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Abstract

The development of connectionist models will be promoted by a theoretical con-

struct analogous to the calculus in symbolic models. The simulacrum is proposed

to �ll this role. Whereas calculi implement discrete processes operating on formu-

las, simulacra implement continuous processes operating on abstract images. The

theory of simulacra suggests a novel approach to many issues in cognitive modeling,

including classi�cation, invariants in behavior, constituent structure, intentions and

approximately discrete processes, such as rule-like behavior, symbolic cognition, and

language.

�

An abbreviated version of this report will appear in Arti�cial Intelligence and Neural Networks: Steps

Toward Principled Integration, Volume I: Basic Paradigms; Learning Representational Issues; and Integrated
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There in the ring where name and image meet,

Inspire them with such a longing as will make his thought

Alive like patterns a murmuration of starlings,

Rising in joy over wolds, unwittingly weave.

| . H. Auden (Perhaps, Prologue from n the Island)

1.1 r s

The concept of a calculus is the central theoretical construct underlying all traditional (\sym-

olic") approaches to knowledge representation and processing. y this I mean that the

concept of a calculus captures the essential characteristics of discrete physical sym ol ma-

nipulation in an idealized form suita le for mathematical analysis. To a large extent (digital)

computer science is the theory and practice of using calculi to solve pro lems.

nfortunately, connectionist models of knowledge representation and processing lack a

central, unifying theoretical construct analogous to the calculus. This impedes progress in

two ways. irst, we have no clear idea of the range of possi le connectionist approaches,

so our imagination of possi le representations and processes is restricted. (I think this is

especially evident in connectionist language processing.) econd, without such a theoretical

construct we are una le to prove theorems that apply in principle to all possi le connectionist

systems (e.g., results analogous to the uncomputa ility and undecida ility results for calculi).

The representation of knowledge and inference y calculi is an old idea (it is inherent in

the reek word logos), and so it has een well explored over the centuries. evertheless, a

clear understanding of the capa ilities and limitations of calculi did not emerge efore the

rst half of this century, in the work of �odel, Turing, hurch, �owenheim, kolem, ost and

others. In comparison, theoretical understanding of connectionist knowledge representation

is much less advanced.

urther, we are held ack y the very pervasiveness of the idea of a calculus (strengthened

y familiarity with the digital computer), so that now the ideas of knowledge and calculus

seem insepara le and many researchers think it is inconceiva le that there can e thought

without a language of thought.

1

n the other hand, progress in connectionist theory will e

accelerated y exploiting the duality and analogy etween discrete and continuous systems.

ust as the idea of a calculus took many years to evolve into the de nitive form it took in

the rst half of this century, so we may also expect that the analogous connectionist concept

will re uire re nement; the idea presented here is just a step in that direction. As evidence

that it ful lls the re uired role, I will show how it suggests new connectionist approaches

to language and structured knowledge, and how it exposes theoretical limitations of any

possi le connectionist system.

1

estalt psycholo y is a distinct e ception to the bi ity of discrete models in psycholo y, and con-

nectionism can be e pected to restore some of the viewpoints, if not the speci c theories, of the estalt

psycholo ists.



The theoretical construct proposed here is called a s ula ru , a term which re ects

the central idea of connectionist representation. ust as \calculus," which means \pe le,"

refers y metonymy to an entire system that computes y manipulating such physical tokens,

so analogously \simulacrum," which means \likeness" or \image," refers y metonymy to an

entire system that computes y manipulating physical images (continuous representations).

urther, just as in computer science and formal logic we distinguish etween uninterpreted

and interpreted calculi, the former eing purely \syntactic" (formal) processes whereas the

latter have a speci ed \semantics" (i.e., they are meaningful), so also will I distinguish

uninterpreted and interpreted simulacra.

1. r r r

. .

The goal of the theory of simulacra is to capture the essentials of connectionist knowledge

representation and processing. Therefore we egin with the o servation that connection-

ist representations are fre uently real vectors of high dimension. This o servation is rein-

forced y the relation etween connectionism and neuropsychology, since neural representa-

tions (whether in terms of spike density or graded potential) are predominantly continuous.

Therefore we take continuity | of representation and process | as the essential feature dis-

tinguishing connectionism from traditional approaches to knowledge representation (which

employ discrete representations and processes).

There are many o jections that can e made to this characterization, which can, I hope,

e disposed of uickly. or example, it may e o jected that action potentials are all-

or-nothing events, and therefore essentially discrete, and that even graded potentials are

in fact discrete, since they result from an integral num er of vesicle exocytoses or from

an integral num er of charge carriers (ions etc.). urthermore, connectionist systems are

usually implemented on digital computers, and connectionist researchers sometimes work

with two-state units.

These o jections are all irrelevant, at least in the a sence of additional information.

hat is relevant is the ehavior of a system at the appropriate level of analysis. ince

a (mathematically) discrete system can approximate ar itrarily closely a (mathematically)

continuous system, and conversely a (mathematically) continuous system can approximate

ar itrarily closely a (mathematically) discrete system, we see that, for iological modeling,

the relevant distinction is not mathematical. hat is important is the ehavior | discrete or

continuous | of the system at the relevant level of analysis. This o ple entar t Pr n ple

is o ered as a ra or (like ckham's) for cutting o fruitless de ate ( ac ennan, in press- ,

in press-c, in press-d, in press-e).

The properties of a calculus derive from its topology, rather than from any particular

concrete representation of it (e.g. in terms of its); likewise I expect the properties of a

simulacrum to derive from its topology, rather than from its speci c concrete representation

(e.g. in terms of vectors of reals). Therefore, the theory of simulacra can e expected

Previo sly ( acLennan, in press-a) called sim lacra contin o s symbol systems to stress the analo y

with the familiar discrete symbol systems, b t symbol carries s ch a stron connotation of discreteness,

that the phrase has proved more conf sin than helpf l.



to e primarily topological, and in this sense ualitative rather than uantitative. In this

way it will address the essentials, rather than the details, of continuous representation and

processing.

A or al pro ess is one that depends only on the physical characteristics (e.g., shapes)

and physical relations (e.g., positions) of signs, and not on any meanings that may e asso-

ciated with them; that is, the processes are purely s nta t and independent of se ant s.

ormality is an important characteristic of any theory of cognition, since it permits \cashing

out" meaning in terms of physical phenomena. ust as it is useful in traditional knowledge

representation to consider the properties of uninterpreted calculi, so also it will e useful to

egin y considering uninterpreted simulacra. I will present rie y the asic postulates and

propositions of the theory of simulacra; a more detailed justi cation and discussion can e

found elsewhere ( ac ennan, 1 a, in press-a).

. .

alculi comprise (1) a state spa e of formulas, which is de ned y or at on rules, and ( ) a

state-trans t on pro ess, which is de ned y trans or at on rules (e.g., ac ennan, 1 ,

pp. { ). imulacra likewise comprise a state space and a process. orresponding to the

formulas and tokens of calculi, in simulacra we have ages, which are the representational

vehicles of simulacra, as formulas are of calculi. imulacra di er from calculi in the manner

of de nition of these spaces, since formulas are de ned in terms of their construction from

atomic tokens, whereas images do not have atomic constituents. The de nition of image

spaces will e considered later.

In the context of simulacra, \image" has a precise de nition, which will e given presently.

However, it is helpful to egin with an informal description. The term is intended to include

familiar visual and auditory images, ut in addition to these nstantaneous images (spread

out in space), I also include more a stract spat ote poral images, such as the signal received

y the retina or cochlea over an interval of time. The term also applies to a stract represen-

tations, such as a or or other wavelet-like decompositions. urther, motor and memory

images are included, and, at a more physical level, electrical or chemical distri utions in

smaller or larger regions of the rain. e turn now to a mathematical characterization of

images.

The idea of degrees of similarity is fundamental to any notion of images, and it seems

reasona le to re uire that these degrees e uant a le. athematically, it is usually more

convenient to work in terms of di erence rather than similarity, so we postulate a di erence

measure , holding etween any two images in an image space, with the following properties

( )

( ) ( )

( ) ( ) ( ):

Here we are concerned that the processes be independent of any meanin attrib ted to them by an

o tside observer, so that the processes do not depend on o tside a ents. hat is, an ninterpreted calc l s

or formal system has no attri uted semantics. learly, however, a system intended as a co nitive model m st

have intrinsic semantics, that is, the processes m st have meanin to the co nitive a ent constit ted of

those processes. hether p rely formal systems can have an intrinsic semantics is, of co rse, an important

estion.



In mathematical terms we have a distance etr and so an image space is a etr spa e.

eedless to say, the metric does not have to e the uclidean distance, and in most cases it

will not e. However, we will generally leave the metric (and hence the notion of similarity)

unspeci ed.

A di erence metric can e converted to a similarity metric in a variety of ways. or

example, if ( ) is a di erence metric that can e ar itrarily large, then we can de ne

a similarity metric ( ) 1 (1 ) such that 1 for identical images and as the

images ecome less similar (their di erence approaches in nity). If, as is more common, the

di erences are ounded, , then a similarity metric can e de ned ( ) ( ),

1 , or in many other ways; the choice should e determined y the process to e

modeled y the simulacrum.

The principal characteristic that distinguishes connectionist from \sym olic" knowledge

representation is that images are drawn from a continuum, whereas formulas are discrete.

There are many ways such a continuum can e de ned topologically, ut the de nition

proposed here seems to agree with our intuitions a out continua, namely, that any image

can e continuously transformed into any other in the same space. The fundamental intuition

ehind this is that if it doesn't hold, then we are dealing with two or more discrete image

spaces. In the extreme case where none of the points can e continuously transformed into

any other, we have a completely discrete space, and we are ack to calculi. A continuous

transformation of one image into another is just a continuous function of time that e uals

one image at one time and another image at another time. In mathematical terms, this is

a path, and so we are assuming that an image space is path- onne ted. All the foregoing

characteristics of image spaces are summarized in the rst postulate

ll age spa es are path- onne ted etr spa es.

The second postulate is more technical

ll age spa es are separa le and o plete.

epara ility provides a link to the discrete, since it means there is a counta le set of images

that can e used to approximate, ar itrarily closely, any image in the space. ompleteness

is really the converse property, since it means that if we construct a se uence of increasingly

similar images (i.e., a auchy-convergent se uence), then the limit will exist in the space.

ore precisely, if we construct a se uence of images

1

: : : so that ( ) ,

then there will e a limiting image to which this se uence converges, ( ) .

ne of the reasons that calculi are interesting is that they are, at least potentially,

implementa le y purely mechanical means. In theory we can simulate any program y

hand, though in practice it might exceed the capacities of the largest computer. The reader

hese ass mptions are hardly nproblematic. t is not immediately apparent that all notions of di er-

ence are anti able, and it is certainly estionable whether all meas res of di erence satisfy the trian le

ine ality, ( ) ( ) ( ). Nevertheless, the class of metric spaces is e tremely lar e, and so

the ass mption of a metric seems permissible as a hypothesis, if for no other reason. ee also acLennan

( , in press-a).

n practice, most ima e spaces are (topolo ical) continua, and so compact, which implies that they are

both separable and complete. ompactness is not post lated beca se nbo nded ima e spaces are sometimes

sef l.



might criticize simulacra for eing too a stract and losing all touch with physical realiza ility.

In this regard the following proposition is signi cant

er age spa e s topolog all e u alent ho eo orph to a su set o

a l ert spa e.

That is, there is a homeomorphism | a one-to-one relation that is continuous in oth

directions | etween the image space and the su set of the Hil ert space. Although the

metric of the image space is not preserved y the homeomorphism, it is recovera le from the

elements of the Hil ert space.

This connection with Hil ert spaces is important for a num er of reasons. irst, el-

ements of Hil ert spaces can e represented y (possi ly in nite-dimensional) vectors of

real num ers, so this proposition implies that images can e represented y the vectors

manipulated y neural networks and thus are physically realiza le. econd, Hil ert space

has proved to e a valua le framework in which to study visual and auditory perception,

and it is eginning to show its value for modeling general neurodynamics, especially of

the very-high-dimensional dendritic interactions (e.g., ri ram, 1 1; ac ennan, 1 a,

in press- , in press-c). inally, in a mathematically precise sense, the continuous meets

the discrete in Hil ert space (thanks to the Riesz- ischer theorem the s uare-summa le

se uences are isomorphic and isometric to the s uare-integra le functions); therefore, if we

want to understand the emergence of apparently discrete sym olic processes from continuous

neurodynamics, then Hil ert space is pro a ly the place to start.

. .

In connectionist knowledge representation, most maps etween image spaces are represented

y neural nets that implement continuous functions. urthermore, the continuous relation

etween input and output is one of the reasons neural nets avoid some of the rittleness

characteristic of rule- ased systems; we don't expect an in nitesimal change in the input to

lead to more than an in nitesimal change in the output. Therefore we adopt

aps et een age spa es are ont nuous.

This postulate has a num er of interesting conse uences, which are especially signi cant

for models of cognition. irst, all categories recognized y simulacra are \fuzzy," since all

maps etween image spaces are re uired to e continuous, and therefore there must e a

gradation of responses etween the images that are in a class and those are not. To put

it another way, categories in simulacra are inelucta ly indeterminate, since as we approach

his follows from a theorem of Urysohn, which shows that every metric space with a co ntable base is

homeomorphic to a s bset of the Hilbert space ( ) (Nemytskii tepanov, , p. ). his applies

to ima e spaces beca se, by Post late , they are separable, and so they have a co ntable base. he res lt

is even stron er, since the proof shows that ima e spaces are homeomorphic to s bsets of the space of

f ndamental parallelopipeds.

n fact, beca se the ima e space is homeomorphic to a s bset of the space of f ndamental parallelopipeds

(see previo s footnote), we know that the in nite-dimensional vectors can be appro imated arbitrarily well

by nite-dimensional vectors, th s providin a direct link between physically reali able nite-dimensional

vectors and mathematically simpler in nite-dimensional vectors.



the order of the category, the response to its mem ers must come ar itrarily close to

the response to its nonmem ers. e cannot have a simulacrum that responds one way

to avocados and a completely di erent way to non-avocados; there must e gradation of

response from avocados to non-avocados. In summary

n age- ap annot produ e d st n tl d erent responses to a set and ts

o ple ent.

It might e o jected that this result is psychologically unrealistic, since we apparently

make categorical discriminations all the time from identifying phonemes to deciding whom

to marry. This evidence does not contradict the proposition, since the omplementarity

rinciple tells us that we cannot distinguish a discrete category oundary from an ar itrarily

sharp continuous oundary. urthermore, it can e argued on physical grounds that etween

two de nite responses there must always e a region which is neither ( ecause a connected

space cannot e the union of two asins of attraction; see roposition , elow).

e have seen that simulacra do not permit exact classi cation functions (i.e., functions

that are 1 on the class and outside the class), so we must ask what kinds of categories are

permitted. ortunately, a num er of \separation theorems" from topology ensure us of the

existence of classi cation functions that are useful and realistic, oth psychologically and

physically.

or example, rysohn's emma tells us that for two disjoint, closed sets, and , we

can have a classi cation function that is on and 1 on . However, since a connected

space, such as an image space, cannot e the union of two disjoint, closed sets, there must e

other images in the space other than those in and , and for these continuity re uires the

classi cation function to give values etween and 1, that is, indeterminate classi cations.

Thus the theory of simulacra does not preclude a system that responds one way to de nite

avocados and another to de nite ananas. It simply re uires that things that are neither

de nite avocados nor de nite ananas must elicit a response that grades into that for de nite

avocados on one side and that for de nite ananas on the other.

e are also permitted a classi cation function that is for de nite nonmem ers of the

category and is e ual to 1 for a nite num er of images that are de nite mem ers (exemplars),

ut continuity re uires that some other mem ers have classi cations ar itrarily close to .

or example, we may e uite sure that the Il ad, the d sse , the elungenl ed, etc. are

epic poems (since they e ectively de ne the class), and there are countless things that we

know are not epic poems ( hakespeare's sonnets, me, the moon, etc.), ut there must also

e epics, actual or possi le, that are ar itrarily similar to non-epics, and a out which we are

thus unsure.

. .

Although recurrent neural networks are often implemented y discrete-time simulations, they

are usually treated as approximations of continuous-time gradient systems, and hardware

implementations are often ased on continuous-time relaxation processes. Therefore we

adopt

or al pro esses n s ula ra are ont nuous un t ons o t e and pro ess

state.
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igure 1 asins of attraction are separated sets. The upper �gure shows a connected state space

for a process with two attractors, and . ince the basins of attraction of a continuous process

are open sets, and a connected space cannot be the union of dis oint open sets, there must be a set

of states not in any basin of attraction, such as the line of metastable states shown in the lower

�gure.

This is really a corollary of ostulate if we take the di erential e uations de ning the

process to e a map etween image spaces (a function of the process state and the di erential

of the process state).

ormally we adopt a more general notion of process than that provided y di erential

e uations. A continuous function is called a process over a state space (an

image space) if ( ) and ( ) ( ). Intuitively, ( ) represents the

state of the process time after starting in state .

The continuity of processes implies that their as ns o attra t on are open sets (roughly,

they do not include their oundaries). ince a connected space cannot e the union of two

or more disjoint open sets, we have an important result

I an age-pro ess has ult ple as ns o attra t on, then there are pro ess

states that are not n an as n o attra t on.

This means that any decision procedure implemented y a continuous process must leave

certain pro lems undecided ( ig. 1). (This conclusion holds for any continuous process over

a connected state space, not just for simulacra.)

hat we refer to here are deterministic sim lacra the notion of nondeterministic sim lacra is also sef l

for some p rposes. n these cases e ations or ine alities de ne possible tra ectories in state space.

ppose ( ) , that is, is in the basin of attraction of . hen no matter how closely we wish a

tra ectory to stay to ( ) and no matter for how lon , the contin ity of implies that we can always nd

a nei hborhood of in which all the tra ectories have this property. hat is, points in nitesimally near to

are in the same basin of attraction, which is th s open (Hirsch male, , pp. ).



1. r r r

A calculus can e \interpreted" (assigned a meaning) y systematically associating meanings

with its formulas and rules of derivation. ikewise, a simulacrum is interpreted y system-

atically associating meaning with its images and processes. or oth calculi and simulacra,

the asic re uirement of systematicity is mathematical continuity. or simulacra this is an

intuitive re uirement, since we would expect in nitesimally small changes in an image to e

associated with in nitesimally small changes in its meaning. or calculi the connection with

continuity is less o vious; let it su ce here to o serve that cott has shown how to put a

topology on a space of formulas in such a way that they are partially ordered in accord with

their constituent structure (e.g., cott, 1 1, 1 ).

Interpretat ons o s ula ra are ont nuous.

This postulate has a num er of interesting implications. irst recall that the formation

rules of a calculus de ne a set of ell- or ed or ulas (i.e., syntactically correct formulas),

which is typically a proper su set of the set of all possi le formulas (strings of atomic

sym ols). eaning is attached to only the well-formed formulas; the ill-formed formulas

remain uninterpreted.

The situation is somewhat di erent for simulacra. It is analogous in that normally only

a su set of the images in an image space will e considered \well-formed." However, \well-

formed" and \ill-formed" are categories, and so they must conform to the limitations on

classi cation y simulacra. Thus there must e a continuous variation etween the response

to interpreta le images and the response to uninterpreta le images.

or example, we may have a closed set of de nitely well-formed (interpreta le) images and

a de nite set of ill-formed (uninterpreta le) images, ut etween these must e a nonempty

set of images that approximate the well- and ill-formed images on each side, and are to

that extent more or less interpreta le. ne may think of the \con dence" of interpretation

decreasing from 1 for the well-formed images to for the ill-formed.

tual (versus deal ed) written or spoken language has exactly these properties. A

signal can contain a certain amount of noise and still e interpreted correctly (within the

error-correction capa ilities of the receiver); also some signals are completely uninterpreta le

and must e considered pure noise. However, etween these two extremes are many signals

in which the noise interferes with interpretation, ut doesn't preclude it.

1

To account for the continuity of response from interpreta le images to uninterpreta le

images, we re uire that the interpretation function e total, that is, de ned for all images,

whatever their degree of interpreta ility. Therefore, domains of interpretation for simulacra

must include one or more \unde ned o jects," which represent the response to ill-formed

images ( ig. ).

11

1

or e ample, a di ital code mi ht provide -bit error correction. n this case transmissions with less

than two bits wron will be perfectly interpretable. ransmissions with more than two bits wron may be

detectable as incorrect b t ninterpretable.

11

his is only an apparent di erence from interpretations of calc li, in which only the well-formed form las

are taken to be interpreted. or if the topolo y of the form las is taken into acco nt, then, as cott (e. .,

, ) has shown, it is necessary to ad oin an nde ned ob ect ( , the ottom of a complete lattice)

to the domain of interpretation.
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igure n interpretation must be total and continuous on the image space , so it must

assign a response that varies continuously from de�nitely interpretable images through partially

interpretable images to uninterpretable images . This could be accomplished by ad oining a

special unde�ned ob ect to the domain of interpretation. or clarity the interpretable images

are depicted as a single connected set more likely there are many islands of interpretable

images.

ince the domain of interpretation is a continuous image of an image space, the total

domain of interpretation of a simulacrum must always e a continuum. This does not

preclude there eing a discrete set of full- edged interpretations, these eing in nitesimally

close to partial interpretations. o, from a practical standpoint, discrete interpretations

are indistinguisha le from continuous interpretations. This characterization of the domain

of interpretation has important logical implications (not considered here), ut from the

cognitive standpoint permits the same image may e interpreted or not depending on context

(e.g., the need to nd an interpretation).

ne o vious advantage of traditional, sym olic methods is in descri ing rule-like or regular

ehavior, so we must consider analogous phenomena in continuous computation. These

are est characterized in terms of invariants in the ehavior of a system. The following

description is completely ehavioral, with no discussion of how these invariants come to e

(i.e., learning is not addressed).

1



.1 r r s

. .

A category invariant is manifested y a system when it responds the same to a variety

of stimuli, thus de ning a category or class of stimuli.

1

However, saying that the system

\responds the same" must include the possi ility that the response depends on the individual

stimulus, considered not as an individual ut as a mem er of the category. or example,

if Rover chases cats in his yard, without regard for the individual cat, then we say Rover

is ehaving invariantly with respect to cats in his yard. It is crucial however that the cat

that Rover chases e the one that's in his yard. That is, the response is determined y the

category and the context, ut particularized to the category mem er.

1

ore precisely, the

context determines an action , so if the stimulus is ( ), the context particularized to

category mem er , then the response will e ( ), the categorical response particularized

to that same category mem er. This is just the sort of situation that is descri ed y a

conventional \condition-action rule," ( ) ( ), meaning, \if you see a in context ,

then perform action on that " (e.g., ac ennan, 1 , pp. { ).

1

e can now

put this de nition in mathematical terms.

et e image spaces and let e a proper su -

set of . Then we say a system d spla s ategor eha or th respe t to

e ers o n onte t and or a t on if and only if for all ,

( ( )) ( ). ore concisely , where denotes the restriction of

function to . (As usual, all maps are re uired to e continuous.)

Intuitively, is the stimulus space, the response space, and a category with respect to

a universe of potential category mem ers. The map creates a stimulus y placing an

o ject in a context, and the map is the categorically determined action ( ig. ).

. .

onsider the conse uences of this de nition. irst, as would e expected from the postulates,

the oundaries of categorical ehavior are necessarily fuzzy. That is, ecause and are

oth continuous (and so also the composition ), the system must respond to

nonmem ers just outside the category with actions close to ( ). or example, as noncat

images approximate cat images ar itrarily closely, in Rover's yard, so also will his ehavior

approximate chasing those things. Thus, the rule ( ) ( ) is an incomplete description

of the ehavior of the system, since the rule must e automatically generalized to similar

nonmem ers of .

1

Altho h this de nition and others to follow are phrased in terms of stim l s and response, they are

intended to be more eneral than the stim l s response behavior of a complete or anism. h s they may

refer to the inp t and o tp t of some co nitive fac lty, and so, for e ample, the stim l s co ld be a mental

ima e, or the response some other internal representation.

1

e will see later that the case where the response is not partic lari ed can be handled as a special case

of the eneral form lation.

1

Note, however, that we are dealin with contin o s ima es, not discrete form las. or e ample, the map

, which creates an ima e ( ) from the ima e , may not be simply e pressible as a template.

11
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igure ategory behavior. is an image space of stimuli, is an image space of responses,

and is a space of images of potential category members. The system maps stimuli in into

responses in . The function maps a potential member into a stimulus , and the function

maps a potential member into a response . The functions , and are re uired to be

continuous. The system displays category behavior with respect to members of if for every

member of the response to stimulus is action , thus exhibiting behavior described

by the rule .

iven the inherent indeterminacy or fuzziness in the order of , it is somewhat mislead-

ing to speak of a solute category ehavior. ince continuity re uires that category ehavior

fade gradually as we move out of , it is etter to uantify the degree of invariance and

hence the degree of mem ership in the category. To do this we can measure how much the

actual response ( ( )) di ers from ideal category ehavior ( ). peci cally,

( ) ( ( )) ( ) :

The function ( ) is zero for those images for which the system exhi its perfect category

ehavior, and increases as the ehavior is less characteriza le in terms of a category ehavior

in terms of the rule ( ) ( ). If, as in fuzzy set theory, it is preferred to have a measure

that e uals one for perfect category mem ers and decreases to zero as the responses di er

from category ehavior, then use a similarity rather than a di erence metric

( ) ( ( )) ( ) :

The and functions can e related in any of the ways previously descri ed. ince ( )

uanti es the degree to which ehavior follows the rule ( ) ( ), it can e called the

regular t of the system with respect to ( ) ( ).

An especially important case occurs when the regularity is de ned in terms of the response

to a single exemplar (the extension to multiple exemplars is trivial). The exemplar de nes

a de a to (inde nite) category , mem ership in which is measured y the similarity of

1



the response to that evoked y the exemplar

( ) ( ( )) ( ( )) :

. .

I will consider rie y the e ect that various properties of and can have on the form

of category ehavior. In many cases will e a one-to-one function, which ( ecause of

continuity) implies that the space of images constructed from category is topologically

e uivalent (homeomorphic) to the category.

1

In this case the construction is inverti le, and

the o ject can e unam iguously separated from its context; that is, if ( ), then

1

( ). In this case the ehavior of the system on is given y

1

,

that is, doing action on the o ject extracted from context . n the other hand, it is

not necessary to assume that is one-to-one, for in constructing an image ( ) in some

distinguishing features of the category mem ers may e lost. However, if this is the case,

the e uation re uires that these features also have no role in determining

the response image.

The special case where is a constant function descri es the situation in which the

system's categorical response is not particularized to the category mem er. That is, if

( ) for all , then the system shows response for any mem er of the category,

. An example would e if Rover responds to a cat in his yard y arking,

without the action eing directed at that cat or any other.

A rule of category ehavior ( ) ( ) descri es the ehavior of a system over

a restricted su set of its stimulus space. However, there is nothing preventing the

ehavior over this same su set from eing descri ed y a di erent rule, ( ) ( ).

igure shows the simplest case, where . or example, a person who regularly

separates a cat and dog that are ghting could e descri ed as exhi iting category ehavior

either with repect to the class of dogs (in the context of ghting a cat), or with respect to

the class of cats (in the context of ghting a dog).

ore generally the sets and derived from these categories can overlap in

various ways, so long as the system ehaves consistently in the area of overlap. Thus if a

stimulus can e descri ed either as a mem er of category in context or as a mem er

of category in context , then for any category mem ers and yielding this

stimulus, ( ) ( ), we must have the same response ( ) ( ).

f course, a system can display categorical response to a num er of alternative cate-

gories

1

: : : in a given context with respect to action . All that is re uired is that

the e uations hold. However, the necessity of continuity places a num er

of constraints on such alternative categorical ehavior. To understand these, consider again

the case of just two categories, and ( ig. ).

viously, if these categories overlap, then the system must ehave consistently on the

area of overlap. hat may not e o vious it that there are constraints on the nonoverlap-

ping areas; indeed there are even constraints on disjoint categories. or example, response

to elements of is not independent of response to elements of unless the categories are

1

As s al, we se for the ima e of the set nder the f nction , i.e. ( ) .

1
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igure The same pattern of behavior may be described in di erent ways, for example, as

category behavior with respect to category or category behavior with respect to .

Κ

Κ

C

S

A

Ψ

Χ

Φ

igure ultiple category behavior. There are constraints, dictated by continuity, on how a

system may display category behavior with respect to more than one category in a single context.
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separated. Informally, independence re uires that there e some \space" etween the cate-

gories. ontinuity re uires that mem ers of one category that approach su ciently closely

to mem ers of the other must yield responses that likewise approach the responses to those

mem ers of the other.

Another respect in which this \rule-like" ehavior di ers from traditional \rule- ased"

ehavior, is that the rule ( ) ( ) is descriptive of a limited region of the total ehavior

of the system. That is, the total ehavior is the given, and the rule is just a partial

accounting for it. In contrast, in a conventional rule- ased system the ehavior of the whole

is the sum of the ehaviors of the individual rules. e may say that whereas in a rule- ased

system the total ehavior is a construction of the individual rules, here we may have many

rule-like deconstructions of the total ehavior, none of which may capture the whole.

An interesting uestion | with relevance for the translation of trained neural networks

into rules | is when the ehavior of a system can e completely descri ed y rules.

ne answer follows from the separa ility of any image space, which means that it has

a counta le, dense su set (compara le to the rationals eing a counta le, dense su set of

the reals). To see how this allows the reduction to discrete rules, let and

e given. Then let

1

: : : e such a counta le, dense su set of and, letting ,

de ne a counta ly in nite list of categories to e the singleton sets . etting

( ) and , we have a counta le in nity of rules ( ) ( ) de ning on the

images . ince continuous functions preserve limits of convergent se uences, the ehavior

on the rest of the images is lled in automatically.

et's e clear on what this result tells us. It says there is a counta le in nity of rules

of the form ( ) that approximate ar itrarily closely to the ehavior of on any

image. ne pro lem is that an in nite num er of rules are re uired, though it is not hard

to see how nite sets of rules approximate this totality. The second pro lem is that these

\rules" are expressed in terms of the system ehavior, which may not e a discrete formula

of the usual kind. The third pro lem, of course, is that singleton categories do not lead to

a very interesting kind of category ehavior.

. r s

The foregoing analysis is easily extended to cases in which the system exhi its category

ehavior with respect to two or more categories simultaneously. In this case the context

is a relation etween mem ers of the categories, and the action, though determined y the

relation, is particularized to those mem ers. uch a system responds to an image putting

mem ers and of categories and in a relation ( ) with an output image ( ) that

is determined y and the category mem ers. or example a person might respond to any

cat and dog in a relation of proximity y separating the two. uch ehavior is most simply

expressed y a rule of the form ( ) ( ). ow we state this mathematically.

et , and e image spaces, and let and e proper su sets of

and , respectively. Then we say a system d spla s ategor eha or with

respect to mem ers of and in relation and with respect to action

whenever for all and , ( ( )) ( ). ore concisely,

.

1



The de nition is easily extended to three or more categories. verything we said a out the

e ects of continuity in the single category case applies as well to multiple categories.

.1 r

The stru ture of a thing refers to the organization of its parts. or discrete knowledge

representations, structure refers to the (usually hierarchical) syntactic relations etween a

formula's component parts. urther, in discrete representations the structure is usually man-

ifest. In continuous representations, in contrast, it is not apparent what should e considered

the \parts" of an image, or what sorts of relations should e considered \syntactic." Indeed,

a common criticism of connectionist knowledge representations is that they have no con-

stituent structure (e.g. inker rince, 1 ). Thus we must investigate the structure of

images. ince we are proceeding in unfamiliar territory, it will e worthwhile rst to consider

structure in discrete representations more closely.

iscrete representations are usually descri ed generatively, that is, y giving formation

rules that descri e the construction of the allowa le formulas from atomic components. The

discrete atoms provide a natural starting point for synthesis and also an ending point for

analysis. urther, we usually prefer unam iguous languages, so that each formula has a

uni ue decomposition. (Though even for am iguous languages the atoms are unam iguous.)

The situation is uite di erent for images, since there are in general many ways that an

image can e decomposed into components, and di erent decompositions may e appropri-

ate for di erent purposes. or example, a visual image of a face can e decomposed into

anatomical features, pixels, edges, elementary polygons, wavelets, and so forth. ven a one-

dimensional image can e decomposed into a set of points, or a set of straight line segments,

or a superposition of powers (as in polynomial approximation), or a superposition of sinu-

soids (as in ourier decomposition), etc. There is not, in general, a pr leged de o pos t on

as there is for discrete representations.

Though the preceding examples are in nite-dimensional, even a nite-dimensional im-

age can usually e represented in terms of several di erent (possi ly nonorthogonal) axes.

vidence that the appropriate decomposition is not apparent comes from the use of tech-

ni ues such as principal components analysis and multidimensional scaling in the analysis

of perceptual data ( hepard, 1 ).

The multiple-decomposi ility of images implies, in e ect, that images are inherently

am iguous; they have no privileged structure. iven this am iguity, we might hope that

images can e reduced to a determinate set of atoms, ut this is not the case. ince most

images are in nite dimensional, they can always e further su divided. Therefore, most

image spaces cannot e de ned ottom-up (generated from atoms), ut must e speci ed

top-down as a eld of variation within a ackground. ( e consider some of the methods

later.) In summary images are in general inherently am iguous and atomless. This then is

a key characteristic of connectionist knowledge representation.

1



. r s

yntactic types and relations are special cases of the categorical and relational invariants

we have already considered. or example, if the categories A and represent the syntactic

types A' and ' (that is, the set of all letter-A tokens and letter- tokens, respectively),

then the rule

(A ) ( A)

descri es a process that exchanges an A' and a ' when they occur in the context ( ),

for example, when the A' precedes the '. As expected, images close to A's and 's will

evoke responses close to those descri ed y the rule. ut what a out syntactic relations

(compound, vs. atomic, types) that are close to ust as some varia ility is allowed in

the shape of the token without changing its type, so also variation is allowed in syntactic

relations without changing their type. or example, the syntactic type pre ed ng

normally admits some variation in the vertical alignment and position of the A and the .

This suggests that we must consider the topology of the space of contexts, so that we can

descri e the e ect of variations in .

To understand the pro lem, consider a simpler example. uppose ( ) represents the

syntactic operation of putting a not-sign in front of the image . or example,

mortal( ocrates) mortal( ocrates)
:

I will suppose this operation is de ned so that ( ( )) puts two not-signs in front of .

1

ne might expect that the process of removing dou le not-signs from any image in could

e descri ed y a rule such as ( ( )) , ut this is inade uate, since it guarantees the

correct outcome only for the exact image constructed y . ore likely we want to allow

a range of syntactic operations, all of which can e considered the pre xing of a

not-sign. Thus a more realistic rule for removing dou le negations is ( ( )) , which

applies to any image in and any syntactic operation in .

To understand this idea etter, suppose that the applica le syntactic operations in are

parameterized y . Thus there is a one-to-one transformation such that

is a syntactic operation. or example, the parameter might e a vector descri ing a

relative position, and then ( ) would e the operation of attaching to a not-sign at

position relative to . A certain set of these will constitute pre ng a not-sign, and

so the category of not'-pre xing operations will e an homeomorphic image of the allowed

parameter values, which I'll write . Thus, the rule for eliminating dou le negation,

( ( )) , can also e expressed

( ( )) :

e can see that is a relational invariant on the product space , which descri es

category ehavior on the su space .

1

1

or simplicity, ass me : and . his permits rec rsive constr ction of not-trees, the

mathematical re irements for which are taken p in the ne t section.

1

e cannot, however, ass me that the topolo y on N is the s al prod ct topolo y, or that the

metric is the clidean combination of the metrics on and (i.e., ). However, the prod ct

topolo y is the weakest one that yields contin o s pro ections from to and , and so any permissible

topolo y on m st be a re nement of the prod ct topolo y.

1



I will consider rie y the topology of the parameter space , or e uivalently the topology

of the space of syntactic operators. irst o serve that for any xed , the operator

is re uired to e continuous ( y ostulate ). urthermore, since we

want ( ) to vary in nitesimally with in nitesimal variations of , it is clear that ( )

is continuous in oth of its parameters. Therefore, any topology may e permitted on so

long as ( ) is continuous in .

1

If is the category of negation-type syntactic operations and A is the category of A-type

images, then A represents the category of syntactic relations that constitute pre xing

not-signs to A' tokens.

1

It is thus a continuous analog to a parse tree. To see this, note

that a discrete formula such as ( ( )) corresponds to a tree with two nodes la eled

and a leaf la eled ; this parse tree represents the structure of the formula. The set of

allowa le formulas and the set of allowa le parse trees are isomorphic (for an unam iguous

language). The same holds in the continuous case, except that the expression ( (A))

denotes a set of formula images that corresponds to the set of structural images A,

which represent the structure of the formulas. Thus A represents a category of

\dou le negations of ." As always, the oundaries of such a category are inde nite, since

ehavior must e continuous across the oundary. This provides a ( uanti a ly) inde nite

structural description and a corresponding ( uanti a ly) inde nite notion of syntax. In this

way \grammars" for inde nite languages can e de ned.

. rs r r

Recursive structure has een claimed to e the hallmark of language and cognition (e.g.,

odor ylyshyn, 1 ; inker rince, 1 ), and therefore there has een some e ort

to show that neural networks can manipulate recursive structures (e.g., ollack, 1 , 1 ;

olan molensky, 1 ). Although this claim is not eyond criticism, it nevertheless will

e worthwhile to consider some of the topological constraints on continuous representations

of recursive structure.

. .

or simplicity, consider an image space of inary trees. To allow the recursive construction

of inary trees, we must have an operation that takes two trees

and constructs a inary tree ( ) from them. urther, we must have means for

extracting the left and right su trees of a tree, that is, operations satisfying

the identities

( ) ( ) :

This is no di erent from what we have in discrete computation. The postulates of simulacra,

however, re uire that e a continuous map from , and likewise that and

e continuous from to . The result is that is a continuous one-to-one map

1

his will be the case, for e ample, if the metric on the operator space is the s prem mmetric, ( )

s p ( ( ) ( )) , where is, witho t loss of enerality, a bo nded metric on . he same

applies for a metric on the parameter space .

1

trictly speakin , is the cate ory of ne ation-type syntactic operations and N is the correspondin

set of parameters, b t it is sef l to treat the parameters N as e ivalent to the operations .

1



from to with a continuous inverse. This means that the spaces and are

topologically e uivalent, .

In connectionist models we are usually dealing with nite-dimensional uclidean spaces,

, therefore recursive tree construction re uires , since .

or example, if our trees are represented y 1 -element vectors, then tree construction

must create a 1 -element vector from two 1 -element vectors; likewise deconstruction

must extract two 1 -element vectors from a single 1 -element vector. In addition, oth

operations must e continuous. nfortunately, rouwer's Theorem of the Invariance of

imensionality shows that this is impossi le; if and only if (Hausdor ,

1 , p. ). That is, we cannot have continuous recursive construction of trees over a

nite-dimensional uclidean space.

A way around rouwer's theorem is suggested y the o servation that when

. Indeed, as will e shown presently, recursive tree construction is possi le in Hil ert space

(an in nite-dimensional uclidean space), so it will e worthwhile to consider the practical

signi cance of in nite-dimensional spaces, since actual neural nets are nite-dimensional.

However, if the num er of units in a net is su ciently large, then it often can e treated

mathematically as though it is in nite ( ac ennan, 1 ), and a neural net of such size will

allow the construction of trees of e ectively unlimited depth. f course, so long as the net

is nite, there must e some limit, ut this is no di erent from the discrete case the nite

memory of a real digital computer places a limit on the size of trees; ar itrarily deep tree

construction is possi le only in the unlimited memory of imaginary computers, such as the

Turing machine.

. .

There are many ways that recursive structures can e represented in in nite-dimensional

spaces ( ac ennan, in press-a), ut we will consider only one, \ ourier interleaving," which

has some interesting properties.

ince image spaces are homeomorphic to su sets of Hil ert spaces, we can expand images

in generalized ourier series.

1

Two images and in this space can e com ined into a

pair ( ), also in this space, y interleaving the ourier coe cients of and

( ) (

1

)

where and :

This kind of mixing of images might seem uestiona le, ut in fact the operation is mathe-

matically very well ehaved it is continuous, linear and isometric (preserves the metric of

the Hil ert space) on . ince this operation returns an image in the same space as

its arguments, it can e applied recursively to uild inary trees of ar itrary depth (

he reader familiar with Peano s space- llin c rves may be conf sed by ro wer s res lt. However,

the Peano c rve is a contin o s map of the nit interval into the s are , b t not vice versa.

bserve that in nitesimal movements on the line map to in nitesimal movements in the s are, b t that

in nitesimal movements in the s are may map to nite movements on the line.

1

A enerali ed o rier series is a o rier series with respect to an arbitrary orthonormal basis

1

, i.e., not necessarily the familiar tri onometric or comple e ponential bases.

1
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igure ourier interleaving. The plots show examples of ourier interleaving as a method

of constructing recursive inary trees. raphs and show two given images from which

is constructed y ourier interleaving, ( ). onversely, images and can

e extracted from image y ( ) and ( ). raph demonstrates that

left and right \parts" can e extracted from images that were not constructed y , in

this case ( ).

omitted for clarity)

( ) ( ( )) (( ) ( )) (( ( )) ( )) etc.

It is also apparent that the left and right elements can e easily extracted from the pair

( ) simply take either the odd or the even elements of its ourier series

( ) and ( )

1

where :

ne of the interesting properties of ourier interleaving is that we can extract the left

and right elements of an image, regardless of whether it resulted from ourier interleaving



( ig. ). This is ecause any image can e expanded as a ourier series (even if many of its

coe cients are zero), from which the odd or even elements can e selected. In this sense,

images ehave like in nite trees with no leaves; we can always go further out from the root.

f course, if an image has nite andwidth | as would e the case in practical situations |

then eventually we will reach images that are either the zero image or images proportional

to the rst element of the asis se uence. The left and right parts of these can still e

extracted, ut they will return the same images

( ) ( ) ( ) ( ) :

f course , so the images (with a real num er) function in some ways like the

atoms of the image space.

e have seen efore that the Riesz- ischer theorem, which states that (the space

of nite-energy images) is topologically e uivalent to (the space of s uare-summa le real

se uences), suggests that the interface etween the continuous and the discrete lies in Hil ert

spaces. In this sense the real num ers can e considered the \elementary images" from which

all images are constructed. These form a continuum and do not fall into discrete types.

ngineers may o ject that ourier interleaving is impractical since, with increasing

tree-depth, information gets pushed into higher and higher fre uency ands; this is valid

o jection. oise often increases with fre uency, and high-fre uency representations may

e limited y physical inertia (for temporal fre uency) or atomic structure (for spatial fre-

uency). Therefore, although in the mathematically ideal sense ar itrarily deep trees (or

long se uences) can e represented y ourier interleaving, any physical instantiation of the

process will have the property that as trees ecome deeper (or se uences longer), the leaves

ecome more degraded until they are completely inaccessi le. This is an appealing model of

the competence performance distinction, since the physical medium causes performance to

degrade gradually with increasing depth, rather than facing a hard limit (such as would e

implied y a nite stack or se uence u er). ompetence corresponds to the ideal provided

y the in nite-dimensional space.

Although the preceding construction shows that recursive tree construction is possi le

in connectionist systems, we do not attach as much signi cance to this as might those who

think that trees are essential to linguistics (e.g., odor ylyshyn, 1 ; inker rince,

1 ). I have argued elsewhere that the path to a post- ho s an l ngu st s s h dden

our general na l t to see language n an ter s other than trees ( ac ennan, 1 a).

Although I cannot o er a speci c alternative (since I wear the same linders), the preceding

approach to category invariants and rule-like ehavior is one possi ility.

.1 s

The formation rules of a calculus de ne a formal language, namely, the well-formed formulas.

In this section I will consider analogous procedures for specifying image spaces and (fuzzy)

e ass me here the tri onometric basis, tho h the same ar ments apply to any basis se ence char-

acteri ed by increasin fre ency.

1



classes of well-formed images, that is, continuous formal \languages."

. .

peci cation of a (discrete) formal language usually egins y de ning an alpha et or o a -

ular of atomic types; this is usually de ned ostens el , that is, y exhi iting (in a special

context) a token of each type. or example,

1 :

ertain well-known alpha ets may e taken as given (e.g., the digits, the letters).

In exactly the same ways, we may specify the range of variation of a continuous formal

language. e de ne it ostensively, y exhi iting (in a special context) the limits of the

range. or example, we may exhi it a range of lengths, or a range of lightness darkness

:

e may also de ne it y use of a prede ned sets or values. or example, we may take as

given spaces such as ( ) the real line, and 1 the unit interval. Also

we may take as given the constant in a de nition such a .

In de ning a discrete formal language the next step is to specify the possi le places a

token can e put, which we call the domain of locations. This is almost always a linear array

of locations of ar itrary ut nite length; thus the domain of possi le locations corresponds

to the natural num ers. In this case the formula space is . ccasionally the characters

will e put into a two-dimensional array (rather than a one dimensional string), or some

other arrangement; in some cases the strings are restricted to a xed length , so the space

is .

The situation is analogous for a continuous formal language. or example, the space can

e given y a artesian product, for example

1

, where

1

: : : are the ranges

of the individual dimensions. It is also necessary to specify the metric on the image space;

it cannot e assumed to e the uclidean metric.

If the domain of locations is a continuum, then it can e de ned y the same mechanisms

used for ranges ostension or prede ned sets. In this case, for a domain of locations and

a range of variation , the images are continuous functions from into . As with nite-

dimensional image spaces, it is necessary to specify the metric, which we may do y appeal

to a named function space. or example, we might say that the image space is the space of

functions from into .

. .

The usual way of specifying a su set of ell- or ed or ulas in the formula space of a

discrete language is to exhi it a nondeterministic generative process (a generat e gra ar)

that produces just the well-formed formulas. Reversing this process | determining whether

a given string is well-formed | is nontrivial, and a large ody of computer-science theory

(parsing theory) is devoted to the e cient inversion of generative grammars.

The well-formed images of a continuous language may e de ned in many of the same

ways as discrete languages, for example, y specifying a generative process. In many cases



other methods are more appropriate, such as de nition y example. In any case, since the

category of well-formed images is a su set of an image space, y ostulate we know the

category must e fuzzy.

or a concrete example, suppose

1

: : : are exemplars of well-formed images. Then

the continuous map

( ) min (

1

) ( ) : : : ( )

is positive just when is closer than to at least one exemplar. Thus de nes an inde-

terminate category of well-formed images. ore complex classes of well-formed images can

e de ned y specifying category invariants that must hold.

. s r s r s s

In writing a program, or otherwise constructing a calculus, we use a language of discrete

sym ols to descri e a discrete process over a discrete state space. hen we roaden our

awareness to include continuous languages and simulacra, then we see that there are four

possi ilities to consider

iscrete description of discrete systems.

iscrete description of continuous systems.

ontinuous description of continuous systems.

ontinuous description of discrete systems.

The rst has already een considered, so I'll rie y address the others.

The description of the continuous y the discrete is what we do whenever we use mathe-

matical notation to descri e image spaces (as discussed a ove). or example, given certain

primitive spaces (such as the real line), we can use the discrete language of set theory to

construct higher-dimensional uclidean spaces. escri ing the continuous y the discrete is

also what we do when use di erential e uations to descri e a continuous process.

There is a natural match etween discrete languages and discrete systems, and so we

might expect that the est vehicle for descri ing a continuous system is a continuous lan-

guage. The di culty is that continuous languages are much less familiar than discrete

languages, so it isn't o vious how to proceed. I'll mention a few possi ilities.

I have indicated a ove how image spaces can e de ned ostensively (as are formula

spaces), and have suggested means for de ning classes y example. earning procedures

permit the de nition of maps and processes y continuous manipulation of the input and

output, thus providing a continuum of examples. In other cases we may use gestures or other

continuous operations to directly mold a potential surface to determine the dynamics of a

continuous process.

ur investigation of continuous languages has just egun, ut some opportunities are

already apparent. In addition to providing a framework in which to understand ritualized

motor activities, including dance and speech, we expect that continuous languages will have

applications in computer system design, for example, in gestural interfaces.



The last com ination, the description of the discrete y the continuous, is also important,

for this is what happens when people talk n or all a out a calculus, for example, when

mathematicians discuss formal logic or axiomatics, when computer scientists discuss program

organization, or when chess players discuss strategy. ontinuous languages may prove a

powerful tool for con uering the overwhelming minutiae of complex calculi.

.1

Another advantage of discrete knowledge representations is the ease with which one part of

a structure may refer to (\point at") another, which is especially useful in the representation

of propositional information. In this section I will discuss ntent onal elds, a mechanism for

accomplishing the same ends with continuous representations ( ac ennan, in press- ).

Traditionally, an intention ( ntent o) is a mental construct that is directed at something

else (either internal or external to the mind), selecting it for further processing. The atin

ver ntendere means to stret h to ard or po nt at, and includes the sense of o us ng one s

attent on on ( ord at n t., s.vv. ntendere, ntent o). In edieval cholastic theories

of the mind, an ntent o was \something in the soul capa le of signifying something else"

( ckham, u a og ae I 1 ). se of ntent onal t y rentano, Husserl and Heidegger

retains the sense of a mental \vector" directing awareness at its o ject. (Runes, 1 , s.v.,

de nes it as \the property of consciousness where y it refers to or intends an o ject.") In

short, ntent ons are the as ental e han s s or po nt ng and d re t ng.

Intentions are concerned with selection of parts from a whole, and so we will have to treat

the parts of images. Therefore it will e convenient to consider them elements of Hil ert

spaces, speci cally, as elds, uantities de ned over a spatial continuum ( ac ennan, 1 ,

in press- ).

ormally, a eld is de ned to e an ntent on o t pe to ard if 1 ,

where , and is an operator de ned on ( ) ( ). The intention is resol ed

y applying to the pair ( ), that is, ( ). The implication is that focuses 's

processing of on the region of where is largest. Thus an intentional eld is similar to a

generalized focus of attention | generalized in that it need not e present to consciousness.

This model of intentions is analogous to eirce's explanation of signi cation as a triadic

relation etween a su ject and an o ject with a particular signi cance (meaning) for that

su ject. That is, an intention is so eone s consciousness of so eth ng in so e regard. o,

for a xed su ject, the intention indicates an att tude toward an o e t. e may also say it

has or and atter.

If we x the su ject and o ject, then what distinguishes di erent kinds of intentions is

their manner of eing processed, which corresponds mathematically to the function to which

or e ample, Peirce said a representamen (representation) is somethin which stands to somebody for

somethin in some respect or capacity ( . o d e, , p. ). he triadic relation is between si n,

ob ect and interpretant, tho h Peirce takes the latter to be an e ivalent si n in the mind of the interpreter,

whereas cash it o t as a f nction. o hly, the triadic relation is manifest in the s b ect, verb and ob ect

of sentences s ch as ill notices the bear, ill fears the bear, etc.



they are passed. These functions may correspond to di erent rain areas, or perhaps to

orthogonal su spaces within a single area.

any ehaviors can e explained in terms of the generation of intentions and their

translation from one modality to another. or example, motion in the visual eld could

cause the generation of a no elt ntent on focusing attention on a region of the visual eld.

This could cause the o ject in that region to e classi ed, perhaps generating a ear ntent on

toward that same region of the visual eld, and to a corresponding region in an egocentric or

allocentric spatial eld. This in turn could generate an a o dan e ntent on, which would e

translated into a otor ntent on toward another place, which would cause the generation

of appropriate motor images (i.e. activity in motor areas).

In the following sections I'll consider some examples of intentions, gradually working our

way toward the representation of propositional information.

. r s

The easiest intentions to understand are perceptual intentions, especially visual intentions.

erhaps the simplest visual intention is a ot on ntent on, which results from the detection

of motion; it could e computed as the s uare of the time derivative of the visual image,

no dou t spatially smoothed. or example, d( ) d , where is a

aussian and means convolution. A motion intention could also e computed from a

more a stract image, such as the a or coe cients of the retinal image.

Although some perceptual intentions are computed ottom-up; more typically they result

from a com ination of top-down and ottom-up processing. xamples of such intentions

include one directed at the presence of an unexpected o ject, or one directed at the a sence

of an expected o ject. This latter demonstrates that intentions need not e directed at

things present. These are oth \surprise intentions," ut there may also e intentions noting

ful lled expectations (e.g., the presence of an expected o ject, or a sence of one expected

to e a sent).

Though an intention directs processing toward some region of an image, there is no

re uirement that that image e a representation of reality (as einong o served). That is,

the image may e perceptual in form (e.g., visual or auditory), ut not perceptual in content

(i.e., imagined rather than perceived). This is the foundation on which is uilt our a ility

to reason propositionally, as will e discussed next (see also ac ennan, 1 ).

. r s s

ohnson- aird and yrne ( ohnson- aird yrne, 1 1, 1 ) argue convincingly that

deduction is implemented y the manipulation of models, ut their theory re uires certain

elements of a model to e treated in special ways. or example, a o ject may e \tagged"

to indicate that a model does not contain that o ject, or that this model is the only one

that can contain that o ject. I have argued ( ac ennan, 1 ) that ohnson- aird

yrne's models can e explained as com inations of images and propositional intentions.

or example a model of the a sence of a circle and the presence of a triangle, which they

his section will be omitted from the p blished version.



a reviate

can e represented y an image of a circle and a triangle and an intentional eld negating

the circle and asserting the triangle, which I a reviate

hat gives this intentional eld the aspect of propositional representation is the manner

in which it is processed (which is no dou t correlated with cortical region carrying the eld).

or example, since a model comprises oth an image and an intentional eld, the integration

of new information with a model necessitates updating the intentional eld. Therefore, if

the new information asserts the presence of a circle

then the model negating the circle must e rejected. uch a contradiction is indicated y

the two intentional elds | for the model and for the new information | having opposite

signs in a common region.

The rejection of an entire model can e indicated y a intentional eld that negates the

region holding that model, while leaving the rest unnegated. Thus, negation of out of

1

: : : could e represented

1

This is not the place for additional detail, ut the general pattern should e clear.

.1 r

iscrete knowledge representation and processing systems are (super cially, at least) very

good at manipulating mathematical and logical formulas, and similar discrete structures,

according to precise rules; they have een less successful at su sym olic processes, such as

perception, recognition, association, control and sensorimotor coordination. In contrast, con-

nectionist approaches are well-suited to su sym olic tasks, ut there has een dou t a out

how well they can operate at the sym olic level. This naturally suggests hy rid architec-

tures, with sym olic tasks accomplished y discrete (digital) computation and su sym olic

tasks y continuous (analog) computation.

This is not the way the rain works, however, for in the rain discrete, sym olic processes

emerge from underlying continuous, su sym olic processes. There is reason to elieve that

Altho h de ned intentional elds to be -val ed, in this case it is more convenient to allow them

to be -val ed, so that assertion and ne ation can be represented in the same intentional eld.

his section omitted from p blished version.



this is not just an accident of iological intelligence, ut that this underlying continuity

imparts to the emergent sym olic processes the exi ility characteristic of human sym ol

use ( ac ennan, 1 1, 1 ). The pro lem is then to understand how discrete-looking

representations and processes can emerge from continuous representations and processes.

It is an oversimpli cation to treat language as a discrete system. or example, although

we accept the space etween written words without uestion, anyone who has done con-

tinuous speech recognition knows that we cannot depend on spaces in the sound stream.

urthermore, in ancient reek, when written language was not considered an autonomous

means of expression, ut was viewed as a visual representation of the sound stream, we nd

words run together without intervening spaces, just the way we speak. eneca claimed that

atin writers sometimes separated words ecause there was a d eren e n spee h rh th

etween reek and atin speakers, namely, that atin speakers left a pause after each word

( mall, 1 ). Havelock (1 , p. ) points out that the alpha et was in use in reece

for years efore reek had a word for word'. Apparently the concept of a word, as a

discrete, indivisi le unit of the sound stream is not so o vious as we now take it.

In summary, the phenomenological salience of the word is partially a result of our use

of an alpha etic writing that separates words, and of the cultural practices that go along

with it, such as dictionaries, indices, and word-oriented reading instruction ( mall, 1 ).

evertheless, the concept of a word is neither illusory nor ar itrary, since as a matter of fact

speakers tend to treat certain segments of the sound stream as units, and it is the recurrence

and semi-independence of these segments that form the asis of the word' idea. Therefore, it

seems that the emergence of approximately-discrete, sym olic processes from the underlying

continuous, su sym olic processes will e illuminated y considering the self-organization of

processes for recognizing recurring parts of images (such as the sound stream).

. r rr

The familiar correlation attempts to match one signal to all possi le translations of another

signal, and returns a signal showing how well these matched. The correlation of images

and is de ned

( ) ( )d :

The structure of this is more apparent when we realize that ( ) is translated to

the right y an amount . Therefore we introduce the operator to mean a rightward

translation y , and rewrite the correlation

( ) ( )d :

It is then apparent that the correlation is the inner product of the translated image and

the image . o we write it that way

:

The signi cance of the inner product is that it measures the similarity of normalized images.

Therefore we write ( ) to emphasize that its purpose is to measure similarity

( ):



Thus, in general terms, the value of the eld at a point is the similarity of the

-translate of to .

The common correlation can e generalized to other classes of transformation (rotation,

scaling, perspective distortion, etc.) as well as to other measures of similarity or dissimilarity.

If is any parameterized class of transforms and is any similarity metric, then de ne

( ) the etr orrelat on with of all -transforms of y

( ) ( ):

ometimes it is easier to work in terms of di erence rather than similarity, in which case we

write

( ) ( ):

where is a (di erence) metric. hen the metric or transform is clear from context it will

e omitted; thus in general is the metric correlation of all transforms of with .

ometimes it is more convenient to consider the metric correlation of with all -transforms

of , so we write

( ) ( )

where is either a similarity or di erence metric. learly, . inally we de ne

the operator which correlates all -transforms of with all -transforms of

( ) ( ):

otice that the correlation eld resulting from this operation is indexed over two parameter

spaces. These operations satisfy many simple identities, most of which are o vious, and so

omitted.

It is often useful to consider metric correlations under multiple transformations. or

example, if for ( uclidean space) is a translation y , and for

1

(a

topological circle) is a rotation through an angle , then is a rotation followed

y a translation (the order doesn't matter; they commute). Thus ( ) measures the

correlation etween and the -translation, -rotation of .

ften the transformations applied to images have alge raic structure; fre uently they

form a topological group. In these cases the metric correlations inherit the structure; for

example, if the transformations are an a elian group

( ) ( ) ( ) ( ) :

The reader may suppose that metric correlations are computationally too expensive to

have much signi cance to cognitive processing. irst o serve that they are not much more

expensive than the usual (inner product) correlations. econd, the limited precision of neural

computation (one or two digits) will limit the num er of transforms to e computed to a

dozen or so, for each real parameter. A com ination of two transforms might re uire 1 to

e computed (in parallel).

As discussed a ove, the speech stream is essentially continuous, and, to a rst approxi-

mation, words are segments of the sound stream that can e treated as discrete units, that

is, relocated as wholes. onversely, recurrence of the same signal in a variety of contexts is



evidence that it is a meaning unit, often a word. Therefore, we suspect that one component

of language learning is the detection of such recurrence. However, a word will rarely recur

exactly; it will e transformed in duration, pitch, amplitude, etc., or y the context of sur-

rounding sounds. This suggests metric correlation as a mechanism for the self-organization

of a word-recognition system.

A detailed discussion of learning in simulacra is eyond the scope of this chapter, so a

few general o servations must su ce. irst o serve that since nite-dimensional uclidean

spaces are image spaces, all the usual learning algorithms, such as ack-propagation, apply to

nite-dimensional image spaces with the inner-product norm. econd, I will assert without

proof that these same algorithms generalize with little change to the in nite-dimensional

uclidean case, that is, to Hil ert spaces. (To see this, just o serve how little of the usual

derivation depends on the dimension of the space; convergence of the in nite sums follows

from the s uare-summa le property of the Hil ert space.) inally, recall that any image

space is topologically e uivalent to a su set of a Hil ert space. Therefore learning in image

spaces can e accomplished y gradient descent in the corresponding Hil ert space. ince

the image space and the Hil ert space are topologically e uivalent, convergence in one is

e uivalent to convergence in the other. (The homeomorphism preserves limits.)

The uestion naturally arises of whether the well-known undecida ility and uncomputa ility

results hold for simulacra and continuous computational systems, and the eginnings of a the-

ory of continuous computation has already appeared. or example lum and her colleagues

( lum, 1 ; lum, hu , male, 1 ) have shown that many classical computa ility,

decida ility and complexity results generalize to computation over the real num ers. n

the other hand, tannett (1 ) has pu lished a proof that the halting pro lem for Tur-

ing machines can e decided y certain machines with continuous dynamics, which thus

have super-Turing power, and our- l and Richards (1 , 1 1, 1 ) have shown that a

Turing-computa le wave e uation with Turing-computa le initial conditions can have non-

Turing-computa le solutions.

Interesting as these results are, they do not address the central issue, for the traditional

theory of computation asks what al ul can decide a out al ul , and analogously a theory

of computation that takes a consistently continuous perspective should ask what s ula ra

can decide a out s ula ra. However, such a perspective forces us to ask di erent uestions

a out simulacra than we ask a out calculi. irst o serve that a s ula ru annot ans er

a es-or-no uest on. This follows simply from continuity, since if the answer is for some

uestions and 1 for others, then there must also e uestions yielding neither answer; this is

the case for oth image maps and image processes ( rops. and ). It may e o jected that

e can draw an a solute distinction (such as 1 ' vs. 1 '), ut that just places the

calculus in us, and presumes that e can instantiate a perfectly discrete system. This is the



familiar situation of a calculus deciding a property of a simulacrum, and doesn't address the

uestion of what simualcra can decide a out simulacra. The latter uestion is the relevant

one if, as connectionist research suggests, continuous models of cognition are more accurate

than discrete ones.

A concrete illustration is provided y a continuous analog of Turing's famous proof of

the undecida ility of the halting pro lem. et e a space of continuous processes

. The sta l t pro le for a process and initial state is to determine if the

process ( ) is asymptotically sta le (i.e., in some asin of attraction); if it isn't then we

say that the process is unsta le. hat we would like to know is whether there is a pro ess in

that can decide the sta ility pro lem for all processes in and initial states in . In order

to have a process make decisions a out other processes, the latter must e representa le in

the state space (this is what �odel num ering accomplishes in the discrete case). Therefore,

assume that there is a space such that for each process there is at least

one corresponding \program" (an image) . (That is, we assume there is a continuous

un ersal un t on from onto .) Then, a de s on pro ess or the sta l t pro le is a

continuous function ( ) ( ) such that

( ) i ( ) is sta le,

( ) i ( ) is unsta le,

where is the process corresponding to the \program" and and are any distinct points

in the state space , which are used to represent the answers sta le' and unsta le'.

The impossi ility of such a decision procedure is now apparent, since y rop. no such

process can exist; there must e pairs ( ) that are outside all asins of attraction, including

those for and . or these pairs the decision process gives no answer. In general there

can e no decision procedure that always gives an answer, so decision pro lems have to e

reformulated to e consistent with the postulates of simulacra.

ith their assumption of discreteness, calculi have y de nition the a ility to perform

exact classi cation, ut also the lia ility of responding discontinuously to in nitesmal vari-

ations in the input ( rittleness). onversely, with their assumption of continuity, simulacra

have y de nition the a ility to respond continuously to in nitesmal changes in input ( ex-

i ility), ut are una le to classify exactly. These a ilities and ina ilities are conse uences

of the idealizing assumptions (perfect discreteness or perfect continuity) in each case. In

reality we know that a calculus can take ar itrarily small steps, and that a simulacrum can

make ar itrarily ne discriminations. Therefore the conclusions we draw from the theoretical

models are relevant to the real system only to the extent that the real approximates the ideal

at the relevant level of a straction. This, again, is the omplementarity rinciple.

The calculus is a theoretical construct that captures the essence of traditional, discrete,

sym olic models of cognition. The development of new, connectionist models, which are

characterized y continuity, will e promoted y the development of an analogous theoretical

construct, and the simulacrum has een proposed to ll this role. hereas calculi implement



discrete processes operating on formulas, simulacra implement continuous processes operat-

ing on a stract images. The theory of simulacra suggests a novel approach to many issues in

cognitive modeling, including classi cation, invariants in ehavior, constituent structure, in-

tentions and approximately discrete processes, such as rule-like ehavior, sym olic cognition,

and language.
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