
A Computationally Universal Field

Computer That is Purely Linear

�

David H. Wolpert

y

Bruce J. MacLennan

z

September 14, 1993

Abstract

As de�ned in MacLennan (1987), a �eld computer is a (spatial)

continuum-limit neural net. This paper investigates �eld computers

whose dynamics is also continuum-limit, being governed by a purely

linear integro-di�erential equation. Such systems are motivated both

as a means of studying neural nets and as a model for cognitive

processing. As this paper proves, such systems are computationally

universal. The \trick" used to get such universal nonlinear behav-

ior from a purely linear system is quite similar to the way nonlinear

macroscopic physics arises from the purely linear microscopic physics

of Schr�odinger's equation. More precisely, the \trick" involves two

parts. First, the kind of �eld computer studied in this paper is a

continuum-limit threshold neural net. That is, the meaning of the

system's output is determined by which neurons have an activation

exceeding a threshold (which in this paper is taken to be 0), rather

than by the actual activation values of the neurons. Second, the oc-

currence of output is determined in the same thresholding fashion;

output is available only when certain output-agging neurons exceed

�

This report has been simultaneously released as Santa Fe Institute Technical Report

93-09-056.

y

The Santa Fe Institute, 1660 Old Pecos Trail, Suite A, Santa Fe, NM, 87501

(dhw@sfi.santafe.edu).

z

Computer Science Department, University of Tennessee, Knoxville, TN 37996-1301

(maclennan@cs.utk.edu).

1

the threshold, rather than after a certain �xed number of iterations

of the system. In addition to proving and discussing their computa-

tional universality, this paper cursorily investigates the dynamics of

these systems.

1 Intro ction

This paper is an investigation of computation systems which can be

viewed as neural nets (Rumelhart, et al., 1986) continuous both in

space and time. Such systems are variants of what we have called

�eld computers (MacLennan 1987, 1990). Their motivation is two-

fold: (1) since continuous systems are usually easier to analyze than

discrete ones, one might hope that �eld computers are easier to analyze

than traditional discrete neural nets; (2) one might also hope that

�eld computers provide an e�ective approximation to very massively

parallel neural nets.

Section 2 starts by giving several motivations for the system stud-

ied in this paper and the dynamical equation governing its evolution.

Section 3 then proves that due to the way in which meaning is assigned

to the state of the system, the system's dynamics is computationally

universal, despite the fact that that dynamics is purely linear. This is

perhaps the main result of this paper; it means that no nonlinear (e.g.,

sigmoidal) neurons are needed to achieve computational universality.

The �nal section of this paper cursorily discusses various approaches

to exactly solving the dynamics of the system, and to training the �eld

computer to reproduce an arbitrary training set.

e ste n er onsi eration

2.1 e s ste as a co ti -li it e ral

et

A �eld, as de�ned in MacLennan (1987, 1990), represents the acti-

vation state of a continuum-limit neural network; in mathematical

terms a �eld is a real-valued function on a continuum, typically an n-

dimensional uclidean space. Thus a �eld is a function :

n

,

and the set of all such �elds, which we write (

n

), is some conve-

nient space of functions over

n

(such as

2

(

n

)). Since there is a

continuum of neurons, they are indexed by real vectors r

n

, and

the activation of a neuron is represented by

r

(r), the �eld's value

at that point.

In accord with motivation (1) for �eld computers (Section 1), this

paper concentrates on systems whose dynamics is exactly linear. The

system in this paper is a speci�cation of the state of the �eld at all

times , i.e., is a function : (

n

). Intuitively, ()

is interpreted as the state of a continuum-limit neural net at time

;

r

(; r) is the activation value at the time of the neuron

indexed by r.

The dependence of on (i.e., the dynamics of the net) is deter-

mined by the continuum-limit version of neural net dynamics, i.e., by

the continuum-limit version of multiplying by a weight matrix. More

precisely, the dynamics is given by the (linear) integro-di�erential evo-

lution equation,

(; r) d

0

(r; r

0

) (; r

0

); (1)

which we abbreviate as

() () (2)

The \weight matrix" of the net corresponds to the kernel () of this

evolution equation, which is a �xed �eld (

n n

). In particu-

lar, a kernel that is non-zero for all values of its arguments corresponds

to a neural net whose weight matrix is fully (recurrently) connected.

ote that no nonlinear sigmoidal function is involved in the dynamics.

The most natural way of assigning meaning to the distribution ()

is in terms of its support across

n

. (This corresponds to interpreting

the state of a neural net by examining which neurons have activation

values exceeding a certain threshold). So for example, if the support

across

n

of () covers a region , then we interpret () as having

one meaning, whereas if instead the support covers a di�erent region

2

, we interpret () as having some di�erent meaning. The actual

values of across

n

are irrelevant, except insofar as they determine

the support of . (ndnotes begin on p. 26.)

In this paper, even the time when output occurs is determined

by the support of (as opposed to via a rule like \output occurs

at " for some pre-determined): output is signaled when the

support covers a predetermined output-agging region of

n

. So for

example, if

2

is the earliest time when the support of covers the

output- agging region, then the output of the system is determined

by the distribution of (

2

)'s support over

n

. ith this scheme, the

amount of time the net runs is a variable, which in general depends

on the input values fed into the net (i.e., depends on the �eld ()).

2

2.2 e s ste as a co iti e rocessor

In addition to the perspective taken above, in which the system and

its dynamics are viewed as a continuum-limit linear neural net and

the meaning of the system's output is determined via the support of

, there are other ways of interpreting a system evolving accord-

ing to the equation () (). In particular, such a system can

be viewed as a \cognitive processor" operating in (massive) parallel.

The idea is to view the value of (; r) as the \con�dence" one has

at time in the proposition labeled by r. The dynamical evolution of

the system is the system trying to determine the answer to a question

encoded as (; r). This process can be viewed as in�nite parallel

streams of thought, each with di�erent con�dence levels, interacting

with one another in an attempt to answer the question. (The inter-

action consists of transferring con�dence among the various possible

r values according to the evolution equation.)

This con�dence-level interpretation doesn't ascribe meaning only

to the support of (), but also takes into account the actual values

of the �eld (). onetheless, one might still wish to ag output by

running the system until the support of () covers a pre-determined

output- agging region of

n

. In this context, such output agging

means simply that the system processes a question for as long as it

takes for it to determine that it has an answer, which (in the form of

(), the distribution across

n

of con�dence levels) is signaled when

the output is agged (i.e., when one has non-zero con�dence that a

decision has been made). As an alternative, one could instead have

the dynamics halt either when output is agged or when exceeds

some special value , in which case means that the system

can't �nd an answer to the question.

The evolution equation used in this paper accurately re ects this

con�dence-level interpretation, assuming that we can express as

(r; r

0

) (r; r

0

) (r

0

r) d

00

(r

00

; r) (3)

for some �eld (

n n

). To see this, note that if this assump-

tion holds then our evolution equation () () (q. 1) can be

rewritten as

(; r) d

0

(r; r

0

) (; r

0

) d

00

(r

00

; r) (; r)

The second integral represents loss in con�dence in the point r accom-

panying transfer of con�dence from r to the other points in the space.

The �rst integral, on the other hand, represents a gain in con�dence

in r due to loss of con�dence in the other points.

ote that if we can write as in q. 3, then () automatically

maintains normalization through time: d (; r) 0, which

means that our total con�dence remains unchanged. ote also that

in general need not be symmetric; (r

0

; r) need not equal (r; r

0

),

which means that the dynamics governing the loss of con�dence in r

need not be the same as the dynamics governing the gain in con�dence

in r.

There are a number of open questions associated with this con�dence-

level interpretation of . For example, if the system is really to

be viewed as a cognitive processor, with many parallel \streams of

thought," then one might want to have the low-level dynamics contain

the laws of deductive logic. ould this necessitate a di�erent evolution

equation As another example of a peculiar feature of the con�dence-

level interpretation, what is negative con�dence level Is it con�dence

in the negation of a statement If so, then in the con�dence-level

interpretation (; r) 0 can be interpreted either as simultaneous

con�dence in a proposition r and its negation, or as no con�dence in

either r or its negation. o we really want to treat these two scenar-

ios as equivalent Finally, do we really want to have conservation of

d (; r) After all, one doesn't become less con�dent in a given

proposition ust because you use it to infer other propositions in which

you are con�dent.

To avoid dealing with these issues, this paper will stick to the in-

terpretative scheme where the meaning of () is given by its support.

onetheless, the main results of this paper hold ust as well for the

con�dence-level interpretation.

o tationa ni ersa it

.1 tro ctio

efore we present our proof of the computational universality of lin-

ear �eld computers, it will be worthwhile to consider the concept of

computational universality. onventionally, a model of computation

is taken to be computationally universal if it is functionally equivalent

to the class of Turing machines. The importance of this particular

class should not blind us, however, to other notions of computational

universality that may be more appropriate in di�erent contexts. More

generally, a model of computation is computationally universal it

respect to a class o unctions if it can implement every function

in that class. Important non-Turing-universal models of computation

include �nite-state machines and primitive-recursive functions. The

class of functions appropriate to a de�nition of computational univer-

sality must be determined by the use to which that de�nition will be

put.

Several researchers have argued that Turing computability is not

entirely relevent to continuum-limit computation. For example, lum

and her colleagues have developed a theory of discrete-time computa-

tion over the reals (lum, 1989; lum, Shub, Smale, 1988). Also

Stannett (1990) has shown that certain machines with continuous dy-

namics can solve the halting problem for Turing machines, and thus

have super-Turing power. In addition, our- l and Richards (1979,

1981, 1982) have shown that non-Turing-computable solutions can re-

sult from a Turing-computable wave equation with Turing-computable

initial conditions.

Indeed, we have argued elsewhere (MacLennan, in press, 1993)

that a more radical departure from traditional models of computation

is required by the continuum limit. ne possibility is presented in

MacLennan (1987, 1990), where we describe a class of multilinear

�eld computers that is universal with respect to the class of operators

that have convergent Taylor series and whose ateaux derivatives are

integral operators of ilbert-Schmidt type.

evertheless, it is important to understand the relation of �eld

computation to traditional models of computation, so in this paper

we restrict our attention to Turing computability.

e mention brie y other work relating neural networks to Tur-

ing computability. As early as 19 3 Mc ulloch and itts (19 3) ar-

gued that a neural network connected to an e ternal tape is equivalent

to a Turing machine; this is quite obvious, since their neurons are

threshold-logic gates and can be easily assembled into the control unit

of a TM. ollack, in hapter of his h. . dissertation (1987), showed

how to include the tape in the neural net by encoding the potentially

in�nite string of bits as a rational number of unlimited precision. is

construction uses a �nite number of linear-threshold units, but with

multiplicative (i.e., higher order) connections, and rational weights

and activities of unlimited precision. ollack hypothesized that mul-

tiplicative (i.e., nonlinear) connections \are a critical, and underap-

preciated, component for neurally-inspired computing," in particular,

for general-purpose computing. artley Szu (1987) argued that

TMs are equivalent both to potentially in�nite neural networks with

�nite state neurons, and to �nite networks of neurons with a count-

able in�nity of states. More recently, arzon and Franklin (1989, 1990;

Franklin arzon, 1990) have shown that countably in�nite neural

nets are more powerful than the class of countably in�nite cellular au-

tomata, which are in turn more powerful than TMs; in particular they

can solve the halting problem for TMs. n the other hand these neu-

ral networks are less powerful than \automata nets." Although their

nets are in�nite, they satisfy certain other \realistic implementability"

conditions; see their papers for details.

e note that it is easy to show that the class of purely linear,

but countably in�nite neural nets are at least as powerful as Turing

machines. Simply number in any convenient way the complete states

(i.e., internal state plus tape state) of the TM. ow allocate an input

neuron to each complete state , and an output neuron to each

complete state . Thus there is a countable in�nity of neurons in each

layer. ncode the state of the machine by setting the activity of the

corresponding neuron to 1 and all the rest to 0; that is, state is rep-

resented by the coordinate vector along the th axis. Set the weight

1 if state leads to state (we are assuming a deterministic

machine), and 0 otherwise. Thus the weight matrix represents

the transition function. ow if s is a (unit) vector representing the

current state of the machine, then s will be a (unit) vector repre-

senting its new state. Thus an arbitrary TM can be simulated by an

in�nite dimensional di�erence equation s

0

s.

The construction in this paper di�ers from the foregoing in go-

ing to the continuum limit in both space and time. That is, the TM's

states are represented by �elds that obey a di�erential equation. Much

of the complexity of the following construction comes from getting

a continuous-space, continuous-time dynamical system to emulate a

system with discrete states undergoing discrete state transitions. (f

course, this is a di culty implicit in the construction of any real-world

computer.) In this, this paper parallels mohundro's work showing

how to emulate an arbitrary (discrete space and time) cellular au-

tomata with di�erential equations (mohundro, 198).

efore proceeding to that construction however, it is worth noting

that if we work in (i.e., if n 3), and if f is allowed to be complex-

valued, then

(r; r

0

)

2

2

8

2

2

2

(

0

) (r r

0

) (r

0

)

results in Schr�odinger's equation, 2

2 2

8

2

.

At this point we could note that any real-world TM is built of com-

ponents which are, ultimately, quantum mechanical in nature, and in

quantum mechanics meaning is ascribed to the support of the wave

function (for su ciently peaked wave functions). Therefore we can

immediately conclude that, via appropriate choice of the potential ,

our evolution equation allows TM solutions. (Strictly speaking, this

correspondence between our evolution equation and quantum mechan-

ics actually requires that Schr�odinger's equation for a set of more than

one interacting particles be simulated.) Alternatively, one can demon-

strate the universality of our evolution equation by noting that there

exists a Schrodinger's equation , and by then appealing directly to

the �eld of quantum Turning machine theory (eutsch, 198).

This argument is not particularly insightful or useful however, es-

pecially if one is interested in �eld computers as possible models of

the human brain. To put it mildly, there are many poorly understood

steps in extrapolating upwards from quantum mechanics to macro-

scopic human brains.

.2 o to i ter ret a el as a ri a-

c i e

efore giving a precise formulation of how to interpret a �eld as a

Turing machine, some notational comments are in order. e will work

in (i.e., n). (owever not all �ve components will be used to

specify the state of the TM.) old lower-case letters indicate vectors,

and subscripted italic letters indicate components of a vector. Let

be any vector in and a real-valued scalar; we de�ne (;) to be

the vector (;

2

; ; ;). So for example, if the -dimensional

vector tells us something of the TM's state at time t, and if we

want the th component of our corresponding vector to equal t,

then that corresponding vector r is given by r (;). For

convenience de�ne a generator for -dimensional delta functions:

(r; s) (); for r; s

(is implicitly determined, by the arguments of the .)

The basic idea is to �nd a kernel with solution , such that the

support of , r can be interpreted in the following manner. First,

serves as a system clock; at any particular time there is only one

value of such that (; r) 0, and this value of is proportional to

, . (This clock is necessary to have the dynamics cycle through

the various operations making up an iteration of a TM; without this

clock embedded in

n

, the dynamics has no way of knowing what TM

operation to apply.) ithout loss of generality we take 1.

In addition to this restriction on , we want (; r) to never be non-

zero except for those through on the following lattice: 0; 1 ,

and ;

2

; . e de�ne to be this lattice:

() 0; 1

At any particular time , there will only be 1 or 2 of these lattice points

in for which (; r) 0. These values of through for which ()

is non-zero code for the condition of the TM as follows: represents

head position on the TM's tape,

2

represents the numerical value on

the tape (which for simplicity is assumed to have a �nite number of

1's), represents the internal state of the TM, and is a bu�er label.

As time changes, the values of ;

2

; , and for which (; r) 0

should change in exact accord with the dynamics of the TM being

emulated. In e�ect the lattice points represent possible states of our

TM emulation, and at any given time , () \points" to one or two

of these states.

The goal is to �nd a such the evolution equation has a solution

with the following properties. First, the solution must be of the form

(; r) r; (;) (;) ()

This solution is a superposition of �ve-dimensional irac delta func-

tions, all of which are centered in about the point . ach delta

function is centered in about a di�erent one of the allowed lattice

sites , with magnitude (;) at each such lattice site. In general,

at any given time there must only be 1 or 2 values of such that

(;) 0. It is the dynamics of this support of (;) which cor-

responds to the dynamics of the TM. In other words, the task is to

construct a such that the evolution equation has solution of the

form q. , where the coordinate pro ections of the support of the

function obey the dynamics of the TM being emulated. In this

way, dynamics over is reduced to dynamics over .

The next subsection shows how to choose a with solution (),

for arbitrary . The subsequent subsection shows how to choose

so that the dynamics over emulates an arbitrary Turing machine.

Together, these two subsections show how to choose a so that the

dynamics of the system emulates an arbitrary Turing machine.

. e ci to co ta l i ite a ics

a Let

(r; r

0

) (r; r

0

) (

0

) (r; r

0

); ()

where, for any ; s of the form (;), s (;), in which ,

, the function obeys

(; s) (;) (;) (;) (6)

for some time-varying �eld (). Then q. satis�es the

evolution equation (q. 1). (ote that the behavior of (r; r

0

) (and

1

therefore of (r; r

0

)) for points r

0

whose �rst four components do not

lie on is completely free.)

roo ur goal is to show that q. 1 is satis�ed at the lattice

points by q. under the conditions of qs. and 6. Let the �rst four

components of r be indicated by , and let the �rst four components of

r

0

be indicated by

0

. Substituting q. and q. into the evolution

equation (q. 1) gives

(;) (;) ()

(;) (;) ()

d

0

(

0

) (;

0

) (r

0

; s) (;)

d

0

(

0

) (r; r

0

) (; r

0

)

The �rst four-fold delta function (;

0

) in the �rst term on the

right-hand side of this equality can be integrated out, giving as the

�rst term on the right-hand side

(;) (;) d

0

(

0

) (

0

)

The remaining integral in this �rst term reduces to ().

Therefore the �rst term on the left-hand side of the equality cancels

with the �rst term on the right-hand side, leaving the equality

() (;) (;)

d

0

(r; r

0

) (

0

) (r

0

; s) (;) (7)

The integral on the right-hand side reduces to

() (r; s) (;)

Therefore qs. 1, , and ointly reduce to q. 6 which by hypothesis

is true.

11

The second term in q. (the one containing the (r; r

0

)) is the

one which can be used to �x . The �rst term in q. (the one

not containing the (r; r

0

)) is the one which forces the () de-

pendence on the component of (; r). It is this dependence which

allows to serve as a system clock for the operation of the TM; if

(r; r

0

) varies with

0

, then as time changes the (

0

) term in

(r

0

;) will pick out a di�erent part of (r; r

0

), which means we can

cycle through a sequence of di�erent operations governing the dynam-

ics of (r;). This can be seen explicitly in the following discussion of

the relationship between and the dynamics of , i.e., in the follow-

ing discussion showing how lemma 1 allows dynamics over to be

reduced to dynamics over .

hoose (r; r

0

) (;

00

) (r; r

0

) for some function

() (being the vector of the �rst four components of r).

ecause of the delta function (;

00

), the terms of this summation

are nonzero only when

00

, therefore the r (;) appearing

inside (r; r

0

) can be replaced with (

00

;). ence,

(r; r

0

) (;

00

) (

00

;); r

0

Substituting this into q. 6 yields:

(;) (;)

(;); (;) (;)

(;

00

) (

00

;); (;) (;)

(;

00

) (

00

;); (;) (;)

(;

00

) (

00

;); (

0

;) (;

0

)

Then q. 6 for in Lemma 1 reduces to

(;) (;) (;

00

) (

00

;); (

0

;) (;

0

)

1

ne way this equality can be enforced is if individual terms on the

right cancel with individual terms on the left, i.e., if

(;) (;); (

0

;) (;

0

)

Since is the �fth component of both (;) and (

0

;), we can re-

express the dependence of on its arguments to get the following:

(;) (; ;

0

) (;

0

);

which is an \in�nite matrix product,"

() () () (8)

This equality is essentially a discrete-space version of the original evo-

lution equation (q. 2), with one important di�erence. hereas the

evolution equation had a time-independent kernel , the equation

governing the dynamics of has a kernel () which depends explic-

itly on . The only purpose of this section so far has been to arrive

at a dynamics equation with such a time-dependent kernel; it is this

time-dependent kernel, arising from the relationship between and ,

which allows the dynamics of to cycle through the various distinct

stages making up an iteration of a TM.

The results so far can be summarized as follows. hoose a func-

tion (). This function speci�es a (r; r

0

). ow choose a function

() which satis�es q. 8 at the lattice points. This function speci�es

an (; r). e know that this (r; r

0

) and this (; r) together satisfy

q. 6. Accordingly, this (; r) together with the (r; r

0

) given by

(r; r

0

) ointly satisfy the evolution equation (q. 1). In other words,

so long as we choose an () and a () which ointly satisfy q. 8,

we will be assured that the (; r) based on () satis�es the evo-

lution equation with a (r; r

0

) based on (). Furthermore, (; r)

and (; r) are non-zero for the exact same r values from within .

owever the meaning of (; r) is given in terms of where over it is

non-zero. Therefore the meaning of (; r) is given by the -support

of the associated (;). So our task is reduced to the following:

iven any particular TM, �nd an () such that the associated ()

(associated via q. 8) has a -support which emulates that TM. The

next part of this section describes how to do this.

1

. lati a artic lar

There are several separate logical operations making up an iteration

of a TM. It will take the dynamics of the system exactly 1 unit of time

to complete each such operation, and () is �xed for each such oper-

ation. In other words, if we assume that the system starts evolving at

0, then () remains unchanged throughout each of the separate

intervals n; n 1), n 0; 1; 2; , i.e., () only changes when

changes. Four distinct operations occurring in four such consec-

utive integer intervals together make up a single iteration of a TM.

At the beginning of an iteration the current contents of the TM are

stored in the 0 hyperplane. The �rst operation clears the bu�er

hyperplane (1); the second operation calculates the condition

which the TM being emulated will have at the end of its next itera-

tion and stores the (suitably encoded) result in the 1 hyperplane

(this calculation is based on the current contents of the 0 hy-

perplane); the third operation clears the 0 hyperplane, and the

fourth operation copies the contents of the 1 hyperplane into the

0 hyperplane. At the end of this cycle, the dynamics repeats

itself: () () for all .

ithout the use of a bu�er plane to hold the result until the origi-

nal plane is cleared out (at which time the bu�er plane's contents are

copied back in), essentially all states of the system would have non-

zero support an in�nitesimal time after 0. (I.e., let the succession

of TM states be ;

2

; ; If there were no bu�er plane, and if

the dynamics were at all times the "evolve-the-TM" dynamics of the

1 2 stage, then an in�nitesimal time after the calculation

starts (in state) state

2

would be signaled (i.e., (

2

) would be

non-zero), which would instantaneously signal , and so on.) This

means that a system lacking bu�er planes doesn't really \emulate" a

TM. n the other hand, such a bu�er-plane-less system automatically

determines whether or not the TM will halt an in�nitesimal time after

the dynamics starts. (Since all states which will ever be occupied are

so occupied an in�nitesimal time after the start of the calculation.)

ext we present the four stages of an iteration. ithout loss of

generality, assume the cycle starts at 0. It's assumed that at 0

(i.e., at the beginning of every cycle) the following is true:

1. For all ; (;) 0; 1 .

2. For all such that (;) 1, 0; 1 .

1

3. There is exactly one () such that ; (; 0) 1. Let

be this . (The initial value of when the system starts

codes for the initial condition of the TM being emulated.)

. It is valid for the TM to have current head position given by ,

contents of the tape given by (the binary expansion of)

2

, and

internal state given by .

0 1

This stage clears the 1 hyperplane. uring this stage, for all

() ,

; (; 1); (; 1)

0 if 1

1 (1) otherwise

(e don't simply set ; (; 1); (; 1) 1 (1) because this is

unde�ned for 1.) For all other values of its arguments () equals

0.

Since (; ;

0

) 0 unless

0

, q. 8 reduces to (;)

(; ;) (;). In particular, if 1, then (;) will not

change in value during this stage. If does equal 1, then

(;) (0;) exp d

0

(

0

; ;)

This means that for those with 1, (1;) 0 if (0;) 0,

i.e., the value of can change through this stage only when 1

and (0;) 1. For such a case, we have (;) 1 for 1,

and (;) 0 when 1. This means that (1;) 0 for all

such that 1, that is, the bu�er hyperplane has been cleared.

(;) for all other is the same at the end of this stage as at its

beginning.

1 2

At the end of this stage (;) for those with 0 is still

unchanged from (0;). At the end of this stage (;) 0 for all

with 1 (ust like at the end of the �rst stage) except for one:

(2;) 1 for the point with 1, and with ,

2

, and

values corresponding to the condition of the TM being emulated one

iteration after it had the condition . Thus the new state has been

1

placed in the bu�er hyperplane. The detailed description of this stage

follows.

Let the TM we're emulating have transition functions taking head

position , numerical tape value 2 (where for any �xed

, 0; 1 ; the sequence of is the contents of the TM's tape), and

internal state , to position (; ;), tape value (; ;) 2

(0; 1 , and ;) and internal state (;) respec-

tively. Then throughout this stage (; ;

0

) equals 0 for all values

of its arguments except as given by:

; (

0

;

0

;

0

; 1); (; ; ; 0) 1; ; ; () ;

where

0

; (2); ;

and

0

(; ;) 2 ;

and

0

; (2)

ere is the parity function: () 1 if is odd, 0 if is even.

As in the 0 1 stage, in this stage only those (;)

with 1 are altered by . Therefore for all such that

0; (2;) (0;).

ow evaluate (; ;

0

) (;

0

) when 1. ue to , only

those

0

with

0

0 terms will contribute. Therefore, letting and

0

be the �rst three components of and

0

respectively, we have:

(; 1;) ; (; 1); (

0

; 0) ; (

0

; 0)

ow throughout this stage, ; (

0

; 0) 0; (

0

; 0) . Therefore by

assumption (3) (see above), throughout this stage there is a unique

such that

; (; 0) 0

Therefore throughout this stage,

; (; 1) ; (; 1); (; 0)

Thus, ; (; 1) will change in this stage i�

; (

2

2); ; and

2

(;

2

;) 2 ; and

; (

2

2)

1

Since 1; (; 1) 0 for all , this means that at the end of this stage,

1; (; 1) 0 for all (ust as at the end of the �rst stage) except

for one: 2; (; 1) 1 for the point corresponding to the condition

of the TM being emulated one iteration after it had the condition .

2 3

This stage clears the 0 hyperplane leaving the 1 hyper-

plane alone, exactly as we previously cleared the 1 hyperplane

leaving the 0 hyperplane alone.

In this stage, for all (n) :

; (; 0); (; 0)

0 if 3

1 (1 2) otherwise

uring this stage () for all other values of its arguments equals 0.

3

This stage copies the contents of the 1 hyperplane into the

0 hyperplane.

All (; ;

0

) 0 except ; (; 0); (; 1) 1. iven such an

, (;) is unchanged during this stage for any with 1.

Therefore

; (; 0) ; (; 1) 3; (; 1) 2; (; 1)

Since for all , 3; (; 0) 0, we know that if 3; (; 1) 2; (; 1)

1, then at the end of this stage ; (; 0) 1. Alternatively, if

3; (; 1) 0, then at the end of this stage ; (; 0) 0. There-

fore at the end of this stage the contents of the 1 hyperplane at

2 have been copied into the 0 hyperplane.

The cumulative e�ect of these four stages is to transform the con-

tents of the 0 hyperplane in exact emulation of the transfor-

mation the TM undergoes during one iteration starting from the TM

condition . Since assumptions (1) through () are valid at the end

of the fourth stage, the four stages can be repeated and the dynamics

will still be exactly emulating the TM. y induction, the dynamics

always emulates the TM. .

As an aside, note the automatic correspondence between output

agging and how a TM halts. A TM halts when its internal state

1

becomes the halt state. In the scheme recounted above, such a halt

state corresponds to a particular value of So the system emulating

the TM should \halt" when the support of covers that particular

value of , i.e., output is agged when the support of covers the

appropriate range in .

As another aside, note that perhaps the most straightforward way

in which a �eld computer can implement a universal TM is to simply

encode a TM exactly as described previously in this section, where

that encoded TM happens to be universal. To have such a universal-

TM �eld computer emulate an arbitrary TM operating on an arbitrary

input tape, that arbitrary TM's state-transition table together with

the arbitrary tape is encoded in (0). The universal-TM �eld com-

puter then transforms (0) in exact analogy to the way a conventional

universal TM would transform a tape that coded for an arbitrary TM

and arbitrary input tape for that TM.

rainin an o in t e na

ics

For the system considered in this paper, training the system (�nding

a set of weights so that the net reproduces a particular training set),

entails �nding such that when (0) corresponds to one of the inputs

in the training set, then the signaled output

(when output signaling occurs)

codes for the corresponding output. Finding such a is an ill-posed

problem, of course; in any scheme for \training" to reproduce a

training set, some sort of regularizer is needed to uniquely �x (oth-

erwise one could simply use the preceding several sections to build an

in�nite number of distinct TMs, all of which reproduce the training

set).

To help illuminate this regularization issue, it's worthmaking some

cursory comments concerning the dynamics when is not necessarily

of the form given in Section 3. To that end, �rst consider a (spatially)

discrete version of our system and its evolution equation, (;)

(;) (;), or equivalently, () (), where is the

matrix with entries (;). This is ust a set of simultaneous �rst

1

order ordinary di�erential equations, with solution given by ()

(0). This suggests that the original continuum-version of our

system evolves according to a one-dimensional () Lie group. In fact,

the continuum-version of our system also has solution () (0).

To see this, it's useful to consider time-ordered products. Since

is independent of , using our product notation we can write:

() () () ()

2

();

where the �eld product

2

(r; r

0

) d

00

(r; r

00

) (r

00

; r

0

), the in�nite-

dimensional \matrix" \squared". Therefore,

�

()

2

()

ontinuing in this way, and making the assumption that (; r) is

analytic in , we get the MacLauren series:

() (0)

n

n n

(0) n ;

that is, using our product notation to de�ne

n

(r; r

0

),

(; r) (0; r)

n

n

d

0 n

(r; r

0

) (0; r

0

) n

d

0

(r; r

0

) (0; r

0

);

if we identify (r; r

0

) with the continuum version of the identity

matrix, (r; r

0

). (The notation \ (r; r

0

)" indicates that the expo-

nential is to be viewed as a function of r and r

0

, which is parameterized

by .) As promised, we can write the preceding equation in product

form as follows:

() (0)

Since determines 's dynamics by being the generating function

of a one-dimensional Lie group giving (), does not have the power

to induce arbitrary dynamics in . Since can force to mimic

an arbitrary Turing machine, the immediate corollary is that Turing

machines can not obey arbitrary dynamics. This is not particularly

surprising. As a trivial example, no Turing machine can return to

1

the exact same state-tape con�guration with which it started unless

it returns to that con�guration an in�nite number of times.

There are a number of interesting special cases of the dynamics

of our system. ne occurs when is translation invariant, so that

(r

0

; r) can be written as (r r

0

) for all r; r

0

. In this case the

evolution equation gives the time derivative of in terms of the con-

volution of with . In such a situation it is straight-forward to

solve for (; r): simply take Fourier transforms of both sides of the

evolution equation, use the convolution theorem, solve the resulting

�rst order partial di�erential equation, and then take inverse Fourier

transforms to get back (; r).

Another interesting special case is where is degenerate:

(r; r

0

) (r) (r

0

)

For example, assume that (r; r

0

) (r) (r

0

). rite

(; r) (0; r) d

0

d

0

(

0

; r

0

) (r) (r

0

)

(0; r) (r) ()

If we can solve for (), we can solve for the time-evolution of . To

solve for (), substitute (; r) (0; r) (r) () into the de�nition

of ():

() d

0

d

0

(0; r

0

) (r

0

) (

0

) (r

0

)

ow de�ne

d

0

(0; r

0

) (r

0

);

d

0

(r

0

) (r

0

) d

0

(r

0

; r

0

);

our equation for () is () d

0

(

0

) , which has solution

() (1) .

As a �nal example of a special case, begin by considering the

situation where is separable, i.e., (; r) () (r). ow re-

de�ne so that the evolution equation becomes (; r)

d

0

(r; r

0

) (; r

0

), that is, () (). Then in the usual way

(see any introductory quantum mechanics text) one derives ()

, and (r) obeys the eigenvalue equation d

0

(r; r

0

) (r

0

)

(r), or . (ote that if is ermitian (which means

our original, pre-rede�nition is anti- ermitian), then , and

(; r) doesn't change in time.) Since our evolution equation is lin-

ear, if both (; r) (r) and (; r) (r) are solutions

to our evolution equation then so is a linear combination of them, and

in general we can write

(; r) () (r);

where (r) is a (normalized) solution to the equation

and the () are expansion coe cients. So if is indeed ermitian,

so that in general its eigenfunctions form a (necessarily orthonormal)

complete basis, we can take (0; r) and use it to solve for (), and

therefore for all (; r). In other words, ermitian gives

(; r) d

0

(r

0

) (0; r

0

) (r)

isc ssion

ur construction of Turing machines makes extensive use of delta

functions, both in the �eld representation of the state () and in the

construction of the kernel . The use of such delta functions directly

re ects the fact that we are using a �eld computer. enerically, for

a system which evolves continuously in time but consists of discrete

positions in , we don't need to use delta functions so extensively to

get computational universality. Indeed, the purpose of Section 3.3 is

essentially to reduce the original continuum-limit computer to such a

lattice computer (see footnote ()).

owever such delta function �elds are rarely (if ever) physically

realizable, and so we must question the signi�cance of the construc-

tion. n one hand it may be argued that since the Turing machine

is an idealized model of computation, the use of delta functions is not

problematic; physical realizability is not relevent to idealized mathe-

matical models. The TM model itself makes physically unrealizable

assumptions, such as the existence of a potentially in�nite tape.

n the other hand the TM model is approximately realizable, but

one may question whether our construction will work at all if the delta

1

functions are replaced by physically realizable �elds (i.e., bounded,

continuous functions over compact domains). It is certainly con-

ceivable that physically realizable replacements for the deltas would

spread out over time until the state of the TM became indeterminate.

e have not investigated whether such spreading can be directly pre-

vented, or whether it would require the use of nonlinear sharpening

functions in the evolution equation. Instead we present a di�erent

method for eliminating the deltas which seems more interesting.

ur solution hinges on the observation that the Fourier transform

of a delta function is a complex exponential, and hence that delta func-

tions in one domain correspond to sinusoids in the other. Therefore,

instead of representing the state of the TM by a physically unrealizable

�eld () in the spatial domain, we instead represent it by its Fourier

transform () (; r) , a physically realizable �eld de�ned over

the spatial frequency domain. It is then necessary to show that the

evolution equation () () can be replaced by a corresponding

evolution equation operating on spatial frequency �elds:

() ()

ith representing the Fourier transform, since (; r) (; r) ,

(; r) (; r) , and we see that the required is

given by:

That is,

(;

0

)

1

2

d d

0 r r

(r; r

0

)

(To verify this, write () () 1 2

2

d

0

d d

0 r r

(r; r

0

) d

00 r

(r

00

), take the inverse Fourier transform with

respect to , and then use the integrated plane wave de�nition of a

irac delta function to arrive at d

0

(r

000

; r

0

) (r

0

).)

ote that transforming the problem into Fourier space integrates

the delta functions out of both and . f course, Fourier space as

used here isn't a continuum-limit neural net. Rather it is a convenient

way to emulate a continuum limit neural net, one which obeys the

evolution q. 1, with another system which also obeys q. 1.

It is instructive to consider the form TM computation takes in

the transformed domain. TM states which were represented by deltas

(impulses) are instead represented by pure sinusoids (a superposition

of two sinusoids in the bu�er-copy stage). The speci�c con�guration

of the TM is re ected in the wave vector of the sinusoid (or

0

in the de�nition of). peration of the TM proceeds by a gradual

\crossfading" from the wave representing the TM's current state to

the wave representing its next state.

Finally we observe that since the �elds () are nonzero only at the

lattice points, we are in e�ect doing a discrete Fourier transform, and

so the transformed �elds () are periodic and can be represented on

a compact domain (one period in extent in each dimension). Also, we

can test for termination of the TM by various physically realizable op-

erations, such as inner products and convolutions, on the transformed

�elds. For example, a test for termination by a nonzero product of

the state with a mask �eld, () () 0, can be accomplished in

the frequency representation by testing for a a nonzero convolution,

() () () () 0. In this way deltas in the mask �eld are

replaced by sinusoids in the transformed �eld.

learly the use of the Fourier transform is not essential to this

method; we could use any integral transform that converts deltas into

physically realizable functions.

c no e e ents

Some of this work was done under the auspices of the epartment of

nergy and the Santa Fe Institute. It was also supported in part by

LM grant F37 LM00011.

e erences

lum, L. (1989). ectures on a t eor o computation and comple it

o er t e reals or an ar itrar ring (Report o. TR-89-06)

erkeley, A: International omputer Science Institute.

lum, L., Shub, M., Smale, S. (1988). n a theory of computa-

tion and complexity over the real numbers: completeness,

recursive functions and universal machines. e ulletin o t e

merican at ematical ociet , , 1 6.

eutsch, . (198). uantum theory, the hurch-Turing principle

and the universal quantum computer. roceedings o t e o al

ociet o ondon , , 97 117.

verett, ., III (19 7). \Relative state" formulation of quantum

mechanics. e ie s o odern sics, , 62.

Franklin, S., arzon, M. (1990). eural computability. In . M.

midvar (d.), rogress in neural net or s (ol. 1, pp. 127

1). orwood, : Ablex.

arzon, M., Franklin, S. (1989). eural computability II (ex-

tended abstract). In roceedings nternational oint

on erence on eural et or s (ol. 1, pp. 631 637). ew

ork, : Institute of lectrical and lectronic ngineers.

arzon, M., Franklin, S. (1990). omputation on graphs. In .

M. midvar (d.), rogress in neural net or s (ol. 2, h. 13).

orwood, : Ablex.

artley, R., Szu, . (1987). A comparison of the computational

power of neural network models. In M. audill . ut-

ler (ds.), roceedings irst nternational on erence on

eural et or s (ol. 3, pp. 17 22). ew ork, : Institute

of lectrical and lectronic ngineers.

Lloyd, S. (1990). n nonlinearit su ces or computation (report

ALT-68-1689). asadena, A: alifornia Institute of Technol-

ogy.

MacLennan, . . (1987). Technology-independent design of neu-

rocomputers: The universal �eld computer. In M. audill

. utler (ds.), roceedings irst nternational on er-

ence on eural et or s (ol. 3, pp. 39 9). ew ork, :

Institute of lectrical and lectronic ngineers.

MacLennan, . . (1990). ield computation t eoretical rame-

or or massi el parallel analog computation parts (re-

port S-90-100). noxville, T : niversity of Tennessee, om-

puter Science epartment. See also references therein.

MacLennan, . . (1993). haracteristics of connectionist knowledge

representation. n ormation ciences, , 119 1 3.

MacLennan, . . (in press). ontinuous symbol systems: The logic

of connectionism. In aniel S. Levine and Manuel Aparicio I

(ds.), eural net or s or no ledge representation and in er-

ence (h.). illsdale, : Lawrence rlbaum.

Mc ulloch, .S., and itts, . (19 3). A logical calculus of the

ideas immanent in nervous activity. ulletin o at ematical

iop sics, , 11 133.

mohundro, S. (198). Modeling cellular automata with partial dif-

ferential equations. sica , 128 13 .

ollack, . . (1987). n connectionist models o natural language

processing (h. . dissertation). rbana, IL: niversity of Illi-

nois; also report M S-87-100, Las ruces, M: ew Mexico

State niversity, omputing Research Laboratory.

our- l, M. ., Richards, I. (1979). A computable ordinary di�er-

ential equation which possesses no computable solution. nnals

o at ematical ogic, , 61 90.

our- l, M. ., Richards, I. (1981). The wave equation with

computable initial data such that its unique solution is not com-

putable. d ances in at ematics, , 21 239.

our- l, M. ., Richards, I. (1982). oncomputability in mod-

els of physical phenomena. nternational ournal o eoretical

sics, , 3 .

Rumelhart, . ., Mc lelland, . L., the Research roup

(1986). arallel distri uted processing plorations in t e mi-

crostructure o cognition. ambridge, MA: MIT ress.

Stannett, M. (1990). -machines and the halting problem: uilding

a super-Turing machine. ormal spects o omputing, , 331

3 1.

an eyningen, M. ., MacLennan, . . (1992). constraint

satis action model or perception o am iguous stimuli (report

S-92-1 2). noxville, T : niversity of Tennessee, omputer

Science epartment.

olpert, . . (1990). A mathematical theory of generalization:

art II. omple stems, , 201 2 9.

n notes

1. The support of () is the closure of the set of all r such that

(; r) 0. A more general formulation might interpret the

state of () in terms of those r

n

such that (; r) some

threshold , rather than in terms of the support of (). For

simplicity, such a formulation is not followed in this paper.

2. It should be noted that there are other ways to ag output

besides having the support of () cover a prede�ned output-

agging region. For example, one might have output agged

when () gets su ciently peaked. If output is agged this way,

one might want to change the way that the distribution () is

assigned meaning, from the meaning being given by the support

of () to perhaps something like the meaning being given by the

average (according to the distribution ()) of r. o such alter-

nate scheme for agging output and assigning meaning to () is

considered in this paper. For examples of using output- agging,

in real programs, see olpert (1990).

3. ote that this minus term has the perhaps annoying property

that, everything else being equal, the more con�dent we are in

a point (i.e., the larger (; r)), the more quickly we lower our

con�dence in that point. This might not be such a bad thing

amongst other things, it should help keep behavior stable. It also

has the property that if a decision is not reached in spite of the

high con�dence in a hypothesis, then con�dence will gradually

leak away from that hypothesis and be transferred to others. In

e�ect the dynamics says, \If that isn't working, try something

new." Such a mechanism could help prevent a cognitive pro-

cessor from becoming locked into unproductive hypotheses, and

may help explain multistability in perception (an eyningen

MacLennan, 1992). onetheless, one might wish to modify it

somehow.

. In this regard, it's worth noting that in Section it's shown that

the dynamics of is intimately connected with the formalism of

quantum mechanics. In light of the various quantum mechanical

usti�cations for assigning meaning to the square of the wave

function rather than to the wave function itself (e.g., verett,

19 7), this suggests that one might want to assign meaning to

the square of rather than to itself. This has no implication for

the case where it's the support of which carries meaning, but

it does have implications for the con�dence-level interpretation

of . In particular, using the square of rather than itself

removes the issue of assigning meaning to \negative con�dence."

It also means that we would be led to replace q. 3 with an

equation preserving the

2

norm of rather than the norm

of . (In this regard, note that the

2

norm is more convenient

mathematically than the norm.)

. e note in passing that the discrete time emulation s

0

s

could use any in�nite orthogonal basis ; ;

2

; in any space

to represent the states of the TM. Moreover, if such a basis spans

a space of functions over a compact domain, e.g.

2

(0; 1), and

the basis functions are continuous, then the representation will

satisfy the conditions for the physical realizability of �elds set

down in MacLennan (1990). Furthermore, if the representation

is chosen so that the longer tapes correspond to higher frequency

basis functions, then the resource limitations of physically real-

izable TMs will correspond to the bandwidth limitations of the

medium supporting the �elds. See also MacLennan (in press,

1993).

6. ote that this means, for example, that we can recast the prob-

lem of �nding a to reproduce a provided training set as the

problem of �nding a potential which evolves one set of wavefunc-

tions into another set of wavefunctions. This is nothing other

than a quantum mechanical scattering problem Such problems

have been studied intensively for decades. xploiting this, one

way to �nd a to reproduce a provided training set (i.e., pro-

vided scattering data) is to assume that there are a discrete

number of scattering ob ects and solve for their positions (ust

as in -ray di�raction).

7. ote that since our new discrete evolution equation holds regard-

less of the spacing of the lattice, we can take that spacing 0.

This means that without loss of generality, we could have written

our original evolution equation as (; r) d

0

(; r; r

0

) (; r

0

),

or () () (), with a time-dependent kernel, where now

r rather than r . In other words, at the expense of

losing a dimension in r, we can replace a -independent with

a -dependent one.

8. To check this formula, we can di�erentiate with respect to :

(; r) d

0

(r; r

0

) (0; r

0

)

d

0

(0; r

0

) ()(r; r

0

)

d

0

(0; r

0

)()(r; r

0

)

d

0

(0; r

0

) d

00

(r; r

00

) (r

00

; r

0

)

d

00

(r; r

00

) d

0

(0; r

0

) (r

00

; r

0

)

d

00

(r; r

00

) (; r

00

)

