26For the block analogue of (23), we make the simple substitutionsui $ Ui ; vi $ Vi ;where Ui is m� b, Vi is n� b, and b is the current block size. The matrix Jkis now a block upper bidiagonal matrix of order bkJk � 0BBB@ S1 RT1S2 RT2� �� �� RTk�1Sk 1CCCA ; (25)where the Si's and Ri's are b� b upper-triangular matrices. If Ui's and Vi'sformmutually orthogonal sets of bk vectors so that Ûk and V̂k are orthonormalmatrices, then the singular values of the matrix Jk will be identical to thoseof the original m� n matrix A. In essence, the 2-cyclic matrix Kk in (24) isthe projection of the vectors de�ned by Ûk OO V̂k !onto the Krylov subspace generated by the 2-cyclic matrix B in (3). Giventhe upper block bidiagonal matrix Jk, we approximate the singular tripletsof A by �rst computing the singular triplets of Jk. To determine the leftand right singular vectors of A from those of Jk, we must retain the Lanczosvectors in Ûk and V̂k. Speci�cally, if f�(k)i ; y(k)i ; z(k)i g is the i-th singular tripletof Jk, then the approximation to the i-th singular triplet of A is given byf�(k)i ; Ûky(k)i ; V̂kz(k)i g, where Ûky(k)i , V̂kz(k)i are the left and right approximatesingular vectors, respectively. The computation of singular triplets for Jkrequires two phases. The �rst phase reduces Jk to bidiagonal form, say Bk,where Bk � 0BBB@ �1 �1�2 �2� �� �� �bk�1�bk 1CCCA ; (26)via a �nite sequence of orthogonal transformations (thus preserving the sin-gular values of Jk). The second phase reduces Bk to diagonal form by amodi�ed QR algorithm. This diagonalization procedure is discussed in de-tail in [18]. The resulting diagonalized Bk will yield the approximate singular



Block Lanczos Method (bls1, bls2) 27values of A and the corresponding left and right singular vectors are deter-mined by products of all the left and right transformations (respectively)used in both phases of the SVD of Jk.There are a few options for the reduction of Jk to the bidiagonal matrix,Bk. Golub, Luk, and Overton in [17] advocated the use of either band House-holder or band Givens methods which in e�ect chase o� (or zero) elements onthe diagonals above the �rst super-diagonal of Jk. We note that the algorithmfor diagonalizing Bk typically requires in excess of 8(bk)3 multiplications(with standard Givens rotations) and thus may dominate any savings in thereduction to bidiagonal form. In either reduction (bi-diagonalization or diag-onalization), the computations are primarily sequential and o�er limited datalocality or parallelism for possible exploitation on a multiprocessor architec-ture. For this reason, we adopt the single vector Lanczos bi-diagonalizationrecursion by (22) and (23) in bls1 for reducing the upper block bidiagonalmatrix Jk to bidiagonal form (Bk), i.e.,JTk Q̂ = P̂BTk ;JkP̂ = Q̂Bk ; (27)or Jkpj = �jqj + �j�1qj�1 ;JTk qj = �jpj + �jpj+1 ; (28)where P̂ � fp1; p2; : : : ; pbkg and Q̂ � fq1; q2; : : : ; qbkg are orthonormal matri-ces or order bk� bk and the �i's and �i's are de�ned by (26). The recursionsin (28) require band matrix-vector multiplications which can be easily ex-ploited by optimized level-2 BLAS routines ([9]) now resident in optimizedmathematical libraries on most high-performance computers. For orthogo-nalization of the outermost Lanczos vectors, fUig and fVig, as well as theinnermost Lanczos vectors, fpig and fqig, we have chosen to apply a com-plete or total reorthogonalization ([16]) strategy to insure robustness in ourtriplet approximations for the matrix A.As an alternative to the outer recursion in Table 8, which is derivedfrom the equivalent eigenvalue in the 2-cyclic matrix B, Table 10 depicts thesimpli�ed outer block Lanczos recursion for approximating the eigensystemof ATA (bls2). Combining the equations in (23), we obtainATAV̂k = V̂kHk ;



Block Lanczos Method (bls1, bls2) 28where Hk = JTk Jk is the k � k symmetric block tridiagonal matrixHk � 0BBB@ S1 RT1R1 S2 RT2R2 � �� � �� � RTk�1Rk�1 Sk 1CCCA ; (29)having block size b. bls2 applies the block Lanczos recursion ([16]) in Ta-ble 10 for computing the eigenpairs of the n� n symmetric positive de�nitematrix ATA. The tridiagonalization of Hk via an inner Lanczos recursionfollows from simple modi�cations to Table 9. Analogous to the diagonaliza-tion of Bk in (25), the computation of eigenpairs of the resulting tridiagonalmatrix in this case can be performed via a QR-based symmetric eigensolver.(1) [Formation of Jk]Choose V1 (n � b and orthonormal) and c = max fbkg.Compute W1 = AV1. (P0 = U0 = 0 initially)Orthogonalize W1 against U0 (i.e., W1 = (I � U0UT0 )W1).For i = 2; 3; : : : ; k do: (k = bc=bc)(1a) Compute Yi = ATUi�1 � Vi�1Si�1,(1b) Orthogonalize Yi against fVlgi�1l=0,(1c) Factor Yi = ViRi�1,(1d) Compute Wi = AVi � Ui�1RTi�1,(1e) Orthogonalize Wi against fUlgi�1l=0,(1f) Factor Wi = UiSi.Table 8: Hybrid Lanczos outer iteration used in bls1.The conservation of computer memory for bls1 and bls2is insured by en-forcing an upper bound, c, for the order (bk) of any Jk constructed (see Table



Block Lanczos Method (bls1, bls2) 29(2) [Bidiagonalization of Jk, Formation of Bk]Choose p1 (kp1k2 = 1),Compute t1 = Jkp1, �1 = kt1k2,For i = 1; 2; : : : ; ~n do: (~n = b� k)(while �j 6= 0) do:qj = tj=�j,(2a) Compute zj = JTk qj � �jpj ,(2b) Orthogonalize zj against fplgjl=1,�j = kzjk2,(while �j 6= 0) do:pj+1 = zj=�j,(2c) Compute tj+1 = Jkpj+1 � �jqj,(2d) Orthogonalize tj+1 against fqlgjl=1,�j+1 = ktj+1k2.Table 9: Hybrid Lanczos inner iteration used in bls1.8). This technique was suggested by Golub, Luk, and Overton in [17], andby Cullum and Donath in [6]. Given a block size b (usually b � p, where pis the desired number of triplets), the number of diagonal blocks, d, for Jk,is de�ned as bc=bc, where b�c denotes truncation of the mantissa. If d < 2,one may reset b = c=2 and then rede�ne d = bc=bc so that Jk maintains theblock upper bidiagonal form in (25).As mentioned above, we may compute the SVD of the bidiagonal matrixBk by a modi�ed QR algorithm. Using (27) we may writeBk = �Q� �P T ;so that Jk = Q̂ �Q� �P T P̂ T ;



Block Lanczos Method (bls1, bls2) 30(1) [Formation of symmetric block tridiagonal matrix Hk]Choose V1 (n� b and orthonormal) and c = max fbkg.Compute S1 = V T1 ATAV1. (V0; RT0 = 0 initially)For i = 2; 3 : : : ; k do: (k = bc=bc)(1a) Compute Yi�1 = ATAVi�1 � Vi�1Si�1 � Vi�1RTi�2,(1b) Orthogonalize Yi�1 against fVlgi�1l=0,(1c) Factor Yi�1 = ViRi�1,(1d) Compute Si = V Ti ATAVi.Table 10: Hybrid Lanczos outer iteration used in bls2.where � = diag f�1; �2; : : : ; �ng, and �i is an approximation to an exactsingular value of the original m � n sparse matrix A. Hence, via (23) ap-proximations to the i-th left and right singular vectors corresponding to �iare given by �ui = ÛkQ̂�qi ;�vi = V̂kP̂ �pi ; (30)where �pi, �qi are the i-th columns of �P , �Q, respectively. Suppose that beforerestarting the outer iteration in Table 8 we have determined that p0 singulartriplets are acceptable to a user-supplied tolerance for the residual error de-�ned in (4). Then, we update the values of the block size (b), the maximumallowable order for Jk (c), the number of diagonal blocks for Jk (d), and thenumber of triplets yet to be found (p) as follows:bnew = bold � p0 ; if b � pold, (31)= min fbold ; pold � p0g otherwise,cnew = cold � p0 ;pnew = pold � p0 ;dnew = bcnew=bnewc :



Block Lanczos Method (bls1, bls2) 31All converged left and right singular vector approximations are respectivelystored in matrices U0 and V0 so thatU0 � (U0j�u1; �u2; : : : ; �up0) ;V0 � (V0j�v1; �v2; : : : ; �vp0) ;where U0 = V0 = 0 initially (prior to any restart). To estimate the accuracyof our approximate singular triplets in say iteration l, we may convenientlyestimate the residual (4) for some �k by kykk2 of Step (1a) in Table 8 foriteration l+1, where yk is the k-th column of the n�bmatrix Yi. Hence, at thestart of iteration l+1 we can determine the accuracy of our approximationsfrom iteration l.As with the other SVDPACKC methods, bls1 and bls2 only access thesparse matricesA andAT through sparse matrix-vectormultiplications. Somee�ciency, however, is gained in the outer (block) Lanczos iterations by themultiplication of b vectors (Steps (1a), (1b) in Table 8) rather than by a sin-gle vector. These dense vectors may be stored in a fast local memory (cache)of any hierarchical memory-based architecture, and thus yield more e�ectivedata reuse. The total reorthogonalization strategy and deation of convergedsingular vector approximations is accomplished in Steps (1b), (1e) in Table8 and Steps (2b), (2d) in Table 9. A stable variant of Gram-Schmidt orthog-onalization ([28]), which requires e�cient dense matrix-vector muliplication(level-2 BLAS) routines ([9]), is used to produce the orthogonal projectionsof Yi (i.e., Ri�1) and Wi (i.e., Si) onto ~V ? and ~U?, respectively, where~V = (V0; V1; : : : ; Vi�1) and ~U = (U0; U1; : : : ; Ui�1) :The convergence of the block Lanczos recursion (23) in the approximationof the b-largest singular values of the matrix A is analyzed in [3]. Althoughthe bound in [3] is somewhat tighter than that which was considered byUnderwood in [33] for the symmetric eigenvalue problem, both results clearlyindicate the desire for b (block size) to be chosen so that �i� �i+b is as largeas possible.3.5.1 Input ParametersThe input parameters for bls1.c and bls2.c are read from the parameter �lesblp1 and blp2, respectively. These �les should contain the following seven�elds of constants and switches on a single line:



Block Lanczos Method (bls1, bls2) 32<name> maxit nc nb nums tol vtfwhere� <name> is a string de�ning the name of the dataset.� maxit is an integer specifying the maximum number of (outer) blockLanczos iterations allowed.� nc is an integer specifying the upper bound for the Krylov subspacegenerated via the outer iteration.� nb is an integer specifying the initial block size for the outer iteration.� nums is an integer specifying the number of singular triplets desired.� tol is a double specifying the residual tolerance for approximated sin-gular triplets.� vtf contains the string TRUE or FALSE to indicate when singular vectorsare needed (TRUE) and when only singular values are needed (FALSE).As an example,'belladit' 40 60 4 10 1.0e-6 TRUEindicates that the dataset belladit contains the input sparse matrix whose10-largest singular triplets are sought to 10�6 accuracy using a maximumKrylov subspace dimension of 60 for no more than 40 iterations. The initialblock size to be used is 4. In general, the initial block size should at least beas large as the greatest multiplicity of any singular value of A.3.5.2 User-De�ned RoutinesFor our block Lanczos programs, we provide opb(), opa(), and opat()whichperform the sparse matrix-vector mulitiplications listed in Table 11. Notethat the opm() routine performs multiplications of the appropriate matrix Btimes a block of dense vectors (X).



SVDPACKC Interface 33code opb() opm() opa() opat()bls1 { { y = Ax y = ATxbls2 y = ATAx Y = ATAX y = Ax {Table 11: Matrix-vector multiplication kernels for bls1 and bls2.4 SVDPACKC InterfaceBefore presenting our SVDPACKC benchmarks in Section 5, we illustratehow a simple yet e�ective interface allows users to easily generate a se-ries of experiments using any or all of the SVDPACKC codes. Using theUNIX4pattern scanning and processing language, awk, and stream editor,sed, two scripts (svdrun, svdsum) for executing and tabulating the output ofSVDPACKC programs have been developed. Equivalent versions of svdrunand svdsum for release 3:3 of the Macintosh Programmer'sWorkshop (MPW)environment on the Macintosh II/fx are also available.svdrun is designed to aid in the selection of parameters (see Section 4.2)for each method, and svdsum produces <input file>.sumn �les (where nis an integer) of tabulated output data for simpli�ed performance compar-isons. svdrun reads a tabulated set of parameters from a user-speci�ed input�le, and invokes the corresponding SVDPACKC routines. For the input �lesvdin, svdsum generates svdin.sumn �les from the output �les producedby the individual SVDPACKC runs. As illustrated by the sample svdruninput �le, svdin, in Figure 1, a user can specify a sequence of experiments inorder to (i:) compare the performance of di�erent algorithms on one or moredatasets, or (ii:) determine the e�ects of parameter choices for a particularalgorithm.Figures 1 through 3 illustrate (i:) and (ii:) for the term-document ma-trix, BELLADIT, provided in the SVDPACKC software distribution package.4UNIX is a trademark of AT&T Bell Laboratories.



SVDPACKC Workstation Benchmarks 34Generating several summary �les similar to svdin.sum1 and svdin.sum2in Figures 2 and 3, respectively, not only allows the user to observe trendsin SVDPACKC performance across machines and/or datasets, but also cre-ates formal benchmark characterizations for future reference and compari-son. svdrun is portable to any UNIX-based programming environment withonly modi�cations (related to the Fortran compiler and its options), andthe svdsum script processes all output �les residing in a current or remoteworking directory.5 SVDPACKC Workstation BenchmarksIn this section, we present sample SVDPACKC benchmarks on workstationssuch as the Macintosh II/fx and Sun-4/490. Model SVD problems using thesparse matrix test suite de�ned in Table 12 are solved. These benchmarksillustrate the typical elapsed user CPU time expired by the 8 SVDPACKCprograms when computing several of the largest singular triplets of real sparsematrices arising from applications such as information retrieval. For all theexperiments reported, we use 64-bit arithmetic and seek triplets whose resid-uals (4) are no larger than 10�6. On both the Macintosh II/fx and Sun-4/490,we use the svdrun script (see Section 4) to execute each SVDPACKC pro-gram on the test suite in Table 12.5.1 Sparse Matrix Test SuiteThe 29 matrices listed in Table 12, which arise from information retrieval andlinear programming applications, were obtained from Apple Computer Inc.,Cupertino. CA. The �rst 13 datasets (APPLE1 through WMURRAYC2) are term-document matrices which can be used for information retrieval applications(see Section 2). The 16 remaining sparse rectangular matrices were extractedfrom a set of linear programming test problems compiled at Stanford Uni-versity [23]. From Table 12, we can see that all of these matrices are lessthan 1% dense. We note that �r and �c are the average number of nonzerosper row and column, respectively. The Density of each sparse matrix listedin Table 12 is de�ned to be the ratio (Rows � Columns) = (Nonzeros).



Sparse Matrix Test Suite 35#-------------------------------------------------------------# Input file used for SVDRUN script#-------------------------------------------------------------## DESCRIPTION OF FIELDS:#-------------------------------------------------------------## NUM --> Run number (1,2,3,...).## CDE --> SVDPACKC code (i.e. las1, bls1, las2, bls2, etc.).## FNM --> Sparse Matrix datafile (i.e. app1, app2, etc.).## MXI --> Maximum number of iterations for method.## TRP --> Number of singular triplets desired.## SUB --> Maximum subspace dimension.## BSZ --> Initial blocksize size (if applicable).## ACC --> Accuracy (residual tolerance)## VEC --> Compute singular vectors also? (TRUE/FALSE)#-------------------------------------------------------------## NUM CDE FNM MXI TRP SUB BSZ ACC VEC# --- --- --- --- --- --- --- --- ---1 las1 app1 200 10 1.0e-6 TRUE2 las2 app1 44 10 1.0e-6 TRUE3 bls1 app1 200 10 40 2 1.0e-6 TRUE4 bls2 app1 200 10 40 4 1.0e-6 TRUE5 las1 app2 200 10 1.0e-6 TRUE6 las2 app2 200 10 1.0e-6 TRUE7 bls1 app2 200 10 40 2 1.0e-6 TRUE#-------------------------------------------------------------Figure 1: Sample input �le, svdin, used by svdrun script for SVDPACKCuser interface.



Sparse Matrix Test Suite 36============================================================================================================| PROGRAM || las1 | las2 | bls1 | bls2 | sis1 |+----------------------------------------------------------------------------------------------------------+| DATASETS || 'belladit' | 'belladit' | 'belladit' | 'belladit' | 'belladit' |+----------------------------------------------------------------------------------------------------------+| FILENAME || belladit.out1 | belladit.out2 | belladit.out3 | belladit.out4 | belladit.out5 |+----------------------------------------------------------------------------------------------------------+| DATE || Feb 19 1993 | Feb 19 1993 | Feb 19 1993 | Feb 19 1993 | Feb 19 1993 || MAX. NO. OF ITERATIONS || 50 | 44 | 80 | 40 | 150 || ORDER OF EIGENSYSTEM || 456 | 82 | 456 | 82 | 456 || ROW DIMENSION OF A || 374 | 374 | 374 | 374 | 374 || COLUMN DIMENSION OF A || 82 | 82 | 82 | 82 | 82 || AUXILLARY MEMORY(BYTES) || 4.47+05 | 2.34+05 | 622088 | 168688 | 3354784 || WANT S-VECTORS? [T/F] || T | T | T | T | T || NO. OF STEPS/ITERATIONS || 50 | 44 | 5 | 20 | 127 || TOLERANCE || 1.00-06 | 1.00-06 | 1.00-06 | 1.00-06 | 1.00e-06 || USER CPU TIME (SECS) || 6.30-01 | 2.70-01 | 6.17+00 | 9.70-01 | 3.55e+00 || NO. OF TRIPLETS FOUND || 13 | 10 | 10 | 10 | 10 || NO. OF TRIPLETS SOUGHT || 10 | 10 | 10 | 10 | 10 || NO. MULTIPLICATIONS BY A|| 64 | 65 | 291 | 325 | 3088 ||NO. MULT. BY TRANSPOSE(A)|| 64 | 55 | 273 | 315 | 3088 |+----------------------------------------------------------------------------------------------------------+| LEFT END OF INTERVAL || -1.00-30 | -1.00-30 | - | - | - || RIGHT END OF INTERVAL || 1.00-30 | 1.00-30 | - | - | - |+----------------------------------------------------------------------------------------------------------+| INITIAL BLOCKSIZE || - | - | 4 | 5 | 14 || FINAL BLOCKSIZE || - | - | 1 | 1 | 4 || MAXIMUM SUBSPACE BOUND || - | - | 60 | 20 | - || FINAL SUBSPACE BOUND || - | - | 51 | 11 | - |+----------------------------------------------------------------------------------------------------------+| MAX CHEBYSHEV DEGREE || - | - | - | - | 14 |+----------------------------------------------------------------------------------------------------------+| JOB PARM FOR TMS1(2) || - | - | - | - | - || RESID. REDUCTION TOL. || - | - | - | - | - |+----------------------------------------------------------------------------------------------------------+Figure 2: svdin.sum1 �le generated by svdrun script using output �lesgenerated by svdrun script.



Sparse Matrix Test Suite 37============================================================================| PROGRAM || sis2 | tms1 | tms2 |+--------------------------------------------------------------------------+| DATASETS || 'belladit' | 'belladit' | 'belladit' |+--------------------------------------------------------------------------+| FILENAME || belladit.out6 | belladit.out7 | belladit.out8 |+--------------------------------------------------------------------------+| DATE || Feb 19 1993 | Feb 19 1993 | Feb 19 1993 || MAX. NO. OF ITERATIONS || 80 | 80 | 80 || ORDER OF EIGENSYSTEM || 82 | 456 | 82 || ROW DIMENSION OF A || 374 | 374 | 374 || COLUMN DIMENSION OF A || 82 | 82 | 82 || AUXILLARY MEMORY(BYTES) || 634688 | 182804 | 71268 || WANT S-VECTORS? [T/F] || T | T | T || NO. OF STEPS/ITERATIONS || 35 | 25 | 18 || TOLERANCE || 1.00e-06 | 7.80+01 | 7.80+01 || USER CPU TIME (SECS) || 8.20e-01 | 6.98+00 | 1.77+00 || NO. OF TRIPLETS FOUND || 10 | 10 | 10 || NO. OF TRIPLETS SOUGHT || 10 | 10 | 10 || NO. MULTIPLICATIONS BY A|| 992 | 1179 | 755 ||NO. MULT. BY TRANSPOSE(A)|| 992 | 1427 | 745 |+--------------------------------------------------------------------------+| LEFT END OF INTERVAL || - | - | - || RIGHT END OF INTERVAL || - | - | - |+--------------------------------------------------------------------------+| INITIAL BLOCKSIZE || 16 | 12 | 12 || FINAL BLOCKSIZE || 6 | 2 | 2 || MAXIMUM SUBSPACE BOUND || - | - | - || FINAL SUBSPACE BOUND || - | - | - |+--------------------------------------------------------------------------+| MAX CHEBYSHEV DEGREE || 2 | - | 0 |+--------------------------------------------------------------------------+| JOB PARM FOR TMS1(2) || - | 1 | 1 || RESID. REDUCTION TOL. || - | 1.00+00 | 1.00+00 |+--------------------------------------------------------------------------+Figure 3: svdin.sum2 �le generated by svdrun script using output �lesgenerated by svdrun script.



Sparse Matrix Test Suite 38Data Application Columns Rows Nonzeros Density �c �rAPPLE1 IR 44 3206 7722 0.05 175.5 2.4APPLE2 IR 294 1472 13442 0.03 45.7 9.1ATGC2 IR 238 3253 54440 0.07 228.7 16.7CASSERES IR 117 1453 21597 0.13 184.6 14.9DULCEC2 IR 94 1299 10285 0.08 109.4 7.9KASSC2 IR 112 1982 19115 0.09 170.7 9.6LATERAL2 IR 747 2695 47115 0.02 63.1 17.4LATERAL5 IR 747 1614 43061 0.04 57.6 26.7MILLER2 IR 283 3642 60505 0.06 213.8 16.6VARIETYC1 IR 107 2252 14915 0.06 139.4 6.6VARIETYC2 IR 107 1567 13545 0.08 126.6 8.6WMURRAYC1 IR 242 2869 25456 0.04 105.2 8.9WMURRAYC2 IR 242 1997 23172 0.05 97.9 11.9APFIRO LP 28 32 88 0.09 3.1 2.8BEACONFD LP 174 262 3476 0.08 19.9 13.3DEGEN2 LP 445 534 4449 0.02 9.9 8.3E226 LP 224 282 2767 0.04 12.4 9.8ETAMACRO LP 401 688 2489 0.009 6.2 3.6FFFFF800 LP 525 854 6235 0.01 11.9 7.3GROW15 LP 301 645 5665 0.03 18.8 8.8NZFRI LP 624 3521 15903 0.007 25.4 4.5PILOT4 LP 411 1000 5145 0.01 12.5 5.1SCFXM1 LP 331 457 2612 0.02 7.9 5.7SCTAP1 LP 301 480 2052 0.01 6.8 4.3SCSD6 LP 148 1350 5666 0.03 38.2 4.2SEBA LP 516 1028 4874 0.009 9.4 4.7SHELL LP 537 1775 4900 0.005 9.1 2.8STAIR LP 357 467 3857 0.02 10.8 8.3STANDATA LP 360 1075 3038 0.008 8.4 2.8Table 12: SVDPACKC Sparse Matrix Test Suite. IR � Information Re-trieval, LP � Linear Programming.



Machine Speci�cations 395.2 Machine Speci�cationsSome of the machine speci�cations for the workstations used in our bench-mark experiments are given in Table 5.2. It is advisable to always use themath coprocessor (MC68881) for SVDPACKC on the Macintosh II/fx. With-out oating-point hardware, SVDPACKC programs can exhaust as much as6 times the normal CPU seconds required with a coprocessor.Model Macintosh II/fx Sun-4/490OS System 7; MPW 3.3 Sun OS 4.1Memory 32 Mbytes RAM 32 Mbytes RAMC Compiler MPW C GNU C (gcc)Compiler -mc68020 -mc68881 -OOptions -elems881LinpackMFLOPS (N=100) 0.37 3.6Table 13: Machine Speci�cations for SVDPACKC Benchmarks.5.3 ResultsThe elapsed user CPU times (in seconds) for SVDPACKC routines executedon the Macintosh II/fx are illustrated in Figures 4 through 8. We also providetabulated results for both the Macintosh II/fx and Sun-4/490 in Tables 14through 18 in Appendix A (Section 8) along with the number of approximatedsingular triplets, p, having residual norms (4) no larger than 10�6. Figures 4through 7 (and Tables 14 through 17) reect timings using the IR matricesfrom Table 12, while Figure 8 (and Table 18) show elapsed user CPU timesfor sis2 and las2 on the 16 LP matrices from Table 12. The input parameters



Results 40used for each SVDPACKC routine in our benchmarks are provided in thesvdin.bench �le5.As observed in [4] and [5], las2 is by far the fastest sequential methodfor computing several of the largest singular triplets of large sparse matrices.This, of course, assumes there is no loss of accuracy in approximating eigen-pairs of the matrix ATA, which is the case for the matrices comprising ourtest suite in Table 12. Among competitive Lanczos-based SVDPACKCmeth-ods for computing several of the largest singular triplets of the IR matrices,las2 is on average 5 and 9 times faster than las1 and bls2, respectively, on theMacintosh II/fx. On the Sun-4/490, las2 is about 4 and 6 times faster thanlas1 and bls2, respectively. Among subspace iteration-based methods, we ob-serve sis2 to be on average about 3:5 and 1:5 times faster than sis1 and tms2,respectively on the Macintosh II/fx. On the Sun-4/490, sis2 is on averageabout 3:5 and 2:25 times faster than sis1 and tms2, respectively. However,las2 is still about 8 and 5 times faster than sis2 across both machines consid-ered.For the 16 LP matrices, we �nd (see Figure 8 and Table 18) the mostcompetitive methods from the Lanczos-based group flas1, las2, bls1, bls2gand subspace iteration-based group fsis1, sis2, tms1, tms2g to be las2 and sis2,respectively. On both the Macintosh II/fx and Sun-4/490, las2 is on average5 times faster than sis2 when computing as many as 50 of the largest singulartriplets for the LP matrices arising from linear programming applications.From Figures 4 and 8 (and Tables 14 and 18), we also observe that las2 onthe Macintosh II/fx averages from 3:75 to 7:8 times slower than las2 on theSun-4/490. This reects a signi�cant cost-performance bene�t given thea�ordability and availability of Macintosh computers.
5ASCII �le in SVDPACKC distribution package.



Results 41

0 500 1000 1500 2000 2500

User CPU Time (seconds)

APPLE1

APPLE2

ATGC2

CASSERES

DULCE2

KASSC2

LATERAL2

LATERAL5

MILLER2

VARIETYC1

VARIETYC2

WMURRAYC1

WMURRAYC2

D
a

ta
se

ts
 

LAS1 
LAS2 

(67.3)

(349.0)

(752.0)

(768.0)

(506.0)

(1090.0)

(1060.0)

(811.0)

(1160.0)

(1050.0)

(796.0)

(2830.0)

(2960.0)

(19.9)

(180.0)

(264.0)

(158.0)

(71.0)

(99.7)

(562.0)

(542.0)

(343.0)

(83.0)

(77.4)

(383.0)

(374.0)

Figure 4: User CPU time (in seconds) expired by the single-vector Lanczosmethods (las1, las2) on the Macintosh II/fx when computing singular tripletsof the IR matrices.
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Figure 6: User CPU time (in seconds) expired by the subspace iterationmethods (sis1, sis2) on the Macintosh II/fx when computing singular tripletsof the IR matrices.
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Figure 7: User CPU time (in seconds) expired by the trace minimizationmethods (tms1, tms2) on the Macintosh II/fx when computing singulartriplets of the IR matrices.
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Figure 8: User CPU time (in seconds) expired by sis2 and las2 on the Mac-intosh II/fx when computing singular triplets of the LP matrices.



Future Work 466 Future WorkFor determining the singular value decomposition of extremely large sparsematrices using a modest computing environment, we anticipate the devel-opment of an out-of-core distributed version of SVDPACKC which ports toa heterogeneous network of workstations. Implementations on massively-parallel computer systems such as the MasPar MP-2 and Thinking MachinesCM-5 are planned as well. Future algorithmic concerns include the use ofalternative re-orthogonalization strategies for bls1 and bls2, and the develop-ment of techniques for computing large rank updates to the singular valuedecomposition of unstructured sparse matrices.The original SVDPACK Fortran-77 source code and documentation maybe obtained through the NETLIB facility maintained by the University ofTennessee and Oak Ridge National Laboratory. Users should send the elec-tronic mail message send index from svdpack to netlib@ornl.gov to get alisting of the methods and associated �les composing the library. The SVD-PACKC library should be available in NETLIB by Summer 1993.7 AcknowledgementsThe authors would like to thank Dulce Ponceleon at Apple Computer Inc.,Cupertino, CA, for her collaborative e�orts in constructing the test suite ofsparse matrices from information retrieval applications.References[1] Bauer, F. L. Das Verfahren der Treppeniteration und verwandte Ver-fahren zur L�osung algebraischer Eigenwertprobleme. ZAMP 8 (1957),214{235.[2] Berry, M., and Sameh, A. An overview of parallel algorithms forthe singular value and dense symmetric eigenvalue problems. Journal ofComputational and Applied Mathematics 27 (1989), 191{213.[3] Berry, M. W. Multiprocessor Sparse SVD Algorithms and Applica-tions. PhD thesis, University of Illinois at Urbana-Champaign, Urbana,IL, 1990.
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Appendix A: SVDPACKC Benchmarks 508 Appendix A: SVDPACKC Benchmarks
las1 las2Matrix p Sun-4/490 Mac. II/fx Sun-4/490 Mac. II/fxAPPLE1 10 64.1 67.3 4.1 19.9APPLE2 50 275.0 349.0 45.3 180.0ATGC2 50 136.0 752.0 61.2 264.0CASSERES 50 134.0 768.0 35.0 158.0DULCEC2 50 86.5 506.0 14.0 71.0KASSC2 50 180.0 1090.0 21.8 99.7LATERAL2 50 154.0 1060.0 73.8 562.0LATERAL5 75 500.0 811.0 224.0 542.0MILLER2 50 215.0 1160.0 89.5 343.0VARIETYC1 50 175.0 1050.0 18.0 83.0VARIETYC2 50 139.0 796.0 16.6 77.4WMURRAYC1 75 645.0 2830.0 78.6 383.0WMURRAYC2 75 524.0 2960.0 71.8 374.0Total Time (sec) 3227.6 14191.3 753.7 3157.0Average Time (sec) 248.3 1091.6 57.9 242.8Table 14: User CPU time (in seconds) expired by the single-vector Lanc-zos methods (las1, las2) on the Sun-4/490 and the Macintosh II/fx whencomputing the p-largest singular triplets for the IR matrices.
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bls1 bls2Matrix p Sun-4/490 Mac. II/fx Sun-4/490 Mac. II/fxAPPLE1 10 47.5 270.0 9.78 44.6APPLE2 50 588.0 3580.0 244.0 975.0ATGC2 50 840.0 5380.0 333.0 2000.0CASSERES 50 599.0 2980.0 247.0 1100.0DULCEC2 50 268.0 1800.0 107.0 533.0KASSC2 50 674.0 3500.0 209.0 830.0LATERAL2 50 1320.0 8770.0 598.0 3680.0LATERAL5 75 1780.0 11900.0 1080.0 6550.0MILLER2 50 1660.0 11000.0 405.0 2450.0VARIETYC1 50 671.0 4330.0 183.0 697.0VARIETYC2 50 532.0 2940.0 163.0 744.0WMURRAYC1 75 2670.0 13000.0 718.0 4410.0WMURRAYC2 75 1500.0 9800.0 538.0 2470.0Total Time (sec) 13149.5 79250.0 4834.7 26483.6Average Time (sec) 1011.5 6096.1 371.9 2037.2Table 15: User CPU time (in seconds) expired by the block Lanczos methods(bls1, bls2) on the Sun-4/490 and the Macintosh II/fx when computing thep-largest singular triplets for the IR matrices.
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sis1 sis2Matrix p Sun-4/490 Mac. II/fx Sun-4/490 Mac. II/fxAPPLE1 10 47.1 284.0 11.4 65.8APPLE2 50 556.0 3340.0 177.0 1090.0ATGC2 50 1160.0 6470.0 380.0 2020.0CASSERES 50 781.0 4500.0 194.0 1100.0DULCEC2 50 300.0 1890.0 74.4 464.0KASSC2 50 529.0 3130.0 143.0 824.0LATERAL2 50 1650.0 9380.0 579.0 3330.0LATERAL5 75 2300.0 13400.0 876.0 5290.0MILLER2 50 1390.0 7940.0 422.0 2400.0VARIETYC1 50 487.0 2990.0 124.0 752.0VARIETYC2 50 374.0 2320.0 103.0 634.0WMURRAYC1 75 1890.0 11100.0 352.0 2050.0WMURRAYC2 75 1520.0 8940.0 315.0 1850.0Total Time (sec) 12984.1 75684.0 3750.8 21869.8Average Time (sec) 998.7 5821.8 288.5 1682.3Table 16: User CPU time (in seconds) expired by the subspace iterationmethods (sis1, sis2) on the Sun-4/490 and the Macintosh II/fx when com-puting the p-largest singular triplets for the IR matrices.
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tms1 tms2Matrix p Sun-4/490 Mac. II/fx Sun-4/490 Mac. II/fxAPPLE1 10 139.0 963.0 15.0 85.3APPLE2 50 1840.0 13500.0 320.0 2140.0ATGC2 50 4160.0 28900.0 1090.0 342.0CASSERES 50 1470.0 10600.0 401.0 2400.0DULCEC2 50 1110.0 8420.0 158.0 1030.0KASSC2 50 1850.0 13800.0 253.0 1480.0LATERAL2 50 4180.0 28900.0 1190.0 7760.0LATERAL5 75 4740.0 35300.0 1830.0 6800.0MILLER2 50 5430.0 37100.0 958.0 964.0VARIETYC1 50 2350.0 17400.0 242.0 1490.0VARIETYC2 50 134.0 9930.0 194.0 1250.0WMURRAYC1 75 7220.0 37000.0 655.0 4030.0WMURRAYC2 75 3520.0 25800.0 1120.0 4010.0Total Time (sec) 38143.0 267613.0 8426.0 33781.3Average Time (sec) 2934.0 20585.6 648.1 2598.6Table 17: User CPU time (in seconds) expired by the trace minimizationmethods (tms1, tms2) on the Sun-4/490 and the Macintosh II/fx when com-puting the p-largest singular triplets for the IR matrices.
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sis2 las2Matrix p Sun-4/490 Mac. II/fx Sun-4/490 Mac. II/fxAPFIRO 10 .370 2.78 .190 1.42BEACONFD 50 55.3 430.0 13.6 103.0DEGEN2 50 93.9 711.0 13.9 108.0E226 50 26.1 202.0 9.40 69.1ETAMACRO 50 69.1 547.0 11.4 81.9FFFFF800 50 55.4 412.0 21.4 156.0GROW15 50 240.0 1830.0 35.3 278.0NZFRI 50 47.7 503.0 38.3 345.0PILOT4 50 148.0 1160.0 22.2 168.0SCFXM1 50 33.8 272.0 9.20 73.1SCSD6 50 129.0 954.0 20.8 154.0SCTAP1 50 50.4 411.0 9.14 73.6SEBA 50 86.6 673.0 16.0 122.0SHELL 50 179.0 1390.0 41.8 317.0STAIR 50 137.0 1030.0 35.0 292.0STANDATA 50 253.0 1970.0 26.0 183.0Total Time (sec) 1604.7 12497.8 323.6 2525.1Average Time (sec) 100.3 781.1 20.2 157.8Table 18: User CPU time (in seconds) expired by sis2 and las2 on the Sun-4/490 and the Macintosh II/fx when computing the p-largest singular tripletsfor the LP matrices.



Appendix B: Sparse Matrix Storage Formats 559 Appendix B: Sparse Matrix Storage For-matsAll matrices in the original Harwell-Boeing sparse matrix test collection arestored in a column oriented compact format (Fortran-77 inuence) whereonly the entries corresponding to nonzero values are stored. The row indicesand corresponding nonzero numerical values are stored by columns with acolumn start vector pointing to the beginning of each column. Symmetric,skew symmetric, and Hermitian matrices have only the entries of the lowertriangle (including the diagonal) stored. Right-hand-side vectors for linearsystems are stored in a full arrays (not necessary for SVDPACKC use).Each matrix is written in a standard format with a 4 line header recordfollowed by up to 4 logical records containing, in order, the column startpointers, the row indices, the numerical values, and the right-hand-side ma-trix. The records containing the numerical values and right-hand-side ma-trix are optional. The right-hand-side matrix can only be present when thenumerical values are present. All lines are restricted to 80 columns. ForSVDPACKC routines, you need only supply the column start pointers, rowindices, and numerical values of all nonzeros.The header record consists of 4 lines of data. The �rst line contains the72 character title and a 8 character key by ehich the matrices are referenced.The second line contains the number of lines for each of the following 4records as well as the total number of lines, excluding the header record, forthe matrix. The third line contains a 3 character string denoting the matrixtype as well as the number of rows, columns, nonzeroes, and right-hand-sidesvectors for the matrix. The fourth line contains the 4 variable formats forthe following 4 logical records. The exact formats areLine 1 ( A72, A8 )Col. 1 - 72 TitleCol. 73 - 80 KeyLine 2 ( 5I14 )Col. 1 - 14 Total No. of lines excluding headerCol. 15 - 28 No. of lines for pointersCol. 29 - 42 No. of lines for row indicesCol. 43 - 56 No. of lines for numerical values



Appendix B: Sparse Matrix Storage Formats 56Col. 57 - 70 No. of lines right-hand-sidesLine 3 ( A3, 11x, 4I14 )Col. 1 - 3 Matrix typeCol. 15 - 28 No. of rowsCol. 29 - 42 No. of columnsCol. 43 - 56 No. of nonzeroesCol. 57 - 70 No. of right-hand-sidesLine 4 ( 2A16, 2A20 )Col. 1 - 16 Format for pointersCol. 17 - 32 Format for row indicesCol. 33 - 52 Format for numerical valuesCol. 53 - 72 Format for right-hand-sidesThe 3 character type field describes the matrix type. Thefollowing table lists the allowed values for each of the 3characters. As an example of the type field `rsa' denotes thatthe matrix is real, symmetric and assembled.First Character: r Real Matrixc Complex Matrixp Pattern Only (no values supplied)Second Character: s Symmetricu Unsymmetrich Hermitianz Skew symmetricr RectangularThird Character: a Assembledf Unassembled Finite Elements



Appendix B: Sparse Matrix Storage Formats 57For SVDPACKC, several of the �elds speci�ed above are not necessaryfor input via the fscanf() C function. For example, in las2 the requiredheader information is read via following linesfscanf (fp_in2, "%72c%*s%*s%*s%ld%ld%ld%*d",title, &nrow, &ncol, &nnzero);fscanf (fp_in2, "%*s %*s %*s %*s");An appropriate header for any of the SVDPACKC codes might look likeBellcore ADI Linguistics Data belladit#rra 374 82 1343 0(10i8) (10i8) (8f10.3) (8f10.3)Notice that the information in the second header line of the original FortranHarwell-Boeing format (line counts) is not needed by SVDPACKC and wesimply replace that line by a single character (such as #). Although theformats listed in the fourth header line are also not required by SVDPACKC,their presence speci�es, for example, the number of decimal digits containedin the numerical values.Before providing an example of the Compressed Column Storage (CCS)format used in the Harwell-Boeing format, we review the 3 arrays used tode�ne an arbitrary sparse matrix. The CCS format is speci�ed by the 3arrays fvalue, rowind, pointrg, where rowind stores the row indices of eachnonzero, and pointr stores the index of the elements in value which starta column of of the matrix A, as they are traversed in a column-wise fashion.The rowind vector stores the row indexes of the elements in the value array.That is, if val(k) = Aij then rowind[k] = i, for i = 1; 2; : : : ;m, and j =1; 2; : : : ; n for m rows and n columns. The pointr array stores the locationsin the value array that start a column, that is, if value[k] = Aij thenpointer[i]� k < pointr[i+ 1]. By convention, we de�ne pointr[n+ 1] =nnz + 1, where nnz is the number of nonzeros in the m� n matrix A. Thestorage savings for this approach is signi�cant. Instead of storing m � nelements, we need only 2� nnz + n+ 1 storage locations. To be compatiblewith the original Fortran-based sparse format, SVDPACKC routines assumethat the integer values read into the pointr and rowind arrays satisfy 1 �pointr; rowind � nnz + 1 rather than 0 � pointr; rowind� nnz.



Appendix B: Sparse Matrix Storage Formats 58The following lines from las2 demonstrate how the CCS arrays are readvia fcanf(). The elements of arrays rowind and point are decremented by1 so that both arrays having starting index 0 within las2.for (i = 0; i <= ncol; i++) fscanf(fp_in2, "%ld", &pointr[i]);for (i = 0; i < ncol; i++) pointr[i] -= 1;/* define last element of pointr in case it is not */pointr[i] = nnzero;for (i = 0; i < nnzero; i++) fscanf(fp_in2, "%ld", &rowind[i]);for (i = 0; i < nnzero; i++) rowind[i] -= 1;for (i = 0; i < nnzero; i++) fscanf(fp_in2, "%lf", &value[i]);Consider the following 6� 6 matrix A, whereA = 0BBBBBBBB@ 10 0 0 0 �2 03 9 0 0 0 30 7 8 7 0 03 0 8 7 5 00 8 0 9 9 130 4 0 0 2 �1 1CCCCCCCCA :The CCS format for the matrix A above is given byvalue 10 3 3 9 7 8 4 8 8 � � � 9 2 3 13 -1rowind 1 2 4 2 3 5 6 3 4 � � � 5 6 2 5 6pointr 1 4 8 10 13 17 20 ,and a corresponding input �le for SVDPACKC is given below. Note thatSVDPACKC does not require �elds in the header to match those in thespeci�cations of the original Harwell-Boeing (Fortran) header. Alternativesparse matrix formats can be used, of course, with SVDPACKC. An analo-gous Compressed Row Storage (CRS) format based on row-wise traversal isanother possibility.



Appendix B: Sparse Matrix Storage Formats 59Sample Input Matrix for SVDPACKC sample#rra 6 6 18 0(8i6) (8i6) (8f6.2) (8f6.2)1 4 8 10 13 17 201 2 4 2 3 5 6 34 5 1 4 5 6 2 5610.00 3.00 3.00 9.00 7.00 8.00 4.00 8.008.00 7.00 7.00 9.00 -2.00 5.00 9.00 2.003.00 13.00 -1.00



Appendix C: Binary Output Files 6010 Appendix C: Binary Output FilesThe binary output �les generated by SVDPACKC primarily contain the ap-proximate singular values and corresponding singular vectors. In the tablebelow, we list the contents of each binary output �le of the form MMvN, whereN = 1,2, and MM de�nes the method used (see Table 2 in Section 3.2). Letui; �i; vi denote the i-th largest singular triplet for an m � n sparse matrixso that �1 � �2 � � � � � �n, and let k denote the number of singular tripletswritten to �le. Filename Contents (in order)blv1 u1; v1; u2; v2; : : : ; uk; vkblv2 u1; v1; u2; v2; : : : ; uk; vklav1 m+ njs (No. of Lanczos steps)kappa (Residual Tolerance)vk; vk�1; : : : ; v2; v1uk; uk�1; : : : ; u2; u1lav2 njs (No. of Lanczos steps)kappa (Residual Tolerance)vk; vk�1; : : : ; v2; v1uk; uk�1; : : : ; u2; u1siv1 u1; v1; u2; v2; : : : ; uk; vksiv2 u1; v1; u2; v2; : : : ; uk; vktmv1 u1; v1; u2; v2; : : : ; uk; vktmv2 u1; v1; u2; v2; : : : ; uk; vk


