
THE DESIGN,

IMPLEMENTATION

AND PERFORMANCE

OF A QUEUE MANAGER

FOR PVM

Douglas J. Sept

Computer Science Department

CS-93-196 August 1993

The esign, Implementation

and erformance of a ueue

anager for

A Thesis

Presented for the

Master of Science Degree

The University of Tennessee, Knoxville

Douglas J. Sept

August 1993

Acknowledgements

I thank my thesis advisor, Dr. Michael Berry, for his support and guidance.

I appreciate very much his insightful recomendations and endless patience. The

amount of time he spent helping me work through the details and results of the

QM was above and beyond the call of duty. I thank Karen Minser, author of the

map analysis application, Victor Eijkhout who wrote the Conjugate Gradient ap-

plication and Bob Manchek who wrote the Mandelbrot application and answered

my never-ending PVM questions. I thank Dr. Jack Dongarra who served on

my committee and helped guide the application, and Al Geist who served as my

advisor at ORNL in the summer of 1992. I also thank Dr. David Straight who

agreed to serve on my committee on very short notice.

This research was supported in part by the U.S. Department of Energy under

contract number DE-AC-05-84OR21400.

Abstract

The PVM Queue Manager (QM) application addresses some of the load bal-

ancing problems associated with the heterogeneous, multi-user, computing envi-

ronments for which PVM was designed. In such environments, PVM is not only

confronted with the di�culties of distributing tasks among machines of variable

loads, it must also contend with machines of varying performance levels in the

same virtual machine. The QM addresses both of these problems using two dif-

ferent load balancing techniques, one static, the other dynamic. In its simplest

(static) mode, the QM will initiate PVM processes for the user on demand, tak-

ing into account information such as the peak mega
ops/sec and actual load of

each machine. In addition to the initiation of processes, the QM will also ac-

cept tasks to be completed by a speci�ed PVM process type. These tasks are

shipped to the QM where they are kept in a FIFO queue. Worker processes in

the virtual machine send idle messages to the QM when they are ready for a

task, and the QM ships a task to the process if there is one (of a type matching

the process) in the queue. The QM also maintains a list of idle processes and

chooses the best one for the task, should one arrive when several processes are

idle. Since faster machines typically send more idle messages (and receive more

tasks) than slower ones, this provides a level of dynamic load balancing for the

system. Three applications have already been implemented using the QM within

PVM: a Mandelbrot image generator, a conjugate-gradient algorithm, and a map

analysis program used in landscape ecology applications. Benchmarks of elapsed

wall-clock time comparing standard PVM versions with the QM-based versions

demonstrate substantial performance gains for both methods of load balancing.

When processing a 1000 � 1000 image, for example, the QM-based Mandelbrot

application averaged 63.92 seconds, compared to 139.62 seconds for the standard

PVM version in a heterogenous network of �ve workstations (comprised of Sun4's

and an IBM RS/6000).

ontents

1 Introduction 1

1.1 Motivation : 1

1.2 Statement of Problem : 2

1.3 Comparison with other Work : 2

2 Implementation 4

2.1 Using the Queue Manager : 4

2.2 Fortran-77 Routines : 8

2.3 Load information and QM Process Initiation : : : : : : : : : : : 8

2.4 Granularity Issues in PVM Dynamic load-balancing : : : : : : : : 10

3 Benchmarks 12

3.1 Methodology : 12

3.2 Mandelbrot Benchmark Results : : : : : : : : : : : : : : : : : : : 15

3.3 Conjugate Gradient Benchmark : : : : : : : : : : : : : : : : : : : 21

3.4 Map Analysis Application : 27

4 Conclusions 36

Bibliography 37

Appendices 39

A QM Installation 40

B Harmonic Mean Execution Times for Benchmarks 41

C Statistical Formulas used to Compute Tables 44

iv

Vita 45

ist of les

2.1 C Based User Routines for the QM : : : : : : : : : : : : : : : : : 6

2.2 Fortran-77 User Routines for the QM : : : : : : : : : : : : : : : : 9

3.1 Machines used in QM benchmarks and their observed LINPACK

benchmark ratings . : 14

3.2 Abbreviations for Benchmark Versions : : : : : : : : : : : : : : : 15

3.3 Mandelbrot Average Task Granularities (Heterogeneous Network) 17

3.4 (Mandelbrot) Heterogeneous Network: Arithmetic Mean Execu-

tion Times (in seconds) and Sample Variances : : : : : : : : : : : 18

3.5 (Mandelbrot) Homogeneous Network: ArithmeticMean Execution

Times (in seconds) and Sample Variances : : : : : : : : : : : : : : 18

3.6 Mandelbrot n = 1000: Observed Machine Performance (mean

sec/task and mega
ops/sec reported) : : : : : : : : : : : : : : : : 19

3.7 CG Task Granularities for Heterogeneous Network. : : : : : : : : 24

3.8 (CG) Heterogeneous Network: Arithmetic Mean Execution Times

(in seconds) and sample variances : : : : : : : : : : : : : : : : : : 24

3.9 (CG) Homogeneous Network: Arithmetic Mean Execution Times

(in seconds) and Sample Variances : : : : : : : : : : : : : : : : : 25

3.10 Distribution of cluster sizes for three p values : : : : : : : : : : : 28

3.11 Map Analysis Application Version Summary.

c

� total num-

ber of clusters in map,

w

� total number of machines in PVM

network. : 29

3.12 (Maps with p = :1) Homogeneous Network: Arithmetic Mean Ex-

ecution Times (in seconds) : 29

3.13 (Maps with p = :3) Homogeneous Network: Arithmetic Mean Ex-

ecution Times (in seconds) : 30

vi

3.14 (Maps with p = :1) Heterogeneous Network: Arithmetic Mean

Execution Times (in seconds) : 30

3.15 (Maps with p = :3) Heterogeneous Network: Arithmetic Mean

Execution Times (in seconds) : 30

3.16 (Maps with p = :3) Homogeneous Network: Sample Variances : : 30

3.17 (Maps with p = :1) Homogeneous Network: Sample Variances : : 31

3.18 (Maps with p = :1) heterogeneous Network: Sample Variances : : 31

3.19 Map Analysis (n = 768; p = :1) : Observed Machine Performance 34

3.20 Map Analysis Application (p = :1) : Task Granularities. : : : : : : 35

B.1 (Mandelbrot) Heterogenous Network: Harmonic Mean Execution

Times (in seconds) : 41

B.2 (Mandelbrot) Homogeneous Network: Harmonic Mean Execution

Times (in seconds) : 41

B.3 (CG) Heterogenous Network: Harmonic Mean Execution Times

(in seconds) : 42

B.4 (CG) Homogeneous Network: Harmonic Mean Execution Times

(in seconds) : 42

B.5 (Maps with p = :1) Homogeneous Network: Harmonic Mean Exe-

cution Times (in seconds) : 42

B.6 (Maps with p = :3) Homogeneous Network: Harmonic Mean Exe-

cution Times (in seconds) : 43

B.7 (Maps with p = :1) Heterogeneous Network: Harmonic Mean Ex-

ecution Times (in seconds) : 43

B.8 (Maps with p = :3) Heterogeneous Network: Harmonic Mean Ex-

ecution Times (in seconds) : 43

C.1 De�nitions of Statistical Formulas. n= Number of Samples, x

i

=i-

th elapsed wall-clock time sample. : : : : : : : : : : : : : : : : : : 44

ist of i es

2.1 QM Data Flow : 7

3.1 The Mandelbrot set generated by the QMDLB version of the Man-

delbrot Application on the heterogeneous network. The real axis

runs north and south, while the imaginary axis runs east and west

in this �gure. : 16

3.2 Mandelbrot Application, Heterogeneous Network : : : : : : : : : : 20

3.3 Mandelbrot Application, Homogeneous Network : : : : : : : : : : 20

3.4 CG Method on Poisson's Equation, Heterogeneous Network : : : : 26

3.5 CG Method on Poisson's Equation, Homogeneous Network : : : : 26

3.6 Map Application with p = :1, Homogeneous Network : : : : : : : 32

3.7 Map Application with p = :1, Heterogeneous Network : : : : : : : 32

3.8 Map Application with p = :3, Homogeneous Network : : : : : : : 33

3.9 Map Application with p = :3, Heterogeneous Network : : : : : : : 33

viii

. nt o tion

In this thesis, a Queue Manager (QM) application for PVM ([BDGM91]) is pre-

sented. The QM can be used to e ectively load balance PVM applications and,

in many cases, improve run time performance. The motivation for the work is

discussed below, along with other load-balancing applications. The use and im-

plementation of the QM are discussed in Chapter 2. Performance results and an

analysis of various types of load-balancing strategies are presented in Chapter 3.

Finally, conclusions are presented in Chapter 4.

1.1. Motivation

The rapid increase in workstation performance in recent years has fueled interest

in the development of loosely coupled parallel systems able to take advantage of

the vast quantities of unused computing resources present in a typical scienti�c

computing environment . Such systems o er power comparable to that of modern

parallel machines such as the Intel i860 at a fraction of the cost. PVM is one such

system that has been developed at the University of Tennessee and Oak Ridge

National Lab (ORNL). PVM con�gures a cluster of workstations in a Local Area

Network (LAN) as a distributed-memory MIMD (Multiple Instruction Multiple

Data) virtual parallel computer.

In any distributed system, load-balancing among processors can be problem-

atic. It is important that each processor receive work in proportion to its ability,

since overloading one processor at the expense of another will increase run time

and reduce e�ciency. Load-balancing is especially di�cult in a PVM network,

however, for two reasons: (i:) PVM runs in a multi-user environment and (ii:)

PVM supports heterogeneous virtual machines.

Since nodes in a PVM network are typically workstations utilized by other

1

- 2 -

users in a laboratory or o�ce situation, loads on the machines can vary dra-

matically. If, for example, the workstations' owner is just using the machine to

send and receive electronic-mail, the machine load will be light, allowing it to

accomplish much more additional work than an engineer's workstation running

a complicated simulation. The di�culty, of course, lies in determining how much

load each machine currently has, and how much it should be given to provide the

fastest overall execution time for a PVM batch job.

This predicament is further complicated by the heterogeneous nature of PVM.

Since it is capable of incorporating a wide variety of architectures of dramatically

di erent capabilities into a single virtual machine, the load-balancing equation

becomes a two variable one. Not only is the optimal task distribution a function

of the loads of the machines in the network, it is also a function of the capabilities

of those machines. Even within architecture classes, these di erences can be quite

startling. For example, the (unoptimized) LINPACK benchmark rating of a SUN

4/280 is about .43 mega
ops/sec

1

, while the rating of a SUN4 75/C (Sparc 2) is

about 1.3 mega
ops/sec. Note that these machines are in the same binary class.

Di erences can become even more pronounced when di erent architectures are

incorporated into the same virtual machine. It is possible, for example, to have

a SUN4 and a Cray in the same parallel virtual machine. These machines di er

in their capabilities by multiple orders of magnitude.

1.2. Statement of Problem

Given the constraints of the PVM environment, develop a load-balancing tool

for PVM which will compensate for di erences in machine architecture and load,

and thereby load balance PVM applications so that run time is minimized.

1.3. Comparison with other ork

Several packages exist for scheduling PVM tasks at the application level. DQS

[Green92] and Condor [LiLM88] are two such batch-processing applications. Both

1

m o s o oa - o o era o s er seco .

- 3 -

take advantage of unused machine resourses to schedule large batch jobs which

may or may not run under PVM. Both applications also provide some sort of load-

balancing at the t level, by monitoring the work load of the machines

on which they are executing jobs, and by redistributing the work should the

load become too heavy on a particular machine. Neither, however, provides any

sort of load-balancing t the PVM application to evaluate the optimal host

on which to initiate a PVM process, nor do they provide any sort of dynamic

load-balancing of tasks within a PVM application.

LINDA [AhCG86], however, does provide a mechanism for dynamic load-

balancing within an application, in the form of its t e s e. Like the QM,

LINDA uses a - -t s s in its approach to dynamic load-balancing.

Tasks can be placed in the tuple space, then extracted in an asynchronous fashion

by idle processors, which process the task and return the result to the tuple space.

This process is very similar to the dynamic load balancing aspect of the QM.

LINDA, however, provides no analog for the static process initiation function

of the QM. The LINDA environment is geared toward dynamic load-balancing,

which is often the least e ective form of load-balancing for parallel machines with

low communication bandwidth between nodes (such as PVM). The problems and

perils associated with dynamic load-balancing in this environment are discussed

in Chapter 3.

Jade [Rina92] is a shared-memory programming language implemented in

both shared-memory and message passing environments, including PVM. The

PVM implementation allows the user to program using s e b e ts, which are

data structures potentially accessible to any node of the PVM network. Jade can

also be used to implement dynamic load-balancing using shared-memory variables

to synchronize the parallelism. Like LINDA, however, it does not incorporate any

automated mechanism for assessing machine loads and capabilities, nor does it

provide a mechanism for the initiation of PVM processes.

. le ent tion

2.1. Using the Queue Manager

The QM is a PVM process which is initiated just like any other PVM process

on any of the machines in the PVM network. Since elapsed-time reduction relies

upon an e�cient QM, however, it is not advisable to run the QM on one of the

s e machines in the network. For example, one would not want to initiate the

QM on a SUN 3/260 workstation (having an observed LINPACK rating

1

of .46

mega
ops/sec) and use it to load-balance a network of SUN Sparc 10 workstations

(having an observed LINPACK benchmark rating of about 6.7 mega
ops/sec).

Machines su ering long network lag times should also be avoided since the QM

is the focal point of network tra�c within the virtual machine. The QM should

be placed on the same machine as the PVM process that will be sending the

majority of the tasks to the QM for completion, thus reducing execution time by

making it unnecessary for the host to send tasks across the network to the QM.

The executable takes as an argument a st e similar to the host-

�le used to start PVM. This host�le contains machine names and the

LINPACK mega
ops/sec or other benchmark rating for that particular machine.

The format of the �le is

machine name benchmark rating.

While not all the machines in the host�le must be used in the current PVM

network, all machines in the network must have an entry in the host�le.

When the binary has been invoked, functions from the user library

1

ese es s ere com e a r e e com er o m za o . or e o c a

e c mar ra s, see o .

- -

can then be used (see Table 2.1).

Generally the �rst function to be called when using the static load-balancing

aspect of the QM is . This function is similar to the standard PVM

function, with the exception that it attempts to initiate the component

on the t machine, as determined by the loads and machine characteris-

tics of the nodes in the network (see Section 1.3). The function also

contains an additional integer argument, an unused message type, that the QM

can use to send the instance of the newly-created process back to the user pro-

gram. The function provides static load-balancing by yielding a faster

PVM network than would normally result from the round-robin scheduling used

by PVM . In other words, the QM exploits lightly-loaded and higher-

performance machines more thoroughly than standard PVM.

The remaining functions in Table 2.1 can be used to implement the dynamic

load-balancing aspects of the QM. In a typical user program, for example, the

host initiates one node on each machine using standard PVM and

sends tasks to the QM, which distributes them to worker nodes as those nodes

become idle (�nish their current task). In a cyclic fashion, these nodes send an

idle message, accept and process a task, return the results, and send another idle

message until all tasks are processed (see Figure 2.1). At this point, the worker

nodes can be terminated by the user program.

To send tasks to the QM, a group of statements are used to place infor-

mation in the send bu er. After the task data is placed in the bu er, the

command is called to send the task to the QM. The arguments to are: (1)

the (executable) which will accept the task, (2) the type of the task

(used to classify tasks into groups) and (3) the message type associated with the

task when it is sent to an instance of by the QM. The QM will queue

the task if there are no idle processes or send it immediately to an idle process

(if one exists) . The node program, in turn, receives a task from the QM via

the command. The command receives as input a character array and

a pointer to an integer and returns the name and PVM instance number of the

task's source. The user can then extract the data from the bu er using PVM

- 6 -

a le 2.1: C ase ser outines or t e

, ,

-

-

,

-

, , , , , ,

, ,

-

, ,

-

-

, ,

- -

-

-

-

- -

Workstation

Workstation

load-daemon

load-daemonload-daemon

QM

load-daemon

load-daemon

Workstation

host

 messages for tasks executing on

 nodes

node

node

 Load and
 architecture information

Workstation

node

 tasks

Tasks, requests to initiate nodes,

Processed

node
initiate nodes,

Idle messages,
tasks, requests to

messages for tasks

executing on other

nodes load-daemon

Workstation

host & other nodes

Tasks, messages from

igure 2.1: Data lo

- -

user library calls, such as and .

The function is used to pass messages between tasks. The message

is sent to the QM, which will queue it if there are no tasks of that ex-

ecuting, or forward it to all tasks of that . A large amount of overhead

is associated with this function, since it requires all the messages to be routed

through the QM. It should therefore be used sparingly.

When the host is ready to terminate the worker nodes, it calls the function

which sends a terminate message to the QM. The QM then kills all

the node processes created by and exits. The user must terminate all

nodes started with standard PVM .

2.2. Fortran 77 Routines

The Fortran-77 routines in Table 2.2 (pre�xed by an ' ') provide a Fortran-77

interface to the QM. Each has an analogous function in the C user library, so,

for example, the function in C, is in Fortran-77.

The Fortran-to-C interface subroutines essentially pass their parameters to

their C counterparts. They are accessed by linking in the and

library at compile time.

The QM Fortran-77 routines, like the original PVM routines, are de�ned as

subroutines (as opposed to functions). Moreover, a null character 0 must be

appended to the end of every string passed to a QM function call. Table 2.2 lists

the names and argument lists of the supported Fortran-77 calls in QM version

1.0.

2.3. Load information and QM Process Initiation

Load information for each machine is sent automatically to the QM by load dae-

mons invoked by the QM immediately after execution. Speci�cally, a
oating-

point number re
ecting the average number of jobs in the machine's run queue

over the last minute (also known as ts) is sent to the QM. This informa-

- 9 -

a le 2.2: ortran- ser outines or t e

, , , ,

, ,

-

, , ,

, ,

, , ,

tion is obtained via a system call to the UNI command, which gives

the 1 min, 5 min and 15 min load averages on most UNI systems. One notable

exception are IBM RS/6000 architectures, which use the e t number of jobs

in the current run queue, rather than an average, since does not return

averages under AI . Load information is the single most architecture-dependent

aspect of the QM implementation. Finding equivalent load information on some

architectures is problematic.

On startup, the QM will wait for a speci�ed amount of time to receive an

initial load response from daemons executing on each machine in the network.

At this point the load daemons t e- t and are ignored by the QM. This delay

time is determined at compile time by the constant de�ned in the �le

. Load information is pivotal to the QM heuristic which determines

on which machines the QM will initiate processes in its static load-balancing

capacity. Consequently, the QM does not start distributing tasks or initiating

processes until after the load information is received from each machine, or the

machines have timed out, whichever comes �rst. The QM uses this information,

in conjunction with available performance benchmarks for each machine, to de-

termine on which host to initiate a PVM process when it receives

request. It does so by rank-ordering machines from highest to lowest in task

scheduling priority according to the size of the ratio

s a re s ere ra emar o .

s a re s ere ra emar o .

- 1 -

=

()

; (2.1)

where is the average number of jobs in the run queue for a machine, is the

number of PVM process the QM has already initiated on that machine, and is

an available measure of machine performance appropriate for the application the

QM will load-balance. The LINPACK benchmark mega
ops/sec measure would

be an example of such a metric. The QM will initiate the next process in its

queue on the machine with the smallest current ratio.

2.4. Granularity Issues in PVM Dynamic load balancing

Granularity is de�ned by Golub and Van Loan [GoVL89] to be the amount

of computation that takes place in between synchronization points . Hence, the

terms se- and e- are used to describe, respectively, an application

with a relatively large and small amount of computation between synchronization

points. These are necessarily vague de�nitions, since what is considered e-

for a particular machine architecture may be considered se- for another.

As noted by Jack Dongarra et al. in [Dong91], an increase in parallelism may

come at the expense of �ner granularity, and the optimal balance between the two

depends on the architecture of the machine in question. For example, the original

PVM dynamically load-balanced version of the map benchmark (discussed in

Section 3.4) was a port of the se- version of a CM-5 implementation

of the application, but low communication bandwidth forced the creation of an

even se - PVM version. Thus a direct port of the CM-5 se-

version became the e- PVM version, and the new se - version of

the PVM code became the se- PVM version.

Typically, dynamically load-balanced applications should have �ne-grain task

sizes, thus maximizing parallelism by minimizing the idle time of processors wait-

ing for the last few tasks to be completed. In a PVM environment, however, this

tendency toward �ne-grained task size in dynamically load-balanced applications

- 11 -

is compromised by typically low communication bandwidth in the PVM network.

Hence, there exists an inherent bias toward coarse-grained applications in PVM.

Therefore in any dynamically load-balanced PVM application, the tendency to-

ward e- task sizes must be balanced with the necessity of minimizing

inter-machine communication if optimum execution time is to be realized. Un-

fortunately, producing an e task granularity is very di�cult due to the high

variability of some determining factors, such as network tra�c, machine speed,

and machine load.

. en s

3.1. Methodology

Three application benchmarks were used to test the e�cacy of the QM, and to

determine which load-balancing strategies work best for the QM and PVM: (i:)

a C Mandelbrot image generator, (ii:) a Fortran-77 Conjugate Gradient appli-

cation, and (iii:) a C map analysis application. It should be noted that there

are signi�cant di�culties inherent in any attempt to benchmark a PVM applica-

tion. Because of the multi-user distributed environment in which PVM operates,

benchmark elapsed wall-clock times can have enormous sample variance

1

. It can

therefore be quite di�cult at times to determine if poor performance of a partic-

ular application is due to a problem with the application or to the e ects of other

users who are working on the same machines in the network. Consequently, in-

terpretations of QM performance may be best explained in terms of trends rather

than individual timings or their sample variance. While the QM may exhibit bet-

ter overall performance, this does not imply all the QM benchmark elapsed-times

exhibit better performance than their standard PVM analogs.

Additional problems with resetting the PVM e also made benchmarking

di�cult. An e in PVM 2.4 is a time period in which all PVM processes

are running, and is separated from another e by a period when all PVM

processes have exited. PVM assigns each st e of a particular executable a

number, and the benchmark applications, like many PVM applications, use these

numbers to determine message destinations. When PVM resets the epoch, all

PVM processes have exited, and any further PVM executables which perform an

get instance numbers in sequence from 0 to n 1, where n is the number

1

ee e or e o s o sam e ar a ce, armo c mea a ar me c mea .

12

- 13 -

of executables enrolling in PVM. If the epoch fails to reset after all processes have

exited, however, instance numbers of the enrolling executables will continue where

those of the previous benchmark left o . This typically causes PVM applications

to abort since any assumptions made about certain worker nodes (executables)

having speci�c instance numbers are usually false. The epoch resetting problem

posed signi�cant di�culty for the simulations which accumulated elapsed-time

data for the three applications. This di�culty was somewhat mitigated by placing

time delays between application runs, but this solution was not viable for the

map code. Moreover, since some of these benchmark suites run for 15 or more

hours, it was not feasible to manually reset the epoch. Consequently some of

the map code benchmarks had to be done in stages with restarts initiated if an

abnormal termination occured. For example, if the map analysis simulation had

accumulated data on the 256� 256 map prior to its termination while processing

a 512 � 512 map, the simulation would be restarted for the 512 � 512 map, but

the results for the 256 � 256 map (and all previously benchmarked maps) would

be preserved. This process preserved temporal locality of the data points for a

particular map and problem size, so that di erent versions of the map application

could be compared equitably.

For all three applications considered, benchmarks were obtained on two net-

works of machines, the �rst (homogeneous) network consisted of 10 SUN Sparc

IP machines, while the second (heterogeneous) network consisted of two SUN

4/280's, a Sparc 10, a Sparc 2, and an IBM RS/6000 Model 550 (see Table 3.1).

A number of problem sizes were examined for each application, and �ve timing

samples were collected for each problem size. The scheduling of problem sizes for

the Mandelbrot and CG applications was done in a random fashion. During each

cycle of the benchmark program, a problem size was randomly chosen, and test

runs for all versions of the application using that problem size were performed.

The map code benchmark, however, used a pre-determined scheduling policy

which manually alternated problem sizes. Timing information was collected using

the elapsed wall-clock time of a system call invoking that particular application,

and included overhead associated with making the system call.

- 1 -

a le 3.1: ac ines use in enc mar s an t eir o serve AC enc mar

ratings .

ac ine
Arc itecture mega ops sec

S Sparc 1 6.3

S 6 o el 1 .

S 3.

S 2 1.

S 2 1.

S Sparc 2 3.

me a o s sec ese es s ere com e a r e e com er o m za o . e

re rese e m s or ma r es o or er , o e rec s o oa o . or e o c a

e c mar ra s, see o

The heterogeneous network benchmarks were run during the day (9:00 a.m.

to 5:00 p.m.), in a network environment that could be characterized as e .

This enabled the QM to take advantage of di erences in machine load as well

as di erences in machine speed. Due to machine usage constraints, however, the

homogeneous benchmarks were run te on a network of SUN IP

machines in a computer laboratory at the University of Tennessee. Such an

environment could be categorized as comparatively e . Together, these

two environments demonstrate the approximate upper and lower bounds on QM

performance, with the heterogeneous network and its exploitable di erences in

machine speed and load representing a more favorable environment for QM, and

the homogeneous network with its lack of exploitable di erences representing

a less favorable environment. The mean excution times reported for the three

benchmarks are arithmeticmeans, but harmonic means, which are less prone to be

skewed by individual atypical numbers in the data set, are presented in Section B.

The abbreviations for benchmark versions listed in Table 3.2 were used to label

tables and graphs in a more compact and readable fashion. The distinctions

between task granularities were only used in the map analysis application, which

used two di erent task granularities in its benchmarks.

- 1 -

a le 3.2: A reviations or enc mar ersions

A reviation ersion

it D namic oa - alancing

it Static oa - alancing

it D namic oa - alancing ine-grain

it D namic oa - alancing Coarse-grain

Static oa - alancing

riginal it Static oa - alancing

riginal it D namic oa - alancing ine-grain

3.2. Mandelbrot Benchmark Results

The Mandelbrot application generates the Mandelbrot set [Glei87] for an � n

image, given the x and coordinates in the complex plane. Generating the image

is computationally intensive (see Table 3.3), but the algorithm for generating the

set is fairly simple. The Mandelbrot set is de�ned as the set of all points such

that the iteration

1

= (3.1)

remains unbounded as n , where the variable has an initial value of 0 and

is the complex point being tested (see Figure 3.1).

The image is generated by testing all points within the x and boundaries of

the complex plane in this manner. The resolution of the image is determined by

the and n values which de�ne the size of the image.

The original application utilized static load-balancing and a host-node com-

putational model. The host decomposed the image into t es and assigned each

node processor the same number of equal-sized tiles. The nodes iterated over

the complex points in the tile they were given, and returned the results to host,

which re-assembled the tiles into an image for output to disk.

Two QM versions of this program were developed: one utilizing the (static)

process initiation function of the QM (QMSLB), and the other utilizing the dy-

namic load-balancing aspects of QM (QMDLB). In the QMDLB version, the host

sent all the tiles to the QM, which subsequently routed them to the worker nodes

as they became idle. The workers then returned their processed tiles to the host,

- 16 -

igure 3.1: e an el rot set generate t e D version o t e an el rot

Application on t e eterogeneous net or . e real a is runs nort an sout ile

t e imaginar a is runs east an est in t is gure.

- 1 -

which constructed the image and wrote it out to �le. The QMSLB version, on

the other hand, only used the QM to initiate processes on t hosts.

Table 3.3 illustrates the average task granularities for the QMDLB version and

of the Mandelbrot benchmark. These numbers are averages (arithmetic means),

because the actual number of
oating-point operations involved in processing a

task is dependent on the portion of the image which is processed in that particular

task. The task sizes for the 1000 � 1000 image range from 38.4 mega
ops to .73

mega
ops, which constitutes a substantial di erence in granularity.

Task granularity was constant as a e e t e of the total work load, but the

physical task sizes in terms of mega
ops/task increased along with the problem

size. PVM's bias toward coarse-grain applications was the primary factor in the

decision to scale mega
ops/task with task size. Keeping task size constant would

have limited the task size to a maximum of the smallest problem size divided

by the number of nodes in the network. Experiments performed on the map

code indicated that such an approach to load-balancing yields poor elapsed time

performance (see Section 3.4).

a le 3.3: an el rot Average as ranularities eterogeneous et or

mage Si e
mega ops tas

1 1
.2

. 1

1 1
2 .

Clearly, the QMSLB version outperformed both the QMDLB and the OSLB

versions for the heterogeneous network (see Table 3.4 and Figure 3.2). The QM-

SLB arithmetic mean execution time for the largest test case was less than half

that of the OSLB version (13.34 seconds versus 52.53 seconds). This performance

gain can be attributed to the QM's ability to recognize performance characteris-

tics (LINPACK mega
ops/sec rate) and machine loads before assigning machines

a proportional number of processes based on their ability to work. Unfortunately,

performance of the QMDLB application was not nearly as good as that of the

QMSLB version. The QMDLB elapsed-times were signi�cantly higher than the

QMSLB version, though it still outperformed the OSLB version. The process ini-

- 1 -

tiation decisions made by the QMSLB version improved load-balancing enough to

reduce execution times, and did it without incurring the communication overhead

associated with the QMDLB version of the application.

a le 3. : an el rot eterogeneous et or : Arit metic ean ecution imes

in secon s an Sample ariances

S S D

mage Si e
mean time variance mean time variance mean time variance

1 1
2.21 .1 2.12 1.23 1.9 .21

2 2
6.2 .22 .3 1.2 .61 . 6

3 3
1 .23 2. 6.9 . . .3

22.3 2.62 12. .21 1 .1 23.96

39.9 6. 6 21.2 61.11 2 . 1 6. 1

6 6
.9 2 . 1 23. 2 1. 2 6.12 9 . 1

69. 1 . 1 31.3 9.9 . 2.

92.9 1. 3. 29.2 1.6 3 1.9

9 9
11 . 3 . 9. 6 2 .1 .1 1 6.63

1 1
139.62 61. 3 63.92 9. . 6 1 .13

The homogeneous benchmark results (see Table 3.5 and Figure 3.3) were

slightly better or about the same as the OSLB version for most of the prob-

lem sizes. Di erences in machine load may account for the QM's performance in

this case.

a le 3. : an el rot omogeneous et or : Arit metic ean ecution imes

in secon s an Sample ariances

S S D

mage Si e
mean time variance mean time variance mean time variance

1 1
2.26 . 1 2.12 . 1 1. 3 . 1

2 2
6. .3 6. .3 3.3 2.63

3 3
9.11 9.69 9.32 6. . 9.62

. 6 . 1 9.16 1.22 .21 1.1

1 .9 . 9. 9 .62 1 . 1.22

6 6
13. . 3 1 .69 .36 13.9 . 9

19. 3 1. 1 . 1.96 1 . .3

2 . 1.39 1 . .9 26. 16.3

9 9
32.29 .13 2 .33 2 .36 29. 1 1 .1

1 1
1. 11.1 31. 2 . 3 . 9 3 .

- 19 -

The QM load-balanced versions, like the other versions, exhibited signi�cant

sample variance, especially the QMDLB version of the Mandelbrot application.

Such large variances may be attributed to network response lags and memory

swapping. Since all tasks are sent to the QM before being sent to the worker

nodes, an extra leg is added to each task's journey from its originator to the

worker node that processes it, hence making the QM more susceptible to slow

network response. Like any other user process, the QM can be swapped out of

memory by the virtual memory system. Such swapping impairs the ability of

the QM to process worker requests in a timely manner, thereby degrading the

performance of the user application. In an e ort to compare assumptions made by

the static load-balancing algorithm with the results of the dynamic load-balancing

algorithm, mega
op/second ratings for machines in the heterogeneous network

were accumulated in a typical test run of the QMDLB version of the Mandelbrot

application (see Table 3.6). The mega
op/sec rating for the machines turned out

fairly well, especially considering the fact that they include communication time

as well as processing time for each task. More than likely, the good results are

primarily a result of the structure of the application itself, since it consists of two

tight loops around Equation 3.1.

a le 3.6: an el rot 1 : serve ac ine er ormance mean sec tas an

mega ops sec reporte

ame
pe Sec tas ega ops sec o otal as s

Sun Sparc 1 .26 3.62 21. 3

S 6 . 2. 9 9. 3 3 . 1

Sun Sparc 2 1 . 6 3. .1

Sun 2 1 .91 . 1 1 .29

Sun 2 26. . 9 1 .29

- 2 -

200 400 600 800 1000

Image size

50

100

150

E
la

ps
ed

 t
im

e
in

 s
ec

on
ds

 QMDLB
 QMSLB
 OSLB

igure 3.2: an el rot Application eterogeneous et or

200 400 600 800 1000

Image size

10

20

30

40

E
la

ps
ed

 t
im

e
in

 s
ec

on
ds

QMDLB
 QMSLB
 OSLB

igure 3.3: an el rot Application omogeneous et or

- 21 -

With the exception of the Sparc2, the results of this experiment approximately

paralleled the LINPACK rank ordering of the machines. It failed, however, to

con�rm the signi�cant di erences in e se rates observed in test runs of

the LINPACK benchmark. The se t s ratings for and are poor,

but their e s se ratings do re
ect the fact that they processed larger tasks

than the other machines. The two machines with the highest observed LINPACK

rating, however, did process the majority of the tasks. Originally, this test was

intended to con�rm or disprove the assumptions of the static load-balancing por-

tion of the QM with respect to machine capability, but the signi�cantly e

performance achieved by the static load-balancing algorithm, argues against such

an approach. Network lag time seems to limit the ability of the fastest machines

in the network to grab the available tasks, leading to over-utilization of the slower

machines in the network and a greater overall elapsed-time for the QMDLB ver-

sion.

3.3. Con ugate Gradient Benchmark

The Conjugate Gradient (CG) method [GoVL89] is an iterative method for solv-

ing a system of linear equations of the form

x = : (3.2)

At each step of the iteration, the algorithm chooses the direction vector p to

be the closest vector to the residual vector that is A-conjugate to all previous

direction vectors. The residual is then examined to determine if its 2-norm

is less than a user supplied tolerance i.e., (). Following [GoVL89],

the Jacobi preconditioned CG algorithm is de�ned below. Let the residual be

de�ned as = x for the th step of CG, and suppose is the Jacobi

preconditioning matrix composed of the diagonal elements of .

Compute = x for some initial guess x

- 22 -

for = 0; 1; :::

solve =

if = 1

p

1

=

1

else

=

1

1

p =

1

p 1

= p

endif

x = x

1

p

=

1

p

if , stop

end

Like many PVM programs, the CG application uses a host/node computa-

tional mode. The responsibilities of the host, however, consist almost entirely of

initiating the node processes, which do all of the e work. Node processes are

initiated according to the parameters in the �le . This �le enables the

user to specify the dimensions of a two-dimensional processor grid which will be

used to solve Poisson's equation

= ; (3.3)

where is a given function of x and . If

i

denotes the approximate solution

at x

i

= i and = with mesh spacing on a rectangular domain , then the

�nite di erence analog of (3.3) is

(4

i i 1 i 1 i i i i

) =

i

; i; = 1; 2; :::; n; (3.4)

- 23 -

where

i

= (x

i

;).

As discussed in [GoVL89], (3.4) may be cast as an n � n linear system of

equations (3.2) where is a symmetric positive de�nite (SPD) matrix having

5 diagonals (main diagonal of 4's, o diagonals of -1's). Unlike the Intel i860

hypercube version of this application, the PVM version does not require that n be

a power of two. After the nodes are initiated, the unknowns are evenly distributed

across the 2-dimensional processor grid, so that each node will approximate the

solution at n p interior points, where p is the number of nodes in the PVM

network. Suppose the processors, , from the 2-dimensional processor grid are

ordered so that = (i 1) p , then a particular processor is assigned

unknowns according to its i; position. Speci�cally, processor i ; is assigned

unknowns with the coordinates i; (from the computational grid for) where

i = (i 1) n 1; :::; i n ; (3.5)

= (1) n 1; :::; i n : (3.6)

The nodes then generate the portions of the coe�cient matrix corresponding to

their unknowns, and CG is used to solve the resulting system of linear equations.

Because of the large amount of inter-node communication, a QMDLB version

of the CG application was impractical. The large number of messages generated

by the application would have had to have been routed through the QM, since

only the QM knows to which processor a particular task was mapped. Forcing

the QM to route all these messages would have almost certainly created a net-

work bottleneck which would have limited the performance of the application.

Consequently, only a QMSLB version of the CG benchmark was developed.

Task granularities for CG benchmarks corresponding to three di erent prob-

lem sizes are given in Table 3.7. These task granularities are listed e e,

since the QM version of the application was statically load-balanced.

The performance of the QMSLB version of the CG application was excellent.

In the homogeneous network, it performed as well as the OSLB version (QMSLB

32.59 sec versus OSLB 34.35 sec for the 130� 130 grid) and substantially better

- 2 -

a le 3. : C as ranularities or eterogeneous et or .

mega ops mac ine terations

1
. 6 1

36
. 3

169
.1

in the heterogeneous network (QMSLB 13.34 sec versus OSLB 52.53 sec for the

130 � 130 grid). A complete set of performance results are provided in Tables

3.8 through 3.9, and Figures 3.4 and 3.5. The excellent results are primarily due

to the QM scheduling of a majority of the tasks on the IBM RS/6000 model 550,

which is well suited to
oating-point computation.

a le 3. : C eterogeneous et or : Arit metic ean ecution imes in sec-

on s an sample variances

S S

ri Si e
mean time variance mean time variance

1
. 1 3.11 2.96 . 2

2
. .13 3. .12

3
. . .6 .

. .2 6.11 .39

11. 6 3. 6. 3.69

6
11.9 6. . 9 .16

16. .61 .93 .

19. 2 11. 2 . 6.

9
2 . 32. 9 . 2.36

1
31. .6 11. 1.13

11
33. 1 29.9 11.69 1.9

12
1.2 16. 3 12. 6. 1

13
2. 3 166.3 13.3 1.

The sample variances for the QMSLB version were also substantially lower

than those of the OSLB version. This may also be attributed to the QM's ten-

dency to concentrate the majority of PVM processes on the IBM RS/6000, which

helped reduce the in
uence of network tra�c on the execution times of the bench-

mark runs. Moreover, the overall run time was reduced, which made it less likely

that a substantial change in system load would occur after the scheduling deci-

sions were made.

- 2 -

a le 3.9: C omogeneous et or : Arit metic ean ecution imes in sec-

on s an Sample ariances

S S

ri Si e
mean time variance mean time variance

1
3.1 . 3 3. . 1

2
3.92 .1 3.9 . 2

3
. .13 .91 3.63

6.11 . 2 6. 1 .1

1 .9 3.22 1 . 23.1

6
. .13 .9 .11

1 . . 11. 3 2.

13.9 .1 13. 3 .

9
16. 1 .26 1 . 6 .1

1
1 . . 2 19. . 6

11
22.22 . 9 2 .62 .9

12
2 .66 6.3 26.92 .36

13
3 .3 1 .99 32. 9 .9

- 26 -

50 100

Grid Size (n x n)

20

40

60

E
la

ps
ed

 W
al

l-
C

lo
ck

 T
im

e
(s

ec
on

ds
)

QMSLB
 OSLB

igure 3. : C et o on oisson s uation eterogeneous et or

50 100

Grid Size (n x n)

10

20

30

E
la

ps
ed

 W
al

l-
C

lo
ck

 T
im

e
(s

ec
on

ds
)

QMSLB
OSLB

igure 3. : C et o on oisson s uation omogeneous et or

- 2 -

3.4. Map Analysis Application

The map application benchmark was developed from a computer model used to

assess habitat fragmentation and its ecological implications[BeCM93]. It involves

the analysis of maps composed of binary pixels in which a 1 represents a s t b e

habitat, and a 0 an s t b e habitat. The actual analysis is performed on clus-

ters of 1's in the map to determine their mean square radius. The computations

involved are: (i:) Identi�cation of the clusters in the map done sequentially by

the host program and (ii:) the determination of the mean square radius of each

cluster done in parallel on the worker processors. The mean square radius is

de�ned by

2 =

i

i

; (3.7)

where

i

is the position of the i-th pixel in the cluster, and s is the total number

of pixels in a cluster.

Benchmarks were collected on randomly-generated n�nmaps, where n ranged

from 64 to 768. Two di erent map densities were used for each map: p = :1 and

p = :3, where p is the probability that any given pixel will be a 1.

Like the Mandelbrot applications, however, the map analysis code had task

sizes of varying granularity, due to the variation in cluster size (see Table 3.10)

[BeCM93]. The original PVM version (ODLBF) was ported from the se-

version of the map code written in C and CMMD [TMC92] for the CM-5.

No modi�cations were made to the task graph or task granularity for optimiza-

tion under PVM. Both the PVM and CMMD versions were dynamically load-

balanced, with each worker node in the network operating in a cyclic fashion: (i:)

accepting a single cluster (task) from the host to process, (ii:) processing it, (iii:)

sending an idle message to the host to solicit another cluster, until all the clus-

ters in the map had been processed. A QMDLBF version of the application was

also developed, in which the host program sends all the clusters to the QM for

dynamic load-balancing. It quickly became apparent, however, that the commu-

nication costs associated with dynamically load balancing thousands of clusters

- 2 -

severely degraded the performance of the QMDLBF and ODLBF versions of the

map application. Consequently, a SLB version of the code was developed. The

SLB version substantially outperformed both the ODLB version and the QMDLB

version. In an e ort to determine if dynamically load-balancing the application

could produce performance gain, a se - QM version of the code was

developed (QMDLBC). THe QMDLBC version dynamically load balances tasks

consisting of cluster b s rather than individual clusters. Due to its coarser gran-

ularity, this version is referred to as the QM se- version (QMDLBC),

and the previous dynamically load-balanced PVM versions are referred to as the

e- PVM versions (ODLBF and QMDLBF). Note that the �ne-grain ver-

sions have the same task granularity as the original CM-5 se- version.

A QMSLB version was also developed, but this version proved impractical due to

the enormous memory requirements of the application. The QMSLB version of

this code frequently attempted to put more than one PVM node on a machine,

which ran the machine out of memory (s failed) and caused the nodes to

terminate abnormally. The four PVM versions of the map analysis application

are listed in Table 3.11.

a le 3.1 : Distri ution o cluster si es or t ree values

ap Si e Si e o argest Cluster o. o Clusters

.1
6 32

12 6 13

2 6 22

12 12 2 91

.3
6 2 3

12 29 21

2 6 33

12 2 33 91

The results of the map application benchmarks were similar to the results of

the Mandelbrot application. In the homogeneous network, the QM performed

slightly worse than the SLB version of the code due to the overhead of dynamic

load-balancing in a network lacking the di erences in architecture speed and load

which make dynamic load balancing worthwhile (see Tables 3.12 and 3.13, Figures

- 29 -

a le 3.11: ap Anal sis Application ersion Summar .

c

total num er o clusters

in map

w

total num er o mac ines in net or .

Version
Approximate Granularity of task

ODLBF
1 cluster

QMDLBF
1 cluster

SLB

c w

QMDLBC

c

3

w

3.6 and 3.8). However, the QMDLB version (see Tables 3.14 and 3.15, Figures

3.7 and 3.9) performed much better than the SLB version in the heterogeneous

network (543.63 sec versus 854.41 sec for the 768 � 768 map with p =.1). Both

the �ne-grain dynamically load-balanced versions of the application (ODLBF and

QMDLBF) had very poor performance. The overhead associated with the large

amount of message passing done by these two applications clearly outweighed

any increase in parallelism accrued by their �ne granularity. Because of their

poor performance, results for the �ne-grain versions were accumulated on only

the three smallest problem sizes (n = 64; 128; 256) as an illustration of the perils

of �ne-grain dynamic load-balancing in PVM. Sample variances (see Tables 3.16

3.18) were signi�cant for all versions, but were especially great for the QMDLB

version. As previously discussed, this can most likely be attributed to the QM's

sensitivity to changes in network tra�c, and the possibility that it could be

swapped out of memory at any time.

a le 3.12: aps it 1 omogeneous et or : Arit metic ean ecution

imes in secon s

ap Si e
D C S D D

6 6
1. 3.3 . 1 .29

12 12
2.9 6.36 12.9 21.

2 6 2 6
9. 2 12.66 9.31 2. 1

12 12
6 .21 61.36

6 6
321.2 31 .

- 3 -

a le 3.13: aps it 3 omogeneous et or : Arit metic ean ecution

imes in secon s

ap Si e
D C S D D

6 6
1. 2. 9 . 9 9.

12 12
3.12 6. 19.96 3 .

2 6 2 6
22.6 2 . . 13 .

12 12
191.2 1 .

6 6
.3 6 .

a le 3.1 : aps it 1 eterogeneous et or : Arit metic ean ecution

imes in secon s

ap Si e
D C S D D

6 6
1. 3 1. .62 .99

12 12
2.2 2.2 13. 1 21.66

2 6 2 6
11. 6 1 .12 63. 6 1 . 1

12 12
121. 9 193. 2

6 6
3.63 . 1

a le 3.1 : aps it 3 eterogeneous et or : Arit metic ean ecution

imes in secon s

aps Si e
D C S D D

6 6
1.6 1. 1 .21 1 . 2

12 12
3. 3 .2 22. 9 3.

2 6 2 6
23.2 . 2 1 1.93 16 . 2

12 12
1. 1 6 .

6 6
2319.1 3 9 . 9

a le 3.16: aps it 3 omogeneous et or : Sample ariances

ap Si e
D C S D D

6 6
. 1. 2 .12 .

12 12
. 2 . 3.9 . 1

2 6 2 6
1.69 11. .3 2.1

12 12
.9 2.26

6 6
3 2.9 213 .2

- 31 -

a le 3.1 : aps it 1 omogeneous et or : Sample ariances

ap Si e
D C S D D

6 6
. 6 6. 2 . 2 .12

12 12
. . 2 1. 3 3.9

2 6 2 6
.1 . .3 .3

12 12
6. 2 6.23

6 6
122.32 3399.2

a le 3.1 : aps it 1 eterogeneous et or : Sample ariances

ap Si e
D C S D D

6 6
1.11 3.36 1.9 1.9

12 12
.3 . 1 1. 1 1. 1

2 6 2 6
9.1 1. 2 16.91 16.91

12 12
1 .9 2 3.

6 6
13 . 1696. 1

- 32 -

0 128 256 384 512 640 768

Map size

100

200

300

400

E
la

ps
ed

 t
im

e
in

 s
ec

on
ds

QMDLC
QMDLBF
SLB
ODLBF

igure 3.6: ap Application it 1 omogeneous et or

0 128 256 384 512 640 768

Map size

200

400

600

800

E
la

ps
ed

 t
im

e
in

 s
ec

on
ds

QMDLBC
 QMDLBF
SLB
 ODLBF

igure 3. : ap Application it 1 eterogeneous et or

- 33 -

0 128 256 384 512 640 768

Map size

200

400

600

800

E
la

ps
ed

 t
im

e
in

 s
ec

on
ds

QMDLBC
QMDLBF
SLB
ODLBF

igure 3. : ap Application it 3 omogeneous et or

0 128 256 384 512 640 768

Map size

0

1000

2000

3000

4000

E
la

ps
ed

 t
im

e
in

 s
ec

on
ds

QMDLBC
QMDLBF
SLB
ODLBF

igure 3.9: ap Application it 3 eterogeneous et or

- 3 -

The relatively poor mega
ops/sec performance of the map application (see

Table 3.19) may be best explained by the memory usage associated with this

application. The task granularities in Table 3.20 may be misleading, since they

do not re
ect actual memory usage. The large memory requirement of this ap-

plication may cause caused a signi�cant amount of paging on the machines in

the PVM network. In fact, each node in the network dynamically allocated

4.8 megabytes of memory for the 768 map size, for example. Moreover, unlike

the Mandelbrot application, the map analysis application references a signi�cant

number of non-contiguous memory locations which may further contribute to

the paging problem. The e of the machines in the network, how-

ever, was consistent with the LINPACK benchmark mega
ops/sec rating, which

further validates the use of this benchmark to determine the relative speeds of

computers by the static load-balancing function of the QM.

a le 3.19: ap Anal sis 6 1 : serve ac ine er ormance

ac ine pe
Sec tas ega ops sec o otal as s

Sun Sparc 1
91. . 11 26.6

S 6 o el
6 .12 . 3639 33.33

Sun Sparc 2
1 . . 96 2 .

Sun 2
26 . 2 . 3 3 6.6

Sun 2
26 .1 . 3 13.33

- 3 -

a le 3.2 : ap Anal sis Application 1 : as ranularities.

ap Si e
ops tas

6 6
96.

2 6 2 6
112

6 6
1 3 6

. on l sions

In the heterogeneous network the QM was able to signi�cantly improve execu-

tion times by better utilizing lightly-loaded and faster machines. Moreover, the

performance of the QM in the homogeneous network also indicated the overhead

associated with the QM was reasonably low. The QM seems to have been success-

ful in improving elapsed run times through load balancing, which was its original

aim.

Admittedly, the Mandelbrot and the map benchmarks call into question the

practicality of the dynamic load-balancing paradigm when a QMSLB implemen-

tation is feasible. Clearly, in the Mandelbrot benchmark, the QMSLB version

outperformed the QMDLB version by a large margin. Judging by the excellent

performance of the SLB version of the map code, it is possible that a QMSLB

version of the map application would perform better than the QMDLB version.

The unreliability of Ethernet bandwidth seems to contribute signi�cantly to sam-

ple variance as well as increased execution times in the QMDLB versions of the

benchmarks. A network can be an extremely complicated environment, with the

possibility for a large number of defects/anomalies at any given moment. In such

an environment, a clear di erence between architecture speeds and/or loads must

exist between machines in the PVM network for dynamic load-balancing to be

viable.

36

- 3 -

i liograph

- 3 -

[AhCG86] S. Ahuja, N. Carriero, D. Gelernter. e s, IEEE Com-

puter 19(8) 26-34, 1986.

[BeCM93] M. Berry, J. Comisky, and K. Minser. e s s

- s. Proceedings of the Sixth SIAM Conference on Paral-

lel Processing for Scienti�c Computing. 312 319. Norfolk, Virginia,

March 1993.

[BDGM91] A. Begeulin, J. Dongarra, G. Geist, R. Mancheck, and V. Sunderam.

se s e t . Technical report CS-91-136, University of

Tennessee, July 1991.

[Dong92] J. Dongarra. e e s te s s t

e t s t e. Technical report, Oak Ridge National

Laboratory, ORNL, June 1992.

[Dong91] J. Dongarra et al. e ste s e t e

e es. Society for Industrial and Applied Mathemat-

ics, Philadelphia 1991.

[Glei87] J. Gleick. s e e e Penguin Books, New ork

1987.

[GoVL89] G. Golub and C. Van Loan t t t s Johns Hopkins

University Press, Baltimore 1989.

[Green92] T. Green st b te t t Supertimes, Fall 1992.

[LiLM88] M. Litzkow, M. Livny, and M. W. Mutka, - te

e st t s. Proc. of the 8th International Conference on

Distributed Computing Systems, San Jose, California, June 1988.

[Rina92] Martin C. Rinard et. al ete e e s e

e. IEEE Computer 245-256, 1992.

[TMC92] e e e e Version 2.0. Thinking Machines Corpo-

ration, Cambridge, 1992.

- 39 -

ppendices

. nst ll tion

Installation of the QM is similar to the installation of PVM 2.4. The QM directory

should be created as a subdirectory under the PVM directory, and will contain

the QM source code, as well as several architecture directories. First, a

function will need to be written (or copied) and placed in the �le . This

function must return a
oating point number representing the average number

of jobs in the run queue over the last minute (the 1 minute load point average).

Several of these are available under the name , and can be

copied to if your architecture is one of these. To compile the QM

for a particular architecture, move to (or create) the directory corresponding

to the desired architecture (i.e.), then modify the

in the to re
ect the new architecture. Of course, if you just created

the directory, you will need to copy the make�le from another directory into the

current one before you can modify it. Next, type and four exectuables will be

created, , , , , and a user library called

which contains the object code for the user call-able QM functions. The user

library will remain in that architecture directory, but the two executables (the

qmanager and a load daemon) will be moved automatically to the

directory for the architecure indicated by make�le. Architecture independent

make can also be used to compile the QM.

At this point, the QM has been installed and is ready to be used. To compile

a qmanaged program, the QM object �les must be linked when the user program

is compiled. This is done the same way the PVM user library is linked. The �le

is included on the cc line, along with the standard library.

. oni e n e tion i es fo

en s

a le .1: an el rot eterogenous et or : armonic ean ecution imes in

secon s

mage Si e
S S D

1 1
2.6 1.9 1.

2 2
6.2 .11 . 2

3 3
1 .12 6. .

22.29 11. 3 13.

3 .61 19.6 21.

6 6
. 23.66 3 . 9

69.62 31. 3 .19

92.3 2.9 .63

9 9
11 .3 9. 2 2. 2

1 1
139.2 63.2 3.3

a le .2: an el rot omogeneous et or : armonic ean ecution imes in

secon s

mage Si e
S S D

1 1
2.26 2.12 1. 3

2 2
6. 2 6.36 2.96

3 3
. .91 6. 2

.69 9. 6 .

1 .91 9. 1 .61

6 6
13. 2 1 .6 13.6

19.96 1 .9 1 .23

2 . 2 1 . 3 2 .

9 9
32.1 2 .66 29.1

1 1
1.26 3 . 3 .

1

- 2 -

a le .3: C eterogenous et or : armonic ean ecution imes in secon s

ri si e
S S

1 1
.31 2.9

2 2
. 6 3.6

3 3
6. 3 .61

.1 6. 6

1 . 1 6. 3

6 6
11. 3 . 2

16. 1 .

1 . .3

9 9
23. .

1 1
3 .29 11. 6

11 11
32. 6 11.

12 12
.9 12.

13 13
9.93 13.2

a le . : C omogeneous et or : armonic ean ecution imes in secon s

ri si e
S S

1 1
3.1 3.

2 2
3.9 3.9

3 3
. 6 .

6.11 6.3

.29 9.2

6 6
. 3 .9

1 . 11.3

13. 13. 3

9 9
16.2 16. 3

1 1
1 . 19.

11 11
22.21 2 . 3

12 12
2 . 26.91

13 13
3 .11 32.

a le . : aps it 1 omogeneous et or : armonic ean ecution

imes in secon s

ap Si e
D C S D D

6 6
1. 2.16 3.99 6.

12 12
2. 3 6.3 12.91 21.6

2 6 2 6
9. 1 12.66 9.31 2. 1

12 12
6 .13 61.2

6 6
32 . 9 3 3. 6

- 3 -

a le .6: aps it 3 omogeneous et or : armonic ean ecution

imes in secon s

ap Si e
D C S D D

6 6
1. 3 1. 1 . 9.3

12 12
3.12 6. 19.96 3 .

2 6 2 6
22.61 2 .3 .99 13 . 6

12 12
1 .19 1 . 6

6 6
.13 6 .9

a le . : aps it 1 eterogeneous et or : armonic ean ecution

imes in secon s

ap Si e
D C S D D

6 6
1. 2 1.2 . 2 . 9

12 12
2.16 2.2 13.6 21.6

2 6 2 6
1 .92 1 . 62.91 1 .6

12 12
12 . 192. 1

6 6
2 .26 2.

a le . : aps it 3 eterogeneous et or : armonic ean ecution

imes in secon s

ap Si e
D C S D D

6 6
1. 1. 2 9. 16.9

12 12
3. 9 . 22. 2.

2 6 2 6
22.9 .69 1 1. 1 16 .6

12 12
.6 6 6.36

6 6
2293.16 3 62.69

. t tisti l o l s se to o te

les

a le C.1: De nitions o Statistical ormulas. um er o Samples

i

-t elapse

all-cloc time sample.

erm De nition

arit metic mean

i 1

i

armonic mean

i 1

1

sample variance

i 1

1

- -

Douglas Sept was born in Pocatello, Idaho on April 17, 1969. He graduated

from Pocatello High School in 1987 and received the Bachelor of Science degree

in Computer Science from Trinity University in May 1991. In August 1991, he

entered the Computer Science program at the University of Tennessee and was

awarded the Master of Science degree in Computer Science in August 1993.

