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Abstract

The development of connectionist models will be promoted by a theoretical con-
struct analogous to the calculus in symbolic models. The simulacrum is proposed
to fill this role. Whereas calculi implement discrete processes operating on formu-
las, simulacra implement continuous processes operating on abstract images. The
theory of simulacra suggests a novel approach to many issues in cognitive modeling,
including classification, invariants in behavior, constituent structure, intentions and
approximately discrete processes, such as rule-like behavior, symbolic cognition, and
language.

*An abbreviated version of this report will appear in Artificial Intelligence and Neural Networks: Steps
Toward Principled Integration, Volume I: Basic Paradigms; Learning Representational Issues; and Integrated
Architectures, edited by Vasant Honavar and Leonard Uhr, New York, NY: Academic Press (in press).



There in the ring where name and image meet,

Inspire them with such a longing as will make his thought
Alive like patterns a murmuration of starlings,

Rising in joy over wolds, unwittingly weave.

— W. H. Auden (Perhaps, Prologue from On the Island)

1 Simulacra

1.1 Purpose

The concept of a calculus is the central theoretical construct underlying all traditional (“sym-
bolic”) approaches to knowledge representation and processing. By this I mean that the
concept of a calculus captures the essential characteristics of discrete physical symbol ma-
nipulation in an idealized form suitable for mathematical analysis. To a large extent (digital)
computer science is the theory and practice of using calculi to solve problems.

Unfortunately, connectionist models of knowledge representation and processing lack a
central, unifying theoretical construct analogous to the calculus. This impedes progress in
two ways. First, we have no clear idea of the range of possible connectionist approaches,
so our imagination of possible representations and processes is restricted. (I think this is
especially evident in connectionist language processing.) Second, without such a theoretical
construct we are unable to prove theorems that apply in principle to all possible connectionist
systems (e.g., results analogous to the uncomputability and undecidability results for calculi).

The representation of knowledge and inference by calculi is an old idea (it is inherent in
the Greek word logos), and so it has been well explored over the centuries. Nevertheless, a
clear understanding of the capabilities and limitations of calculi did not emerge before the
first half of this century, in the work of Godel, Turing, Church, Lowenheim, Skolem, Post and
others. In comparison, theoretical understanding of connectionist knowledge representation
is much less advanced.

Further, we are held back by the very pervasiveness of the idea of a calculus (strengthened
by familiarity with the digital computer), so that now the ideas of knowledge and calculus
seem inseparable and many researchers think it is inconceivable that there can be thought
without a language of thought.! On the other hand, progress in connectionist theory will be
accelerated by exploiting the duality and analogy between discrete and continuous systems.

Just as the idea of a calculus took many years to evolve into the definitive form it took in
the first half of this century, so we may also expect that the analogous connectionist concept
will require refinement; the idea presented here is just a step in that direction. As evidence
that it fulfills the required role, I will show how it suggests new connectionist approaches
to language and structured knowledge, and how it exposes theoretical limitations of any
possible connectionist system.

IGestalt psychology is a distinct exception to the ubiquity of discrete models in psychology, and con-
nectionism can be expected to restore some of the viewpoints, if not the specific theories, of the Gestalt
psychologists.



The theoretical construct proposed here is called a simulacrum, a term which reflects
the central idea of connectionist representation.? Just as “calculus,” which means “pebble,”
refers by metonymy to an entire system that computes by manipulating such physical tokens,
so analogously “simulacrum,” which means “likeness” or “image,” refers by metonymy to an
entire system that computes by manipulating physical images (continuous representations).
Further, just as in computer science and formal logic we distinguish between uninterpreted
and interpreted calculi, the former being purely “syntactic” (formal) processes whereas the
latter have a specified “semantics” (i.e., they are meaningful), so also will I distinguish
uninterpreted and interpreted simulacra.

1.2 Uninterpreted Simulacra
1.2.1 Introduction

The goal of the theory of simulacra is to capture the essentials of connectionist knowledge
representation and processing. Therefore we begin with the observation that connection-
ist representations are frequently real vectors of high dimension. This observation is rein-
forced by the relation between connectionism and neuropsychology, since neural representa-
tions (whether in terms of spike density or graded potential) are predominantly continuous.
Therefore we take continuity — of representation and process — as the essential feature dis-
tinguishing connectionism from traditional approaches to knowledge representation (which
employ discrete representations and processes).

There are many objections that can be made to this characterization, which can, I hope,
be disposed of quickly. For example, it may be objected that action potentials are all-
or-nothing events, and therefore essentially discrete, and that even graded potentials are
in fact discrete, since they result from an integral number of vesicle exocytoses or from
an integral number of charge carriers (ions etc.). Furthermore, connectionist systems are
usually implemented on digital computers, and connectionist researchers sometimes work
with two-state units.

These objections are all irrelevant, at least in the absence of additional information.
What is relevant is the behavior of a system at the appropriate level of analysis. Since
a (mathematically) discrete system can approximate arbitrarily closely a (mathematically)
continuous system, and conversely a (mathematically) continuous system can approximate
arbitrarily closely a (mathematically) discrete system, we see that, for biological modeling,
the relevant distinction is not mathematical. What is important is the behavior — discrete or
continuous — of the system at the relevant level of analysis. This Complementarity Principle
is offered as a razor (like Ockham’s) for cutting off fruitless debate (MacLennan, in press-b,
in press-c, in press-d, in press-e).

The properties of a calculus derive from its topology, rather than from any particular
concrete representation of it (e.g. in terms of bits); likewise I expect the properties of a
simulacrum to derive from its topology, rather than from its specific concrete representation
(e.g. in terms of vectors of reals). Therefore, the theory of simulacra can be expected

2Previously (MacLennan, in press-a) I called simulacra “continuous symbol systems” to stress the analogy
with the familiar discrete symbol systems, but “symbol” carries such a strong connotation of discreteness,
that the phrase has proved more confusing than helpful.



to be primarily topological, and in this sense qualitative rather than quantitative. In this
way it will address the essentials, rather than the details, of continuous representation and
processing.

A formal process is one that depends only on the physical characteristics (e.g., shapes)
and physical relations (e.g., positions) of signs, and not on any meanings that may be asso-
ciated with them; that is, the processes are purely syntactic and independent of semantics.
Formality is an important characteristic of any theory of cognition, since it permits “cashing
out” meaning in terms of physical phenomena.? Just as it is useful in traditional knowledge
representation to consider the properties of uninterpreted calculi, so also it will be useful to
begin by considering uninterpreted simulacra. I will present briefly the basic postulates and
propositions of the theory of simulacra; a more detailed justification and discussion can be
found elsewhere (MaclLennan, 1993a, in press-a).

1.2.2 Image Spaces

Calculi comprise (1) a state space of formulas, which is defined by formation rules, and (2) a
state-transition process, which is defined by transformation rules (e.g., MacLennan, 1990b,
pp. 423-425). Simulacra likewise comprise a state space and a process. Corresponding to the
formulas and tokens of calculi, in simulacra we have images, which are the representational
vehicles of simulacra, as formulas are of calculi. Simulacra differ from calculi in the manner
of definition of these spaces, since formulas are defined in terms of their construction from
atomic tokens, whereas images do not have atomic constituents. The definition of image
spaces will be considered later.

In the context of simulacra, “image” has a precise definition, which will be given presently.
However, it is helpful to begin with an informal description. The term is intended to include
familiar visual and auditory images, but in addition to these instantaneous images (spread
out in space), | also include more abstract spatiotemporal images, such as the signal received
by the retina or cochlea over an interval of time. The term also applies to abstract represen-
tations, such as Gabor or other wavelet-like decompositions. Further, motor and memory
images are included, and, at a more physical level, electrical or chemical distributions in
smaller or larger regions of the brain. We turn now to a mathematical characterization of
images.

The idea of degrees of similarity is fundamental to any notion of images, and it seems
reasonable to require that these degrees be quantifiable. Mathematically, it is usually more
convenient to work in terms of difference rather than similarity, so we postulate a difference
measure d, holding between any two images in an image space, with the following properties:

6(p,p) = 0,
o(p,p) = (e, 9),
§(p, ) < (e, x) + (X, ¥).

3Here we are concerned that the processes be independent of any meaning attributed to them by an
outside observer, so that the processes do not depend on outside agents. That 1s, an uninterpreted calculus
or formal system has no attributed semantics. Clearly, however, a system intended as a cognitive model must

have intrinsic semantics, that is, the processes must have meaning to the cognitive agent constituted of
those processes. Whether purely formal systems can have an intrinsic semantics is, of course, an important
question.



In mathematical terms we have a distance metric and so an image space is a metric space.
Needless to say, the metric does not have to be the Euclidean distance, and in most cases it
will not be. However, we will generally leave the metric (and hence the notion of similarity)
unspecified.?

A difference metric can be converted to a similarity metric in a variety of ways. For
example, if § = 6(p, 1) is a difference metric that can be arbitrarily large, then we can define
a similarity metric o(¢,v) = 1/(144) such that o = 1 for identical images and o — 0 as the
images become less similar (their difference approaches infinity). If, as is more common, the
differences are bounded, 6 < d, then a similarity metric can be defined o = (d—9)/(d+ §),
o =1-=4/d, or in many other ways; the choice should be determined by the process to be
modeled by the simulacrum.

The principal characteristic that distinguishes connectionist from “symbolic” knowledge
representation is that images are drawn from a continuum, whereas formulas are discrete.
There are many ways such a continuum can be defined topologically, but the definition
proposed here seems to agree with our intuitions about continua, namely, that any image
can be continuously transformed into any other in the same space. The fundamental intuition
behind this is that if it doesn’t hold, then we are dealing with two or more discrete image
spaces. In the extreme case where none of the points can be continuously transformed into
any other, we have a completely discrete space, and we are back to calculi. A continuous
transformation of one image into another is just a continuous function of time that equals
one image at one time and another image at another time. In mathematical terms, this is
a path, and so we are assuming that an image space is path-connected. All the foregoing
characteristics of image spaces are summarized in the first postulate:

Postulate 1 All image spaces are path-connected metric spaces.
The second postulate is more technical:
Postulate 2 All image spaces are separable and complete.’

Separability provides a link to the discrete, since it means there is a countable set of images
that can be used to approximate, arbitrarily closely, any image in the space. Completeness
is really the converse property, since it means that if we construct a sequence of increasingly
similar images (i.e., a Cauchy-convergent sequence), then the limit will exist in the space.
More precisely, if we construct a sequence of images @1, @2, ¢s,... so that d(¢;,¢x) — 0,
then there will be a limiting image ¢ to which this sequence converges, é(p, ¢r) — 0.

One of the reasons that calculi are interesting is that they are, at least potentially,
implementable by purely mechanical means. In theory we can simulate any program by
hand, though in practice it might exceed the capacities of the largest computer. The reader

4These assumptions are hardly unproblematic. It is not immediately apparent that all notions of differ-
ence are quantifiable, and it 1s certainly questionable whether all measures of difference satisfy the triangle
inequality, (e, %) < d(p,x) +d(x,®). Nevertheless, the class of metric spaces is extremely large, and so
the assumption of a metric seems permissible as a hypothesis, if for no other reason. See also MacLennan
(1988, in press-a).

°In practice, most image spaces are (topological) continua, and so compact, which implies that they are
both separable and complete. Compactness i1s not postulated because unbounded image spaces are sometimes
useful.



might criticize simulacra for being too abstract and losing all touch with physical realizability.
In this regard the following proposition is significant:

Proposition 1 FEvery image space is topologically equivalent (homeomorphic) to a subset of
a Hilbert space.®

That is, there is a homeomorphism — a one-to-one relation that is continuous in both
directions — between the image space and the subset of the Hilbert space. Although the
metric of the image space is not preserved by the homeomorphism, it is recoverable from the
elements of the Hilbert space.

This connection with Hilbert spaces is important for a number of reasons. First, el-
ements of Hilbert spaces can be represented by (possibly infinite-dimensional) vectors of
real numbers, so this proposition implies that images can be represented by the vectors
manipulated by neural networks and thus are physically realizable.” Second, Hilbert space
has proved to be a valuable framework in which to study visual and auditory perception,
and 1t is beginning to show its value for modeling general neurodynamics, especially of
the very-high-dimensional dendritic interactions (e.g., Pribram, 1991; MacLennan, 1990a,
in press-b, in press-c). Finally, in a mathematically precise sense, the continuous meets
the discrete in Hilbert space (thanks to the Riesz-Fischer theorem: the square-summable
sequences are isomorphic and isometric to the square-integrable functions); therefore, if we
want to understand the emergence of apparently discrete symbolic processes from continuous
neurodynamics, then Hilbert space is probably the place to start.

1.2.3 Image Maps

In connectionist knowledge representation, most maps between image spaces are represented
by neural nets that implement continuous functions. Furthermore, the continuous relation
between input and output is one of the reasons neural nets avoid some of the brittleness
characteristic of rule-based systems; we don’t expect an infinitesimal change in the input to
lead to more than an infinitesimal change in the output. Therefore we adopt:

Postulate 3 Maps between image spaces are continuous.

This postulate has a number of interesting consequences, which are especially significant
for models of cognition. First, all categories recognized by simulacra are “fuzzy,” since all
maps between image spaces are required to be continuous, and therefore there must be a
gradation of responses between the images that are in a class and those are not. To put
it another way, categories in simulacra are ineluctably indeterminate, since as we approach

6This follows from a theorem of Urysohn, which shows that every metric space with a countable base is
homeomorphic to a subset of the Hilbert space £o(R) (Nemytskii & Stepanov, 1989, p. 324). This applies
to image spaces because, by Postulate 2, they are separable, and so they have a countable base. The result
is even stronger, since the proof shows that image spaces are homeomorphic to subsets of the space @ of
fundamental parallelopipeds.

"In fact, because the image space is homeomorphic to a subset of the space of fundamental parallelopipeds
(see previous footnote), we know that the infinite-dimensional vectors can be approximated arbitrarily well
by finite-dimensional vectors, thus providing a direct link between physically realizable finite-dimensional
vectors and mathematically simpler infinite-dimensional vectors.



the border of the category, the response to its members must come arbitrarily close to
the response to its nonmembers. We cannot have a simulacrum that responds one way
to avocados and a completely different way to non-avocados; there must be gradation of
response from avocados to non-avocados. In summary:

Proposition 2 An image-map cannot produce distinctly different responses to a set and its
complement.

It might be objected that this result is psychologically unrealistic, since we apparently
make categorical discriminations all the time: from identifying phonemes to deciding whom
to marry. This evidence does not contradict the proposition, since the Complementarity
Principle tells us that we cannot distinguish a discrete category boundary from an arbitrarily
sharp continuous boundary. Furthermore, it can be argued on physical grounds that between
two definite responses there must always be a region which is neither (because a connected
space cannot be the union of two basins of attraction; see Proposition 3, below).

We have seen that simulacra do not permit exact classification functions (i.e., functions
that are 1 on the class and 0 outside the class), so we must ask what kinds of categories are
permitted. Fortunately, a number of “separation theorems” from topology ensure us of the
existence of classification functions that are useful and realistic, both psychologically and
physically.

For example, Urysohn’s Lemma tells us that for two disjoint, closed sets, A and B, we
can have a classification function that is 0 on A and 1 on B. However, since a connected
space, such as an image space, cannot be the union of two disjoint, closed sets, there must be
other images in the space other than those in A and B, and for these continuity requires the
classification function to give values between 0 and 1, that is, indeterminate classifications.
Thus the theory of simulacra does not preclude a system that responds one way to definite
avocados and another to definite bananas. It simply requires that things that are neither
definite avocados nor definite bananas must elicit a response that grades into that for definite
avocados on one side and that for definite bananas on the other.

We are also permitted a classification function that is 0 for definite nonmembers of the
category and is equal to 1 for a finite number of images that are definite members (exemplars),
but continuity requires that some other members have classifications arbitrarily close to 0.
For example, we may be quite sure that the [lliad, the Odyssey, the Nibelungenlied, etc. are
epic poems (since they effectively define the class), and there are countless things that we
know are not epic poems (Shakespeare’s sonnets, me, the moon, etc.), but there must also
be epics, actual or possible, that are arbitrarily similar to non-epics, and about which we are
thus unsure.

1.2.4 Image Processes

Although recurrent neural networks are often implemented by discrete-time simulations, they
are usually treated as approximations of continuous-time gradient systems, and hardware
implementations are often based on continuous-time relaxation processes. Therefore we
adopt:

Postulate 4 Formal processes in simulacra are continuous functions of time and process
state.



Figure 1: Basins of attraction are separated sets. The upper figure shows a connected state space
for a process with two attractors, A and B. Since the basins of attraction of a continuous process
are open sets, and a connected space cannot be the union of disjoint open sets, there must be a set
of states not in any basin of attraction, such as the line of “metastable states” shown in the lower
figure.

This is really a corollary of Postulate 3 if we take the differential equations defining the
process to be a map between image spaces (a function of the process state and the differential
of the process state).

Formally we adopt a more general notion of process than that provided by differential
equations. A continuous function P : SXR — S is called a process over a state space S (an
image space) if P(s,0) = s and P[P(s,t),t'] = P(s,t+1'). Intuitively, P(s,t) represents the
state of the process time ¢ after starting in state 5.8

The continuity of processes implies that their basins of attraction are open sets (roughly,
they do not include their boundaries).? Since a connected space cannot be the union of two
or more disjoint open sets, we have an important result:

Proposition 3 If an image-process has multiple basins of attraction, then there are process
states that are not in any basin of attraction.

This means that any decision procedure implemented by a continuous process must leave
certain problems undecided (Fig. 1). (This conclusion holds for any continuous process over
a connected state space, not just for simulacra.)

8What we refer to here are deterministic simulacra; the notion of nondeterministic simulacra is also useful
for some purposes. In these cases equations or inequalities define possible trajectories in state space.

9Suppose P(s,t) — 5, that is, s is in the basin of attraction of 5. Then no matter how closely we wish a
trajectory to stay to P(s,t) and no matter for how long, the continuity of P implies that we can always find
a neighborhood of p in which all the trajectories have this property. That is, points infinitesimally near to
p are in the same basin of attraction, which is thus open (Hirsch & Smale, 1974, pp. 190-191).



1.3 Interpreted Simulacra

A calculus can be “interpreted” (assigned a meaning) by systematically associating meanings
with its formulas and rules of derivation. Likewise, a simulacrum is interpreted by system-
atically associating meaning with its images and processes. For both calculi and simulacra,
the basic requirement of systematicity is mathematical continuity. For simulacra this is an
intuitive requirement, since we would expect infinitesimally small changes in an image to be
associated with infinitesimally small changes in its meaning. For calculi the connection with
continuity is less obvious; let it suffice here to observe that Scott has shown how to put a
topology on a space of formulas in such a way that they are partially ordered in accord with
their constituent structure (e.g., Scott, 1971, 1973).

Postulate 5 Interpretations of simulacra are continuous.

This postulate has a number of interesting implications. First recall that the formation
rules of a calculus define a set of well-formed formulas (i.e., syntactically correct formulas),
which is typically a proper subset of the set of all possible formulas (strings of atomic
symbols). Meaning is attached to only the well-formed formulas; the ill-formed formulas
remain uninterpreted.

The situation is somewhat different for simulacra. It is analogous in that normally only
a subset of the images in an image space will be considered “well-formed.” However, “well-
formed” and “ill-formed” are categories, and so they must conform to the limitations on
classification by simulacra. Thus there must be a continuous variation between the response
to interpretable images and the response to uninterpretable images.

For example, we may have a closed set of definitely well-formed (interpretable) images and
a definite set of ill-formed (uninterpretable) images, but between these must be a nonempty
set of images that approximate the well- and ill-formed images on each side, and are to
that extent more or less interpretable. One may think of the “confidence” of interpretation
decreasing from 1 for the well-formed images to 0 for the ill-formed.

Actual (versus idealized) written or spoken language has exactly these properties. A
signal can contain a certain amount of noise and still be interpreted correctly (within the
error-correction capabilities of the receiver); also some signals are completely uninterpretable
and must be considered pure noise. However, between these two extremes are many signals
in which the noise interferes with interpretation, but doesn’t preclude it.1°

To account for the continuity of response from interpretable images to uninterpretable
images, we require that the interpretation function be total, that is, defined for all images,
whatever their degree of interpretability. Therefore, domains of interpretation for simulacra
must include one or more “undefined objects,” which represent the response to ill-formed
images (Fig. 2).!!

0For example, a digital code might provide 2-bit error correction. In this case transmissions with less
than two bits wrong will be perfectly interpretable. Transmissions with more than two bits wrong may be
detectable as incorrect but uninterpretable.

H'This is only an apparent difference from interpretations of calculi, in which only the well-formed formulas
are taken to be interpreted. For if the topology of the formulas is taken into account, then, as Scott (e.g.,
1971, 1973) has shown, it is necessary to adjoin an “undefined object” (L | the bottom of a complete lattice)
to the domain of interpretation.



Figure 2: An interpretation must be total and continuous on the image space ®, so it must
assign a response that varies continuously from definitely interpretable images I through partially
interpretable images Il to uninterpretable images Y. This could be accomplished by adjoining a
special “undefined object” U to the domain of interpretation. (For clarity the interpretable images
are depicted as a single connected set I; more likely there are many “islands” of interpretable
images.)

Since the domain of interpretation is a continuous image of an image space, the total
domain of interpretation of a simulacrum must always be a continuum. This does not
preclude there being a discrete set of full-fledged interpretations, these being infinitesimally
close to partial interpretations. So, from a practical standpoint, discrete interpretations
are indistinguishable from continuous interpretations. This characterization of the domain
of interpretation has important logical implications (not considered here), but from the
cognitive standpoint permits the same image may be interpreted or not depending on context
(e.g., the need to find an interpretation).

2 Invariants

One obvious advantage of traditional, symbolic methods is in describing rule-like or regular
behavior, so we must consider analogous phenomena in continuous computation. These
are best characterized in terms of invariants in the behavior of a system. The following
description is completely behavioral, with no discussion of how these invariants come to be
(i.e., learning is not addressed).
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2.1 Category Invariants
2.1.1 Definition

A category invariant is manifested by a system when it responds the same to a variety
of stimuli, thus defining a category or class of stimuli.!? However, saying that the system
“responds the same” must include the possibility that the response depends on the individual
stimulus, considered not as an individual but as a member of the category. For example,
if Rover chases cats in his yard, without regard for the individual cat, then we say Rover
is behaving invariantly with respect to cats in his yard. It is crucial however that the cat
that Rover chases be the one that’s in his yard. That is, the response is determined by the
category and the context, but particularized to the category member.!? More precisely, the
context C' determines an action A, so if the stimulus is C'(x), the context particularized to
category member x, then the response will be A(x), the categorical response particularized
to that same category member. This is just the sort of situation that is described by a
conventional “condition-action rule,” C'(K) = A(K), meaning, “if you see a K in context C,
then perform action A on that K” (e.g., MacLennan, 1990b, pp. 424-425).1* We can now
put this definition in mathematical terms.

Definition (Category Behavior) Let ®, X, ¥ be image spaces and let K be a proper sub-
set of X. Then we say a system S : ® — WU displays category behavior with respect to
members of K in context C : X — ® and for action A : X — W if and only if for all z € K,
S(C(z)) = A(x). More concisely:  SoCl, = Al,, where F|,. denotes the restriction of
function F' to K. (As usual, all maps are required to be continuous.) O

Intuitively, ® is the stimulus space, WU the response space, and K a category with respect to
a universe X of potential category members. The map ' creates a stimulus by placing an
object in a context, and the map A is the categorically determined action (Fig. 3).

2.1.2 Indefinite Boundaries

Consider the consequences of this definition. First, as would be expected from the postulates,
the boundaries of categorical behavior are necessarily fuzzy. That is, because S and C' are
both continuous (and so also the composition Al = S o C|y), the system must respond to
nonmembers = just outside the category with actions close to A(x). For example, as noncat
images approximate cat images arbitrarily closely, in Rover’s yard, so also will his behavior
approximate chasing those things. Thus, the rule C'(K) = A(K) is an incomplete description
of the behavior of the system, since the rule must be automatically generalized to similar
nonmembers of K.

12 Although this definition and others to follow are phrased in terms of stimulus and response, they are
intended to be more general than the stimulus/response behavior of a complete organism. Thus they may
refer to the input and output of some cognitive faculty, and so, for example, the “stimulus” could be a mental
image, or the “response” some other internal representation.

13We will see later that the case where the response is not particularized can be handled as a special case
of the general formulation.

1 Note, however, that we are dealing with continuous images, not discrete formulas. For example, the map
C', which creates an image C'(z) from the image #, may not be simply expressible as a template.
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Figure 3: Category behavior. ® is an image space of “stimuli,” ¥ is an image space of “responses,”
and X is a space of images of potential category members. The system .S maps stimuli in @ into
responses in W. The function C' maps a potential member z into a stimulus C'(z), and the function
A maps a potential member z into a response A(z). The functions S, A and C are required to be
continuous. The system S displays category behavior with respect to members of K if for every
member z of K the response to stimulus C'(z) is action A(z), thus exhibiting behavior described

by the rule C'(K) = A(K).

Given the inherent indeterminacy or fuzziness in the border of K, it is somewhat mislead-
ing to speak of absolute category behavior. Since continuity requires that category behavior
fade gradually as we move out of K, it is better to quantify the degree of invariance and
hence the degree of membership in the category. To do this we can measure how much the
actual response S(C(x)) differs from ideal category behavior A(z). Specifically,

The function K(z) is zero for those images for which the system exhibits perfect category
behavior, and increases as the behavior is less characterizable in terms of a category behavior
in terms of the rule C(x) = A(x). If, as in fuzzy set theory, it is preferred to have a measure
that equals one for perfect category members and decreases to zero as the responses differ
from category behavior, then use a similarity rather than a difference metric:

A

K(z) = a[S(C(2)), Alx)].

The o and § functions can be related in any of the ways previously described. Since K(:L')
quantifies the degree to which behavior follows the rule C'(x) = A(x), it can be called the
regularity of the system with respect to C'(X) = A(X).

An especially important case occurs when the regularity is defined in terms of the response
to a single exemplar o (the extension to multiple exemplars is trivial). The exemplar defines
a de facto (indefinite) category Ea, membership in which is measured by the similarity of

12



the response to that evoked by the exemplar:

Bo(w) = o[5(C(2)), S(C(a))]:

2.1.3 Relation to Rules

I will consider briefly the effect that various properties of C' and A can have on the form
of category behavior. In many cases C' will be a one-to-one function, which (because of
continuity) implies that the space C'[K] of images constructed from category K is topologically
equivalent (homeomorphic) to the category.'® In this case the construction is invertible, and
the object can be unambiguously separated from its context; that is, if ¢ = C'(x), then z =
C~!(¢). In this case the behavior of the system on C[K] is given by S| 5q = A0 C7yq,
that is, doing action A on the object extracted from context C'. On the other hand, it is
not necessary to assume that C' is one-to-one, for in constructing an image C'(x) in ® some
distinguishing features of the category members may be lost. However, if this is the case,
the equation S o C|; = A, requires that these features also have no role in determining
the response image.

The special case where A is a constant function describes the situation in which the
system’s categorical response is not particularized to the category member. That is, if
A(x) =1 for all @ € K, then the system shows response ¢ for any member of the category,
S[CIK]] = {}. An example would be if Rover responds to a cat in his yard by barking,
without the action being directed at that cat or any other.

A rule of category behavior C'(K) = A(K) describes the behavior of a system over
a restricted subset C[K] of its stimulus space. However, there is nothing preventing the
behavior over this same subset from being described by a different rule, C'(K') = A'(K').
Figure 4 shows the simplest case, where C'[K] = C’[K']. For example, a person who regularly
separates a cat and dog that are fighting could be described as exhibiting category behavior
either with repect to the class of dogs (in the context of fighting a cat), or with respect to
the class of cats (in the context of fighting a dog).

More generally the sets C'[K] and C’[K'] derived from these categories can overlap in
various ways, so long as the system S behaves consistently in the area of overlap. Thus if a
stimulus ¢ can be described either as a member of category K in context C' or as a member
of category K’ in context (', then for any category members x € K and z’ € K’ yielding this
stimulus, C(z) = ¢ = C'(2'), we must have the same response A(x) = A'(a’).

Of course, a system S can display categorical response to a number of alternative cate-
gories Ky,..., K, in a given context ' with respect to action A. All that is required is that
the equations S o C|KJ = Al hold. However, the necessity of continuity places a number
of constraints on such alternative categorical behavior. To understand these, consider again
the case of just two categories, K and K’ (Fig. 5).

Obviously, if these categories overlap, then the system must behave consistently on the
area of overlap. What may not be obvious it that there are constraints on the nonoverlap-
ping areas; indeed there are even constraints on disjoint categories. For example, response
to elements of K is not independent of response to elements of K’ unless the categories are

15As usual, we use C[K] for the image of the set K under the function €', i.e. C[K] = {C(z) | x € K}.
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X

Figure 4: The same pattern of behavior may be described in different ways, for example, as
category behavior with respect to category K or category behavior with respect to K.

Figure 5: Multiple category behavior. There are constraints, dictated by continuity, on how a
system may display category behavior with respect to more than one category in a single context.
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separated. Informally, independence requires that there be some “space” between the cate-
gories. Continuity requires that members of one category that approach sufficiently closely
to members of the other must yield responses that likewise approach the responses to those
members of the other.

Another respect in which this “rule-like” behavior differs from traditional “rule-based”
behavior, is that the rule C(K) = A(K) is descriptive of a limited region of the total behavior
S of the system. That is, the total behavior S is the given, and the rule is just a partial
accounting for it. In contrast, in a conventional rule-based system the behavior of the whole
is the sum of the behaviors of the individual rules. We may say that whereas in a rule-based
system the total behavior is a construction of the individual rules, here we may have many
rule-like deconstructions of the total behavior, none of which may capture the whole.

An interesting question — with relevance for the translation of trained neural networks
into rules — is when the behavior of a system can be completely described by rules.

One answer follows from the separability of any image space, which means that it has
a countable, dense subset (comparable to the rationals being a countable, dense subset of
the reals). To see how this allows the reduction to discrete rules, let ®, W and S : & — ¥
be given. Then let {¢1, ¢, ...} be such a countable, dense subset of ® and, letting X = @,
define a countably infinite list of categories to be the singleton sets K; = {p;}. Letting
C(x) =2 and A = 5, we have a countable infinity of rules C'(K;) = A(K;) defining S on the
images ;. Since continuous functions preserve limits of convergent sequences, the behavior
on the rest of the images is filled in automatically.

Let’s be clear on what this result tells us. It says there is a countable infinity of rules
of the form ¢; = S(¢;) that approximate arbitrarily closely to the behavior of S on any
image. One problem is that an infinite number of rules are required, though it is not hard
to see how finite sets of rules approximate this totality. The second problem is that these
“rules” are expressed in terms of the system behavior, which may not be a discrete formula
of the usual kind. The third problem, of course, is that singleton categories do not lead to
a very interesting kind of category behavior.

2.2 Relational Invariants

The foregoing analysis is easily extended to cases in which the system exhibits category
behavior with respect to two or more categories simultaneously. In this case the context
is a relation between members of the categories, and the action, though determined by the
relation, is particularized to those members. Such a system responds to an image putting
members & and y of categories K and A in a relation R(x,y) with an output image A(x,y) that
is determined by R and the category members. For example a person might respond to any
cat and dog in a relation of proximity by separating the two. Such behavior is most simply
expressed by a rule of the form R(K,A) = A(K,A). Now we state this mathematically.

Definition Let T,® X, and ¥ be image spaces, and let K and A be proper subsets of X
and T, respectively. Then we say a system S : ® — WU displays category behavior with
respect to members of K and A in relation R : XXT — & and with respect to action
A XXT — U whenever for all # € K and y € A, S(R(z,y)) = A(x,y). More concisely,
So Rlgxy = Algxa H
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The definition is easily extended to three or more categories. Everything we said about the
effects of continuity in the single category case applies as well to multiple categories.

3 Structure

3.1 Introduction

The structure of a thing refers to the organization of its parts. For discrete knowledge
representations, structure refers to the (usually hierarchical) syntactic relations between a
formula’s component parts. Further, in discrete representations the structure is usually man-
ifest. In continuous representations, in contrast, it is not apparent what should be considered
the “parts” of an image, or what sorts of relations should be considered “syntactic.” Indeed,
a common criticism of connectionist knowledge representations is that they have no con-
stituent structure (e.g. Pinker & Prince, 1988). Thus we must investigate the structure of
images. Since we are proceeding in unfamiliar territory, it will be worthwhile first to consider
structure in discrete representations more closely.

Discrete representations are usually described generatively, that is, by giving formation
rules that describe the construction of the allowable formulas from atomic components. The
discrete atoms provide a natural starting point for synthesis and also an ending point for
analysis. Further, we usually prefer unambiguous languages, so that each formula has a
unique decomposition. (Though even for ambiguous languages the atoms are unambiguous.)

The situation is quite different for images, since there are in general many ways that an
image can be decomposed into components, and different decompositions may be appropri-
ate for different purposes. For example, a visual image of a face can be decomposed into
anatomical features, pixels, edges, elementary polygons, wavelets, and so forth. Even a one-
dimensional image can be decomposed into a set of points, or a set of straight line segments,
or a superposition of powers (as in polynomial approximation), or a superposition of sinu-
soids (as in Fourier decomposition), etc. There is not, in general, a privileged decomposition
as there is for discrete representations.

Though the preceding examples are infinite-dimensional, even a finite-dimensional im-
age can usually be represented in terms of several different (possibly nonorthogonal) axes.
Evidence that the appropriate decomposition is not apparent comes from the use of tech-
niques such as principal components analysis and multidimensional scaling in the analysis
of perceptual data (Shepard, 1980).

The multiple-decomposibility of images implies, in effect, that images are inherently
ambiguous; they have no privileged structure. Given this ambiguity, we might hope that
images can be reduced to a determinate set of atoms, but this is not the case. Since most
images are infinite dimensional, they can always be further subdivided. Therefore, most
image spaces cannot be defined bottom-up (generated from atoms), but must be specified
top-down as a field of variation within a background. (We consider some of the methods
later.) In summary: images are in general inherently ambiguous and atomless. This then is
a key characteristic of connectionist knowledge representation.
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3.2 Syntactic Invariants

Syntactic types and relations are special cases of the categorical and relational invariants
we have already considered. For example, if the categories A and B represent the syntactic
types ‘A’ and ‘B’ (that is, the set of all letter-A tokens and letter-B tokens, respectively),
then the rule

C(A,B)= C(B,A)

describes a process that exchanges an ‘A’ and a ‘B’ when they occur in the context C'(A, B),
for example, when the ‘A’ precedes the ‘B’. As expected, images close to ‘A’s and ‘B’s will
evoke responses close to those described by the rule. But what about syntactic relations
(compound, vs. atomic, types) that are close to C'?7 Just as some variability is allowed in
the shape of the token without changing its type, so also variation is allowed in syntactic
relations without changing their type. For example, the syntactic type ‘A’ preceding ‘B’
normally admits some variation in the vertical alignment and position of the A and the B.
This suggests that we must consider the topology of the space C of contexts, so that we can
describe the effect of variations in C' € C.

To understand the problem, consider a simpler example. Suppose n(a) represents the
syntactic operation of putting a not-sign in front of the image z. For example,

n( mortal(Socrates) D = | —mortal(Socrates) |.

I will suppose this operation is defined so that n(n(x)) puts two not-signs in front of x.'¢
One might expect that the process of removing double not-signs from any image in X could
be described by a rule such as n(n(X)) = X, but this is inadequate, since it guarantees the
correct outcome only for the exact image constructed by n. More likely we want to allow
a range N C C of syntactic operations, all of which can be considered the prefixing of a
not-sign. Thus a more realistic rule for removing double negations is N (N (X)) = X, which
applies to any image in X and any syntactic operation in \.

To understand this idea better, suppose that the applicable syntactic operations in C are
parameterized by v € I'. Thus there is a one-to-one transformation 7' : I' — C such that
T, is a syntactic operation. For example, the parameter v might be a vector describing a
relative position, and then T'(y,x) would be the operation of attaching to x a not-sign at
position v relative to x. A certain set N of these v will constitute prefizing a not-sign, and
so the category of ‘not’-prefixing operations will be an homeomorphic image of the allowed
parameter values, which I'll write " = T[N]. Thus, the rule for eliminating double negation,

N (N (X)) = X, can also be expressed:
T(N,T(N,X)) = X.

We can see that T is a relational invariant on the product space I'X X, which describes
category behavior on the subspace N xX.!7

1For simplicity, assume n : X — ® and X = ®. This permits recursive construction of “not-trees,” the
mathematical requirements for which are taken up in the next section.

1"We cannot, however, assume that the topology on NxX is the usual product topology, or that the
metric is the Euclidean combination of the metrics on T' and X (i.e., 612“>< <= 6%+ 6%). However, the product
topology is the weakest one that yields continuous projections from I'x X to I' and X, and so any permissible

topology on I'x X must be a refinement of the product topology.
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[ will consider briefly the topology of the parameter space I', or equivalently the topology
of the space C of syntactic operators. First observe that for any fixed =, the operator
C =T, : X — & is required to be continuous (by Postulate 3). Furthermore, since we
want T, (x) to vary infinitesimally with infinitesimal variations of v, it is clear that T'(v, x)
is continuous in both of its parameters. Therefore, any topology may be permitted on I' so
long as T'(y, ) is continuous in 7.1®

If N is the category of negation-type syntactic operations and A is the category of A-type
images, then N XA represents the category of syntactic relations that constitute prefixing
not-signs to ‘A’ tokens.'® It is thus a continuous analog to a parse tree. To see this, note
that a discrete formula such as n(n(A)) corresponds to a tree with two nodes labeled n
and a leaf labeled A; this parse tree represents the structure of the formula. The set of
allowable formulas and the set of allowable parse trees are isomorphic (for an unambiguous
language). The same holds in the continuous case, except that the expression N(N(A))
denotes a set of formula images that corresponds to the set of structural images NXN XA,
which represent the structure of the formulas. Thus NXNXA represents a category of
“double negations of A.” As always, the boundaries of such a category are indefinite, since
behavior must be continuous across the boundary. This provides a (quantifiably) indefinite
structural description and a corresponding (quantifiably) indefinite notion of syntax. In this
way “grammars’ for indefinite languages can be defined.

3.3 Recursive Structure

Recursive structure has been claimed to be the hallmark of language and cognition (e.g.,
Fodor & Pylyshyn, 1988; Pinker & Prince, 1988), and therefore there has been some effort
to show that neural networks can manipulate recursive structures (e.g., Pollack, 1988, 1989;
Dolan & Smolensky, 1989). Although this claim is not beyond criticism, it nevertheless will
be worthwhile to consider some of the topological constraints on continuous representations
of recursive structure.

3.3.1 Mathematical Considerations

For simplicity, consider an image space B of binary trees. To allow the recursive construction
of binary trees, we must have an operation cons : BXB — B that takes two trees ¢, ¢ € B
and constructs a binary tree cons(¢,) € B from them. Further, we must have means for
extracting the left and right subtrees of a tree, that is, operations left, right : B — B satisfying
the identities:

leftlcons(p, )] = ¢, right[cons(ip, 1¥)] = v

This is no different from what we have in discrete computation. The postulates of simulacra,
however, require that cons be a continuous map from BXB — B, and likewise that left and
right be continuous from B to B. The result is that cons is a continuous one-to-one map

18This will be the case, for example, if the metric on the operator space is the supremum metric, d¢ (C, C’) =
sup{dg(C(z),C'(x)) | x € X}, where dg is, without loss of generality, a bounded metric on ®. The same
applies for a metric on the parameter space I'.

19Gtrictly speaking, N is the category of negation-type syntactic operations and N is the corresponding
set of parameters, but it is useful to treat the parameters v € N as equivalent to the operations 7, € N.
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from BXB to B with a continuous inverse. This means that the spaces BXB and B are
topologically equivalent, BXB = B.

In connectionist models we are usually dealing with finite-dimensional Euclidean spaces,
B = &7, therefore recursive tree construction requires £*" = €7, since E"XE" = £,
For example, if our trees are represented by 100-element vectors, then tree construction
must create a 100-element vector from two 100-element vectors; likewise deconstruction
must extract two 100-element vectors from a single 100-element vector. In addition, both
operations must be continuous. Unfortunately, Brouwer’s Theorem of the Invariance of
Dimensionality shows that this is impossible; £ = £ if and only if m = n (Hausdorff,
1957, p. 232). That is, we cannot have continuous recursive construction of trees over a
finite-dimensional Euclidean space.?®

A way around Brouwer’s theorem is suggested by the observation that £*" = £" when n =
0o. Indeed, as will be shown presently, recursive tree construction is possible in Hilbert space
(an infinite-dimensional Euclidean space), so it will be worthwhile to consider the practical
significance of infinite-dimensional spaces, since actual neural nets are finite-dimensional.
However, if the number of units in a net is sufficiently large, then it often can be treated
mathematically as though it is infinite (MacLennan, 1987), and a neural net of such size will
allow the construction of trees of effectively unlimited depth. Of course, so long as the net
is finite, there must be some limit, but this is no different from the discrete case: the finite
memory of a real digital computer places a limit on the size of trees; arbitrarily deep tree
construction is possible only in the unlimited memory of imaginary computers, such as the
Turing machine.

3.3.2 Fourier Interleaving

There are many ways that recursive structures can be represented in infinite-dimensional
spaces (MacLennan, in press-a), but we will consider only one, “Fourier interleaving,” which
has some interesting properties.

Since image spaces are homeomorphic to subsets of Hilbert spaces, we can expand images
in generalized Fourier series.?! Two images ¢ and ¢ in this space can be combined into a
pair cons(ip, 1), also in this space, by interleaving the Fourier coefficients of ¢ and ¢:

cons(p, ) = > (cxvar + drvaktr),
where ¢ = chvk and ¢:devk.

This kind of mixing of images might seem questionable, but in fact the operation is mathe-
matically very well behaved: it is continuous, linear and isometric (preserves the metric of
the Hilbert space) on LoX Ly. Since this operation returns an image in the same space as
its arguments, it can be applied recursively to build binary trees of arbitrary depth (cons

20The reader familiar with Peano’s space-filling curves may be confused by Brouwer’s result. However,
the Peano curve is a continuous map of the unit interval [0, 1] into the square [0, 1], but not vice versa.
Observe that infinitesimal movements on the line map to infinitesimal movements in the square, but that
infinitesimal movements in the square may map to finite movements on the line.

2IA generalized Fourier series is a Fourier series with respect to an arbitrary orthonormal basis
Vg, V1, U2, . . ., 1.e., not necessarily the familiar trigonometric or complex exponential bases.
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Figure 6: Fourier interleaving. The plots show examples of Fourier interleaving as a method
of constructing recursive binary trees. Graphs A and B show two given images from which
C' is constructed by Fourier interleaving, C' = cons(A, B). Conversely, images A and B can
be extracted from image C' by A = left(C') and B = right(C'). Graph D demonstrates that
left and right “parts” can be extracted from images that were not constructed by cons, in

this case D = left(B).

omitted for clarity):

(a.b), (a,(b,¢)), ((a,b),(c.d)), ((a,(b.c)).(d:c)), ete.

It is also apparent that the left and right elements can be easily extracted from the pair
X = cons(ip,1): simply take either the odd or the even elements of its Fourier series:

left(y) = Zczkvk and  right(y) = Zczk+1vk,
where  y = chvk.

One of the interesting properties of Fourier interleaving is that we can extract the left
and right elements of any image, regardless of whether it resulted from Fourier interleaving
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(Fig. 6). This is because any image can be expanded as a Fourier series (even if many of its
coefficients are zero), from which the odd or even elements can be selected. In this sense,
images behave like infinite trees with no leaves; we can always go further out from the root.
Of course, if an image has finite bandwidth — as would be the case in practical situations —
then eventually we will reach images that are either the zero image or images proportional
to the first element of the basis sequence. The left and right parts of these can still be
extracted, but they will return the same images:

left(0) = 0, right(0) =0, left(kvg) = kvg, right(kvg) = 0.

Of course 0 = Qug, so the images kvg (with & a real number) function in some ways like the
atoms of the image space.

We have seen before that the Riesz-Fischer theorem, which states that Ly (the space
of finite-energy images) is topologically equivalent to {5 (the space of square-summable real
sequences ), suggests that the interface between the continuous and the discrete lies in Hilbert
spaces. In this sense the real numbers can be considered the “elementary images” from which
all images are constructed. These form a continuum and do not fall into discrete types.

Engineers may object that Fourier interleaving is impractical since, with increasing
tree-depth, information gets pushed into higher and higher frequency bands; this is valid
objection.?? Noise often increases with frequency, and high-frequency representations may
be limited by physical inertia (for temporal frequency) or atomic structure (for spatial fre-
quency). Therefore, although in the mathematically ideal sense arbitrarily deep trees (or
long sequences) can be represented by Fourier interleaving, any physical instantiation of the
process will have the property that as trees become deeper (or sequences longer), the leaves
become more degraded until they are completely inaccessible. This is an appealing model of
the competence/performance distinction, since the physical medium causes performance to
degrade gradually with increasing depth, rather than facing a hard limit (such as would be
implied by a finite stack or sequence buffer). Competence corresponds to the ideal provided
by the infinite-dimensional space.

Although the preceding construction shows that recursive tree construction is possible
in connectionist systems, we do not attach as much significance to this as might those who
think that trees are essential to linguistics (e.g., Fodor & Pylyshyn, 1988; Pinker & Prince,
1988). I have argued elsewhere that the path to a post-Chomskian linguistics is hidden by
our general inability to see language in any terms other than trees (MacLennan, 1993a).
Although I cannot offer a specific alternative (since I wear the same blinders), the preceding
approach to category invariants and rule-like behavior is one possibility.

4 Formal Languages

4.1 Specification of Image Spaces

The formation rules of a calculus define a formal language, namely, the well-formed formulas.
In this section I will consider analogous procedures for specifying image spaces and (fuzzy)

22We assume here the trigonometric basis, though the same arguments apply to any basis sequence char-
acterized by increasing frequency.
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classes of well-formed images, that is, continuous formal “languages.”

4.1.1 Delimiting the Space

Specification of a (discrete) formal language usually begins by defining an alphabet or vocab-
ulary of atomic types; this is usually defined ostensively, that is, by exhibiting (in a special
context) a token of each type. For example,

V= {172737475767 7787970}'

Certain well-known alphabets may be taken as given (e.g., the digits, the letters).

In exactly the same ways, we may specify the range of variation of a continuous formal
language. We define it ostensively, by exhibiting (in a special context) the limits of the
range. For example, we may exhibit a range of lengths, or a range of lightness/darkness:

R=[-—— ], R =[o,e].

We may also define it by use of a predefined sets or values. For example, we may take as
given spaces such as R = (—o0, 00) = the real line, and U = [0, 1] = the unit interval. Also
we may take as given the constant 7 in a definition such a R = [0, 27].

In defining a discrete formal language the next step is to specify the possible places a
token can be put, which we call the domain of locations. This is almost always a linear array
of locations of arbitrary but finite length; thus the domain of possible locations corresponds
to the natural numbers. In this case the formula space is V*. Occasionally the characters
will be put into a two-dimensional array (rather than a one dimensional string), or some
other arrangement; in some cases the strings are restricted to a fixed length n, so the space
is V.

The situation is analogous for a continuous formal language. For example, the space can
be given by a Cartesian product, for example Ry X Ry X ---, where Ry, Ry, ... are the ranges
of the individual dimensions. It is also necessary to specify the metric on the image space;
it cannot be assumed to be the Euclidean metric.

If the domain of locations is a continuum, then it can be defined by the same mechanisms
used for ranges: ostension or predefined sets. In this case, for a domain of locations D and
a range of variation R, the images are continuous functions from D into R. As with finite-
dimensional image spaces, it is necessary to specify the metric, which we may do by appeal
to a named function space. For example, we might say that the image space is the space of
L, functions from U into R.

4.1.2 Well-Formedness

The usual way of specifying a subset of well-formed formulas in the formula space of a
discrete language is to exhibit a nondeterministic generative process (a generative grammar)
that produces just the well-formed formulas. Reversing this process — determining whether
a given string is well-formed — is nontrivial, and a large body of computer-science theory
(parsing theory) is devoted to the efficient inversion of generative grammars.

The well-formed images of a continuous language may be defined in many of the same
ways as discrete languages, for example, by specifying a generative process. In many cases
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other methods are more appropriate, such as definition by example. In any case, since the
category of well-formed images is a subset of an image space, by Postulate 3 we know the
category must be fuzzy.

For a concrete example, suppose wy,ws, . .., w, are exemplars of well-formed images. Then
the continuous map

W(w) = € — min[é(w,w1), §(w,ws), ..., 0 (w,w,)]

is positive just when w is closer than € to at least one exemplar. Thus W defines an inde-
terminate category of well-formed images. More complex classes of well-formed images can
be defined by specifying category invariants that must hold.

4.2 Descriptions of Formal Systems

In writing a program, or otherwise constructing a calculus, we use a language of discrete
symbols to describe a discrete process over a discrete state space. When we broaden our
awareness to include continuous languages and simulacra, then we see that there are four
possibilities to consider:

e Discrete description of discrete systems.

e Discrete description of continuous systems.

e Continuous description of continuous systems.
e Continuous description of discrete systems.

The first has already been considered, so I'll briefly address the others.

The description of the continuous by the discrete is what we do whenever we use mathe-
matical notation to describe image spaces (as discussed above). For example, given certain
primitive spaces (such as the real line), we can use the discrete language of set theory to
construct higher-dimensional Euclidean spaces. Describing the continuous by the discrete is
also what we do when use differential equations to describe a continuous process.

There is a natural match between discrete languages and discrete systems, and so we
might expect that the best vehicle for describing a continuous system is a continuous lan-
guage. The difficulty is that continuous languages are much less familiar than discrete
languages, so it isn’t obvious how to proceed. I'll mention a few possibilities.

[ have indicated above how image spaces can be defined ostensively (as are formula
spaces), and have suggested means for defining classes by example. Learning procedures
permit the definition of maps and processes by continuous manipulation of the input and
output, thus providing a continuum of examples. In other cases we may use gestures or other
continuous operations to directly mold a potential surface to determine the dynamics of a
continuous process.

Our investigation of continuous languages has just begun, but some opportunities are
already apparent. In addition to providing a framework in which to understand ritualized
motor activities, including dance and speech, we expect that continuous languages will have
applications in computer system design, for example, in gestural interfaces.
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The last combination, the description of the discrete by the continuous, is also important,
for this is what happens when people talk informally about a calculus, for example, when
mathematicians discuss formal logic or axiomatics, when computer scientists discuss program
organization, or when chess players discuss strategy. Continuous languages may prove a
powerful tool for conquering the overwhelming minutiae of complex calculi.

5 Intentions

5.1 Definition

Another advantage of discrete knowledge representations is the ease with which one part of
a structure may refer to (“point at”) another, which is especially useful in the representation
of propositional information. In this section I will discuss intentional fields, a mechanism for
accomplishing the same ends with continuous representations (MacLennan, in press-b).

Traditionally, an intention (intentio) is a mental construct that is directed at something
else (either internal or external to the mind), selecting it for further processing. The Latin
verb intendere means to stretch toward or point at, and includes the sense of focusing one’s
attention on (Ozford Latin Dict., s.vv. intendere, intentio). In Medieval Scholastic theories
of the mind, an intentio was “something in the soul capable of signifying something else”
(Ockham, Summa Logicae 1 §12). Use of intentionality by Brentano, Husserl and Heidegger
retains the sense of a mental “vector” directing awareness at its object. (Runes, 1942, s.v.,
defines it as “the property of consciousness whereby it refers to or intends an object.”) In
short, intentions are the basic mental mechanisms for pointing and directing.

Intentions are concerned with selection of parts from a whole, and so we will have to treat
the parts of images. Therefore it will be convenient to consider them elements of Hilbert
spaces, specifically, as fields, quantities defined over a spatial continuum (MacLennan, 1987,
in press-b).

Formally, a field v is defined to be an intention of type F' toward ¢ if v : D — [0,1],
where ¢ : D — R, and F'is an operator defined on Lo( D)X Ly(D). The intention is resolved
by applying F' to the pair (v,¢), that is, F(v,¢). The implication is that v focuses F'’s
processing of ¢ on the region of D where v is largest. Thus an intentional field is similar to a
generalized focus of attention — generalized in that it need not be present to consciousness.

This model of intentions is analogous to Peirce’s explanation of signification as a triadic
relation between a subject and an object with a particular significance (meaning) for that
subject.?® That is, an intention is someone’s consciousness of something in some regard. So,
for a fixed subject, the intention indicates an attitude toward an object. We may also say it
has form and matter.

If we fix the subject and object, then what distinguishes different kinds of intentions is
their manner of being processed, which corresponds mathematically to the function to which

ZFor example, Peirce said a representamen (representation) is “something which stands to somebody for
something in some respect or capacity” (2.228; Goudge, 1969, p. 139). The triadic relation is between sign,
object and interpretant, though Peirce takes the latter to be an equivalent sign in the mind of the interpreter,
whereas I cash it out as a function. Roughly, the triadic relation is manifest in the subject, verb and object
of sentences such as “Bill notices the bear,” “Bill fears the bear,” etc.
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they are passed. These functions may correspond to different brain areas, or perhaps to
orthogonal subspaces within a single area.

Many behaviors can be explained in terms of the generation of intentions and their
translation from one modality to another. For example, motion in the visual field could
cause the generation of a novelty intention focusing attention on a region of the visual field.
This could cause the object in that region to be classified, perhaps generating a fear intention
toward that same region of the visual field, and to a corresponding region in an egocentric or
allocentric spatial field. This in turn could generate an avoidance intention, which would be
translated into a motor intention toward another place, which would cause the generation
of appropriate motor images (i.e. activity in motor areas).

In the following sections I'll consider some examples of intentions, gradually working our
way toward the representation of propositional information.

5.2 Perceptual Intentions?*

The easiest intentions to understand are perceptual intentions, especially visual intentions.
Perhaps the simplest visual intention is a motion intention, which results from the detection
of motion; it could be computed as the square of the time derivative of the visual image,
no doubt spatially smoothed. For example, vy = [d(Gy * puye)/dt]?, where G, is a 2D
Gaussian and % means 2D convolution. A motion intention could also be computed from a
more abstract image, such as the Gabor coefficients of the retinal image.

Although some perceptual intentions are computed bottom-up; more typically they result
from a combination of top-down and bottom-up processing. Examples of such intentions
include one directed at the presence of an unexpected object, or one directed at the absence
of an expected object. This latter demonstrates that intentions need not be directed at
things present. These are both “surprise intentions,” but there may also be intentions noting
fulfilled expectations (e.g., the presence of an expected object, or absence of one expected
to be absent).

Though an intention directs processing toward some region of an image, there is no
requirement that that image be a representation of reality (as Meinong observed). That is,
the image may be perceptual in form (e.g., visual or auditory), but not perceptual in content
(i.e., imagined rather than perceived). This is the foundation on which is built our ability
to reason propositionally, as will be discussed next (see also MacLennan, 1993b).

5.3 Propositional Intentions

Johnson-Laird and Byrne (Johnson-Laird & Byrne, 1991, 1993) argue convincingly that
deduction is implemented by the manipulation of models, but their theory requires certain
elements of a model to be treated in special ways. For example, a object may be “tagged”
to indicate that a model does not contain that object, or that this model is the only one
that can contain that object. I have argued (MacLennan, 1993b) that Johnson-Laird &
Byrne’s models can be explained as combinations of images and propositional intentions.
For example a model of the absence of a circle and the presence of a triangle, which they

24This section will be omitted from the published version.
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abbreviate

-0 JAN
can be represented by an image of a circle and a triangle and an intentional field negating
the circle and asserting the triangle, which I abbreviate:?®

O A
= @

What gives this intentional field the aspect of propositional representation is the manner
in which it is processed (which is no doubt correlated with cortical region carrying the field).
For example, since a model comprises both an image and an intentional field, the integration
of new information with a model necessitates updating the intentional field. Therefore, if
the new information asserts the presence of a circle:

O
@

then the model negating the circle must be rejected. Such a contradiction is indicated by
the two intentional fields — for the model and for the new information — having opposite
signs in a common region.

The rejection of an entire model can be indicated by a intentional field that negates the
region holding that model, while leaving the rest unnegated. Thus, negation of my out of
mi, ..., m, could be represented:

mi mo M3 ce my

o

This is not the place for additional detail, but the general pattern should be clear.

6 Emergence of Discrete from Continuous®

6.1 Introduction

Discrete knowledge representation and processing systems are (superficially, at least) very
good at manipulating mathematical and logical formulas, and similar discrete structures,
according to precise rules; they have been less successful at subsymbolic processes, such as
perception, recognition, association, control and sensorimotor coordination. In contrast, con-
nectionist approaches are well-suited to subsymbolic tasks, but there has been doubt about
how well they can operate at the symbolic level. This naturally suggests hybrid architec-
tures, with symbolic tasks accomplished by discrete (digital) computation and subsymbolic
tasks by continuous (analog) computation.

This is not the way the brain works, however, for in the brain discrete, symbolic processes
emerge from underlying continuous, subsymbolic processes. There is reason to believe that

25 Although T defined intentional fields to be [0, 1]-valued, in this case it is more convenient to allow them
to be [—1,1]-valued, so that assertion and negation can be represented in the same intentional field.
26This section omitted from published version.
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this is not just an accident of biological intelligence, but that this underlying continuity
imparts to the emergent symbolic processes the flexibility characteristic of human symbol
use (MacLennan, 1991, 1992). The problem is then to understand how discrete-looking
representations and processes can emerge from continuous representations and processes.

It is an oversimplification to treat language as a discrete system. For example, although
we accept the space between written words without question, anyone who has done con-
tinuous speech recognition knows that we cannot depend on spaces in the sound stream.
Furthermore, in ancient Greek, when written language was not considered an autonomous
means of expression, but was viewed as a visual representation of the sound stream, we find
words run together without intervening spaces, just the way we speak. Seneca claimed that
Latin writers sometimes separated words because there was a difference in speech rhythm
between Greek and Latin speakers, namely, that Latin speakers left a pause after each word
(Small, 1992). Havelock (1982, p. 8) points out that the alphabet was in use in Greece
for 300 years before Greek had a word for ‘word’. Apparently the concept of a word, as a
discrete, indivisible unit of the sound stream is not so obvious as we now take it.

In summary, the phenomenological salience of the word is partially a result of our use
of an alphabetic writing that separates words, and of the cultural practices that go along
with it, such as dictionaries, indices, and word-oriented reading instruction (Small, 1992).
Nevertheless, the concept of a word is neither illusory nor arbitrary, since as a matter of fact
speakers tend to treat certain segments of the sound stream as units, and it is the recurrence
and semi-independence of these segments that form the basis of the ‘word” idea. Therefore, it
seems that the emergence of approximately-discrete, symbolic processes from the underlying
continuous, subsymbolic processes will be illuminated by considering the self-organization of
processes for recognizing recurring parts of images (such as the sound stream).

6.2 Metric Correlation

The familiar correlation attempts to match one signal to all possible translations of another
signal, and returns a signal showing how well these matched. The correlation of images ¢

and 1 is defined:
W®Ma=4¢u—@¢@&.

The structure of this is more apparent when we realize that (¢t — «) is ¢ translated to
the right by an amount «. Therefore we introduce the operator T, to mean a rightward
translation by «a, and rewrite the correlation:

[@®Wa=ATWﬁW@Mt

It is then apparent that the correlation is the inner product of the translated image T, and
the image ¥. So we write it that way:

[ @ Y]a = (Tatp, ¥).

The significance of the inner product is that it measures the similarity of normalized images.
Therefore we write o(p, 1) = (p, 1) to emphasize that its purpose is to measure similarity:

[ @ V] = a(Taw, ).
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Thus, in general terms, the value of the field y = ¢ @ ¥ at a point « is the similarity of the
a-translate of ¢ to .

The common correlation can be generalized to other classes of transformation (rotation,
scaling, perspective distortion, etc.) as well as to other measures of similarity or dissimilarity.
If T is any parameterized class of transforms and o is any similarity metric, then define
o(e g ) the metric correlation with ¢ of all T-transforms of ¢ by:

[o(e <7 ¥)]a = o(Top, ).

Sometimes it is easier to work in terms of difference rather than similarity, in which case we
write:

[6(¢ AT ¥)]o = 6(Taw, ).

where ¢ is a (difference) metric. When the metric or transform is clear from context it will
be omitted; thus in general ¢ <1 % is the metric correlation of all transforms of ¢ with .
Sometimes it is more convenient to consider the metric correlation of ¢ with all T-transforms
of ¥, so we write:

(e B Y)lo = ple, Tot)),

where p is either a similarity or difference metric. Clearly, p <19 = ¢ > ¢. Finally we define
the operator which correlates all T-transforms of ¢ with all U-transforms of :

[p( O o = p(Tap, Ustd).

Notice that the correlation field resulting from this operation is indexed over two parameter
spaces. These operations satisfy many simple identities, most of which are obvious, and so
omitted.

It is often useful to consider metric correlations under multiple transformations. For
example, if X, for o € £* (2D Euclidean space) is a translation by «, and Rg for 8 € St (a
topological circle) is a rotation through an angle 3, then 7,3 = X, Rs is a rotation followed
by a translation (the order doesn’t matter; they commute). Thus (¢ < ¢),3 measures the
correlation between ¥ and the a-translation, -rotation of .

Often the transformations applied to images have algebraic structure; frequently they
form a topological group. In these cases the metric correlations inherit the structure; for
example, if the transformations are an abelian group:

(Top Y)s = (¢ A Y)ats = (¢ AY)pta = (Tpp < P)a.

The reader may suppose that metric correlations are computationally too expensive to
have much significance to cognitive processing. First observe that they are not much more
expensive than the usual (inner product) correlations. Second, the limited precision of neural
computation (one or two digits) will limit the number of transforms to be computed to a
dozen or so, for each real parameter. A combination of two transforms might require 100 to
be computed (in parallel).

As discussed above, the speech stream is essentially continuous, and, to a first approxi-
mation, words are segments of the sound stream that can be treated as discrete units, that
is, relocated as wholes. Conversely, recurrence of the same signal in a variety of contexts is
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evidence that it is a meaning unit, often a word. Therefore, we suspect that one component
of language learning is the detection of such recurrence. However, a word will rarely recur
exactly; it will be transformed in duration, pitch, amplitude, etc., or by the context of sur-
rounding sounds. This suggests metric correlation as a mechanism for the self-organization
of a word-recognition system.

7 Learning

A detailed discussion of learning in simulacra is beyond the scope of this chapter, so a
few general observations must suffice. First observe that since finite-dimensional Fuclidean
spaces are image spaces, all the usual learning algorithms, such as back-propagation, apply to
finite-dimensional image spaces with the inner-product norm. Second, I will assert without
proof that these same algorithms generalize with little change to the infinite-dimensional
FEuclidean case, that is, to Hilbert spaces. (To see this, just observe how little of the usual
derivation depends on the dimension of the space; convergence of the infinite sums follows
from the square-summable property of the Hilbert space.) Finally, recall that any image
space is topologically equivalent to a subset of a Hilbert space. Therefore learning in image
spaces can be accomplished by gradient descent in the corresponding Hilbert space. Since
the image space and the Hilbert space are topologically equivalent, convergence in one is
equivalent to convergence in the other. (The homeomorphism preserves limits.)

8 Decidability & Computability

The question naturally arises of whether the well-known undecidability and uncomputability
results hold for simulacra and continuous computational systems, and the beginnings of a the-
ory of continuous computation has already appeared. For example Blum and her colleagues
(Blum, 1989; Blum, Shub, & Smale, 1988) have shown that many classical computability,
decidability and complexity results generalize to computation over the real numbers. On
the other hand, Stannett (1990) has published a proof that the halting problem for Tur-
ing machines can be decided by certain machines with continuous dynamics, which thus
have super-Turing power, and Pour-El and Richards (1979, 1981, 1982) have shown that a
Turing-computable wave equation with Turing-computable initial conditions can have non-
Turing-computable solutions.

Interesting as these results are, they do not address the central issue, for the traditional
theory of computation asks what calculi can decide about calculi, and analogously a theory
of computation that takes a consistently continuous perspective should ask what simulacra
can decide about simulacra. However, such a perspective forces us to ask different questions
about simulacra than we ask about calculi. First observe that a simulacrum cannot answer
a yes-or-no question. This follows simply from continuity, since if the answer is 0 for some
questions and 1 for others, then there must also be questions yielding neither answer; this is
the case for both image maps and image processes (Props. 2 and 3). It may be objected that
we can draw an absolute distinction (such as ‘< 1/2” vs. ‘> 1/27), but that just places the
calculus in us, and presumes that we can instantiate a perfectly discrete system. This is the
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familiar situation of a calculus deciding a property of a simulacrum, and doesn’t address the
question of what simualcra can decide about simulacra. The latter question is the relevant
one if, as connectionist research suggests, continuous models of cognition are more accurate
than discrete ones.

A concrete illustration is provided by a continuous analog of Turing’s famous proof of
the undecidability of the halting problem. Let F be a space of continuous processes P :
SXR — 5. The stability problem for a process P and initial state s is to determine if the
process P(s,t) is asymptotically stable (i.e., in some basin of attraction); if it isn’t then we
say that the process is unstable. What we would like to know is whether there is a processin
F that can decide the stability problem for all processes in F and initial states in S. In order
to have a process make decisions about other processes, the latter must be representable in
the state space (this is what Godel numbering accomplishes in the discrete case). Therefore,
assume that there is a space F' C S such that for each process P € F there is at least
one corresponding “program” (an image) p € F. (That is, we assume there is a continuous
universal function from F onto F.) Then, a decision process for the stability problem is a
continuous function D : (F'XS)XR — (FX.5) such that:

D[(p,s),t] = o iff P(s,t) is stable,
D[(p,s),t] = v iff P(s,t) is unstable,

where P is the process corresponding to the “program” p and o and v are any distinct points
in the state space F'X S, which are used to represent the answers ‘stable” and ‘unstable’.

The impossibility of such a decision procedure is now apparent, since by Prop. 3 no such
process can exist; there must be pairs (p, s) that are outside all basins of attraction, including
those for ¢ and v. For these pairs the decision process gives no answer. In general there
can be no decision procedure that always gives an answer, so decision problems have to be
reformulated to be consistent with the postulates of simulacra.

With their assumption of discreteness, calculi have by definition the ability to perform
exact classification, but also the liability of responding discontinuously to infinitesmal vari-
ations in the input (brittleness). Conversely, with their assumption of continuity, simulacra
have by definition the ability to respond continuously to infinitesmal changes in input (flex-
ibility), but are unable to classify exactly. These abilities and inabilities are consequences
of the idealizing assumptions (perfect discreteness or perfect continuity) in each case. In
reality we know that a calculus can take arbitrarily small steps, and that a simulacrum can
make arbitrarily fine discriminations. Therefore the conclusions we draw from the theoretical
models are relevant to the real system only to the extent that the real approximates the ideal
at the relevant level of abstraction. This, again, is the Complementarity Principle.

9 Summary

The calculus is a theoretical construct that captures the essence of traditional, discrete,
symbolic models of cognition. The development of new, connectionist models, which are
characterized by continuity, will be promoted by the development of an analogous theoretical
construct, and the simulacrum has been proposed to fill this role. Whereas calculi implement
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discrete processes operating on formulas, simulacra implement continuous processes operat-
ing on abstract images. The theory of simulacra suggests a novel approach to many issues in
cognitive modeling, including classification, invariants in behavior, constituent structure, in-
tentions and approximately discrete processes, such as rule-like behavior, symbolic cognition,
and language.
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