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Abstract

In landscape ecology, computer modeling is used to assess habitat fragmentation

and its ecological implications. Speci�cally, maps (2-D grids) of habitat clusters are

analyzed to determine numbers, sizes, and geometry of clusters. Previous ecologi-

cal models have relied upon sequential Fortran-77 programs which have limited the

size and density of maps that can be analyzed. To e�ciently analyze relatively large

maps, we present parallel map analysis software implemented on the CM-5. For al-

gorithm development, random maps of di�erent sizes and densities were generated

and analyzed. Initially, the Fortran-77 program was rewritten in C, and the sequen-

tial cluster identi�cation algorithm was improved and implemented as a recursive or

nonrecursive algorithm. The major focus of parallelization was on cluster geometry

using C with CMMD message passing routines. Several di�erent parallel models were

implemented: host/node, hostless, and host/node with vector units (VUs). All mod-

els obtained some speed improvements when compared against several RISC-based

workstations. The host/node model with VUs proved to be the most e�cient and

exible with speed improvements for a 512 � 512 map of 187, 95, and 20 over the

Sun Sparc 2, HP 9000-750, and IBM RS/6000-350, respectively. When tested on

an actual map produced through remote imagery and used in ecological studies this

same model obtained a speed improvement of 119 over the Sun Sparc 2.
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ntrod ction

In this thesis, we present parallel map analysis software used to de�ne spatial rela-

tionships of ecological resources. Initially, the original Fortran-77 program which was

developed by Dr. Robert H. Gardner at the Environmental Sciences Division of the

Oak Ridge National Laboratories, was rewritten in C and then parallelized on the

CM-5. The de�nition of the problem and our goal is discussed in the next section

followed by the de�nition of map analysis. In Chapter 2, the methods used are ex-

plained, and Chapter 3 contains the results. Our conclusions are given in Chapter 4

along with suggestions for future work.

1.1 r l i i l

Landscape ecology is the study of habitat fragmentation and its ecological implica-

tions. Computer modeling is typically used to assess landscape patterns and how

particular organism(s) might react to changing patterns or conditions. For example,

researchers at the Oak Ridge National Laboratory are studying the e�ects of the 1988

�res in ellowstone National Park on the distribution of forage and its e�ect on the

ungulate

1

movement patterns.

Within the computer models a series of map analyses are performed that involve

traversal of a 2-D grid to identify habitat clusters (cluster identi�cation) and to mea-

sure the clusters' sizes and shapes (cluster geometry). Depending on the size and

density of the grid, the analysis can be extremely time-consuming. The original code

used in these models consisted of a sequential Fortran-77 program, which imposed

a practical limitation on the size of the map and density of clusters to be analyzed.

Therefore, if map analysis is to be completed in reasonable lengths of time, sequential

methods are restricted to resolving grids whose dimensions are less that 500 rows and

columns.

1

Ungulates are oofe animals, an t ese stu ies focus on t e ison an el .

1



Our goal is to develop scalable map analysis software on a parallel machine, the

CM-5, that can e�ciently resolve cluster identi�cation and cluster geometry on large

maps arising from landscape models or remote imagery applications.

1. i i l i

The program accepts an input �le representing a map or 2-D grid which contains

nonnegative integers with 0's representing unsuitable habitat and positive integers

representing di�erent habitats or mapclasses. The input �le is loaded into an (

2) � ( 2) array

2

, , in which the two extra rows and columns de�ne

a border of -9's around the ( ) � ( ) grid. All mapclasses are analyzed

separately so that the numbering of clusters is not confused between classes. An

( 2) � ( 2) array, , is also created to hold the grid values of

the current mapclass being analyzed. Wherever current mapclass values are located

in , corresponding -1's are placed in ; the remaining positions within

are �lled with 0's. After has been �lled, it is also surrounded with a

border of -9's.

1.2.1 Cluster Identi cation

The �rst step in analyzing a mapclass, or particular habitat type, involves locating

and labeling clusters of habitat represented by -1's in . A cluster can be de�ned

by di�erent neighbor rules. The original Fortran-77 code prede�nes three di�erent

neighbor rules and also allows the user to de�ne a neighbor rule at runtime. Rule 1

de�nes a cluster as a set of adjacent pixels

3

that border each other in one or more of

the four cardinal directions, North, East, West, and South (NEWS). A working grid

containing 5 clusters as determined by Rule 1 is illustrated in Figure 1.1. Although

we only apply Rule 1 for cluster identi�cation in all our computer implementations,

we illustrate the two other neighbor rules to be complete. The choice of neighbor rule

is certainly application-dependent.

Rule 2 de�nes clusters as pixels that border each other in the NEWS directions as

well as on the diagonals (see Figure 1.2), and Rule 3 is essentially Rule 2 plus pixels

that border each other in the NEWS directions two positions away (see Figure 1.3).

The grid is typically traversed sequentiallywhile searching for clusters of -1's. Upon

locating a cluster, the pixels are re-labeled with the current cluster label (labeling is

in numerical order), and the size of the cluster is determined. After the cluster has

been identi�ed, the current cluster label is incremented by one for the next cluster,

and traversal of the grid continues. Cluster identi�cation terminates when all clusters

2

w ere n an n re ect t e num er of rows an columns, res ecti el , in t e 2- gri .

i els an sites refer to t e in i i ual gri elements of t e ma an are use interc angea l t roug out t is

t esis.
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have been located and uniquely labeled, and the total number of clusters, the largest

cluster size, and the average cluster size has been determined.

1.2.2 Cluster Geometry

Computing the geometry of clusters involves calculating the mean squared radius for

each cluster. The mean squared radius (R

2

s

) of a cluster ( StAh91 ) is given by

2R

2

s

=

;

�

2

2

; (1.1)

where is the position of the -th element in the cluster, and is the number of

elements in the cluster. To determine distances between pixel positions, the absolute

di�erences of the x-coordinates and y-coordinates between pixels must be calculated.

This distance between pixels must be determined for each pixel of a cluster, so that

the computational complexity of (1.1) is essentially O(

2

), where is the number of

pixels in a cluster. In the sequential algorithm, the grid must be traversed for every

cluster, and arrays must be used to store the x- and y-coordinates for each pixel



-1 -1 1 1

-1
-1 -1 -1 -1 1 1 1 1 1

-1 -1 1 1

a

igure 1.3: u e 3: e ore a an a ter a e ing.

belonging to the current cluster. After all coordinates are recorded, the absolute

value of the di�erences in coordinate distances are calculated, incremented by one,

squared, and added to an accumulating total, � , de�ned by

� =

;

�

2

: (1.2)

A sample C program to calculate � is shown in Figure 1.4. Using (1.2), R

2

s

is then

given by

R

2

s

=

�

2

: (1.3)

In landscape ecology, the mean squared radius of each cluster is needed to calculate

the correlation length ( StAh91 )

2

=

2

s

R

2

s

2

s

2

s

; (1.4)

where

s

is the number of clusters of size . The correlation length, , is the average

distance of two pixels belonging to the same cluster ( GaOT93 ). Since the correlation

length,

2

, is easily derived using the mean squared radius, R

2

s

, this thesis will focus

on the more time-consuming computation of R

2

s

.

1.

In order to simulate cluster analysis on general maps, we generate random maps

to facilitate algorithm development and to test our models. Analysis of random

maps allows the accuracy and performance of the program to be tested on various

sizes and densities of prospective maps of interest to landscape ecologists. Typically,

m�m grids are randomly generated by setting the grid elements or pixels to 1 with a

probability of p (or equivalently to 0 with a probability of 1�p). The value 1 usually
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igure 1. : C co e or etermining .

represents suitable habitat while 0 represents unsuitable habitat. Thus, pm

2

is the

number of pixels of suitable habitat (or 1's) within a map ( GaOT93 ). For testing

purposes, we generate m�m random maps, where m = 64 , = 1, 2, 4, 8, 16, and

p = 0:1, 0:3, and 0:62 for each value of m.

As shown in Tables 1.1 and A.1, all cluster sizes for maps with p = 0:1 and p = 0:3

are smaller than 100. Cluster size increases slowly until p reaches a critical threshold

when the cluster size of a single cluster changes dramatically and is capable of ex-

tending from one edge of the map to the other. This sudden change in cluster size is

explained by percolation theory ( StAh91 ), where randommaps with p-values greater

than a critical threshold (0.5928) yield a large dominating cluster that extends or

across the map. Thus, all maps with p = 0:62 contain a large cluster that

extends from one boundary to the other.

As p (the fraction of sites occupied by the habitat type of interest) increases, the

amount of work in cluster identi�cation and analysis changes. In developing kernels to

be used by applications requiring cluster identi�cation and analysis, the programmer

should design methods that can adapt to the speci�c characteristics of any map.

Figure 1.5 illustrates the di�erences in cluster density associated with p = 0:3 and

p = 0:62 for 64 � 64 maps. The map with p = 0:3 (Figure 1.5(a)) has many small

fragmented clusters, while the map with p = 0:62 (Figure 1.5(b)) has one large cluster

that spreads across the map along with many smaller clusters.

e critical t res ol alue aries wit t e neig or rule em lo e for cluster e nition. . 2 is t e critical

t res ol w en t e -neig or rule is use as escri e in ule 1.



a e 1.1: Distri ution o c uster si es or t ree -va ues.

Si e o
C uster Si e

Map argest o. o 1 1- 1- 1 1- 1- 1 1- 1 1-

Si e C uster C usters 1 1 1 1

1
3 3

1 13 13

7 7 7

1 1 917 917

3
3 3

1 9 1 7 1 7

33

1 33 91 33 91

19 1 11 1 9 1

1 9 3 37 1 1

3 3 3 1 1393 1 1

1 1 119 3 9 1 1 1 1
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ethods

Initially, the original Fortran-77 code for map analysis was rewritten in C to take

advantage of dynamic memory allocation and recursion. Next, cluster identi�cation

was studied and improved. Most e�orts, however, focused on the parallelization of

cluster geometry as it is the most time-consuming part of map analysis. Several

di�erent parallel models, including versions that additionally exploit vectorization

were implemented and analyzed on the CM-5.

.1 r i l

As the Fortran-77 code was rewritten, several changes were made. Statically declared

arrays were changed to dynamically allocated arrays which allowed for more e�cient

use of memory. In Fortran-77, the input data is normally read into one

element at a time. However, in C, the entire data�le is processed with one read

function, , into an ( ) � ( ) bu�er. The data is then moved into the

( 2) � ( 2) array, , and the border of -9's is added. Unlike the

original Fortran-77 version, our C implementation can analyze rectangular ( =

) as well as square maps.

Whereas the original Fortran version of cluster identi�cation emulated recursion,

two di�erent versions of the functions, D and L , were written in

C: a true recursive version and an improved nonrecursive version. For all versions,

traversal of the 2-D grid begins in D. When a -1 is located (beginning of

cluster), L , which is called by D, is used to label the cluster and

determine its size. After L completes cluster labeling, D continues

its traversal of the grid until the beginning of another cluster is located, at which time

L is called again. This process continues until all pixels have been traversed

and all clusters have been identi�ed.

The original Fortran-77 and recursive/nonrecursive C versions of cluster identi-



�cation all di�er in the function L . In the original Fortran-77 version,

L performed cluster labeling by determining if the NEWS neighbors of a

pixel were also members of the cluster. If so, the coordinates of the pixel(s) were

added to arrays of coordinates. The coordinate arrays are treated as queues in that

all array members will have neighbors checked in turn. If these neighbors are

cluster members, their coordinates are also added to the queue. The coordinate ar-

rays (queues) are processed in order so that the current pixel coordinates are always

in the �rst position of the array, . After is processed, 1

must move into . As a result, the whole array was moved up one position.

For example, after each pixel is processed in the array was maneuvered as

follows



1

The shifting of elements in the coordinate arrays continues until the arrays are

empty. Also, the original implementation of L , although quite modular,

requires several function calls within its loops. The nonrecursive C version, on the

other hand, in-lines

1

these smaller functions, and instead of using two coordinate

arrays (queues), only one array of pointers representing the addresses of pixels is

needed. In order to avoid direct manipulation of the array of pixel addresses, a pointer

is used to move down through the queue of addresses to mark the current pixel to be

processed. In the recursive C version, L is truly recursive. Starting with the

south neighbor, if this neighbor is a member of the cluster, L increments

the cluster size count by 1, labels the pixel, and calls itself, passing the address of the

south neighbor to be the current pixel to be processed. The south neighbor of this

pixel is now checked, and if the pixel does not have any neighboring member pixels,

L returns, popping the stack so that the previous pixel is ready to have the

east neighbor checked. This continues until all possible neighbors have been checked.

Table 2.1 lists six di�erent cluster identi�cation algorithms that were compared.

With regard to performance (see Section 3.2), there is no signi�cant di�erence between

the best Fortran-77 and nonrecursive C algorithm, R 1 2 and C N N 1 2, and the

recursive C algorithm, C REC. Since the recursive C version is more compact, we

select this version for our map analysis program. Prologues to selected functions are

provided in Appendix D.

a e .1: Si c uster i enti cation a gorit ms imp emente .

rogram ame
unction

e origina ortran-77 program

ortran-77 program it Mo i cation 1

ortran-77 program it Mo i cation 1 Mo i cation

C version o 1

C version o 1

ecursive C program

o i cation 1 in-lining small, fre uentl calle functions

o i cation 2 elimination of unnecessar arra mani ulation

1

e co e of a function is inclu e irectl in t e current rogram stream.



. r ll l l

All parallel models in this study were implemented on a Thinking Machine Corpora-

tion CM-5 having 32 processing nodes (PNs) interconnected via a con�gura-

tion ( Hwan93 ). For space-sharing purposes, the PNs can be grouped into partitions

with each partition under the control of a control processor (CP). On the CM-5 used

in this study, the 32 PNs make up one partition under the control of one CP or

partition manager ( TMC92c ). Each node is a 32 MHz Sun Sparc 2 processor with

the addition of 4 vector units (VUs) positioned between the memory bank and the

system bus (see Figure 2.1) ( TMC92d ). Each VU acts as the memory controller for

8 megabytes of memory which yields 32 megabytes of total memory per node, and

each VU contains 128 single-precision (4-byte) registers that can be aligned to form

vector registers of varying lengths and precision (e.g. eight 64-bit registers or sixteen

32-bit registers).

Network

Interface

Control  Network Data Network

64-bit bus

SUN

SPARC
processor

Unit
Vector

8 Mbytes

MemoryMemory

8 Mbytes

Vector
UnitUnit

Vector

8 Mbytes

MemoryMemory

8 Mbytes

Vector
Unit

64-bit paths

igure .1: CM- processor no e it vector units.

The CM-5 o�ers both and parallel programming models. All par-

allel programs developed in this study are and use message passing functions

de�ned in the message passing library, . Two di�erent models for message-



passing programs are available: host/node and hostless. The host/node model in-

volves a host program that is separate from the node program. The host program,

whose main role is normally I/O based, runs on the host node or control processor

for that partition. Although the hostless model requires only node programs from

the programmer, a host program (provided by the CMMD library) is still executed

on the CP in order to act as an I/O interface for the nodes.

In this study, all programs are written in C with calls to CMMD message-passing

routines. Both programming models, host/node and hostless, are implemented with

the vector units exploited in the host/node model.

2.2.1 Host/Node Models

Several approaches to map analysis have been employed using the host/node model.

In all cases, the same basic algorithm is used: the two programs continuously in-

teract so that the node processors (PN's) always report to the host processor when

they become idle. If there is still work to be done, the host processor will assign

all reporting node processors more work. The nodes send their results back to the

host processor, and receive their next assignment. This continues (without any global

synchronization) until all work has been assigned. There is no interprocessor commu-

nication. Since sequential cluster identi�cation (on a single node) has been observed

to be very fast (requiring a very small percentage of the total map analysis time), no

parallelization of cluster identi�cation was implemented in these models. Hence, the

focus of parallelization was computation of the geometrically weighted radius, with

I/O and cluster identi�cation done sequentially on the host processor.

Two di�erent methods of parallelization have been implemented within a single

strategy that can employ either method.

( :) The �rst parallelized version is in that all 32 processors of the

CM-5 work together to resolve R

2

s

for a single cluster. The host processor must �rst

build the x- and y-coordinate arrays of the relevant cluster and then broadcasts these

arrays to all nodes. The host processor then assigns to a node processor one pixel of

the cluster, and the node must determine the x- and y-coordinate di�erences of this

pixel compared against all other pixels positioned below it in the array. The node

processor squares all di�erences, adds them together, and sends the results back to

the host processor. The host then assigns this node the next pixel to be resolved. The

host continuously accumulates and sums partial � values (1.2) for a cluster during

this process. After all pixels have been assigned, the host calculates the �nal R

2

s

for

that cluster. This process is then repeated for all clusters containing more than one

pixel.

( :) The second parallelized version is in that each node processor

resolves R

2

s

of an entire cluster by itself. The host processor broadcasts the map to all

nodes. The nodes report to the host to get their cluster assignment, build the x- and y-



coordinate arrays for that cluster, and calculate its R

2

s

. The node processors will then

send the radius calculations back to the host which stores all radius calculations in an

array. If there are more clusters to be resolved, the host sends the work to reporting

node processors. This process is then repeated until all cluster radius computations

are completed.

While both versions show good speed improvements for random maps, the coarse-

grained method performs better for maps with many small clusters (i.e., p = 0:1 and

p = 0:3). The �ne-grained method, on the other hand, performs poorly on these

particular maps. However, once there is a large dominating cluster, as is the case

with maps having p = 0:62, the performance trends of the two methods reverse. The

coarse-grained method in this case is comparable in execution time to the sequential

C implementation on the Sun Sparc 2 workstation (see Section 3.3.1).

In order to take advantage of the optimal performance for each method of paral-

lelization which will adequately handle di�erent map and cluster characteristics, we

have developed a hybrid method which can invoke either strategy depending on avail-

able cluster information. After cluster identi�cation, the array containing the sizes of

all clusters is partitioned according to a speci�ed threshold value . All clusters with

size , where , are resolved by the coarse-grain method, and all clusters with

size , where are resolved by the �ne-grain method. For 200 1000, either

method works well, so is set at the average cluster size within this range.

2.2.2 Hostless Models

The hostless methods of parallelization were inuenced by the cluster identi�cation

algorithms of Tamayo FlTa92 for quantum physics applications on the CM-5. The

�rst part of our parallel map analysis, cluster identi�cation, is similar to Tamayo's

algorithm with some major di�erences.

For cluster identi�cation, Tamayo divides the 2-D grid into equal sub-grids across

a 2-D grid of processors. For example, a CM-5 with 32 processor nodes (PN's) would

be used as a 4 � 8 processor grid. Therefore, if a 64 � 64 grid is distributed across

the 32 PN's, each PN would get a sub-grid of size 16 � 8. Any local cluster labeling

method can be used within the sub-grids prior to global cluster labeling across nodes

through a series of FlTa92 .

In this study, the 32 PN's are utilized as a linear array rather than a grid (see

Figure 2.2). Hence, the map is divided into 32 equal cross-sections such that PN 0

gets the top sub-grid whose dimensions are ( 32)� . PN 1 would get the

next subsection of the map, and so on until the bottom section of the grid is assigned

to PN 31.

The data structure used to represent the sub-grids on each node is an array of

, where each struct represents a pixel in the grid. The structs contain infor-

mation as shown in Figure 2.3.
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Tamayo, on the other hand, uses arrays of integers to represent and store values

of the sub-grid as well as some of the information listed in the struct above. The

nodes obtain their data from the data�le (in order of their PN address). Using the

I/O function,

CMMD (CMMD sync seq),

which enables the nodes to get the same amount of data sequentially, PN 0 would get

the �rst set of data, PN 1 the next, and so on.

In the Tamayo algorithm, any local cluster labeling method may be used within

the sub-grids. The recursive cluster identi�cation algorithm described in Section 2.1

can be used here with slight modi�cation. Whenever a pixel is labeled as part of

a cluster, its pointer, , is set to point to the (the �rst occurrence of

a pixel containing that label as the grid is traversed in row-major order). All label

values for each node start at an o�set related to the node address so there are no

duplications of local cluster labels (see Figure 2.4(a)).

Next, the clusters must be re-labeled across the PN's to account for clusters that

cross borders of sub-grids. Tamayo performs this re-labeling in in

which one cycle involves the following tasks:

1. Every node, except the last, loads an array of length with the head pixel

labels pointed to by the pixels in the bottom row of its sub-grid.

2. Loaded arrays are sent to the neighboring southern PN.

3. The receiving PN's (1-31) compare values of the array to the top row of their

sub-grid and identify clusters traversing sub-grid boundaries. A nonzero value in
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corresponding positions in the array and the top row signi�es a cluster crossing

PN boundaries. If the value in the array is smaller than its bordering pixel, then

the head pixel's label pointed to by the bordering pixel is given that smaller

value.

4. PN's (1-31) allocate an array of values containing the head pixel labels pointed

to by the pixels in their top row. These arrays are then sent to their northern

neighbor.

5. The northern neighbor PN's (0-30) receive the arrays and compare the values

to the head pixel values pointed to by the pixels in their bottom row. If the

incoming array values are smaller than the head pixels' values of relevant pixels,

the values of the head pixels are changed to the smaller values.

We note that the Tamayo algorithm FlTa92 allows for toroidal wrap, so all PN's

participate in every step of the relaxation cycle. In our implementation, PN 0 does

not communicate with PN 31, as the top and bottom of the map do not form shared

borders. Thus, any communication sent to the southern PN cannot be initiated by

PN 31, and any communication sent to the northern PN cannot be initiated by PN

0.

This cycle continues until no more changes are recorded. At this point, all head

pixels contain the appropriate cluster labels for their clusters. The other pixels of

the clusters must be re-labeled to reect their appropriate labels. To accomplish this,

each PN traverses its grid sequentially and changes all pixel labels to match those of

the head pixel to which they point (see Figure 2.4(b)).

With all pixels properly labeled, global cluster sizes must be determined. This

is done both locally and globally. Locally, there can be more than one cluster in a

sub-grid with the same label but di�erent head pixels and cluster sizes (see Figure
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2.4(b)). To gather similar clusters within a sub-grid, the PN's must traverse their

sub-grids sequentially and locate all clusters with matching labels. When found, the

cluster sizes are added to the total size for that cluster, and the head pixel pointers

are reset to point to the unique head-pixel (see Figure 2.5).
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Globally, clusters with similar labels across PNs must be located in order to deter-

mine cluster sizes. A PN is considered to a cluster if the value of the cluster's label

originated on that PN (again label values are o�sets related to the PN addresses).

Since all PN's can easily determine if a cluster belongs to them, each PN sequentially

traverses its grid checking cluster ownership. If a cluster is found that is not owned

by that PN, the PN loads a bu�er containing the cluster label and local cluster size.

This bu�er is sent to the owner PN for that cluster using the asynchronous message



passing function,

CMMD (destination, tag, bu�er, bu�er desc).

Since each PN can possibly clusters they must also be available to receive mes-

sages from other nodes. Upon receipt of a message, the PN adds the incoming cluster

size to the relevant accumulating total cluster size and records it in an array of cluster

sizes. After global gathering, all PN's will have an array of values that represent the

sizes of clusters that originate in their sub-grid (see Figure 2.5).

At this point, cluster identi�cation is complete and cluster geometry, R

2

s

, must be

calculated for each cluster. This is performed in two steps: ( .) local calculation of

� de�ned in (1.2), and ( .) calculation and storage of the �nal mean squared radius,

R

2

s

, in an array by the PN that owns the cluster.

Two di�erent methods of calculating � are implemented according to the type

of message passing used: synchronous and asynchronous. The �rst version which

uses synchronous message passing allows for each PN, one at a time, to determine

which clusters it owns and to have all other nodes look to see if they share these

clusters. If shared, they determine their local � for that cluster. An illustrative

pseudo-code for computing � in this manner is shown in Figure 2.6. The second

igure . : seu o-co e or ca cu ations using s nc ronous message passing.

method for calculating � utilizes asynchronous message passing. In this case, each



PN independently traverses its sub-grid looking for head-pixels of clusters. When

found, the PN determines if the cluster is non-local (it does not originate on that

node). If it is non-local, the PN loads the x- and y-coordinate arrays, sends them

asynchronously to the PNs that contain these clusters, and calculates and stores the

local � value. If the clusters are local (originate on that node and do not cross borders)

to the node, no communication with other PNs is necessary, and � is calculated and

stored. Upon receipt of the x- and y-coordinates, a PN must determine the local �

comparing those coordinates to its own. A sample algorithm for computing � with

asynchronous message passing is provided in Figure 2.7.

igure .7: seu o-co e or ca cu ations using as nc ronous message passing.

At this point, all pixels of similar clusters have been compared whether through

synchronous or asynchronous message passing. However, partial � sums are scattered

across the PN's and must be gathered to calculate the �nal R

2

s

value for each cluster.

This comprises the second step of cluster geometry, and is accomplished by a syn-

chronous method similar to that of calculating partial � values. However, reduction



functions are needed in order to sum across nodes, such as

CMMD (value,CMMD combiner dadd).

For example, at some point each PN will broadcast the labels of clusters it owns to

all other PNs. All other nodes look for that cluster and set the value to be reduced

equal to their local � value, or to 0 if it is not located on that sub-grid. The reduction

function is used to add these values globally, and the broadcasting PN uses the sum

to calculate the �nal R

2

s

for that cluster which it subsequently stores.

Finally, each node determines its largest cluster and largest cluster R

2

s

. The largest

cluster and R

2

s

of the whole map are then determined using the global reduction

functions,

CMMD (value, CMMD combiner max)

and

CMMD (value, CMMD combiner dmax),

respectively, to return the maximum values across PN's. The average cluster size is

also calculated by dividing the total number of pixels labeled by the total number of

clusters.

. i i r i

The CM-5 architecture embodies another level of parallelization which can further en-

hance the machine's performance. Each PN contains four vector units (VUs) which

collectively form a small SIMD machine with four nodes (see Section 2.2). Access-

ing the vector units using the current CMMD message-passing routines

2

is di�cult.

Our approach has been to write routines using both assembler and ,

a pseudo-assembly language for generating vector instructions. All code is

compiled with the assembler which preprocesses the code into

assembly code which is then run through the ( ) assembler TMC92d . A

sample DPEAC kernel is provided in Appendix E.

To exploit this lower level of parallelization, the VUs are used to compare the x-

and y-coordinate arrays for each cluster (see Section 1.2.2). Before employing the

VUs, we list three constraints that should be satis�ed:

( .) The x- and y-coordinates of each pixel must be compared to those of every

other pixel in the same cluster,

( .) pixel coordinates should not be compared to themselves, and

( .) once the coordinates of a pixel have been compared, it is not necessary to

compare them again. For example, if pixel 1 coordinates have been compared to those

2

e current ersion is 2. . e ne t release, 3. , will allow t e user to access t e ector units

t roug t e use of ortran on t e in i i ual no es.



of pixel 2, it is not necessary for pixel 2 coordinates to be compared to those of pixel

1.

This results in two basic scenarios for comparing vectors of array elements. The

�rst scenario involves comparisons of similar subsets of pixel coordinates. Figure 2.8
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igure . : Comparing simi ar arra s o pi e coor inates. ac o t e su sets can represent one

or more arra e ements.

illustrates the rotations and comparisons necessary to compare identical arrays A and

B. The 4 subsets (1 4) of array element(s) can represent one or many elements. If

an individual element is represented by each subset, then the �rst comparison shown

is unnecessary. However, if the subsets represent more than one element, the initial

comparison is needed so that the di�erent elements of each subset are compared. In

either case, three comparisons are made for the 4 subsets. In general, =

s

2,

where and

s

are the number of rotations and subsets, respectively. For the last

rotation, we set � = � 2 to compensate for duplicate comparisons, as subset 1 is

being compared to subset 3 twice and the same is true for subsets 2 and 4.

The second scenario involves comparisons of di�erent vector subsets of pixel co-

ordinates. Again, the subsets (1 4) shown in Figure 2.9 can represent one or more

elements. In either case, 4 comparisons and 3 rotations are necessary for 4 di�er-



ent subsets in order for all elements to be compared. Here, we have =

s

and

= � 1, where is the number of comparisons.
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one or more arra e ements.

There are several di�erent levels at which these arrays may be partitioned and com-

pared: from the original vector of pixel coordinates down to the sets of the individual

coordinates in the vector registers. At each level, whether comparing subsets or the

individual pixel coordinates, scenarios 1 and 2 are relevant. Occassionally, in order

to prevent extra array manipulation outside of the DPEAC kernels, some comparisons

between similar pixels and duplicate comparisons between di�erent pixels are made.

However, in most of these cases, extra instruction cycles are not required, and the

extraneous results are predictable and can be removed with one or two instructions.



2.3.1 Implementation of the VUs

The original x-coordinates array, , is created and loaded in the C code

3

. The

array is copied twice into temporary arrays, 1 and 2. When the

DPEAC kernels are called, addresses of parameters, such as 1 and 2, are stored

in registers, and subsections of these arrays must be moved into each VU's

memory space, referred to as the . Using this stack, array elements are

loaded into vector registers. Vector instructions can then be executed simultaneously

on all or any combination of the four VUs.

Since there are four VUs or datapaths (dps), both arrays, 1 and 2, are

subdivided into 4 equal parts for each dp (see Figure 2.10). Speci�cally, dp0 will

tmpx2

tmpx1 A B C D

A B C D

dp0 dp1 dp2 dp3

igure .1 : Division o vectors across atapat s.

handle all comparisons for section A, dp1 for section B, and so on. When all com-

parisons have been made using the DPEAC kernels, sections of 2 are rotated one

partition in the C code. Each dp will then have a new subset of pixel coordinates

on the subsequent call to the DPEAC kernel (see Figure 2.11). This process continues

until all coordinate subsets, A thru D, have been compared against each other.

After comparing similar subsets, the array, 2, must be rotated and compared

only twice, and only half of the last rotation is included as described in scenario 1 in

the previous section.

The next layer of dividing/comparing subsets of pixel coordinates is performed

on each dp. Each dp is assigned a subset of 1 and 2 where all elements of

these subsets must be compared. Three di�erent DPEAC kernels have been written to

make these comparisons: RAD1 RAD2, and RAD3 (see Figures 2.12 2.14). The DPEAC

routine RAD1 (see Appendix E) determines � when comparing similar coordinate sub-

sets (scenario 1, see Figure 2.12), and RAD2 determines � for di�erent vector segments

(scenario 2, see Figure 2.13). The RAD3 routine used to compare two coordinate

ll met o s escri e for t e -coor inates arra , , also a l for t e -coor inates arra , .
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subsets of di�erent sizes and elements is shown in Figure 2.14.
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In all cases, each dp gets one-fourth of the original vector passed to the DPEAC kernel

(see LEVEL 1 in Figures 2.12 2.14). Here, the vector registers contain 8 double

precision elements. Therefore, the number of segments of 8, E , contained in each

subarray must be calculated to determine how many times the vector registers must

be loaded and compared (see LEVEL 2 in Figures 2.12 2.14). After the registers

have been �lled, each element of the registers must be compared to the others. These

comparisons are made by rotating the elements of the vector registers following the

de�ned rules and scenarios discussed earlier (see Level 3 in Figures 2.12 2.14). When

comparing similar vectors in RAD1, there is one comparison of similar pixels plus one

duplicate comparison. The extraneous results are predictable and are easily removed

with one subtract and one divide instruction. These two DPEAC instructions are less

costly than the extra array manipulations needed in the C code to avoid the extra

comparisons. If these extra comparisons were eliminated from the DPEAC kernels, the

program would have to return from the DPEAC functions, manipulate the arrays in the

C code (which can get time-consuming for large arrays), and call the DPEAC routines

again and accrue the overhead of reloading the .

2.3.2 Implementation of the DPEAC ernels

The DPEAC kernels, RAD1 RAD2, and RAD3, have been implemented with the hybrid

host/node model. Wherever RAD1 and RAD2 are both used in the coarse-grained

portion, all three kernels are used in the �ne-grained portion. The coarse-grained

portion allows each PN to resolve R

2

s

for a cluster (see Section 2.2.1). Thus, after

�nding its assigned cluster in the grid, the node �lls the x- and y-coordinate arrays

prior to using the vector units to resolve � .

The �ne-grained portion, on the other hand, only assigns one pixel to each PN

to resolve part of � (see Section 2.2.1). Using the VUs is this case is not e�cient,

because there is not enough work performed on a node to warrant the overhead of the

VUs. As a result, the �ne-grained method has been modi�ed to allow more e�cient

vectorization. To allow more work per node without the need of communication with

the host, each PN is assigned a subset of the original x- and y-coordinate arrays that

is relative to its PN address. Each PN is responsible for comparing the elements in

that array subset to themselves and to all remaining elements in the original array.

For instance, say the coordinate array has elements, and PN 0 gets a subset that

includes elements 1 thru 10. PN 0 must compare elements 1 thru 10 to elements 1

thru . If PN 1 has a subset which includes elements 11 thru 20, it must compare 11

thru 20 to elements 11 thru . In this case, DPEAC kernels RAD1 and RAD2, are used to

compare the PN subset to itself (section A, in Figure 2.15), and DPEAC kernel, RAD3,

is used to compare the PN subset to the remaining elements (section B, in Figure

2.15).

With this new division of labor, the only communications necessary are the original
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broadcast from the host to the nodes of the x- and y-coordinate arrays and a reduction

of R
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back to the host when all nodes are �nished with their segments. The reduce

function,

CMMD (r2,CMMD combiner dadd)

adds all results to get � , and the host determines the �nal R

2

s

.

In both methods, coarse- and �ne-grained, the arrays sent to the DPEAC

kernels are �lled with the number of elements (equal to a multiple of 32) closest to

the original coordinate array length, . Hence, the length of , , is given by,

= 32 � 32 .

This allows the 8-element registers on the 4 dps to remain full. Any of

the leftover elements from the coordinate arrays (ranging from 0 thru 31 elements)

are resolved sequentially in the C code.

. l i i r i l

Since the coordinate arrays are divided among the PNs in the �ne-grained method

that exploits the VUs, it is important to divide the arrays so that each PN gets

an equal amount of work. As described in the previous section, the position of the

subset of the coordinate array assigned to a PN is relative to the PNs address, and

that subset will be compared only to the array elements whose array positions are

equal to or greater than those in the subset (see Figure 2.15). As a result, the subset of

elements that PN 31 must compare its subset against is much smaller than the other

PNs, while PN 0 will compare against the largest subset. It is important, therefore,

to divide the subsets across the PNs so that the lower numbered PNs get smaller

subsets than the higher numbered PNs, allowing each PN to make equal numbers of



comparisons. In order to ensure such a division of work, a gradient-like segmentation

is required (see Figure 2.16).

PN 0 PN 31PN 1 PN 2 PN 3 PN 4

igure .1 : Segmentation o or or oa - a ancing.

Three di�erent methods for load-balancing were implemented. The �rst attempt,

UNBAL, was a quick and easy method which did not balance the work very accurately,

but was still better than merely dividing the coordinate arrays equally across the

PNs. In the UNBAL algorithm, the coordinate array is halved, and the �rst half is

divided equally across the �rst 20 PNs (0 19). The second half is divided equally

across the last 12 PNs (20 31). For example, the subset lengths, , for PNs 0 19

given a vector size of are de�ned by

=

2

20

=

40

; (2.1)

and subset lengths, , for PNs 20 31 are given by

=

2

12

=

24

: (2.2)

All leftover elements are assigned to PN 31. Therefore, 20 nodes have subset sizes =

, and 11 nodes have subset sizes = where . One node, PN 31, gets a subset

size, m, where m , depending on the number of leftover elements it receives.

All parallel models with the implementation of the VUs in the �ne-grained portion

use UNBAL, and the initial performance results are excellent (see Results, Section 3.4),

but to ensure a more balanced work load, two additional load balancing algorithms

(BAL and BAL32) were also developed.

In balancing the work across the PNs, we refer to work as total number of compar-

isons necessary. The actual subset size of the arrays that each PN obtains is based on

the number of comparisons per node. The number of total comparisons, , needed

for vector of length (see Figure 2.17) is

=

( � 1)

2

;

and the number of comparisons per node, , is de�ned by

= ; (2.3)
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where is the number of PNs.

Referrng to Figure 2.17, can also be de�ned in terms of the subset size for

the -th PN, so that is equal to the number of comparisons between sections

and itself,

1

, plus the number of comparisons between sections and ,

2

. Hence,

we have

=

1 2

; (2.4)

where

1

=

( � 1)

2

; and

2

= ( � ) :

From (2.3) and (2.4), it follows that

( � 1)

2

( � ) = :

It is easy to show that the subset size for the -th PN satis�es

2

� = 0; where =

2( �

1

)� 1; 0 � 1; (2:5)

2 � 1; = 0;

= 2 ; 0 � 1

and

= �

1

; = � 1:

For 0 � 1, we solve (2.5) and choose to be the smaller of the two

solutions (if they are real). For complex solutions to (2.5), we set = 2.



For BAL, the �rst 28 PNs use while the last 4 PNs round their to the

nearest integer resulting in a balanced work load across the processors. However,

the performance results for BAL are not competitive with those obtained with UNBAL.

These results are due to the amount of strip-mining that takes place per node (i.e.,

only subset sizes that are multiples of 32 are processed via the VUs). Since the leftover

elements are resolved sequentially, the cost of strip-mining increases, especially for the

lower numbered PNs which will have more comparisons to process sequentially.

In an attempt to eliminate the strip-mining problem in BAL, with BAL32 we allowed

each PN (except PN 31) to have a subset of pixel coordinates that is a multiple of

32. In other words, the �rst 12 PNs are given 32 � 32 coordinate pairs while

the last 20 PNs are assigned 32 � 32 coordinate pairs with any remainder pairs

of coordinates given to PN 31. When compared to BAL, the performance of BAL32 is

much better, but it was still not comparable to UNBAL. Even though strip-mining was

eliminated for the subset of coordinates assigned to each PN (section A, Figure 2.15),

strip-mining is still necessary for section B. Thus, the relationship of subset sizes

and strip-mining a�ects the performance of the load balancing algorithms. There

are vector lengths for which UNBAL performs worse than the other two algorithms,

however, UNBAL achieves the best performance overall (see Table B.1).

. r l

After adding the VUs to the host/node hybrid program, HN HY VU, R

2

s

can now be

determined by a coarse-grained and/or �ne-grained method, and either method can

be used with or without the VUs (see owchart in Appendix C). Therefore, there are

four di�erent contexts in which HN HY VU can be implemented: coarse-grained (with

or without VUs) or �ne-grained (with or without VUs). We consider 3 thresholds

(see Figure 2.18) to determine which context is appropriate for a particular vector of

pixel coordinates.

Fine-grained  portionCoarse-grained  portion

NO   VUs VUs VUsNO   VUs

threshold  1

threshold  3threshold  2

igure .1 : ree t res o s in program.

The setting for threshold 1 (coarse-grained or �ne-grained) is determined dynam-



ically at runtime as described in Section 2.2.1. Threshold 2 (with or without VUs

for the coarse-grained portion) was determined by comparing the performance of the

coarse-grained method with and without the VUs in order to �nd the minimal vec-

tor length which warrants use of the VUs. Figure 2.19 shows that even with the

e�ects of strip-mining (sequentially resolving leftover elements) the cross-over point

is at vector length 64. Therefore, threshold 2 is set at 64 which corresponds to 2016

pixel coorinate comparisons. Threshold 3 (with or without VUs for the �ne-grained

portion) is set at 32, which is the minimum vector size that can be processed with

the DPEAC kernels. Though this vector length would seem to allow for too few com-

parisons ( 2016), all PNs, except PN 31, will be comparing their subset of

pixel coordinates to a larger subset, surpassing the minimum number of comparisons

needed.

32 64 96

vector length
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igure .19: s vs. se uentia time s o ing e ects o strip-mining.
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For the sequential cluster identi�cation algorithms, the di�erences in performance are

negligible. The recursive code is more compact than the nonrecursive and for that

reason is more desirable. However, when working with extremely large maps, the

largest cluster can be large enough so that the recursive algorithm may exhaust all

available stack space. To conserve memory when resolving large maps, modifying the

original L algorithm which manipulates the coordinate arrays, to always



process the pixel in position (see Section 2.1) may be more suitable (but

much slower).

The host/node parallel programs are perhaps the most versatile of the parallel

models. They are the easiest to implement, and are portable to other MIMD ma-

chines (e.g., Intel Hypercube). These models can resolve maps of various sizes and

sustain a consistent performance rate across all map types. The host/node hybrid

model employs dynamic load-balancing and exploits vectorization on the PNs. A

disadvantage of these models is the amount of memory required for very large maps.

The host node must keep a copy of the entire map in its memory space, and when

resolving clusters in a coarse-grained fashion, the map is broadcasted to all nodes.

The hostless models, on the other hand, are more suitable when processing larger

maps under memory limitations. Here, the map is sub-divided across all PNs, and

hence, no PN contains the complete grid in its memory space. However, for the maps

used in this study, these particular models were not competitive (less portable and

inconsistent performance across map types). Also, load balancing the hostless models

is a di�cult problem in that the work-load is data-dependent and not dynamic.

Exploiting the vector units can be di�cult when using CMMD message-passing.

However, an investment in the design and implementation of DPEAC kernels have

yielded excellent speed improvements over sequential implementations.



es lts

In this chapter, we discuss our methodology for program implementations and perfor-

mance evaluation. This methodology includes representations of programs with and

without VUs, data representation and I/O, program execution, program timing, and

speed improvement calculations. The results were collected for sequential algorithms,

parallel host/node programs, parallel hostless programs, parallel host/node programs

with VUs, load-balancing algorithms, sequential programs on various workstations,

and the parallel host/node hybrid program with VUs (on a real map). Table 3.1

summarizes the various programs implemented in this study and their functions.

.1 l

Before discussing speci�c results, we review some details of our program implemen-

tations and how timing information was collected.

All performance measures for parallel models without VUs (HN C HN , and

HN HY) were gathered using integers for most of the R

2

s

computations. However, since

the memory alignment in the VUs are 64-bits, all R

2

s

variables were promoted to dou-

bles to use the VUs more e�ciently. Also, all performance measures on models with

VUs (HN C VU HN VU, and HN HY VU) were collected from runs of HN HY VU. The

three thresholds discussed in Section 2.5 for context switching in HN HY VU between

HN C VU and HN VU are shown in Table 3.2.

All data �les containing the 2-D grids to be analyzed are converted from

format to binary before implementation. Sequential and host/node parallel models

read the data �le in using the low level function . In hostless models, the PNs

retrieve their own sub-grid of data from the data �le via

CMMD (CMMD sync seq)

followed by a call to the intrinsic C functions and . In all programs, cluster

information and timings are written to .

3
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Elapsed CPU time for sequential cluster identi�cation algorithms was obtained us-

ing the function . Elapsed wall-clock time for host/node models and the se-

quential map analysis program, C MAP, was obtained using the function .

For the hostless models, elapsed time was represented by the node busy time obtained

via the node timers. Although such times are not exactly wall-clock time, they are

comparable to the times gathered by the system command . In fact, we observed

discrepancies in these timers of only 4-6 for the larger maps.

Speed improvements, , were determined by

=

where

s

= sequential time and = parallel time. All sequential timings were

obtained on the front-end of the CM-5, a Sun Sparc 2, unless stated otherwise.

. i l l ri

The elapsed CPU times of six di�erent cluster identi�cation algorithms are included

in Table 3.3: 3 Fortran-77 and 3 C programs. R R represents the original

fortran code, and R 1 and R 1 2 are optimized versions of R R using

Modi�cation 1 and Modi�cations 1 and 2, respectively, discussed in Section 2.1. We

recall that Modi�cation 1 involves function in-lining, while Modi�cation 2 involves

the elimination of unnecessary array manipulations. When comparing times

1

between

R R and R 1 2 on the 768 � 768 map, the modi�cations improve the per-

formance by a factor of 739. C N N 1 and C N N 1 2 are the C analogs of the R 1

and R 1 2 programs. Although the two C programs are somewhat slower but

comparable to their respective Fortran-77 programs for maps having p-values of 0.1

and 0.3, the C programs can be as much as 2 times faster for maps having p-values of

0.62. Finally, C REC, the true recursive version of cluster identi�cation, is the fastest

version for the lower p-values, but is slower than R 1 2 and C N N 1 2 for p =

0.62 due to a rapidly increasing stack size when resolving the large clusters. However,

the time di�erence is negligible when the radius computations are introduced.

1

esol ing t e 1 2 1 2 ma wit . 2 using e auste a few ours of ela se wall-cloc time

efore it was manuall terminate .
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Table 3.4 shows the results for the sequential map analysis program (C MAP) on

the front-end of the CM-5 (Sun Sparc 2). The C MAP program includes both cluster

identi�cation and cluster geometry, and timings were only collected for maps of size

512�512 or smaller. We use these particular results for the speed improvement rates

associated with the parallel models.

a e 3. : ota a -c oc times sec. or se uentia map ana sis on a Sun Sparc .

Se uentia Map Ana sis -

p-va ue

Map Si e
.1 .3 .

.1 .3 .73

1
1. .7 7 . 9

. 1 . 3 .

1
. 1 1 17. 7 3 3 .

. r ll l l

In this section, the performance results for the parallel host/node programs (HN C ,

HN , and HN HY) and the hostless programs (HL YNC and HL A YNC) are compared.

The performance of the host/node hybrid program (HN HY) is also compared to that

of the hostless programs. A complete set of performance results are included in

Appendix A.

3.3.1 Host/Node Methods

In Table 3.5, we list the total wall-clock times for the host/node coarse-grained, �ne-

grained, and hybrid programs, HN C HN , and HN HY, respectively.

a e 3. : ota a -c oc times sec. or para e ost no e mo e s it out s.

C
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For the less dense maps (p = 0.1, 0.3) HN C clearly out performs HN and



obtains speed improvements

2

of 31, for the 512 � 512 map with p = 0.3. HN is in

fact slower than the sequential program, C MAP, for these lower p-values. On the other

hand, once the percolation threshold (see Section 1.3) is crossed, as is the case with

the p = 0.62 maps, HN becomes the better method of parallelization, resulting in

speed improvements as high as 28 for the 512�512 map with p = 0.62. For this same

map, HN C is now as slow as C MAP. The reason for the opposing behavior between

HN C and HN is primarily due to the cluster sizes above and below the percolation

threshold. HN C works well if the cluster sizes, , are relatively small ( 200) which

is the case for p = 0.1 or 0.3. On the other hand, HN is more suitable for the large

dominating clusters ( 1000) found in maps with p = 0.62. Either method works

well for 200 1000.

Finally, the hybrid program (HN HY) which utilizes both the coarse-grained and

�ne-grained methods, can dynamically switch between the two methods so that the

best method is matched with the appropriate cluster sizes. As a result, good speed

improvements have been obtained for all p-values considered. The graphs in Figure

3.1 illustrate the speed improvements

3

for HN C HN , and HN HY when processing

maps with p = 0.3 and 0.62. In Figure 3.1(a), HN C and HN HY show practically

the same speed improvement since they are both resolving cluster geometries using

only the coarse-grained method. HN , on the other hand, virtually shows no speed

improvements. Figure 3.1(b) shows contrasting results for HN and HN C with

HN HY out performing HN due to HN HY's capability of resolving the large cluster(s)

in a �ne-grained manner and the small accompanying clusters in the coarse-grained

manner. Among host/node models, we recommend the hybrid model for analyzing

maps with any particular p-value.

3.3.2 Hostless Methods

Although the synchronous and asynchronous hostless programs (HL YNC and HL A YNC)

showed signi�cant speed improvements over C MAP, they are not consistently better

across all p-values. Table 3.6 shows the times for HL YNC and HL A YNC and Fig-

ure 3.2 compares their speed improvements to that of the host/node hybrid program

(HN HY) for all p-values of the 512 � 512 map .

For the small p-values (0.1 and 0.3) HL A YNC obtains the best performance among

all parallel models. Again, all clusters in these maps are small, and as a result, will

usually be to the PNs sub-grid. Since most clusters do not cross boundaries,

there is very little communication needed between PNs. However, once a large cluster

percolates across the whole map, as in the p = 0.62 map, all PNs must communicate

with each other to resolve the R

2

s

. Since PN 0 will be the of this large cluster,

2

ll s ee im ro ements are in reference to t e se uential rogram, , unless ot erwise state .

esults for ma s wit .1 are similar to t ose wit .3.

similar tren is true for t e ot er ma si es.
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all other PNs must send PN 0 their coordinates and partial � values for that cluster.

With asynchronous message-passing, PN 0 gets too many messages at one time to

process e�ciently. As a result, the performance of HL A YNC for the p = 0.62 maps

drops dramatically.

The synchronous version (HL YNC) shows some speed improvements for low p-

values, but the performance improves for p = 0.62. When the clusters are small, the

cost of synchronization and idle-time tend to dominate some of the PNs as they wait

for the other processors to �nish. For maps with large (e.g., p = 0.62) p-values, large

clusters tend to dominate the map, and such synchronization becomes an asset by

keeping any one node from getting inundated with too many messages at one time.

When comparing the host/node hybrid program (HN HY) to the hostless programs (see

Figure 3.2) HL A YNC shows the best results for p = 0.1 and 0.3. However, HN HY is

more suitable for the denser map, and is generally more consistent across all p-values.
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The host/node hybrid program (HN HY) is perhaps the most exible of all the parallel

models. Since it is very adaptable to di�erent map sizes and map characteristics, we

selected this particular program for incorporating the use of vector units (VUs) on

the CM-5 nodes.

The VU kernels were �rst implemented in the coarse-grained method (HN C ), and

the e�ects are illustrated in Table 3.7. Using the vector units, HN C VU improves the

performance by a factor of 9 for the 512� 512 map with p = 0.62, but no appreciable

gain is obtained for the lower p-value maps. In order for the VUs to be e�ective, the

cluster size must be at least 64 (see Section 2.5). For maps with p = 0.1 or 0.3, all

cluster sizes are smaller than 64, and as a result, all R

2

s

values are resolved without

using the VUs. Although the coarse-grained method with VUs (HN C VU) shows

good speed improvements for maps with p = 0.62, our �ne-grained program, HN ,

is still preferable for the dense map. Speci�cally, HN achieves speed improvements

on the order of 28 for the 512 � 512 map with p = 0.62 (see Figure 3.3).

Table 3.8 illustrates the e�ects of using vector units within the �ne-grained method

(HN VU). As discussed in Section 2.3.2, the �ne-grained algorithm is modi�ed to

accommodate the VUs whereby each PN is allocated a of pixels instead of one

pixel. Consequently, the total cluster size, , must be at least 40 before the �ne-

grained method can be implemented. Otherwise, R

2

s

should be resolved in a coarse-
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grained fashion. This change in the �ne-grained algorithm yields results for maps with

p = 0.1 and 0.3 that can be misleading. The VUs appear to signi�cantly enhance

the performance, however, the cluster sizes are too small ( 40) for implementation

of the �ne-grained method, and are therefore, resolved by the coarse-grained method

which we recall is the preferable method for resolving these smaller clusters. Although

the results appear to be good, a comparison with the coarse-grained method without

VUs (HN C ) reveals nearly identical timings.

a e 3. : ota a -c oc times sec. or ne-graine met o it an it out s.
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It is not until cluster sizes become substantially large that a comparison can be

made between the �ne-grained methods with and without VUs, HN VU and HN ,

respectively. Figure 3.3 shows speed improvements for all coarse-grained (C ) �ne-

grained ( ) and hybrid (HY) programs with and without VUs for the 512� 512 map

with p = 0.62. The �ne-grained model (HN VU) demonstrates speed improvements

of 181 while the coarse-grained program (HN C VU) yields a speed improvement of

only 9. Obviously, the use of VUs to resolve R

2

s

for the large clusters is where the

best performance gains can be made.

Finally, a comparison between implementations of the hybrid program with and

without VUs, HN HY VU and HN HY, respectively, is provided in Table 3.9. As men-

tioned earlier, the VUs are not e�ective for maps with p = 0.1 and 0.3. However,

ot coarse-graine an ne-graine ortions are inclu e in t is mo el.



for maps with p = 0.62, the cluster sizes are large enough to exploit the VUs in

the �ne-grained portion. The performance results in this case are similar to that of

the �ne-grained model with VUs (HN VU). However, the availability of the coarse-

grained method in the hybrid code to resolve small clusters in the dense map allows for

slightly better speed improvements ( = 187) than the �ne-grained code ( = 181)

for the 512 � 512 map with p = 0.62.

a e 3.9: ota a -c oc times sec. or ri met o it an it out s.

p-va ue p-va ue

Map Si e
.1 .3 . .1 .3 .

1. 1. .9 . .9 .

1
. 3. 7. 1. . .

. . 1 1.7 . 1 . 1 .1

1
19.19 . 9 . 7 1 .7 .33 17 . 7

7
7 . 3 . 1 79 .3 9. 1 .1 . 3

1
.97 7 7. 1 99 .3 .17 3.7 .

. l i

As described in Section 2.4, three di�erent load balancing algorithms were developed,

UNBAL BAL, and BAL32which attempt to distribute the amount of work evenly across

all PNs. We note that all programs in this study using the new �ne-grained method

with VUs employed UNBAL. However, the performance could be enhanced if a bet-

ter load balancing algorithm was used. Although BAL and BAL32 provide a more

equitable distribution of comparisons across the PNs (see Figure 3.4), the resulting

performances are, in fact, worse than that of UNBAL (see Table B.1).

This phenomenon is best explained by the strip-mining process that must take

place when subsets of pixels assigned to each PN are not multiples of 32 in size.

The direct relationship between the time spent strip-mining and the Mops /sec

rate for each node for a vector of length 8192 is illustrated in Figures 3.5 and 3.6

for UNBAL and BAL. Figures B.1 and B.2 illustrate the same relationship for BAL32.

For each algorithm considered, whenever strip-mining time increases, the subsequent

Mops/sec rate decreases and vice versa. In order to obtain a more optimal load

balancing algorithm, the strip-mining e�ect would have to be diminished.

illions of oating oint o erations.
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With the development and availability of faster RISC-based workstations, one may

question the need for parallelization. Speci�cally, how much better are the parallel

results compared against that of the fast RISC-base workstations Is the time and

e�ort put into parallelization really necessary To address such questions, the se-

quential map analysis program, C MAP, was also executed on an IBM RS/6000-350

and an Hewlett Packard 9000-750. Table 3.10 lists the speed improvements of the

host/node hybrid code with and without VUs (HN HY VU and HN HY) over C MAP on

the three RISC-based workstations. Speed improvements range from 3.71 to 35.47

without VUs, and from 19.50 to 186.46 with VUs. Hence, the parallel models (HN HY

and HN HY VU) used on the CM-5 signi�cantly out-perform the serial implementa-

tion on RISC-base workstations and thereby suggest that parallelization is certainly

worthwhile.

. l

The use of random maps was helpful for designing exible parallel models that could

e�ectively process maps of varying size and densities. The hybrid program with

VUs (HN HY VU) is one such exible program that is capable of e�ciently resolving a

variety of maps. To test this claim, we then analyzed a map produced through

the process of remote imagery and used in landscape ecology studies. The map shown
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in Figure 3.7 reects a portion of ellowstone National Park used within a �re model,

, developed at Oak Ridge National Laboratory HGTR 92 . This particular

map is 454 � 454 and contains 10 di�erent map classes or habitat types, which are

resolved individually. As illustrated in Table 3.11 a cumulative speed improvement on

the order of 119 is obtained over the sequential program, C MAP. Again, the exibility

and the e�ciency of the parallel program is well-demonstrated as the map classes are

made up of di�erent numbers and sizes of clusters.
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oncl sions

The goal of this thesis was to provide a scalable map analysis tool for landscape ecol-

ogy models that could e�ciently perform cluster identi�cation and cluster geometry

on large maps. To aid in software development, random maps were generated to

represent di�erent map sizes and characteristics that are found in real maps. After

revising the sequential cluster identi�cation algorithm, cluster geometry became the

major focus of parallelization on the CM-5, as it consumes approximately 98 of the

sequential map analysis time. Several di�erent parallel methods were implemented

successfully, including host/node and hostless models. The host/node models were

later modi�ed to exploit the vector units through the use of DPEAC kernels.

The hostless program with limited asynchronous message passing (HL A YNC) showed

the best performance for maps with low p-values: speed improvements of 41 and 55

for a 512 � 512 map with p = 0.1 and 0.3, respectively. The denser maps (p =

0.62) with large dominating cluster(s), were best resolved by the host/node hybrid

programs (HN HY and HN HY VU). Without utilization of the VUs, the HN HY program

obtained a speed improvement of 35 for the 512 � 512 map with p = 0.62. In terms

of elapsed wall-clock time, the sequential program, C MAP, required over 9 hours to

resolve this same map, and the HN HY program required only 15 minutes. With the

addition of the VUs, the HN HY VU code could complete the analysis for this map in

175 seconds, achieving a speed improvement of 187 over C MAP. When compared to

other RISC-based workstations for this same map, the HN HY VU program could be

as much as 95 and 20 times faster than the Hewlett Packard 9000-750 and the IBM

RS/6000-350, respectively.

The e�ciency and exiblity of the host/node hybrid codes were further tested with

a real map of varying cluster numbers and characteristics used in landscape ecology

studies shown in Figure 3.7. Where the sequential map analysis program (C MAP)

required 2.75 hours to complete, the HN HY VU program completed the analysis in

82 seconds and achieved a speed improvement of 119. Also, these particular hybrid

programs could be easily ported to other MIMDmachines such as the IntelHypercube.

9



Future research in map analysis software for landscape ecology involves ( .) the

inclusion of other neighbor rules for cluster de�nition, ( .) the development of more

e�ective VUs modules for low density maps, ( .) better load-balancing algorithms to

e�ectively deal with strip-mining, ( .) addressing the e�ects of strip-mining within

the DPEAC kernels, and ( .) the incorporation of better memorymanagement to enable

e�ective map analysis on larger maps that pose serious memory constraints.

It is our conclusion that our map analysis implementations are quite successful

in meeting the goal of this research. The map analysis software is e�cient, exible,

scalable, and portable. With the future advancements listed above, these programs

should become more scalable and robust, further enhancing the process of analyz-

ing large maps used in landscape models, and more generally, large maps produced

through the use of remote imagery.
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