
DATA-PARALLEL IMPLEMENTATIONS OFMAP ANALYSIS AND ANIMAL MOVEMENTFOR LANDSCAPE ECOLOGY MODELSEthel Jane ComiskeyComputer Science DepartmentCS-93-207 August 1993

Data-Parallel Implementations ofMap Analysis and AnimalMovement for Landscape EcologyModelsA ThesisPresented for theMaster of Science DegreeThe University of Tennessee, KnoxvilleEthel J. ComiskeyAugust 1993
i

AcknowledgmentsI thank my thesis advisor, Dr. Michael Berry, for his guidance, support and en-couragement throughout this project. I also thank Dr. Monica Turner and Dr. DavidStraight who served on my thesis committee. I am very grateful to Dr. Turner andto Dr. Yegang Wu for the opportunity to work with their Northern Yellowstone Parkungulate model. I thank Dr. Bob Gardner and Karen Minser for the use of theirserial mean squared radius program, a modi�ed version of which was used for timingcomparisons with my parallel algorithms. I also thank the Joint Institute for Com-putational Science (JICS), which supports the MasPar MP-2 used for this study, andMasPar representative Sally Chase for her advice and help in using the MasPar MP-2.

ii

AbstractIn this thesis, improved sequential and data-parallel implementations of landscapeecology model components are presented. Parallelization e�orts on the (SIMD) Mas-Par MP-2 focus on three model components: cluster identi�cation, mean squaredradius computation (cluster geometry), and animal movement.The NOrthern YELlowstone Park ungulate model (noyelp), developed by Drs.Monica Turner and Yegang Wu of the Environmental Sciences Division, Oak RidgeNational Laboratory, serves as the example landscape ecology model for the modelcomponents studied. Modi�cations made to the original Fortran-77 noyelp programas part of this thesis project resulted in a revised serial version which executes 11times faster than the original (CPU time on a Sun SPARCstation 2).Parallel implementations were tested and compared to functionally comparable se-rial algorithms using both random maps and maps extracted from runs of the noyelpmodel. Speed improvements of MasPar MP-2 parallel kernels over serial implementa-tions on Sun SPARCstations on the order of 9 and 150 for cluster identi�cation andmean squared radius computation, respectively, were measured on 512� 512 randommaps with a resource probability of 0.85. Speed improvements generally increasedwith map size and density. For landscape maps tested, speed improvements weresomewhat lower, due largely to the inclusion of map pixels outside the study area(54% of total map pixels) in the data maps analyzed.Results of this study indicate that parallel adaptation of kernels for cluster identi-�cation and geometry is straightforward, but that e�ective parallelization of animalmovements in the noyelpmodel and similar individual-based models will involve re-conceptualizing the movement rule. Issues involved in the parallelization of landscapeecology models are discussed and suggestions are made for future work in this area.
iii

Contents1 Introduction 11.1 Motivation : 11.2 Objectives : 21.3 Thesis Overview : 22 Data-Parallel Programming on the MasPar MP-2 42.1 MasPar Programming Language : 52.2 Data Virtualization on the MasPar MP-2 : : : : : : : : : : : : : : : : 63 Northern Yellowstone Park Ungulate Model 93.1 Description of the Study Area : 103.2 Model Description : 103.2.1 Habitat types : 113.2.2 Ungulate Categories and Distribution : : : : : : : : : : : : : : 113.2.3 Snow Simulation : 113.2.4 Foraging : 123.2.5 Search and Movement Rules : : : : : : : : : : : : : : : : : : : 123.2.6 Energetics : 133.3 Example Data Set : 134 Preliminaries 164.1 Map Density : 174.2 Map Size : 214.3 Veri�cation : 214.4 Serial Computing Environment : 225 Cluster Identi�cation 235.1 Serial Algorithms : 235.1.1 Original noyelp incremental algorithm : : : : : : : : : : : : : 255.1.2 Recursive and pseudo-recursive algorithms : : : : : : : : : : : 265.1.3 Implementation of the Hoshen-Kopleman algorithm : : : : : : 26iv

5.1.4 Comparison of serial algorithm performance : : : : : : : : : : 285.2 MasPar MP-2 Algorithms : 295.2.1 Cluster labeling in implementations with cut-and-stack datamapping : 295.2.2 Cluster labeling in implementations with hierarchical data map-ping : 315.2.3 Collection of cluster data : 335.3 Results : 345.4 Performance of MasPar MP-2 algorithms on noyelp maps : : : : : : 375.4.1 Test map characteristics : 375.4.2 Results : 375.5 Conclusions : 386 Cluster Geometry 476.1 Serial Algorithm : 486.2 MasPar MP-2 Algorithms : 516.3 Results : 546.4 Performance of MasPar MP-2 algorithms on noyelp maps : : : : : : 586.5 Conclusions : 597 Animal Movement 617.1 Serial noyelp Implementation : 617.2 Model Description : 637.3 Program Evaluation : 657.3.1 Introduction : 657.3.2 Modi�cation of the serial algorithm : : : : : : : : : : : : : : : 667.3.3 Comparison of performance of original and revised noyelpmodel 687.4 Parallelization of Animal Movements : : : : : : : : : : : : : : : : : : 727.5 Serial vs. Parallel Updating of Biomass Levels : : : : : : : : : : : : : 747.6 Conclusions : 788 Conclusions 80Bibliography 83Appendices 86A MasPar Speci�cs 87A.1 Family of MPIPL Functions for Virtual Array Conversion : : : : : : : 88A.2 Using the MasPar : 89B NOYELP Speci�cs 91v

B.1 Outline of noyelp Subroutines : 92B.2 Selected Formulas used in noyelp model computations : : : : : : : : 95C Timing Tables 97D Prologues of Selected Procedures 107Vita 113

vi

List of Tables3.1 Sample composition of animal groups in a noyelp model simulation. 144.1 Distribution of cluster sizes for randomly generated maps of six sizesand �ve p values. : 184.2 Performance speci�cations for architectures used in the sequential com-puting environment. : 225.1 Comparison of CPU times for serial cluster identi�cation algorithmson a Sun SPARCstation 2 (all times are in seconds). : : : : : : : : : : 305.2 Speed improvement of MasPar MP-2 versions over pseudo-recursiveFortran version on a SPARCstation 2 for cluster identi�cation (ex-cluding I/O). : 345.3 Comparison of wall-clock times for parallel implementations of clusteridenti�cation with the serial noyelp function prfor on Sun SPARC-station 2 on 285 � 584 resource maps extracted from noyelp modelruns (all times are in seconds). : 386.1 Speed improvement of MasPar MP-2 versions over the sequential Cversion on a SPARCstation IPX for total map analysis, including meansquared radius computation. : 556.2 Comparison of wall-clock times for total map analysis on 285 � 584resource maps extracted from noyelp model runs for parallel MP-2implementations and optimized serial program on a Sun SPARCstationIPX (all times are in seconds). : 597.1 CPU time (in seconds) for the original and revised noyelp serial modelversions and speed improvement of the revised over the original version. 68C.1 Wall-clock times for cluster identi�cation with cut-and-stack data map-ping on the MasPar MP-2 (all times are in seconds). : : : : : : : : : 98C.2 Wall-clock times for cluster identi�cation with hierarchical data map-ping on the MasPar MP-2 (all times are in seconds). : : : : : : : : : 99vii

C.3 Wall-clock times for pseudo-recursive sequential Fortran cluster iden-ti�cation program on Sun SPARCstation 2 (all times are in seconds). 100C.4 Wall-clock times for total map analysis (including radius computation)with cut-and-stack data mapping on the MasPar MP-2 (all times arein seconds). : 101C.5 Wall-clock times for total map analysis (including radius computation)with hierarchical data mapping on the MasPar MP-2 (all times are inseconds). : 102C.6 Wall-clock times for optimized sequential C program for total mapanalysis, including read time, cluster identi�cation, and mean squaredradius computation on SPARCstation IPX (all times are in seconds). 102C.7 Comparison of CPU times on Sun SPARCstation IPX for Gardner/Minsermean squared radius C program with four revision stages.� : : : : : : 105C.8 Optimizing modi�cations made to serial C program for computingmean squared radius. : 106

viii

List of Figures2.1 Diagram of the MasPar MP-2 system. : : : : : : : : : : : : : : : : : : 52.2 Cut-and-stack virtualization on the MasPar MP-2. : : : : : : : : : : : 62.3 Hierarchical virtualization on the MasPar MP-2. : : : : : : : : : : : : 73.1 Map of noyelp study area showing habitat types. : : : : : : : : : : : 154.1 Sample 64 � 64 random maps with (a) p = 0:30 and (b) p = 0:62. : : 174.2 Comparison of cluster characteristics across p values for 256�256 maps(a) standard scale and (b) log scale. : : : : : : : : : : : : : : : : : : : 195.1 Two-dimensional spatial grid showing showing 7 individual clusters. : 245.2 CPU time versus p-values ranging from 0 to 1 for 1024 � 1024 ran-dom maps using the serial prfor algorithm on a Sun SPARCstation 2(excluding I/O). : 275.3 Status of level and label arrays after one row of grid has been traversedusing the Hoshen-Kopleman algorithm. : : : : : : : : : : : : : : : : : 285.4 Four stages of the cut-and-stack labeling process: (a) starting state,(b) after labeling with unique ID, and after each PE looks (c) northand (d) west. : 405.5 Step-wise procedure for cluster identi�cation in hierarchically-mappedMPL implementation of cluster identi�cation. : : : : : : : : : : : : : 415.6 Speed improvement of MP-2 hierarchically-mapped implementationover the sequential prfor version on a SPARCstation 2 for clusteridenti�cation (work time, excluding I/O). : : : : : : : : : : : : : : : : 425.7 Comparison of wall-clock labeling, collection, and total work timesversus p values for 256�256 maps ((a) and (b)) and 2048�2048 maps((c) and (d)) using hierarchical ((a) and (c)) and cut-and-stack ((b)and (d)) virtualization. : 435.8 P values of the available resource matrix generated daily for a 180-day cycle of the noyelp model (excluding pixels outside the study area). 445.9 Resource map of the noyelp study area extracted at day 1 from a180-day cycle of the noyelp model. : : : : : : : : : : : : : : : : : : : 45ix

5.10 Resource map of the noyelp study area extracted at day 90 from a180-day cycle of the noyelp model. : : : : : : : : : : : : : : : : : : : 455.11 Resource map of the noyelp study area extracted at day 120 from a180-day cycle of the noyelp model. : : : : : : : : : : : : : : : : : : : 465.12 Resource map of the noyelp study area extracted at day 180 from a180-day cycle of the noyelp model. : : : : : : : : : : : : : : : : : : : 466.1 Example 64 � 64 maps with a single cluster of size 1024 and radiusequal to (a) 14.16 and (b) 31.09. : 486.2 CPU times for serial mean squared radius computations across p-valuesfor 128 � 128 random maps on a Sun SPARCstation IPX. : : : : : : : 506.3 Size of the largest cluster as a function of p value for the 128 � 128random maps from Figure 6.1. : 506.4 Step-wise procedure for cluster labeling in hierarchically mapped MPLimplementation of mean squared radius computation. : : : : : : : : : 526.5 Speed improvements of MasPar MP-2 parallel implementations for to-tal map analysis over the sequential C version on Sun SPARCstationIPX for 512 � 512 random maps. : 566.6 Elapsed wall-clock times (in seconds) for total map analysis (map gen-eration, cluster identi�cation and mean squared radius computation)across p-values for 128 � 128 maps for MasPar MP-2 parallel imple-mentations and for the serial C program on a Sun SPARCstation IPX(log scale). : 576.7 Elapsed wall-clock times (in seconds) for total map analysis acrossp-values for 512 � 512 random maps for MasPar MP-2 parallel imple-mentations. : 587.1 Control ow chart for the noyelp model. : : : : : : : : : : : : : : : 627.2 Typical search area for a noyelp animal group, with maximummovingdistance of 4 pixels. : 647.3 CPU time (in seconds) at each time step for the original and revisednoyelpmodel over the 180-day model cycle on a Sun SPARCstation 2(excluding I/O). : 697.4 CPU time (in seconds) for each time step of the revised noyelpmodelover the 180-day model cycle. : 707.5 Available biomass (in 2000kg units) in the study area over the 180-daynoyelp model cycle. : 717.6 Total daily distance traveled (km=day) by all ungulate groups over the180-day noyelp model cycle. : 717.7 Maximum number of ungulate groups which share a pixel over the180-day cycle of the noyelp model. : : : : : : : : : : : : : : : : : : : 75x

7.8 Rollback mechanism for resolving resource depletion updates in exactparallel implementation of noyelp movement rule. : : : : : : : : : : 76

xi

Chapter 1Introduction1.1 MotivationThe impracticality of large scale experimental perturbations of natural systems hasmade computermodeling an important research tool in landscape ecology ([TWWR+93]).Computer simulations are becoming increasingly important in assessing the degree ofhabitat fragmentation (clustering phenomena) and its ecological implications in manydi�erent contexts and at varying spatial and temporal scales. Unfortunately, mostlandscape ecology models rely on sequential programming, which imposes practicallimitations on the size and density of maps which can be analyzed. Parallel com-puting can expand the capability of these models to simulate spatial and temporalpattern in large ecological systems ([Haef92]).Individual-based ecological models represent population dynamics by simulatingthe behavior and interaction of individuals or small groups of individuals respondingas discrete units to pattern changes in the environment. Individual movement issimulated in two- or three-dimensions depending on the particular ecological context([Lomn92]). These models generally have greater computational requirements thanpopulation models and can potentially bene�t greatly from parallel programming([Haef92]).The NOrthern YELlowstone Park ungulate model (noyelp), the example land-scape ecology model used in this thesis, was developed by Drs. Monica Turner andYegang Wu of the Environmental Sciences Division, Oak Ridge National Laboratory.noyelp is an individual-based stochastic model which simulates ungulate populationdynamics by representing the movement and foraging behavior of small groups of elkand bison in response to changes in the environment that impact the availability offorage and the distance a group can travel in a single day. Computing time for theoriginal serial noyelp model increases with the number of animals included in themodel, as well as with the level of available resources. Parallel computing can beused to increase the number of individuals and the range of environmental conditions1

considered in individual-based models like noyelp.1.2 ObjectivesAn important objective of this research e�ort is to produce scalable map analysisalgorithms for the identi�cation and characterization of clusters for large, complexmaps on massively-parallel SIMD computers. In landscape ecology models, clusteranalysis kernels are often called at the end of each model time step to record andevaluate pattern changes, making them key components of many models. For ex-ample, the noyelp model performs cluster analysis twice per model day over 180days and over 5 replications, for a total of 1800 calls per execution cycle. Clusterradius, a measure of the compactness or density of clusters, has many potential usesin landscape ecology. However, determining radius measures can be computationallyintensive, resulting in their exclusion from many applications because of constraintsassociated with computing time. An e�cient parallel kernel for radius computationcould make the use of cluster radius (and other measures derived from radius) feasiblein landscape ecology modeling.A second thesis objective is to investigate issues associated with parallelization ofthe animal movement component of landscape ecology models. Animal movementis typically implemented in serial programs as nested loops of activity repeated overeach time-step of a model cycle, a situation for which parallel processing appearswell-suited. However, many subjective decisions are made in formulating the rulesgoverning the search and movement of animals in serial models. Some of these rulesare based on the serial paradigm and may be unsuited to the constraints of parallelcomputing. Reconceptualization of movement rules may be necessary for parallelimplementations of individual-based models.1.3 Thesis OverviewImproved sequential and data-parallel implementations of landscape ecology modelcomponents are presented in this thesis. Parallel kernels are implemented on theMasPar MP-2, a single instruction, multiple data (SIMD) massively parallel machine.Three model components are examined: cluster identi�cation, mean squared radiuscalculation (cluster geometry), and animal movement. The �rst two components arenot model-speci�c and could serve as kernels or modules in other landscape ecologymodels. The animal movement component is speci�c to the noyelp model. Parallelimplementations of these landscape model components are tested on random mapsand on landscape maps extracted from runs of the noyelp model. Performance ofparallel kernels is compared to that of optimized serial programs.Chapter 2 of this thesis briey describes the MasPar MP-2 system, the MasPar2

Programming Language (MPL) and the two data-mapping strategies (i.e., hierar-chical and cut-and-stack) supported by MasPar. Chapter 3 provides backgroundinformation about the noyelp model. Procedures and concepts common to the de-velopment and testing of all kernels are presented in Chapter 4. Chapters 5 through 7address cluster identi�cation, cluster geometry, and animal movement, respectively.Both serial and data-parallel algorithms, along with performance comparisons, arediscussed in these chapters. Chapter 8 states conclusions drawn from parallelizatione�orts and suggests future work in this area. Supplementary information is providedin Appendices A{D.

3

Chapter 2Data-Parallel Programming onthe MasPar MP-2The MasPar MP-2 is a massively data-parallel distributed memory processing systemconsisting of a front end machine and a Data Parallel Unit (DPU). The front end ofthis single instruction, multiple data (SIMD) system is a DECstation 5000 model 200workstation with an ULTRIX operating system, windowing capabilities, and standardI/O devices. The DPU, which handles all parallel processing, consists of the ArrayControl Unit (ACU), the processor (PE) array, an 8-way X-net communication meshand a global router. Figure 2.1 is a schematic diagram of the MasPar MP-2 system.The ACU has 24 32-bit registers for user-declared register variables, 128 KBytesof data memory, and 1 MByte of physical instruction memory (RAM), expandable to4 GBytes of virtual instruction memory. The ACU performs operations on singular(shared) variables which are visible to all processors, and controls the PE array,sending data and instructions to each PE simultaneously via the dedicated ACU-PEbus.The MasPar MP-2 used for this study1 has 4096 processors arranged in a 64� 64grid. Each PE is a RISC-based processor with 32 32-bit registers available for user-declared variables and 64 KBytes of private (unshared) memory. Each PE has a 16-bitdatapath connecting local memory to PE registers. During program execution, allPEs receive the same program instruction from the ACU. All PEs which are active(enabled) at that point in the program execute the same operation simultaneouslyon their private data. PEs are connected by an 8-way X-net communications meshand by a global router. In order for one PE to access the private data of another PE,special communication constructs must be used.1supported by the Joint Institute for Computational Science (JICS) at the University of Tennessee, Knoxville.4

Front-end system bus
ACU Global Router

PE ArrayDPUACU-PEbus
Figure 2.1: Diagram of the MasPar MP-2 system.2.1 MasPar Programming LanguageAll kernels developed for this thesis were written in the MasPar Programming Lan-guage (MPL), MasPar's ANSI-C compatible language for programming the DPU.MPL is the most e�cient and exible language supported by MasPar. It is also Mas-Par's lowest level language, allowing more user control over communication and datamapping to processors than can be obtained with MasPar Fortran (MPF). MPL ex-tensions to ANSI C include the capability to allocate plural variables across PEs andthe ability to perform operations on these variables. MPL adds the keyword pluralto specify that the associated variable is parallel. An example is provided below.int i; =� allocates 4 bytes in the ACU's memory *=plural int j; =� allocates 4 bytes in each PE's memory �=Three communication constructs are provided for sending and receiving valuesbetween sets of PEs: iproc, xnet, and router. The iproc construct allows accessto a plural variable on a single PE. The xnet construct is used to access processors5

which are a uniform distance away from active processors in one of eight directions:north, south, east, west, northeast, northwest, southeast, or southwest, requiring botha distance and a direction speci�er. Automatic toroidal wraparound is employed withxnet to allow circular shifting of data values. East-west borders and north-southborders are connected for shift purposes. For example, the bottom row of PEs is 1xnet shift north of the top row of PEs. The global router is used for communicationbetween a particular PE and any other member of the PE grid.2.2 Data Virtualization on the MasPar MP-2Typical cluster analysis applications involve data sets larger than the size (64 � 64)of the MasPar MP-2 processor array. In situations such as this, where individual pro-cessors must handle more than one data point (i.e., map pixel), data must be mappedonto the processor array in some fashion. MasPar systems provide two general datamapping strategies for allocating multiple data points to individual processors: cut-and-stack and hierarchical. Figures 2.2 and 2.3 show in schematic form MasPar MP-2cut-and-stack and hierarchical virtualization, respectively.
Two Dimensional Array of Data

I J K L

M N O P

0 1

2 3

2 x 2 PE Array

Data Allocation

PE 0 PE 1

PE 3PE 2

A C B D

 I K J L

E G F H

M O N P

A B C D

E F G H

Figure 2.2: Cut-and-stack virtualization on the MasPar MP-2.With cut-and-stack mapping (Figure 2.2), the data set is divided into a number ofsegments, called pages, equal to the total number of pixels divided by the total number6

Two Dimensional Array of Data

I J K L

M N O P

0 1

2 3

2 x 2 PE Array

Data Allocation

PE 0 PE 1

PE 3PE 2

A B C D

E F G H

A B C D

E F G H

I J K L

M N O P

Figure 2.3: Hierarchical virtualization on the MasPar MP-2.of PEs (i.e., 4096). Each page is the size of the PE array and each PE receives onepiece of data from the same relative position in each page. Therefore, if the data pageswere stacked, the data assigned to each PE would be an array whose elements forma column running vertically through the stacked pages. In cut-and-stack mapping,logically consecutive data points (i.e., adjacent map pixels) are assigned to physicallyadjacent processors, accessed by using the MPL communication construct xnet. InFigure 2.2, circled data items are assigned to PE 0.To implement hierarchical data mapping, the data set is divided into as manyequally-sized rectangular blocks of adjacent elements as there are PEs, with each PEbeing allocated one logically contiguous block representing a sub-grid of the originaldata set. No communication constructs are required for operations within each PE'ssub-grid of values. The xnet construct is used to communicate between border rowand column elements of adjacent sub-grids. As with cut-and-stack mapping, for mapsgreater than 64 � 64 processors are assigned more than one pixel, and these pixelsare stored as data arrays at each processor.In choosing between these two strategies, one tries to maximize processor utiliza-tion by balancing the workload across processors, while at the same time minimizingcommunications between processors. Hierarchical mapping is generally more e�cientwhen communication needs are localized in subareas of the data map. Algorithms7

implementing cut-and-stack mapping are generally simpler to encode, and are oftenmore e�cient when there is no advantage to having adjacent data in each PE memory(i.e., when communication requirements are not localized) because work is distributedmore evenly across processors.There exists a family of MasPar mpi conversion functions which allow data con-�gurations to be changed within a program. If di�erent data mapping strategies aremore e�cient for di�erent parts of a program, the programmer can switch betweencut-and-stack and hierarchical mapping as needed. See Appendix A for a list of thesefunctions.Data-parallel cluster analysis kernels employing both hierarchical and cut-and-stack data mapping were developed on the MasPar MP-2 for this study and perfor-mance comparisons were made for the two strategies. These results are discussed inChapters 5, 6, and 7.

8

Chapter 3Northern Yellowstone ParkUngulate ModelThe programming e�orts discussed in this thesis use as an example the spatiallyexplicit, individual-based noyelp model. The noyelp model simulates the search,movement, and foraging activities of individuals or small groups of free-ranging elk(Cervus elaphus) and bison (Bison bison) on the part of their winter range which lies innorthern Yellowstone National Park (nynp). The model was developed to explore thee�ects of �re scale and pattern on winter foraging and survival of ungulate populationson the heterogeneous, multi-habitat nynp landscape. The information presented inthis chapter is a summary of [TWWR+93], which provides a detailed descriptionof the model and its application to the assessment of impacts of �re on ungulatesurvival in the context of related studies. A summary list of noyelp subroutines andformulas used for computation of forage biomass and animal energetics are includedin Appendix B.noyelp simulations are conducted for each of 180 days during the (approximate)period of November 1 through April 30. Within a day, an animal group makes oneto several moves in its search and foraging activities. Available forage biomass variesas a function of foraging activity and snow cover. Ungulate body weight is decreasedwhenever daily forage intake does not meet energy requirements. Starvation duringwinter, the main factor inuencing ungulate mortality in the study area, occurs whencalculated body weight falls below survival thresholds. The model does not projectungulate reproduction or plant growth. For each year simulated, new data (e.g.,weather conditions during the 180-day period, number of ungulates present at thebeginning of winter, and amount of forage in kg/hectare present in each habitatcategory at the beginning of winter) are input to the model. Because noyelp isa stochastic model, �ve replications of the 180-day simulation period are run witheach set of input conditions, and results are summarized statistically over the set ofreplicates. 9

3.1 Description of the Study AreaYellowstone National Park (ynp) was established in 1872 as the nation's �rst NationalPark. It covers 9000 km2 (900,000 hectares) of the landscape in the northwest cornerof Wyoming and immediately adjacent parts of Montana and Idaho. The nynp studyarea encompasses 77,020 ha in the north central part of ynp. Approximately 83% ofthe elk winter range is included within the nynp study area. Ecological dynamics onthe winter range largely control ungulate survival and population sizes in ynp.ynp is characterized by long, cold winters and short, cool summers. The climate issomewhat warmer and drier in the study area compared to the rest of the Park. Thenorthwestern-most part of the study area lies in a precipitation shadow. Snowfall inthis area is typically lower than in the winter range as a whole. While elevations inynp range from 1500 m to more than 3000 m, those characteristic of the nynp studyarea are in the lower end of the range. The vegetation of the study area consistsprimarily of lower-elevation grassland or sagebrush steppe interspersed with aspenand conifer woodlands.3.2 Model DescriptionIn the noyelp model, the NYNP landscape is represented as a gridded irregularpolygon with a spatial resolution of 1 hectare. The irregular shape of the study arearequires a 285 by 584 grid (166,440 grid cells) to span the 77,020 1-hectare grid cellsfor serial implementations.Spatial heterogeneity across the nynp landscape is represented by a series of datamaps. Some of the environmental data (e.g., elevation, slope, aspect) are constants,while others (e.g., baseline snow depth and forage biomass) may vary from simulationto simulation. Many of the abiotic data were obtained from the ynp geographicinformation system (gis). Elevation is used primarily to initialize bison locations atthe beginning of the simulation. Slope, aspect and baseline snow depth are used toestimate e�ective snow depth.Initial quantities of pre-winter forage assigned to each habitat grid were derivedfrom data collected during late summer and early fall of 1990. Unlike other habitatvariables, forage biomass values are inuenced by animal foraging activities and ef-fective snow depth. Ungulate groups search the study area for forage according to adetailed serial movement rule. When snow depth exceeds the brisket height of theparticulate ungulate category, foraging cannot occur. Daily forage intake is balancedagainst daily energy expenditure in estimating weight loss by ungulate individuals.When weight drops below a survival threshold, mortality occurs.The noyelpmodel was originally calibrated by adjusting the values of two param-eters, maintenance energy (enmb) and the upper threshold of snow equivalent at which10

foraging is precluded (swhi), for which �eld data were not available ([TWWR+93]).3.2.1 Habitat typesTo simulate ungulate foraging and survival, the nynp landscape is discretized intosix habitat types (Figure 3.1). Four of these six habitat types are grasslands, dif-ferentiated primarily on the basis of moisture availability, species composition andbiomass production. At elevations characteristic of nynp, the sagebrush-grasslandhabitat types form a patchwork mosaic with the two woody habitat types, aspenstands and coniferous (canopy) forests (dominated by pine and �r). In general, ungu-lates appear to respond to forage quantity rather than quality or subtle communitydi�erences, which simpli�es the modeling process. At the start of the model year,forage is distributed within each habitat type by assigning to each grid cell in thehabitat type a forage biomass value drawn randomly from the 95% con�dence interval(i.e., � 2 standard errors) of a normal distribution around the mean for the particularvegetation class, as determined by �eld sampling.3.2.2 Ungulate Categories and DistributionSix ungulate categories were de�ned for simulation purposes. Bison groups consist of9 cows, 9 calves, or 2 bulls, while elk cow, calf and bull groups each include four indi-viduals. Since calf groups follow the foraging pattern of the cow groups to which theyare assigned, the model e�ectively simulates groups of 8 and 18 combined cow/calfgroups for elk and bison, respectively. The model places no constraints on the num-ber of groups that may occupy a grid cell at one time. All animals within the sameungulate group are assigned the same initial body weight.Elk are initially distributed randomly within grid cells containing forage (i.e., re-source sites) across the winter range. Bison groups are initially distributed randomlyin grassland habitats at elevations � 2100m, resulting in approximately 90% beingassigned to the eastern portion of the study area.3.2.3 Snow SimulationSnow conditions are extremely important in determining the winter dynamics andsurvival of ungulate populations in the nynp. Both foraging and movement can bea�ected by snow. Snow depth and snow density (%) are used to determine ener-getic costs of travel and maximum daily moving distances. Snow water equivalent(swe), the product of snow depth and density, inuences daily forage intake. Whensnow depth exceeds brisket height, ungulates generally cannot forage. Even shallow,densely packed snow may limit foraging. There is an upper limit of snow/water equiv-alent (swhi) above which no foraging can take place. This limit is category-speci�c,11

depending largely on the size of the animal (i.e., brisket height). For example, bullscan travel and graze in deeper, denser snow than calves.To simulate snow conditions, the northern range is �rst subdivided into two regions(the snow-shadow area and the rest of the study area), based on amount of winterprecipitation, and baseline snow depths and densities are then projected within eacharea, assuming no slope or aspect e�ects. These baseline projections are subsequentlymodi�ed according to the slope and aspect of each grid cell. Snow conditions areupdated at 3-day intervals.3.2.4 ForagingDaily ungulate forage intake on a grid cell is a function of maximum daily intake.This intake is a product of two constants, initial body weight (bw) and maximumdaily foraging rate, (feed), and one of two negative feedback terms representing theamount of available forage at the site (fbbio) and the depth and density of snow(fbswe). Each feedback term is a number between 0 and 1. Whichever feedback termis smaller has the greater impact on foraging and is allowed to operate.The hyperbolic forage availability feedback term (fbbio) reects a direct relation-ship between the amount of available forage and the instantaneous rate of feeding.As ungulates graze, the feedback term decreases, reecting a decrease in the amountof available forage on the grid cell. Because no regrowth of vegetation occurs duringthe winter (dormant) season, and no other sources of forage attrition are consideredin the model, biomass can only remain the same or decrease. The feedback functionutilizes the concept of a refugium value of biomass not available to ungulates. Whenforage biomass falls to the refugium value (13% of Fall biomass), the value of thefeedback term is set to zero. When the refugium value is greater than 0, the feedbackterm will be less than 1.The snow water equivalent (swe) feedback term reects the e�ect of both snowdepth and snow density on the ability of ungulates to obtain forage. Two thresholds(the value at which foraging is set to zero and the value at which limitation of foragingbegins) are used in de�ning the snow feedback term. At swe values greater than thosewhich limit foraging, an animal can forage at its maximum rate. Between the twothresholds of swe, a linear change in the value of the feedback term is assumed.3.2.5 Search and Movement RulesThe noyelp model utilizes a simple algorithm to simulate an ungulate's search andmovement strategy. If an ungulate group is located on a grid cell containing availableforage at the start of the day, the animal grazes. If forage intake on that cell is lessthan the daily maximum, the animal searches for another grazing site. Because theforage feedback term has an upper limit at 0.87 (with the refugium level set to 13%),12

the ungulate group cannot attain its maximum daily intake of forage from one gridcell, and must move at least once per day. An ungulate group is prohibited fromremaining at the same grid cell, revisiting a grid cell during the course of one day'smovement, or moving to a grid cell outside the boundary of the study area. Searchingprocedures are described in detail in Chapter 7.During fall and early winter, when forage is generally available, ungulate groupswill typically move only once per day. Later in the winter, when forage becomes lessavailable due to foraging and/or the presence of snow cover, an ungulate group maymove several times per day in its search for food. Maximummovement distance (and,therefore, the number of moves an ungulate group can make in one day) decreases assnow conditions become more extreme because of increases in energy costs associatedwith travel in snow.3.2.6 EnergeticsDaily energy balance is the di�erence between daily energy gain, engain, and dailyenergy expenditure, encost. Engain is the product of total intake of forage in kg (fd)and habitat type speci�c forage energy content in kcal/kg (enpk). Encost is the sum ofmaintenance energy cost (enme) and travel energy cost (enmov). Maintenance energycost, represented as a power function of current body weight, includes the energy costsassociated with all the animal's daily activities which occur within the grid cells. Forinitial model parameterization, estimates of maintenance energy cost obtained fromthe literature were used, but these estimates were subsequently adjusted during modelcalibration. Travel energy cost is computed by �rst calculating the (per unit distance)energy cost of travel in the absence of snow (a function of body weight), and thenmodifying this value to account for the relatively higher travel costs associated withtravel in snow (a function of snow depth and snow density). These costs increaseexponentially as a function of relative sinking depth, and may limit maximum dailydistance traveled and (consequently) the number of cells a group can search duringthe day.Whenever forage intake is insu�cient to meet the animal's energy expenditures,ungulate body weight is adjusted downward. No weight gain is permitted. Death bystarvation is assumed to occur when ungulates lose both 70% of their fat and 30% oftheir non-fat body weight. Since no predators are included in the model, death bystarvation is the only signi�cant source of population attrition on the winter range.3.3 Example Data SetFor the example data set used in simulations for this study, 19,972 animals in 5,015groups were input to the model. Greater than 96% of the total number of ungulateswere elk. Table 3.1 presents a listing of ungulate cow, calf and bull groups, with13

Table 3.1: Sample composition of animal groups in a noyelp model simulation.Fraction of Size of Number of NumberCategory Population Groups Individuals of GroupsElk:Cows 0.65 4 12524 3132Calves 0.16 4 3084 771Bulls 0.19 4 3660 915Total 1.00 19268 4819Bison:Cows 0.38 9 270 30Calves 0.18 9 126 14Bulls 0.44 2 308 154Total 1.00 704 196All ungulates 19972 5015a count of individuals of each species belonging to each of the categories. Sincemovement of calf groups follows that of the cow groups to which they are assigned,the model e�ectively simulates the movement of 4,230 groups.

14

Wet grasslands:Moist grasslands:Mesic grasslands:Dry grasslands:Coniferous forest:Aspen stands:Outside study area:Figure 3.1: Map of noyelp study area showing habitat types.15

Chapter 4PreliminariesIn developing kernels for diverse applications requiring cluster identi�cation and ge-ometry, the programmer must make the kernels adaptable to the needs of the appli-cation. Clusters might represent resources, animals, landscape patterns, or dispersalpatterns of pollutants ([TWWR+93]). Map size and density may be static or maychange during program execution.To simulate cluster analysis on landscape maps, randommaps are generated havinga proportion, p, of 1's. The proportion of 1's (or non-zero elements) in a map iscalled the p value of that map ([StAh91]). These random maps are then used tofacilitate algorithm development and to test parallel implementations for accuracy.Using random maps, performance of an algorithm can be predicted on prospectivereal world maps of various sizes and densities from actual landscape ecology models.For testing purposes, m � m random maps of density p are generated, where m =64; 128; 256; 512; 768; 1024, and p = 0:10; 0:30; 0:62; 0:85; and 1:00 for each valueof m.In landscape ecology models, the non-zero pixel elements generally represent anassigned level or range of some speci�c habitat parameter (e.g., moisture less than10%, biomass greater than 100 kg/hectare, or a ammability index of 7), animalgroup density, or some aggregate of parameters representing habitat suitability onthe unit area of landscape.For this study, 1 hectare landscape units with available resource (i.e., foragebiomass) above a pre-assigned threshold level is represented by setting the grid el-ements of the random maps to 1 with a probability of p. For these random maps,a setting of 0 (with probability 1 � p) represents habitat with resource levels belowthe threshold. Thus, pm2 is the number of pixels of suitable resource habitat (or 1's)within the map. For irregularly-shaped real world study areas, such as NYNP, therectangular or square data grid will include pixels outside the study area, therebydecreasing the p value of the map as a whole.16

4.1 Map DensityTable 4.1 summarizes cluster size distribution, size of the largest cluster, and totalnumber of clusters for the �ve p values and six map sizes used in this study. Allclusters for maps with p = 0:10 and p = 0:30 have fewer than 100 members (orpixels), while maps with p � 0:62 have a large dominating cluster, along with smallerclusters. This change in maximum cluster size is explained by percolation theory([StAh91]). According to this theory, maps with p values greater than a thresholdof 0:5928 are characterized by a large dominating cluster that percolates across themap from boundary to boundary. A random map with p = 0:10 is a sparse map withsmall, isolated clusters; p = 0:30 yields a map with many fragmented clusters; a mapwith p > 0:59 is dominated by one large cluster.Figure 4.1 illustrates the di�erences in cluster numbers and sizes associated withp values of 0:30 and 0:62 for 64 � 64 maps.
(a) (b)Figure 4.1: Sample 64� 64 random maps with (a) p = 0:30 and (b) p = 0:62.As the p value of a map increases, the amount of the work involved in clusteridenti�cation and geometry computations changes. The relationships of number ofclusters, maximum cluster size, and average cluster size to p value for 256 � 256maps are illustrated in greater detail in Figure 4.2. The number of clusters graduallyincreases to a peak around p = 0:33, after which it gradually decreases to 1. The av-erage cluster size remains small until p values exceed 0.80 and the number of clustersdrops to about 100. Maximum cluster size stays relatively small until the percola-tion threshold of p = 0:5928 is reached, after which the size of the largest clusterincreases dramatically and remains large. For larger p values, the average cluster size17

Table 4.1: Distribution of cluster sizes for randomly generated maps of six sizes and �ve p values.Size of Total Cluster SizeMap Largest No. of 101- 501- 1001- 10001- 100001-p Size Cluster Clusters <100 500 1000 10000 100000 500000 >5000000:10 64 8 325 325128 6 1305 1305256 7 5227 5227512 12 20917 20917768 8 47281 472811024 15 84140 841400:30 64 25 534 534128 29 2157 2157256 33 8484 8484512 42 33891 33891768 44 75941 759411024 55 135122 1351220:62 64 1981 110 109 1128 6609 382 376 4 1 1256 34363 1400 1393 5 1 1512 141190 5503 5490 10 1 1 1768 323676 11989 11965 22 1 11024 577501 21141 21099 37 4 10:85 64 3455 4 3 1128 13862 9 8 1256 55523 30 29 1512 222417 129 128 1768 500409 259 258 11024 890080 510 509 11:00 64 4096 1 1128 16384 1 1256 65536 1 1512 262144 1 1768 589824 1 11024 1048576 1 118

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

P-value

11

20001

40001

60001

N
um

be
r o

f E
le

m
en

ts

number of clusters
size of largest cluster
average cluster size(a)

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

P-value

1

10

100

1000

10000

N
um

be
r o

f E
le

m
en

ts
 (L

og
 S

ca
le

)

number of clusters
size of largest cluster
average cluster size(b)Figure 4.2: Comparison of cluster characteristics across p values for 256� 256 maps (a) standardscale and (b) log scale. 19

approaches the size of the largest cluster as the number of clusters approaches one.Execution times for cluster identi�cation and geometry programs can be relatedto changes in cluster characteristics as a function of map density. Di�erent clusteranalysis algorithms developed during the course of this study generally reach perfor-mance peaks at characteristic p values. Some algorithms performed well on sparsemaps (p values below about 0.15) or handled large numbers of small clusters well(p values near 0.30), but did not process dense maps containing a small number oflarge clusters e�ciently. Algorithms which perform well on the large dominating clus-ters found in maps with p values above 0.59 often were not well adapted to handlethe numerous smaller clusters found in sparser maps. Testing with maps of widelyvarying densities is necessary to identify the combination of algorithms which provideoptimal performance over the entire range of densities found in real landscape maps.The relationship between cluster characteristics and p values is somewhat di�erentfor non-random landscape maps. While the size of the largest cluster (and hencecomputational complexity) is predictably tied to the p value in random maps, thisis not the case with landscape maps. For example, calculation of the mean squaredradius of a cluster of size n requires computing O(n2) squared row and column dif-ferences. The random map of size 64� 64 (4096 pixels) with p = 0:30 (1229 resourcepixels) generated for this study contains 534 clusters, all with fewer than 25 pixelsand an average cluster size of 2.3. A total of 6103 row and column comparisonsare required for all cluster geometry computations. By comparison, a 64 � 64 (non-random) landscape map with a p value of 0:30 could have 1229 clusters of 1 pixel each,requiring no row=column comparisons for mean squared radius calculation or, at theother extreme, could have 1 cluster with 1229 pixels, requiring 1229� 1229 = 151044comparisons. Because the relationship of p value and cluster size is not predictablefor landscape maps, the size of the largest cluster is a more accurate indicator ofperformance than p value for these maps.While results from random maps might not be directly comparable to those fromlandscape maps of the same size and density, the trends in algorithm performanceover a set of random maps of varying sizes and densities can serve as a general guideto performance on landscape maps with known cluster characteristics. The similaritybetween performance results for random and landscape maps increases as the p valueincreases, since the range of possible cluster con�gurations decreases as maps becomemore dense.Some modeling applications require analysis of clusters in a static map of knowndensity while in other applications, such as noyelp, changes in a given landscapefeature (i.e., available biomass) over time must be evaluated by identifying and char-acterizing clusters at each time step. A typical dynamic application might startwith a dense map (high p value) and analyze progressively sparser maps as resourcesare depleted; other applications will involve a map that is initially sparse, with thep value increasing as complexity is added. In these dynamic applications, a small20

improvement in cluster analysis time could save hours in total computing time.4.2 Map SizeThe relationship between random maps and landscape maps is complicated by theirregular shape of real landscape unit, and the resulting need to include pixels in realmaps which are outside the study area to attain a regular (i.e., rectangular) grid forspatial analysis. For example, the 77,020 hectare NYNP study area is an irregularly-shaped polygon. Because of its irregular shape, the study area must be representedin the serial noyelp simulation model as a 285 � 584 grid. If the study-area pixelswere contained in a square, it could be represented as a 278�278 grid, with a spatialresolution of 1 hectare. Pixels outside the noyelp study area constitute 54% of themodel grid and are assigned the value �1 to distinguish them from habitat pixels.When noyelp input �les are adapted to the 4,096-processor MasPar MP-2 im-plementations, the model grid must be further extended to 320 � 640, so that allrows and columns are multiples of 64, the row and column dimensions of the MasParPE grid. This increases the proportion of non-study area pixels to 62% of the totalmap area. For MasPar MP-2 implementations, each processor is assigned 50 pixels,with an average of only 19 of these representing study area pixels. As a result, speedimprovements for parallel noyelp implementations will be smaller than for randommaps of the same size. Processors which have been assigned map segments outsidethe study area will be idle, causing performance degradation. For this reason, theshape of the study area is a much more serious concern for parallel simulations thanfor serial models.Algorithm performance for noyelpmaps will also di�er from that of random mapsof the same size and density because of the non-random distribution of forage biomass,a product of environmental heterogeneity and non-random foraging activities. Thisclumping of biomass distribution will a�ect di�erent cluster analysis algorithms indi�erent ways (see discussion in Section 4.1 above).4.3 Veri�cationIn developing parallel cluster analysis and ungulate movement algorithms, testingwith maps of varying size and density is important not only for predicting perfor-mance, but also for veri�cation of results. Error detection in parallel programmingis not as straightforward as it is with serial programming, especially when data vir-tualization (via MPL) is involved. Care must be taken to exercise all permutationsof inter-layer communication to ensure that no data are lost. Implementations whichfunction correctly for dense maps (i.e., which \turn on" most or all virtualized layersto the active state) may fail when maps are sparse. On the other hand, these dense21

maps may generate large intermediate sums or products which test the limits of vari-able sizes and the accuracy of variable casting. During the algorithm developmentphase of this thesis e�ort, several errors appeared in only 1 of the 30 size/density testcombinations, pointing to the need for testing over a range of combinations.4.4 Serial Computing EnvironmentThe computing environment used for serial program development and testing for thisthesis consists of two architectures: the Sun SPARCstation 2 and the SPARCsta-tion IPX. The SPARCstation 2 has a SunOS 4:1:2 operating system, a clock speedof 40 MHz, and 64 Mbytes of RAM. The Sun SPARCstation IPX is very similar, witha SunOS 4:1:3 operating system, a clock speed of 40 MHz, and 16 Mbytes of RAM.Both are capable of a peak computation rate of 4:2 Mops (Millions of FLOating-Point operations per second). Performance of these machines on SPEC benchmarksis shown in Table 4.2.Table 4.2: Performance speci�cations for architectures used in the sequential computing environ-ment. Machine Sun SPARCstation IPX Sun SPARCstation 2MIPS 28.5 28.5SPECmark89 24.4 25.0SPECint92 21.8 21.8SPECfp92 21.5 22.8Mops 4.2 4.2The serial timings presented in the results sections of Chapters 5 through 7 wereobtained from one of these two architectures, as speci�ed in discussions and in tableand �gure captions. The Sun SPARCstation 2 was generally used, except for pro-grams which compute mean squared radius. These programs required many hoursof computing time, and were run on the Sun SPARCstation IPX because of theavailability of dedicated time. Dedicated wall-clock times are used when times forserial implementations are compared to those for parallel implementations. Whenserial implementations are compared with other serial implementations, CPU timesfor programs run on the same machine (Sun SPARCstation 2 or Sun SPARCstationIPX, as speci�ed) are used. When computing times are speci�ed as excluding I/Otime, I/O refers to reading data from input �les and writing results and times to astandard output device (screen). 22

Chapter 5Cluster Identi�cationCluster identi�cation is not unique to landscape ecology. It is important in suchdiverse �elds as image processing and lattice �eld theory in physics ([ApCM92]). Inphysics, cluster identi�cation is performed on n-dimensional maps and is referred toas connected component labeling, with map elements considered as boolean variablesset to on or o� . The goal is to have the same unique label on all connected sites anda di�erent label for each disconnected cluster.In landscape ecology applications, cluster identi�cation typically involves locatingand labeling clusters in a 2-D grid, and determining cluster characteristics such astotal number of clusters, size of each cluster, size of the largest cluster, and averagecluster size. Adjacent pixels are considered to belong to the same cluster if they havethe same value (e.g., habitat or resource level), as de�ned by a particular nearest-neighbor rule. The neighbor rule implemented in the serial and parallel algorithmsinvestigated in this thesis considers pixels containing the same value to belong to thesame cluster if they are north, east, west or south (news) neighbors of each otheror of some other element in the cluster. Diagonal adjacency is not considered in thisrule. In the following discussion, grid cells or pixels having a positive value indicatingmembership in the map class being analyzed are called resource pixels, consistentwith the noyelp model example utilized in this e�ort (where forage biomass is theresource variable of interest). Figure 5.1 shows a simple grid with cells belonging toeach cluster (according to the neighbor rule) in a common enclosure.5.1 Serial AlgorithmsSerial cluster identi�cation algorithms fall into one of two classes: (1) those whichbuild entire clusters in sequence (i.e., one at a time) in the order in which they areencountered during grid traversal, and (2) those which build clusters incrementally,as members are encountered in grid traversal.23

1 1

1

0 0

0

0

1 1 1

1 1

1 10

1

0

0

0

0 0 01

111

0

1

0

1

10

0 0

0

0

Figure 5.1: Two-dimensional spatial grid showing showing 7 individual clusters.Recursive and pseudo-recursive cluster identi�cation programs fall into the �rstclass (i.e., they build cluster in sequence). Recursive programs have a cluster-buildingfunction which labels one pixel, then calls itself recursively with the location of anynearest neighbors of that pixel. Pseudo-recursive programs simulate recursion bystoring pixel locations in arrays, which serve as stacks of cluster elements from whichclusters are sequentially built. Cluster labeling is accomplished by traversing the gridone element at a time. When a pixel containing a resource value is encountered, itis labeled with a unique cluster number. Then all nearest neighbors of this pixelare examined and added to the growing cluster if they are also resource pixels. Thisprocess continues with examination of nearest neighbors of nearest neighbors, untilall pixels in a particular cluster are identi�ed and labeled. Traversal of the grid (andbuilding of the next cluster) then continues with the next unlabeled pixel and theprocess continues until all clusters members are labeled.Algorithms which fall into the second class embody an alternate approach to clusteridenti�cation, incremental cluster building. The grid is traversed from top down andleft to right. Pixels are given temporary labels as they are encountered, and labelsare updated as clusters take shape concurrently. Examples of this approach are theHoshen-Kopleman algorithm, discussed in more detail below, and the local di�usionor label propagation method ([ApCM92]).24

In the following subsections, (5.1.1 to 5.1.3), �ve serial cluster algorithms arediscussed. Three of these (the original noyelp function, a revision of this function,and the Hoshen-Kopleman algorithm) implement incremental cluster identi�cation,while the other two, based on recursion and pseudo-recursion, respectively, processclusters sequentially.5.1.1 Original noyelp incremental algorithmThe original cluster identi�cation algorithm used in the serial noyelp model is atype of local di�usion algorithm, wherein repeated local nearest-neighbor comparisons(using the news rule) result in correct labels di�using throughout the grid. As theresource grid is traversed one element at a time, each element compares its resourcevalue with those of its nearest neighbors. Elements with matching values are includedin the same cluster by assigning to all the lowest (numerical) cluster label in thecluster. Cluster labels are updated as cluster membership changes. In the originalnoyelp version, grid traversal is repeated four times, with four comparisons made foreach pixel on each pass. It was assumed that all clusters had been properly labeledat this point.As implemented in the original noyelpmodel, this cluster identi�cation algorithmhad several de�ciencies. One involved a minor array index error which would have ledto aberrant results, but was easily corrected. The other, which involved the ine�cientand incomplete implementation of the basic algorithm, was more signi�cant. Testingwith several 10� 10 data �les representing several known levels of cluster complexityshowed that this algorithm correctly identi�ed simple cluster patterns, but complexclusters were incompletely labeled. Testing with larger random maps revealed thaterrors in cluster identi�cation began to appear as resource pixel density approachedthe percolation threshold (p = 0:59). Large clusters which spread from border toborder were incorrectly labeled as several smaller clusters. These results indicatedthat four traversals of the grid were not su�cient for complete cluster identi�cationwhen densities were near the percolation threshold.The original algorithm was modi�ed to identify clusters correctly by adding anactivity ag and making repeated passes through the data until no cluster-buildingactivity was detected. As many as 32 4-comparison (NEWS) passes through a 1024�1024 map with p = 0:62 were required to accurately label all clusters, resulting in asubstantial increase in execution time. Clearly, a more e�cient algorithm was neededto deal with the range of map densities which might be encountered in modelingnatural environments.Yegang Wu, author of the original noyelp program, subsequently developed an-other incremental cluster-building Fortran-77 algorithm (orfor) which correctlyidenti�ed all clusters and showed signi�cant speed improvements over the originalalgorithm (modi�ed for accuracy by adding the activity ag, described above) but25

required large arrays and performed poorly on maps with large clusters.5.1.2 Recursive and pseudo-recursive algorithmsCluster identi�cation is most easily conceptualized in recursive terms, but recursionis not available in Fortran-77. Nonrecursive versions of recursive algorithms are of-ten more e�cient, even in recursive languages, because they lack the overhead ofrepeated parameter passing, and because nonrecursive code is more easily optimizedby compilers ([HoSa83]).A two-step approach was taken to develop this more e�cient Fortran cluster iden-ti�cation algorithm:1. A recursive C program (recrc) was written and tested for accuracy. This pro-gram provided the conceptual basis for development of a functionally comparablepseudo-recursive Fortran program.2. Following a procedure outlined in Horowitz and Sahni ([HoSa83]), the recursiveC program was translated into a pseudo-recursive Fortran-77 program (prfor).The pseudo-recursive version builds clusters in the same way as the recursiveprogram, but uses only iteration to control program ow. Arrays of row andcolumn numbers (x- and y-coordinates) are used to simulate a stack. Pixel coor-dinates are pushed onto the stack by adding elements to the arrays; coordinatesare popped from the stack by decrementing the count of items, which serves asthe maximum array index.After testing for accuracy and performance on random maps of various sizes anddensities, the revised algorithm proved to be an acceptable alternative for clusteridenti�cation. prfor was included in the revised noyelp model and is used forperformance comparisons with the parallel kernels discussed below.Figure 5.2 traces the performance of prfor for 1024 � 1024 random maps asp value increases from 0 to 1. A direct linear relationship exists between executiontime and map density. Memory requirements for arrays which record the number ofelements per cluster peak near p = 0:32, while working stack array sizes increase withincreasing maximum cluster size and p value.5.1.3 Implementation of the Hoshen-Kopleman algorithmAnother serial algorithm for incremental cluster identi�cation, the Hoshen-Koplemanalgorithm ([HoKo76]), was implemented later in the thesis e�ort to serve as a basisfor the hierarchically-mapped parallel version of cluster identi�cation. This algorithm(hkfor) traverses the map to be analyzed pixel by pixel, assigning pixels to tem-porary clusters as they are encountered. Two working arrays, level and label, aremaintained to keep track of clusters-in-progress. Level is the length of a row in the26

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

P-value

1

2

3
Ti

m
e (

se
c)

Figure 5.2: CPU time versus p-values ranging from 0 to 1 for 1024� 1024 random maps using theserial prfor algorithm on a Sun SPARCstation 2 (excluding I/O).main map, and records the cluster identi�cation label of elements in the previousrow analyzed. Label is an array which has an entry for each cluster and records anaccumulating total of cluster membership. Figure 5.3 illustrates the status of thesearrays after one row of the grid has been analyzed. Shaded circles in the level arrayindicate pixels which are not in the map class being analyzed.Each cluster identi�cation label stored in the level array serves as an index intothe label array, pointing to either a positive or negative number. If the number ispositive, it is the number of members to date in that cluster; if it is negative, theabsolute value of the number represents the true cluster label/index. As each row ofthe map is traversed, the ID number of each map element is compared to that of theprevious element in that row (west neighbor) and that of the element in the samecolumn of the previous row (north neighbor). If they are all in the same cluster, thesmallest label is assigned to all three elements, and any changes in the status of thewest and north neighbors are recorded in the working arrays. When the map has beencompletely traversed, the label array holds all �nal assignments of cluster labels andthe number of pixels in each cluster. This innovative 1-pass algorithm is e�cient anddoes not require the large amount of stack space which makes recursive approachesfor maps with very large clusters prohibitive on many machines.27

1 1 11

1

0 0

0

0

1 1 1 1

1 1

1 1 10

1

0

0

0

0 0 01

111

0

1

0

1

10

0 1 2 3 5 n

0 1 3 4 5

4

Label

Level

2

1 10

2 2

0Figure 5.3: Status of level and label arrays after one row of grid has been traversed using theHoshen-Kopleman algorithm.5.1.4 Comparison of serial algorithm performanceTable 5.1 compares the elapsed CPU times (in seconds, excluding I/O) for these fourserial cluster identi�cation algorithms on a Sun SPARCstation 2 for seven map sizesand �ve p values. Execution times for all algorithms increase with map size anddensity.The relative e�ciency of the four cluster identi�cation algorithms was consistentacross map size and density. The incremental cluster identi�cation hkfor was consis-tently the most e�cient of the four algorithms. The pseudo-recursive prfor sequen-tial algorithm demonstrated e�ciency comparable to that of hkfor for maps withthe lowest densities, and was marginally but consistently slower at high p values.The recursive C sequential cluster identi�cation algorithm, recrc, was compara-ble in e�ciency to prfor and hkfor for maps with low densities, but was clearlyslower at higher p values. The incremental cluster identi�cation algorithm orfor28

was consistently the slowest over all p values and map sizes.Cluster identi�cation methods which build clusters incrementally are preferred forSIMD parallel implementations because they embodymore inherent parallelism. Eventhe local di�usion method, which is very slow in serial applications, is more e�cientas the serial component of SIMD parallel implementations on the MasPar MP-2 thaneither the recursive or pseudo-recursive algorithms developed in this thesis e�ort. Amodi�cation of the Hoshen-Kopelman algorithm ([FlTa92]), the more e�cient of thetwo serial incremental approaches evaluated, was chosen as the serial component inthe parallel cluster identi�cation kernels developed for this thesis.5.2 MasPar MP-2 AlgorithmsCluster identi�cation algorithms implemented on the MasPar MP-2 employed thetwo data mapping (virtualization) strategies supported by MasPar in order to handlemaps larger than the 64� 64 PE grid: cut-and-stack and hierarchical (see Chapter 2for a discussion of these strategies). For both implementations, work is divided intotwo distinct tasks: (1) labeling cluster elements and (2) collecting information fromthe PEs. In Sections 5.2.1 and 5.2.2, the cluster labeling task is discussed for cut-and-stack and hierarchical data mapping, respectively. Collection of cluster data, whichis similar for both mapping strategies, is discussed in Section 5.2.3.5.2.1 Cluster labeling in implementations with cut-and-stack data map-pingIn implementing cluster labeling with cut-and-stack mapping, each map pixel with aresource value greater than 0 is initially assigned a unique ID number based on itsposition in the map. Repetitive comparisons of north-south and east-west pairs ofpixels are then made. This is very similar to the serial local di�usion method (alsocalled label propagation ([ApCM92]), except for the fact that adjacent map pixelsare on adjacent PEs, and label comparisons are made using the xnet communica-tion construct. Contiguous map pixels in the same cluster are given the cluster IDcorresponding to the smallest pixel label in the group of contiguous pixels.Figure 5.4 shows a simple 4 � 4 map at four stages of the cut-and-stack labelingprocess: (a) starting state, (b) after labeling with a unique ID, and after each PElooks (c) north and (d) west. This process of comparison and relabeling continuesuntil all adjacent cluster elements have the same label and no label updating activityis detected (using an activity ag). 29

Table 5.1: Comparison of CPU times for serial cluster identi�cation algorithms on a Sun SPARC-station 2 (all times are in seconds). Map SizeAlgorithm p-value 64 128 256 512 768 1024 2048hkfor 0.10 0.00 0.02 0.07 0.27 0.61 1.25 5.270.30 0.00 0.02 0.10 0.39 0.91 1.67 7.000.62 0.01 0.03 0.13 0.61 1.37 2.60 10.790.85 0.02 0.04 0.19 0.76 1.69 3.23 13.081.00 0.02 0.05 0.21 0.88 1.96 3.73 14.74orfor 0.10 0.01 0.02 0.17 0.70 1.60 3.00 13.450.30 0.02 0.05 0.27 1.13 2.54 4.59 20.000.62 0.02 0.10 0.44 1.79 4.13 7.23 30.340.85 0.03 0.12 0.59 2.32 5.41 9.41 38.881.00 0.04 0.14 0.69 2.74 6.35 11.11 45.72prfor 0.10 0.00 0.01 0.06 0.31 0.74 1.30 5.220.30 0.01 0.02 0.11 0.46 1.13 1.91 7.800.62 0.01 0.03 0.17 0.68 1.56 2.75 11.090.85 0.01 0.04 0.22 0.88 2.04 3.56 14.621.00 0.02 0.06 0.25 1.08 2.54 4.49 18.03recrc 0.10 0.01 0.02 0.10 0.41 0.93 1.69 10.680.30 0.01 0.03 0.13 0.52 1.18 2.08 12.260.62 0.01 0.04 0.17 0.70 1.62 2.87 22.320.85 0.02 0.16 0.59 1.62 5.32 7.21 *1.00 0.03 0.23 0.92 3.76 8.78 9.38 *�exceeds stackspace limitshkfor: Hoshen-Kopleman (Fortran-77)prfor: Pseudo-Recursive (Fortran-77)orfor: noyelp (revised) (Fortran-77)recrc: Recursive (C)
30

5.2.2 Cluster labeling in implementations with hierarchical data mappingThe hierarchical cluster labeling strategy adapted for parallel algorithm developmentwas inuenced by the work of Tamayo ([FlTa92]) in quantum physics. The process,which involves three-steps, is shown in the context of the entire cluster identi�cationprocess in Figure 5.5 and is discussed below. In Figure 5.5, the two large boxesrepresent adjacent PE subgrids, each with 9 data elements (map pixels). The numberin the center of each small box (one map pixel) represents the resource level in theStarting State, and the cluster label thereafter. The number in the lower right cornerof each pixel represents the unique pixel label. The circled number in the upper leftcorner represents the total number of pixels in a cluster (stored at the head pixel ofeach cluster). The box in the upper right-hand corner denotes a local cluster headand contains a local cluster sum.1. Step 1. As was the case for implementations employing cut-and-stack mapping,each map pixel is initially assigned a unique ID number (label) based on itsposition in the map. Clusters are �rst resolved locally (within the subgrid ofeach PE) using an adaptation of the Hoshen-Kopelman algorithm ([StAh91]) forincremental cluster identi�cation. Modi�cations to the serial Hoshen-Koplemanalgorithm required for parallel implementation included labeling each pixel withits local cluster number and storing local cluster sums at the local head pixelsfor local clusters. Each pixel is assigned a pointer to the local head of its cluster(i.e., the cluster member on its PE with the smallest label).Alternative recursive or pseudo-recursive algorithms for this serial step in clusterlabeling are not well-suited to an SIMD approach and are much less e�cient.With the sequential cluster labeling pseudo-recursive algorithm, subgrid traversalstops when a local cluster head is encountered and local building of that clustertakes place. As a consequence, some processors are idle while local cluster build-ing takes place on one or more other processors, resulting in poor performance.Since the Hoshen-Kopleman adaptation adds new members to each cluster asthey are encountered in local subgrid traversal, work is distributed more evenlyover local subgrids for more e�cient SIMD performance.
31

2. Step 2. For each PE (in parallel), comparisons are made of local cluster labels inborder rows and columns with those in immediately adjacent rows and columnsof adjacent PEs The smallest cluster label is assigned across PE boundaries toborder elements of the adjacent PE which are in the same cluster. Label changesare then transferred (by pointer) to the local head of the cluster to which eachborder pixel belongs. An activity ag is set whenever relabeling occurs.3. Step 3. The process of border comparison and relabeling is continued until anequilibrium state is reached in which corresponding border cluster elements onall adjacent PE's share the same cluster label. This state is detected when noactivity ags are set recording relabeling activity. Total number of pixels in eachcluster are stored at the cluster's head pixel.The number of iterations required for complete label propagation depends onsizes and densities of the clusters. For random maps, p values near the criticalregion (0.5928) result in cluster characteristics requiring the maximum numberof iterations for resolution. When maps are sparse, clusters are smaller and labelsdo not have far to propagate. When maps are denser, most pixels belong to thesame cluster, requiring little relabeling.

32

5.2.3 Collection of cluster dataIn serial implementations of cluster identi�cation, collection of cluster data is ac-complished within the cluster labeling function. Cluster size is accumulated in arrayswith one entry per cluster. For parallel implementation, where memory is somewhatlimited on both the ACU and the DPU, potentially large arrays such as these cannotbe maintained. Cluster data must be maintained on the PEs, and are not collecteduntil after cluster labeling has been completed.For both mapping strategies, collection of cluster data is accomplished by havingall members of a cluster report to the local head pixel on their PE, which then reportsto the global head pixel for that cluster (i.e., the cluster member with the smallestoriginal label over all processors, whose ID number has been used to label all othermembers). Local collection for hierarchical implementations is shown in Step 1 inFigure 5.5. The boxes in the upper right-hand corner of each grid cell denote localcluster sums. Implementations of both mapping strategies would be expected tobene�t from the local collection of cluster information for each cluster representedon a PE before sending the sums to the head element. Local collection would beexpected to improve e�ciency of the hierarchical algorithm more for sparse randommaps (p = 0:10 and 0:30) than for dense random maps because of the high likelihoodthat clusters would be con�ned to individual PEs. Local collection would improve thecut-and-stack version only for denser maps (p > 0:59), since only the large clusterstypically found in dense maps are likely to have a signi�cant number of members onthe same processor.For either mapping strategy, each member of a cluster can calculate the address(PE number and subgrid position) of the head pixel of that cluster from its own �nalcluster label, as follows:PE number = label mod nproc,layer = label / nproc,where PE number is a unique processor identi�er, layer is a virtualized data layeron that processor (see Chapter 2 for a discussion of virtualization), and nproc is thetotal number of PEs, which is 4096 for the MasPar MP-2. The MPL communicationconstruct p sendwithAdd() is used to report membership of the pixel to the headelement of the cluster to which it belongs (by sending a 1). Sums representing totalcluster membership are maintained by each head element. Global collection is denotedby circled integers in the upper left-hand corner of cells, shown in Step 3, Figure 5.5.The MPL function reduceMax() is then used to �nd the size of the largest cluster,as follows: largestcluster= reduceMax(clustersize).where largestcluster is a singular variable and clustersize is a plural valueallocated on all PEs. Number of clusters is determined by counting head elements,as follows: 33

Table 5.2: Speed improvement of MasPar MP-2 versions over pseudo-recursive Fortran version on aSPARCstation 2 for cluster identi�cation (excluding I/O).Mapping Map Sizestrategy p value 64 128 256 512 768 1024 2048Cut-and-stack 0.10 0.00 0.62 4.00 2.48 1.74 1.27 0.410.30 0.83 1.25 2.35 2.19 1.87 1.34 0.550.62 0.23 0.35 0.47 0.54 0.60 0.50 0.340.85 0.18 0.51 1.13 1.33 1.42 1.36 1.241.00 0.39 0.73 1.47 1.95 2.14 2.14 2.23Hierarchical 0.10 0.00 2.50 5.00 8.21 8.44 7.06 4.810.30 0.83 2.50 7.50 7.12 6.89 5.31 3.240.62 0.21 0.73 1.67 3.16 4.08 4.04 2.140.85 0.20 0.65 3.14 8.98 12.68 15.08 12.401.00 0.36 1.02 4.58 15.41 28.83 38.84 52.29if(myclusterlabel==myoriginallabel) reduceAdd32(one).The average cluster size is simply calculated by dividing the number of non-zeroelements by the number of clusters.In the early stages of parallel algorithm development, collection time dominatedcluster identi�cation time, largely because of the improper functioning of the initialMasPar MPL version of the p sendwithAdd() function (used to collect data on headelements). The error was reported to MasPar, and a less e�cient collection strategywhich required all receiving PEs to be in an active state was devised as a tempo-rary alternative. The p sendwithAdd() error was corrected in subsequent softwarereleases, and modi�cations to the collection algorithm utilizing the corrected functionresulted in a substantial decrease in cluster data collection time.5.3 ResultsFor both parallel cluster identi�cation programs implemented on the MasPar MP-2(i.e., hierarchical and cut-and-stack), total elapsed wall-clock time was compared withthat of the pseudo-recursive serial Fortran version (prfor) on a Sun SPARCstation 2for random maps of seven sizes and �ve densities (Table 5.2). For these comparisons,work time is de�ned as the sum of label and collect times for cluster identi�cation,excluding time for reading data from a binary input �le and writing results to thescreen (I/O). Speed improvements are calculated by dividing work time for the serialprogram by work time for each parallel implementation. Tables C.1 through C.3 inAppendix C list actual read, work, and total wall-clock times for both MasPar MP-2versions and for prfor.Trends in performance of the two parallel kernels on these random maps across34

p values within a given map size and across map sizes within a given p value weregenerally consistent. For the smallest maps (i.e., 64 � 64), both parallel algorithmswere generally less e�cient than the serial algorithm (i.e., speed improvement valuesless than 1.00). The cut-and-stack algorithm was also slower than the serial algorithmfor maps with p values near the percolation threshold (p = 0:62) regardless of mapsize, and for all 2048 � 2048 maps of densities <= 0:62. In contrast, the hierarchicalalgorithm showed speed improvements over the serial algorithm for all p values formap sizes larger than 128 � 128.Figure 5.6 graphically presents the speed improvements of the hierarchically-mappedMasPar MP-2 implementation for these same mapsizes and p values. Of the �ve den-sities considered, the worst parallel algorithm performance was typically seen formaps with p = 0:62, near the percolation threshold (Table 5.2 and Figure 5.6). Forboth parallel algorithms, an overall trend of maximum speed improvement at smallerthan maximum map size was evident for all but the densest maps (i.e., those withp = 1:00). The greatest speed improvement for the hierarchical algorithm (52.29) wasobserved for the densest and largest map, while the greatest speed improvement forthe cut-and-stack algorithm (4.00) was observed for the sparsest map (i.e., p = 0:10)of size 256 � 256.For all random maps which were virtualized (i.e., those larger than 64 � 64), thehierarchically-mapped kernel was more e�cient than its cut-and-stack counterpart,with the relative performance of the hierarchical algorithm generally increasing withincreasing map size and density (Table 5.2). For sparse maps (p = 0:10 and 0:30),hierarchical mapping bene�ted from the local collection of cluster data on PEs, whichreduces the number of p sendwithAdds required to transmit data to the head elementof each cluster when cluster elements are sparsely distributed. Local collection isuseful for cut-and-stack mapping only when clusters are large enough to have multiplemembers on each PE. For dense maps dominated by a single large cluster (p �0:62), the cluster labeling component dominates cut-and-stack execution time. Thehierarchical mapping strategy outperforms cut-and-stack mapping for these densermaps because it labels large clusters more e�ciently.An increase in the speed of xnet communications projected for future MasParreleases would improve the relative performance of the cut-and-stack algorithm, whichrequires more inter-processor communication than the hierarchical algorithm.Figure 5.7 shows how the labeling and collection components of cluster identi�ca-tion using the two mapping strategies perform as p values increase from 0 to 1 formaps of sizes 256 � 256 and 2048 � 2048. Elements (pixels) for these graphs wereproduced by MPL programs using the MPIPL routine mpigenrand to generate anddistribute appropriate random values on MP-2 PEs for each p value. Note the y-axis(time) scale di�erences for graphs showing results from the two mapping strategies.This reects the consistently better performance of the hierarchical algorithm acrossall p values and both map sizes considered. Hierarchical total time is superimposed35

on cut-and-stack graphs for comparison. Performance di�erences for the hierarchi-cal and cut-and-stack algorithms are most evident for cluster labeling of maps withdensities near the p = 0:59 threshold, especially for the larger maps.A comparison of these results with the changes seen in cluster characteristics acrossp values for random maps (e.g., compare Figure 5.7 with Figure 4.2(a) in Chapter 4)illustrates their relative importance in determining execution times of cluster iden-ti�cation algorithms. For the random maps analyzed, peak execution (i.e., work)times for both parallel cluster identi�cation algorithms occur at p values near the0.59 threshold, when the maximum cluster size begins to climb dramatically and thenumber of clusters is still relatively large. This is the point at which the maximumamount of border updating and label reassignment within PE subgrids is required.Execution times decrease as map density increases and one cluster becomes dominant.Under these conditions, most PE subgrid elements and border elements on adjacentPEs belong to the same dominant cluster, requiring much less border updating andlabel reassignment.Memory requirements for the two SIMD algorithms are constant for a given mapsize over all p values. This is in sharp contrast to results for the serial algorithmprfor, which is characterized by increasing CPU time and memory requirements asthe maximum cluster size increases (see Figure 5.2). These di�erences in the rela-tionship of execution time to cluster characteristics for serial and parallel implemen-tations largely explains why speed improvements of parallel kernels were generallylowest for random maps with p values near the percolation threshold. In fact thecut-and-stack cluster identi�cation algorithm was slower than the serial Fortran al-gorithm at p = 0:62 for all map sizes (Table 5.2). By studying these relationshipsduring code development and by anticipating cluster characteristics of non-randommaps for a particular application, parallel processing bottlenecks can be pinpointed,and an optimized cluster identi�cation strategy can be developed for each parallelapplication.A more e�cient cut-and-stack approach to cluster identi�cation has been proposed([ApCM92]) which includes power-of-2 neighbors (on processors which are 2n unitsaway, 0 < n < m� 1, where map size = 2m � 2m) in the list of neighbors which arechecked on each iteration of cluster label updating. This approach should reduce thenumber of iterations required for complete label propagation for the dendritic clusterscharacteristic of maps with p values near the critical threshold.
36

5.4 Performance of MasPar MP-2 algorithms on noyelpmaps5.4.1 Test map characteristicsFigure 5.8 illustrates the temporal pattern of density variation (expressed as p value)in maps of available biomass (resources) generated during a 180-day cycle of thenoyelp model. Resource maps of the study area extracted from the same 180-daycycle of the noyelp model at day 1, day 90, day 120, and day 180, respectively, arepresented in Figures 5.9 through 5.12.All portions of the maps which are light green represent available resource pix-els. Pixels which have high resources levels, de�ned as su�cient available biomassto satisfy at least 50% of the daily forage intake requirements of a bison bull, arerepresented by red.At the beginning of the model year (November), resource levels, p values, andmaximum cluster size are all high (Figures 5.8 and 5.9). As winter progresses,resources are depleted by the grazing of ungulates or are made inaccessible to theungulates by heavy snowfall. This is reected in lower p values for the resource maps(Figure 5.8), smaller, more fragmented clusters, and lower levels of available biomass(Figure 5.10 and 5.11). The model year ends in April before spring regeneration ofvegetation begins; however, melting snow exposes ungrazed resources, causing mapdensity to increase near the end of the 6-month cycle (Figures 5.8 and 5.12).5.4.2 ResultsCluster identi�cation is performed twice at each time step in the noyelp model,once for clusters of any available resource level and again for clusters with availableresources above a �xed limit (high resources).1 Table 5.3 compares performance of thetwo MPL cluster identi�cation algorithms with that of the serial noyelp algorithm(prfor) on 285�584 resource maps extracted from the noyelpmodel runs for sevendays in the 180-day cycle. Maps were expanded to 320� 640 for input to the MasParMP-2 kernels, so that row and column dimensions are multiples of 64, the size of thePE grid. The p values calculated in Table 5.3 are based on the total number of mappixels in the expanded resource map, and include pixels outside the study area, whilethe graph of p values in Figure 5.8 includes only study area pixels.Wall-clock time for the hierarchical parallel implementation is typically 4 to 5times faster than that for the serial algorithm, while the cut-and-stack parallel im-plementation is slower than the serial algorithm for most maps. These results are notinconsistent with the relative performance of the parallel kernels on random maps of1This is a simpli�cation of what the actual resource matrix represents. Cluster analysis is performed on the matrixof feedback modi�ers which limit the maximum daily intake of forage by ungulates, based on limitations associatedwith levels of forage biomass and snow depth/density. 37

Table 5.3: Comparison of wall-clock times for parallel implementations of cluster identi�cation withthe serial noyelp function prfor on Sun SPARCstation 2 on 285 � 584 resource maps extractedfrom noyelp model runs (all times are in seconds).Time Resource p Largest Serial Parallelstep level value Cluster prfor hierarchical cut-and-stack1 any 0.30 55554 0.41 0.08 0.411 high 0.27 51035 0.38 0.08 0.4330 any 0.30 55554 0.40 0.08 0.4130 high 0.27 51045 0.37 0.08 0.4360 any 0.29 53800 0.39 0.07 0.4060 high 0.22 29945 0.33 0.07 0.4590 any 0.18 16515 0.31 0.06 0.5090 high 0.04 4701 0.21 0.05 0.18120 any 0.06 6158 0.23 0.05 0.23120 high < 0:01 394 0.19 0.03 0.04150 any 0.03 6153 0.23 0.05 0.23150 high < 0:01 0 0.19 0.02 0.02180 any 0.29 55190 0.39 0.07 0.41180 high 0.14 4672 0.28 0.06 0.47similar map size and maximumcluster size, except for the relatively poor performanceof the cut-and-stack implementation compared to prfor. Future work in this areashould involve a closer examination of the the range of cluster con�gurations andcharacteristics encountered in landscape maps, the relative performance of parallelkernels on these con�gurations, and methods of optimizing parallel performance overthe range of con�gurations.5.5 ConclusionsSpeed improvements of SIMD parallel algorithms on the MasPar MP-2 over serialalgorithms for cluster identi�cation are modest, largely because of the high commu-nication requirements associated with labeling of pixels. These results indicate thatthe serial algorithms developed and evaluated are e�cient enough for many purposes.However, the hierarchical parallel algorithm consistently outperformed both the se-rial and cut-and-stack algorithms, and could be useful in applications such as thenoyelp model which call cluster identi�cation functions many times within a singleprogram execution. noyelp identi�es clusters twice at each time step (once for highresource patches and once for patches with any resource) over 180 time steps and over5 replications of the 180-day cycle. This requires a total of 1800 calls to the clusteridenti�cation function. Modest time savings per cluster analysis can result in signi�-38

cant savings in total execution time for models such as noyelp. For a typical serialnoyelp simulation involving 20,000 ungulates, approximately 20% of total executiontime for the revised model is spent identifying clusters (see Chapter 7 for a discussionof serial modi�cations). A simulation involving fewer animals would require that lessmodel time be spent in the animal movement component and proportionately moretime be spent in cluster identi�cation. The presence of fewer animals would also meanless resource depletion due to grazing, and hence more pixels with available biomass(i.e., higher p values) over the course of model execution. This would further increasethe proportion of total execution time allocated to cluster identi�cation. Therefore,the fewer animals input to noyelp, the more important the e�ciency of the clusteridenti�cation component becomes.To utilize the parallel cluster identi�cation kernels for noyelp model simulations,the serial Fortran-77 noyelp program could be run on the front end machine ofthe MasPar MP-2 (DECstation 5000-200 workstation) and make calls to the MPLcluster identi�cation function running on the DPU, which would then blockIn thedata matrix to be analyzed. Since cluster identi�cation results do not feed back intothe main noyelp program (results are stored in an array for later output to a �le),an asynchronous call via callAsync() would allow the main program to continueexecution on the front end while cluster identi�cation is being accomplished on theDPU. Output from the parallel cluster identi�cation kernels could be input to otherparallel modules to compute various cluster geometry indices, such as mean squaredradius, on distributed data on the DPU. Mean squared radius algorithms are discussedin detail in the following chapter.
39

1 -1

-1 -1 -1

-1-1 -1

1

1

1

1

1

1 1 1

0 3

7

8 9 10

1

14

11(a) (b)
0 3

8 9 10

1

7

3

10

0 3

8

3

10

0

98 7(c) (d)Figure 5.4: Four stages of the cut-and-stack labeling process: (a) starting state, (b) after labelingwith unique ID, and after each PE looks (c) north and (d) west.40

0 0 0z 0 z6 z 85i1i 3i0 1 23 4 56 7 8 Step 3 0 z 11z z 118 8 z2 i9 10 1112 13 1415 16 17
0 0 0z 0 z6 z 80 1 23 4 56 7 8 Step 2 0 z 11z z 118 8 z9 10 1112 13 1415 16 17-� -�
0 0 0z 0 z6 z 840 1 23 4 516 7 81 Step 1 9 z 11z z 1115 15 z1 9 10 11212 13 14215 16 17
1 1 1z 1 z1 z 10 1 23 4 56 7 8 Starting State 1 z 1z z 11 1 z9 10 1112 13 1415 16 17

Figure 5.5: Step-wise procedure for cluster identi�cation in hierarchically-mapped MPL implemen-tation of cluster identi�cation. 41

0.10 0.30 0.62 0.85 1.00

p value

0

10

20

30

40

50

Sp
ee

d
Im

pr
ov

em
en

t

2048 x 2048
1024 x 1024
768 x 768
512 x 512
256 x 256

Figure 5.6: Speed improvement of MP-2 hierarchically-mapped implementation over the sequentialprfor version on a SPARCstation 2 for cluster identi�cation (work time, excluding I/O).
42

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

P-value

0.003

0.05

0.10

T
im

e
(s

ec
)

 Hierarchical label
 Hierarchical collect
 Hierarchical work

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

P-value

.01

0.2

0.4

T
im

e
(s

ec
)

 Cut-and-Stack label
 Cut-and-Stack collect
 Cut-and-Stack work
 Hierarchical total

(a) (b)
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

P-value

0.4

1

2

3

4

5

6

T
im

e
(s

ec
)

 Hierarchical label
 Hierarchical collect
 Hierarchical work

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

P-value

0.7

20

40

60

80

T
im

e
(s

ec
)

 Cut-and-Stack label
 Cut-and-Stack collect
 Cut-and-Stack work
 Hierarchical total

(c) (d)Figure 5.7: Comparison of wall-clock labeling, collection, and total work times versus p values for256� 256 maps ((a) and (b)) and 2048� 2048 maps ((c) and (d)) using hierarchical ((a) and (c))and cut-and-stack ((b) and (d)) virtualization. 43

1800 50 100 150

Time steps (days)

0.8

0.2

0.4

0.6

0.8

p-
va

lu
e

Figure 5.8: P values of the available resource matrix generated daily for a 180-d ay cycle of thenoyelp model (excluding pixels outside the study area).
44

Figure 5.9: Resource map of the noyelp study area extracted at day 1 from a 180-day cycle of thenoyelp model.
Figure 5.10: Resource map of the noyelp study area extracted at day 90 from a 180-day cycle ofthe noyelp model.

45

Figure 5.11: Resource map of the noyelp study area extracted at day 120 from a 180-day cycle ofthe noyelp model.
Figure 5.12: Resource map of the noyelp study area extracted at day 180 from a 180-day cycle ofthe noyelp model.

46

Chapter 6Cluster GeometryOnce clusters in a map have been identi�ed (i.e., labeled and counted) other descrip-tive statistics may be computed to describe the geometry of clusters, such as radius,mass, perimeter, and correlation length ([StAh91]). The radius measure, which is usedto derive correlation length, is the focus of thesis e�orts presented in this chapter.The radius of a cluster is the average distance between two cluster pixels, provid-ing a measure of the compactness of a cluster. A cluster whose members are widelydispersed across a map will have a larger radius than a cluster whose shape approx-imates a regular polygon. Figure 6.1 shows two 64 � 64 maps, each with a singlecluster having 1024 member pixels. The radius for the compact cluster on the left (a)is 14.12, while that of the more dispersed cluster on the right (b) is 31.09.This chapter describes the data-parallel implementation of the mean squared ra-dius (R2) computation for clusters, from which the radius measure is derived. R2of an individual cluster is de�ned as the sum of all squared intra-cluster distancesbetween pixels, divided by two times the squared cluster size. Each squared dis-tance is calculated by squaring the row and column di�erences between the x- andy-coordinates of two pixels. Because a 1 is added to coordinate di�erences beforesquaring, the absolute values of coordinate di�erences are used in the calculation ofR2. The formula for R2n of a cluster (as derived from [StAh91]) may be given as:R2n = Pi;j(jxj � xij+ 1)2 + (jyj � yij+ 1)22n2 ; (6.1)where xi; yi and xj; yj are the coordinates of pixels i and j, respectively, (for 1 � i � nand 1 � j � n) and n is the number of elements in the cluster.The computation of cluster radius (qR2n) has many potential uses in landscapeecology. For example, if it has been determined through cluster identi�cation that alarge �re had spread over 60% of a landscape, computation of cluster radius wouldprovide insight into whether the �re is concentrated in one compacted area, or ifsigni�cant amounts of unburned area exist within the area of the �re cluster.47

(a) (b)Figure 6.1: Example 64 � 64 maps with a single cluster of size 1024 and radius equal to (a) 14.16and (b) 31.09.The computationally-intensive nature of the derivation of R2 has limited its useful-ness in many applications. The serial computation of R2 for all clusters in a 512�512random map with a p value of 0.85 typically requires about 12 hours (CPU time) on aSun SPARCstation IPX. Parallel implementations of mean squared radius algorithmso�er a way to address this problem.6.1 Serial AlgorithmThe serial program for mean squared radius computation used for timing comparisonswith data-parallel implementations presented in this chapter is a modi�ed version of aFortran-77 program developed by Dr. Robert Gardner of the Environmental SciencesDivision at Oak Ridge National Laboratory and rewritten in C by Karen Minser ofthe Computer Science Department at the University of Tennessee ([Mins93]). Thisserial program implements an algorithm in which the grid is sequentially traversed foreach cluster. The x- and y-coordinates for each pixel belonging to the current clusterare stored in arrays. After all coordinates have been stored, di�erences in coordinatedistances are calculated, squared, and added to an accumulating total.For each pixel, squared di�erences between its x- and y-coordinates and those ofevery other member of the cluster are computed as follows:48

for i = 1 to n� 1 dofor j = i+ 1 to n dorx = abs(xcoord[j]-xcoord[i])+1ry = abs(ycoord[j]-ycoord[i])+1rsum = rsum+ rx � rx+ ry � ryenddoenddowhere the x- and y-coordinates of all members of the cluster are stored in the arraysxcoord and ycoord, respectively, and rsum is the (accumulated) sum of squared di�er-ences for each pixel. Hence, the computational complexity of Equation 6.1 is O(n2),where n is the number of pixels in the particular cluster.The serial C program was optimized for performance as part of this thesis e�ort,and timing results for the optimized program are used for comparisons with MasParMP-2 parallel kernels. Decreasing the size of dynamically allocated coordinate arrays,computing absolute values in place rather than calling the built-in C function abs(),and removing calculations from for loop indices reduced execution time substantially.Memory demands for processing maps with large clusters are lessened by computingsquared coordinate di�erences directly from for loop indices rather than storing x- andy-coordinates in arrays. Optimizing modi�cations reduced CPU time for computingR2 of all clusters in a 512 � 512 random map with p = 0:85 on a Sun SPARCstationIPX from 25 hrs. to 12 hrs. Further modi�cation employed a look-up table of pre-calculated distances read from an in�le. The use of look-up tables (with separatetables for each map size analyzed, stored in binary �les) could provide signi�cantspeed improvements for some applications. Performance improvements gained byeach of these serial program modi�cations are described in Appendix C.Figure 6.2 shows the performance of the optimized serial algorithm on random128 � 128 maps as the p value increases from 0 to 1. A comparison of this trendwith that of maximum cluster size vs. p value (Figure 6.3) suggests that maximumcluster size is a major factor contributing to total computing time for R2 computationfor random maps. As maximum cluster size increases sharply at densities abovethe percolation threshold (p = 0:5928), there is a corresponding increase in CPUtime required to compute R2. This reects the e�ective exponential nature of therelationship between cluster size and number of computations required.
49

0.2 0.4 0.6 0.8 1.0

p-value

0.04

100

200

Ti
m

e
(s

ec
)

Figure 6.2: CPU times for serial mean squared radius computations across p-values for 128 � 128random maps on a Sun SPARCstation IPX.
0.2 0.4 0.6 0.8

p-value

2

5000

10000

15000

Si
ze

 o
f l

ar
ge

st
 c

lu
st

er

Figure 6.3: Size of the largest cluster as a function of p value for the 128� 128 random maps fromFigure 6.1. 50

6.2 MasPar MP-2 AlgorithmsTwo parallel algorithms for computing mean squared radius on the MasPar MP-2 wereimplemented, one for each of the two explicit data mapping strategies used: cut-and-stack and hierarchical. As discussed in Chapter 2, the two virtualization methodsdi�er in how pixels are allocated to PEs. In hierarchical mapping, continuous blocksof the data map are assigned to each PE. Small clusters may be wholly contained inthe subgrids of individual processors, and can be processed locally. For cut-and-stackmapping, contiguous map pixels are located on adjacent PEs, and must be accessedby the MPL communication construct xnet(). The number of pixels assigned to eachPE is determined by the size of the map. Regardless of the method of virtualization,data for a speci�c variable relevant to cluster geometry computations (e.g., clustersize) for the pixels on the PE are stored in stacks or data arrays, with the length ofthe array (i.e., number of layers) being determined by the number of pixels assignedto each PE. Every pixel in the original map is represented in the array of one of thePEs, and the stacks or data arrays in all PEs are of the same length. For data suchas cluster size, which is stored at the head pixel of each PE, these data arrays willcontain many zeros. In the following discussion, layer refers to a 64 � 64 matrix ofpixel data, all elements of which bear the same array index, and sub-grid refers to thecontiguous chunk of the map allocated to each PE in hierarchical mapping. Becausea layer has special relevance to cut-and-stack mapping, it is called by a special name,page. Page is an abstraction referring to a 64 � 64 block representing a given layeracross all PEs in cut-and-stack mapping.Both parallelR2 computation algorithms are similar in overall approach, employingthe same three-step process: (1) resolve small clusters in parallel, (2) resolve largeclusters by copying pixel cluster labels and positions serially to shared data space,and (3) collect sums for each cluster across members (pixels).Figure 6.4 illustrates these steps for the hierarchical version. The Starting Statein Figure 6.4 represents the status of cluster analysis following completion of clusteridenti�cation (see Figure 5.5 in Chapter 5). The large boxes in Figure 6.4 representtwo adjacent PE subgrids, each with 9 data elements (map pixels). The number inthe lower right corner of each pixel box represents the unique pixel label.The number in the center of each pixel box represents the cluster ID label. Thecircled number in the upper left corner represents the total number of pixels in acluster (stored at the head pixel of each cluster), psum and csum in the upper rightcorner denote the sum of squared x- and y-coordinate di�erences computed for eachcluster member (termed the partial sum of squares) and for the entire cluster, respec-tively, and rad in the lower left corner represents the mean squared radius computedfor each cluster (stored at the head pixel of each cluster).51

0 0 0z 0 z6 z 85j1j 3jradcsum 0 1 23 4 5csumrad6 7 8radcsum Step 3 0 z 11z z 118 8 z2radcsumj9 10 1112 13 1415 16 17
0 0 0z 0 z6 z 85j1j 3jpsum psum psum0 1 23 4psum 56 7 8psum Step 2 0 z 11z z 118 8 z2 j9psum 10 1112 13 14psum psum15 16 17-� -�
0 0 0z 0 z6 z 85j1psumj 3j0 1 23 4 56 7 8 Step 1 0 z 11z z 118 8 z2 psumj9 10 1112 13 14psum15 16 17
0 0 0z 0 z6 z 85j1j 3j0 1 23 4 56 7 8 Starting State 0 z 11z z 118 8 z2 j9 10 1112 13 1415 16 17

Figure 6.4: Step-wise procedure for cluster labeling in hierarchically mapped MPL implementationof mean squared radius computation. 52

Step 1: Resolve small clusters. Resolution of small clusters is implementeddi�erently for the two mapping strategies.� For the algorithm implementing cut-and-stack mapping, local cluster resolu-tion (i.e., within a PE) is not e�ective, particularly for small clusters, sincepixels on the same processor are not adjacent to each other. Instead, radiussums for clusters contained within one data page are computed, using anxnet-shift operation which allows each pixel on a page to view the valueof every other pixel on that page. Data relevant to mean squared radiuscomputations (e.g., cluster labels and x- and y-coordinates) for members ofclusters found on more than one page are then copied to singular variablesreadable by all processors (see Chapter 2) for global comparisons in Step 2.� For the hierarchical data mapping version, radius sums for clusters whollycontained in the sub-grid of a single PE are calculated on each PE using alocal serial algorithm, and collected locally (in parallel) before global com-parisons are made in Step 2. Data relevant to mean squared radius com-putation for only those pixels belonging to clusters represented on multiplePEs are then copied to singular variables for global comparison. This is verye�cient for large, sparse maps (p = 0:10) because relatively few comparisonsof x- and y-coordinates across PE boundaries are required to resolve clusterswith hierarchical virtualization.Step2: Resolve large clusters. Large clusters are resolved using shared variablesreadable by all processors. Let the map element e be an unresolved pixel whoserelevant data values have been copied to shared data space. Since data are vir-tualized on each processor, each PE's data arrays must be searched for membersof the same cluster to which e belongs. For every other element belonging to thesame cluster, the absolute di�erences between its x-and y-coordinates and thoseof e are calculated (in parallel), and these di�erences are squared and summedfor each cluster member. The distance from element a to element b is calculatedonly if the equivalent distance from b to a has not been calculated. If the ele-ment e is a member of layer i , the squared di�erence is calculated in layer i onlyfor those cluster members whose original label is larger than that of e. For allother data layers, duplicate calculations are avoided (without a condition (if)test before each set of calculations) by searching only data layers i to n on eachprocessor, where n = number of layers. For maps with a large dominating cluster(p > 0:59), this results in fairly e�ective load balancing, since many processorshave members of the dominant cluster in their data arrays for both cut-and-stackand hierarchical virtualization strategies.Step 3: Collect sums. Partial sums of squared di�erences are then summedacross members (csum in Figure 6.4) within each cluster and stored at the head53

element of each cluster (the member whose original cluster label was adopted forall cluster members). The radius for each cluster (rad in Figure 6.4) is computedby taking the square root of this sum divided by the number of cluster members.When pixels in the map class being analyzed are very sparse relative to the mapas a whole, many processors will be intermittently idle during the traversal of thevirtualized data layers during R2 computation because they have been allocated fewor no pixels belonging to the pertinent map class. This density problem is exacerbatedby the need to include map pixels outside the study area. If a signi�cant number ofprocessors are idle, load balancing among processors, and hence performance, will beless than optimal. To enhance performance, a variation of the cut-and-stack algorithmwas implemented which is more e�cient when maps are very sparse (p < 0:20). Arraysof cluster labels are compacted on each processor before R2 is computed by movingarray elements associated with the study area forward in the processor's label array.This e�ectively eliminates array elements corresponding to pixels outside the studyarea or pixels in a di�erent map class. In this approach, the length of the dataarrays at each PE may di�er, but there are fewer total active layers to traverse andmore processors are active in each layer traversed. Original x-and y-coordinates foreach map class member must be recorded in similarly compacted arrays, to preservelocality so that inter-pixel position di�erences may be calculated. This approachcould also be implemented for hierarchically mapped data, but the advantage gainedwould not be as great as with cut-and-stack mapping, since study area pixels aremore unevenly distributed (as subgrids of the landscape map) among processors withhierarchical mapping. For example, compaction of a 50-element array could result insome processors having 50 elements, while others might have none.6.3 ResultsFor both parallel R2 implementation on the MasPar MP-2, total elapsed wall-clocktimewas compared with that of the optimized sequential C program on a Sun SPARC-station IPX on both random maps and landscape maps extracted from runs of thenoyelp model. For these comparisons, total time is the sum of times for readingfrom a binary �le, performing cluster identi�cation, and computing R2 for all clus-ters. Total time is dominated by R2 computation. Speed improvements are calculatedby dividing total elapsed wall-clock time of the serial program by that of the parallelimplementation. Tables C.4 through C.6 in Appendix C list actual wall-clock timesfor both MasPar MP-2 versions and for the sequential C version.As shown in Table 6.1, both parallel implementations show signi�cant speed im-provements over the sequential C program on a Sun SPARCstation IPX for randommaps of all sizes and p values tested, performing total map analysis over 150 timesfaster than the serial algorithm for 512 � 512 random maps with p � 0:85. The se-54

Table 6.1: Speed improvement of MasPar MP-2 versions over the sequential C version on a SPARC-station IPX for total map analysis, including mean squared radius computation.Mapping Map Sizestrategy p-value 64 128 256 512Hierarchical 0.10 0.88 4.22 21.16 84.400.30 2.00 8.38 30.82 91.600.62 9.88 23.97 71.24 101.170.85 22.89 77.98 130.38 153.891.00 40.09 97.46 154.89 175.92Cut-and-stack 0.10 1.03 4.43 20.38 62.550.30 1.81 8.58 41.53 148.230.62 9.20 24.52 73.72 105.700.85 20.76 72.64 126.49 152.311.00 35.40 90.76 150.68 174.14quential C program required over 16 hours of elapsed wall-clock time to analyze the512� 512 random map with p = 1:00 (including read time, cluster identi�cation andgeometry), while both parallel kernels resolved this same map in less than 6 minutes.Figure 6.5 presents these speed improvements for the 512 � 512 maps in bar graphform.Speed improvements increased with map size and density, and were generally con-sistent for both parallel implementations. For the largest sparse map tested (mapsize of 512�512 with p = 0:10), the hierarchical implementation performed consider-ably better than the cut-and-stack version. This was attributable to the abundanceof small clusters which can be evaluated locally on individual PEs (i.e., the ratio ofcluster size to number of pixels per PE is small), and the dispersal of these samecontiguous map elements across PEs in the cut-and-stack virtualization scheme forthese large maps (with the consequent need for inter-processor communication). Thecut-and-stack version is clearly more e�cient for maps larger than 128 � 128 withp = 0:30. These are maps with the maximum number of clusters. These clusterstypically have fewer than 50 members, but are large enough to overlap PEs whenhierarchical mapping is used. For these maps, the relative e�ciency of the cut-and-stack algorithm increased with increasing map size. Otherwise, performance of thetwo parallel implementations is generally comparable.
55

p = 0.10 p = 0.30 p = 0.62 p = 0.85 p = 1.00

180

0

50

100

150

T
se

q
/T

p
a

r

Hierarchical

Cut-and-Stack

(84.40)

(62.55)

(91.60)

(148.23)

(101.17)
(105.70)

(153.89) (152.31)

(175.92)(174.14)

Figure 6.5: Speed improvements of MasPar MP-2 parallel implementations for total map analysisover the sequential C version on Sun SPARCstation IPX for 512� 512 random maps.56

Figure 6.6 shows in detail how the parallel kernels perform total map analysisrelative to the serial C version over a range of p values for random maps of size128�128. Figure 6.7 shows how the same parallel kernels perform total map analysisrelative to each other over a range of p values for maps of size 512�512. Data for thesegraphs were produced by MPL programs using the MPIPL routine mpigenrand()to generate and distribute appropriate random values on each PE. Execution times(express in log units) for the serial program increase dramatically at densities nearthe p = 0:59 threshold (Figure 6.6), in response to the abrupt increase in maximumcluster size, while both parallel implementations show a relatively smooth, gradualincrease (in log scale) across the range of p values.
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

P-value

0.4

1

10

100

Lo
g

Ti
m

e
(s

ec
)

serial MSR
Cut-and-Stack
Hierarchical

Figure 6.6: Elapsed wall-clock times (in seconds) for total map analysis (map generation, clusteridenti�cation and mean squared radius computation) across p-values for 128�128 maps for MasParMP-2 parallel implementations and for the serial C program on a Sun SPARCstation IPX (log scale).Figure 6.7 provides a clearer contrast for trends in total map analysis time inthe vicinity of the percolation threshold for the two parallel kernels. While bothimplementations show distinct increasing trends, the increase for the hierarchicalimplementation begins at lower p values (i.e., p = 0:30) and is muchmore gradual thanthe trend for the cut-and-stack implementation, which increases sharply in the vicinityof the percolation threshold (i.e., 0.59). The cut-and-stack version is more e�cientin the range 0:30 � p � 0:60 because cluster sizes characteristic of maps with thesedensities overlap hierarchically-mapped PE subgrids, but can be resolved within cut-and-stack pages. When maximumcluster size increases near the percolation threshold,resolution of the largest cluster, which now overlaps page boundaries, dominates57

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

P-value

4

100

200

300

Ti
m

e
(s

ec
)

Cut-and-Stack
Hierarchical

Figure 6.7: Elapsed wall-clock times (in seconds) for total map analysis across p-values for 512�512random maps for MasPar MP-2 parallel implementations.computing time, and performance is similar for the two mapping strategies.As the size of a cluster approaches the size of its respective map class, possiblecluster con�gurations become limited. Consequently, at high densities cluster radiusbecomes a less informative measure of cluster geometry compared to lower p values.With adequate planning, many applications could probably limit R2 computation toclusters whose sizes are below a speci�c percentage of total map size. However, it isrecognized that in other applications it may be desirable to compute the maximumradius possible for a given map class.There exists a family of MasPar conversion functions (see Appendix A) whichallow data con�gurations to be changed within a program. If alternate data mappingstrategies are more e�cient for di�erent parts of a program, the programmer canswitch between cut-and-stack and hierarchical mapping as needed.6.4 Performance of MasPar MP-2 algorithms on noyelpmapsSince the parallel kernels were developed to handle maps of varying sizes and densities,they proved successful in the analysis of maps extracted from runs of the noyelpmodel. Table 6.2 compares performance of the MPL implementations for total mapanalysis, including R2, with that of the serial C program on a Sun SPARCstation58

IPX for 285 � 584 maps of available biomass extracted from noyelp model runs forseven days of the 180-day cycle (see Figures 5.9 through 5.12 in Chapter 5). Mapswere enlarged to 320 � 640 to make row and column dimensions divisible by 64, thedimensions of the MasPar MP-2 PE grid, contributing to the low p values for thesemaps (� 0:30).Speed improvements for the cut-and-stack MPL version are consistently higherthan those for the hierarchical version (Table 6.2) due to the more even distributionof study-area pixels across processors with cut-and-stack mapping. As was the casewith random maps, speed improvements for both parallel algorithms increase withincreasing density (Table 6.1).Table 6.2: Comparison of wall-clock times for total map analysis on 285�584 resource maps extractedfrom noyelp model runs for parallel MP-2 implementations and optimized serial program on a SunSPARCstation IPX (all times are in seconds).Size of ParallelTime Resource largest Serial Cut-and-stack HierarchicalStep Level p-value cluster MSR time S:I:� time S:I:�1 any 0.30 55554 2730.40 54.95 49.69 61.31 44.541 high 0.27 51035 2300.42 49.28 46.68 56.71 40.5730 any 0.30 55554 2713.92 54.95 49.39 61.31 44.2730 high 0.27 50145 2218.71 47.43 46.77 56.44 39.3160 any 0.29 53800 2546.09 53.69 47.42 59.53 42.7760 high 0.22 29945 829.93 28.06 29.58 44.49 18.6690 any 0.18 16515 299.83 18.85 15.90 36.91 8.1290 high 0.04 4701 24.99 6.49 3.85 10.79 2.32120 any 0.06 6158 49.49 8.15 6.08 14.07 3.52120 high <0.01 394 1.96 2.73 0.72 3.00 0.65150 any 0.03 6153 49.26 8.14 6.05 14.04 3.51150 high <0.01 0 1.02 0.12 8.72 2.55 0.40180 any 0.29 55190 2674.64 54.51 49.07 60.93 43.90180 high 0.14 4672 94.08 11.97 7.86 27.99 3.36�S.I. denotes speed improvement of parallel implementation over serial program.6.5 ConclusionsMasPar MP-2 data parallel implementations of total map analysis, which is dominatedbyR2 computation, show substantial speed improvements over serial implementations(over 150 for large, dense random maps), making radius measurements a viable toolfor many ecological applications. Speed improvements increased with map size anddensity for both kernels. Elapsed wall-clock times for data-parallel implementationsdo not increase as dramatically as those for the serial implementation at densities59

above the percolation threshold. Maximum speed improvements for landscape mapstested were lower (<50), due largely to the high percentage (62%) of map pixelsoutside the study area. These non-habitat pixels contributed substantially to thelow p values for the noyelp maps. As with cluster identi�cation, size of the largestcluster (relative to map size) is a better indicator of performance than p value whencomparing random maps with landscape maps. For the limited range of p valuesrepresented by noyelpmaps (<0.30), speed improvements increased with increasingdensity, a trend consistent with results for random maps.The parallel implementations discussed in this chapter have advantages over theoriginal serial versions other than speed. Data size is constant for a given map sizein the parallel implementations, regardless of map density. No arrays which aredependent on the number or size of clusters in the map being analyzed are required.While the revised serialR2 program does not maintain arrays of coordinate di�erencesfor each cluster element for large clusters, an array which records the size of eachcluster is maintained.As is the case with cluster identi�cation kernels presented in Chapter 5, parallelkernels for R2 computation could run on the DPU of the MasPar MP-2 and be calledby a serial program running on the front-end DECstation 5000-200 machine. Resultscould either be returned to the calling program or be written to an output �le.

60

Chapter 7Animal MovementThe algorithm evaluation and development activities for animal movement for thisthesis are speci�c to the noyelp model. The initial objective was to duplicate theserial noyelp movement rule on the MasPar MP-2. In the process of attemptingto address this objective, revisions were made to the serial noyelp program whichimproved its performance signi�cantly (with no change in functionality). This revisedserial program then provided the basis for parallel model implementation e�orts. Thefollowing sections describe both serial and parallel e�orts, including the initial scopingof a revised movement rule that is more amenable to parallel processing.7.1 Serial noyelp ImplementationThe serial noyelp model is implemented by a 4736 line Fortran-77 program con-sisting of 11 subroutines. Figure 7.1 illustrates the ow of program control throughthe noyelp subroutines. A summary of these subroutines is provided in Appendix B.
61

�����>HHHHHj -6?
??????

-
Move EnergeticsGraze Dailyfor each animal groupfor each move

InputInitialSsnowUng�ndPatchStatistOut�le

Unevenb

Figure 7.1: Control ow chart for the noyelp model.62

Abiotic data are input from �les in subroutine input; ungulate locations and biomassare initialized on the landscape in subroutine initial; snow conditions are updatedevery 3 days in subroutine ssnow. At the heart of the noyelp model are foursubroutines which simulate the movement and grazing of animal groups on the land-scape: ungfind, move, graze, and energetics. On each day of the 180-day modelcycle, ungfind locates each animal group on the landscape and initiates a sequenceof search/move/graze activities for each group which results in animal movement,biomass depletion due to foraging, and changes in ungulate body weight. These foursubroutines are the central focus of the e�orts discussed in this chapter. In subroutinepatch, cluster analysis (see Chapter 5) is performed daily on the available biomassmatrix, with results stored for output to a �le (in subroutine outfile).7.2 Model DescriptionIn the following discussion habitat pixel refers to a pixel within the boundaries ofthe study area, animal category refers to one of the six types of animals (elk/bisoncalf, cow, or bull) and animal group refers to a single group of 2{9 elk or bison, asde�ned in Chapter 3. The input data set used in this model evaluation e�ort included19,270 elk and 699 bison, forming 5015 ungulate groups. Available biomass refers tothat part of total biomass which is available for consumption by animals. A resourcepixel is a pixel containing available biomass (i.e., biomass above the preset refugelevel and not rendered unavailable due to snow cover). The movement rule de�nes aset of constraints which govern the nature and sequence of events in the move-grazecomponent of the model (i.e., subroutines ungfind, move, graze, and energetics).The movement series refers to the order in which ungulate groups move and forageon a given day, and is constant for all model days. Group i in the series makes allits moves for a day before subsequent groups in the series move (where 0 � i � n,where n is the total number of groups in the model). This ordering of animal groupsis established randomly when groups are initially distributed on the landscape (insubroutine initial). See Chapter 3 for a more detailed discussion of the noyelpmodel, including the input ungulate data set.Subroutine ungfind comprises a loop over each time step (day) for all animalgroups in sequence, according to the movement series. For each group i, the amountof energy required to move one unit of distance (i.e., pixel) across the landscapeand maximum moving distance for the day (maxdist) are calculated. The value ofmaxdist is governed largely by snow depth and density, which are updated every threedays in the model cycle. Following the noyelp movement rule, the pixel in whichgroup i �nished the previous day is �rst evaluated to determine if available biomassexceeds the threshold biomass. If su�cient resources are available on group i's currentpixel at the start of the day, the group grazes before moving to a new site; otherwise,63

the day starts with a call to move. Since an ungulate group is not allowed to choosethe same pixel twice in any day, every other grazing event except the last of the dayis followed by a call to move.In subroutine move, group i's �rst move of each day is preceded by the calculationof the group's search area boundaries, which are based on maxdist. Figure 7.2 showsa diagram of a 9�9 search area (maxdist = 4) in the context of the larger work mapand noyelp data map. All movements for group i over the course of the day are
85

8
5

2
8
5

584

Figure 7.2: Typical search area for a noyelp animal group, with maximum moving distance of 4pixels.restricted to this search area, as de�ned by maxdist.For each habitat pixel in the search area, available biomass is calculated once perday using a complex 18-variable formula. Group-speci�c available biomass values areupdated prior to each group's moves to reect the grazing activities of all previousgroups in the movement series. To implement a move, resource pixels along theperimeter of concentric squares of dimension k� k are searched in a stepwise process(where k = d � 2 + 1, 1 � d � maxdist, and d is the distance away from the currentpixel location). For each k , a comparison of available biomass values is made for allperimeter pixels. If resource pixels are found, the search stops, and a move is made tothe pixel with the largest available biomass. If multiple pixels have the same available64

biomass level, one pixel is chosen at random from among them. Once a destinationpixel is selected, it becomes the center of a new search area (if another move isindicated). The size of this and any subsequent search areas for this group on thecurrent day are constrained by the boundaries of the overall search area. The processof searching for resource pixels along the perimeter of concentric squares continues.If there are no resource pixels within the entire search area (i.e., d=maxdist), group ichooses at random from habitat pixels maxdist away (the perimeter pixels of theoutermost search square) and starts the next day at that pixel.Subroutine graze is called after a destination resource pixel has been chosen.When group i grazes on the available biomass at the destination pixel, total biomassat that pixel is decreased by an amount determined by the ungulate body weight forgroup i and the daily foraging rate. This updated total biomass value is used by thenext animal group in the series (if search areas overlap) for calculation of availablebiomass at that pixel.Group i continues to search, move, and graze until one of two limiting conditionsis met: maximum daily forage is consumed or maximum daily moving distance istraveled. Because it is not possible for an animal to consume its maximum dailyforage at one resource pixel, even when resources are plentiful, and because the groupis prohibited from visiting a pixel twice in the same day, each group must make atleast one move per day.After the last graze of the day for group i, the daily energy balance is calculatedand body weight is adjusted downward for group members if the energy balance isnegative (no weight gain is permitted). If body weight falls below a pre-assignedpercentage of initial weight, mortality is simulated and the group is removed fromthe landscape. These computations are included in the energetics subroutine.This process of searching, moving, grazing and energy adjustment is repeated foreach ungulate group according to the movement series until all groups have completedmoving and grazing for the day. At the end of each day, daily statistics are calcu-lated, and cluster analysis is performed in subroutine patch for two levels of availablebiomass values (any resource and high resource).7.3 Program Evaluation7.3.1 IntroductionComputing time for the original serial noyelpmodel is dominated by the simulationof animal movement, which accounts for 95% of computing time when the maximumnumber of 20,000 animals (composing 5015 groups) is input. Most of this time isconsumed in the calculation of group-speci�c available biomass values on which animalgroups base their movement decisions. These intensive computations are repeated ina program loop for each animal group for all pixels in its search area at each time65

step. This situation is typical of those for which parallel processing is well-suited,o�ering the potential for substantial speed improvements comparable to those for thecomputationally-intensive mean squared radius calculation (see Chapter 6).Three model constraints related to the noyelpmovement rule make recalculationof available biomass values in search area pixels for each of the 5015 animal groupson a daily basis seem unavoidable:1. One of the eighteen variables involved in the calculation of available biomass,swhi, which de�nes upper bounds for snow/water equivalent above which ananimal cannot forage, is (ungulate) category-speci�c. As a result, each of the6 animal categories (elk calf/cow/bull, bison calf/cow/bull) \ sees" a di�erentavailable biomass value at each pixel in the study area. Unfortunately, the valuefor swhi does not relate to the other variables in a scalar manner. As a result,removing these calculations from the loop would entail creating six separateavailable biomass maps (one for each category) and updating all maps after eachgroup grazes. The extra work this would require would o�set any time savedby removing the calculations from the loop, and could pose serious memoryconstraints (i.e., in storing six maps encompassing the entire study area).2. According to the movement rule, each ungulate group must be aware of theresults of resource depletion resulting from the grazing of previous ungulategroups in the movement series. Knowledge-based foraging requires that totalbiomass changes be recorded after each animal grazes, and available biomassvalues be recalculated (from total biomass values) within the loop.3. Each animal group must set its daily foraging path to 0 (i.e., set the category-speci�c available biomass for each pixel visited to 0) to prevent multiple visitsto the same pixel by the same animal on the same day. In the original versionof noyelp, a group can set its path to 0 on the available biomass map withouta�ecting subsequent groups, because the next group will recalculate the valuesit requires from (updated) total biomass values. Removing available biomasscalculations from the loop would necessitate setting ags in a separate arrayand checking these ags before each resource pixel comparison to see whetherthe current group has used the current pixel on a previous move on the sameday. Again, the extra work required would probably o�set any time saved byremoving calculations from the loop.7.3.2 Modi�cation of the serial algorithmIn the process of designing a parallel movement algorithm, a detailed evaluation ofthe interrelations among the di�erent parts of the movement rule was made. Thisevaluation led to the identi�cation of several areas in which the original serial code66

could be improved. Alternative approaches were developed, implemented and testedto (1) map search area resource values to (smaller) work matrices, and (2) providecurrent available biomass knowledge to moving animals. Incorporation of these ap-proaches into the noyelp program improved serial performance signi�cantly. Thefollowing changes were made to the serial algorithm without any change in function-ality (i.e., all model outputs are identical).1. Work maps the size of the maximum search area for any noyelp ungulate group(i.e., 85 � 85) are used for storing category-speci�c available biomass computa-tions. Indices of the work matrix are mapped to corresponding indices of thelarger habitat map. Determination of the maximumresource value, the search forduplicate maximum values, and random selection of the destination pixel fromduplicate maxima can be made directly from the work map. Biomass pixels arecalculated iteratively within the work map as the distance d from the home pixelincreases to maxdist. If a group �nds a resource pixel at distance d, availablebiomass values in concentric squares n units away (where d<n<maxdist) will nothave to be calculated. This di�ers from the original noyelp program, in whichbiomass values for the entire search area ((2�maxdist+1) by (2�maxdist+1))are calculated before any searching begins.2. At the start of each day, a partial computation of available biomass is made, upto the point at which category-speci�c information (swhi) is required. These par-tial available biomass values are stored in a study area-sized matrix (285� 584),referred to below as the shared map, for use by all groups in the daily sequentialcalculation of category-speci�c available biomass. Within the daily movementloop, as each group makes available biomass comparisons for selecting a destina-tion pixel, the partial available biomass value is read (from the shared map) andcombined with the appropriate swhi value to calculate category-speci�c avail-able biomass on a pixel by pixel basis. The available biomass values are thenstored in a work map.3. When a group grazes at a resource pixel, total biomass depletion is calculatedfor that pixel. Partial values for available biomass are then recalculated on theshared map for just the one pixel grazed. In preparation for the next ungulategroup's search for a destination pixel, these updated values are read from theshared map, and new available biomass values are calculated on the work mapusing category-speci�c information for the next group in the movement series.4. Each animal group marks its movement path on the work map with ags (i.e.,available biomass is set to an out-of-range value). This prevents the revisitingof pixels on the same day without a�ecting the shared map which is read byall groups. As a group makes its moves for the day, the work-map coordinatesof these moves are stored in an array, so that the ags which have been set to67

Table 7.1: CPU time (in seconds) for the original and revised noyelp serial model versions andspeed improvement of the revised over the original version.Version DECstation 5000-200 Sun SPARCstation 2original 12780.80 9174.25revised 828.15 840.72Speedimprovement 15.43 10.91mark one group's path can be selectively removed before the next group uses themap. The use of these ags and associated arrays is a crucial step in redesigningavailable biomass calculations, because it eliminates the need to clear the entirework map (i.e., set all elements to 0).These modi�cations are interrelated, and full performance enhancement requires allfour changes. Other minor changes were made to the serial code to facilitate theimplementation of these modi�cations.7.3.3 Comparison of performance of original and revised noyelp modelThe original and revised noyelp models were compared for performance, based onspeed improvement (i.e., the ratio of CPU time for the original model to that of therevised version). Both Fortran-77 programs were compiled with the -O option forthe current f77 compiler. The results for total CPU time are shown in Table 7.1.Figure 7.3 compares CPU time of the original and revised noyelp models at eachtime step of the 180-day model cycle and Figure 7.4 shows these same CPU times forthe revised model on an expanded y-axis.Speed improvements of 10.91 and 15.43 were realized on a Sun SPARCstation 2and DECstation 5000 model 200, respectively (Table 7.1). Most of this improvementwas attributable to changes in the movement component of the model. Trends ofCPU time over the 180-day model cycle for the original and revised versions werevery di�erent (Figure 7.3). The original version required more CPU time during theearly part and at the very end of the noyelp cycle, while CPU times for the revisedmodel increased slowly over the �rst 120 days, were highest from day 120 to day 165,and decreased sharply during the last 15 days (Figure 7.4). The period during whichtimes were fastest for the original model coincided with the period when times wereslowest for the revised model.The number or distance of moves made and distance traveled per day has littlee�ect on execution time of the original model, since all available biomass values withina group's search boundary are calculated each day, regardless of number of moves,and biomass calculations consume the majority of CPU time. Instead, the major68

18050 100 150

Time Steps (days)

0

20

40

60

80

100
CP

U
tim

e (
se

cs
)

Original (upper curve)
Revised (lower curve)

Figure 7.3: CPU time (in seconds) at each time step for the original and revised noyelp model overthe 180-day model cycle on a Sun SPARCstation 2 (excluding I/O).factor inuencing execution time for the original version is the availability of biomasson the noyelp landscape (Figure 7.5). When components of available biomass arelow, category-speci�c calculations for available biomass are truncated, requiring lessexecution time. The increasing availability of biomass in late winter{early spring(Figure 7.5) requires increasing numbers of biomass computations in the originalnoyelp program, and computing time increases substantially from the mid-winterlow (Figure 7.3).In contrast, CPU times for the revised version (Figures 7.3 and 7.4) vary directlywith the total daily distances traveled in ungulate movements (see Figure 7.6). Be-cause biomass values are computed sequentially as the search area expands, bothnumber of moves and the length of each move increases the required number of re-source pixel comparisons and hence the number of available biomass calculations thatmust be made. Execution time is highest for time steps in which resources are sparseand many moves are required per day to satisfy daily foraging requirements. As snowcover melts in late winter and biomass becomes more available, CPU times decreasesharply as the average number of moves per day for the ungulate groups decreases.69

50 100 150

Time Steps (days)

2.5

4

6

8

10

12

CP
U

tim
e (

sec
s)

Figure 7.4: CPU time (in seconds) for each time step of the revised noyelp model over the 180-daymodel cycle.Performance gains from the truncation of biomass calculations are much smaller forthe revised model because fewer biomass calculations are made.
70

1800 50 100 150

Time Steps (days)

0

5000

10000

Av
ail

ab
le

bi
om

as
s (

x 2
00

0k
g)

Figure 7.5: Available biomass (in 2000kg units) in the study area over the 180-day noyelp modelcycle.
18050 100 150

Time steps (days)

0

1000

2000

3000

4000

5000

To
tal

 di
sta

nc
e t

ra
ve

led
 (k

m)

Figure 7.6: Total daily distance traveled (km=day) by all ungulate groups over the 180-day noyelpmodel cycle. 71

7.4 Parallelization of Animal MovementsAs a �rst direct step toward parallelizing the noyelp animal movement rule, a data-parallel MPL version of the subroutine move was attempted. Cut-and-stack virtu-alization was chosen because of the many non-habitat pixels which surround theirregularly-shaped NYNP study area. While hierarchical virtualization clumps non-habitat pixels together on the same processors, cut-and-stack mapping allocates thesenon-habitat pixels more equitably among processors, leading to better load balanc-ing. However, if an ungulate group's search area were limited to the subgrid of oneprocessor, hierarchical mapping would have a strong advantage over cut-and-stackmapping, even with the presence of a signi�cant number of non-habitat pixels, sinceno MPL communication constructs are required for comparison of pixels within aprocessor's subgrid.A key issue in parallelization of animal movements in the noyelp model is howto distribute the data for animal groups across the processors. Two basic approachescan be employed. In the �rst approach, group data are distributed evenly acrossprocessors, regardless of the actual location of the group on the landscape. Eachgroup's descriptive data are stored in one stationary place, and the value of a locationvariable is changed when a move is made. This distribution would be advantageousif a signi�cant amount of data were maintained for each group, or if a large numberof groups reside on an individual pixels.The second approach involves maintaining group data on the same processor anddata layer as the landscape pixel on which the group resides. When groups move fromone pixel to another, these data must be transferred to the appropriate destinationpixel. This is feasible for noyelp because the model maintains only three piecesof data about each animal group: category, location, and current body weight. Ifmore information were maintained, the required amount of data movement would beprohibitive. The danger of memory constraints when multiple groups share a pixelmust also be considered.Both approaches to storing animal group data were tested in this parallelizatione�ort. The �rst approach is more exible and is recommended for a fully-implementedparallel noyelp model. Although this approach has the disadvantage of requiringmore inter-processor communication to access group data on a distant processor, itsuse is warranted because it can better handle the presence of multiple groups on apixel and has the exibility to accommodate additional group-speci�c data, as needed.Execution times were measured at various stages of algorithm development, withsomewhat disappointing results. Progressively simpler parallel versions of the move-ment rule were implemented in an attempt to identify a level at which speed improve-ments over the serial model could be achieved. In the most simpli�ed version of themove subroutine, data for all categories of animals were read from the same availablebiomass map, with the median swhi value used for all calculations. With this sim-72

pli�cation, all ungulate categories would see the same available resource values. Therestriction from revisiting the same pixel on a given day was also removed. Unfor-tunately, execution time was still about 20% slower than for the fully-implementedserial model.A parallel versions of the noyelpmovement component implementing the currentmovement rule would be fairly communication intensive, due to the inter-processorcommunication required to compare resource values from adjoining pixels within asearch area for each ungulate group several times each day over a 180 day simula-tion period. Both the original and revised versions of noyelp utilize nested loopsto simulate these repetitive activities. To bene�t from parallelization, the number ofoating-point calculations performed inside these parallelizable program loops mustbe su�cient to support the amount of interprocessor communication necessary forparallel implementation of the movement rule chosen. The revisions made to theoriginal serial noyelp model decreased the computational complexity of the loops inthe move subroutine to such an extent that inter-processor communication require-ments associated with parallelization of the movement rule more than o�set any gainsfrom parallelization of computations within the program loops.This attempt to parallelize the animal movement component of noyelp indi-cates that development of a parallel version of the model will require fundamentalre-conceptualization of the movement rule. The parallel movement rule would haveto minimize communication/comparisons between processors to be e�ective in en-hancing model performance. The re-conceptualized parallel model would have to berecalibrated from suitable ecological data, adjusting exible components in an itera-tive process similar to the procedure used to calibrate the original serial model. Thedevelopment and implementation of such a rule, including the calibration and valida-tion required to realize an operational parallel model, are topics for future research.One approach which appears to be feasible and potentially e�cient is based onrestricting of the movement of an animal group to the con�nes of a processor subgridfor one move. This rule would favor hierarchical over cut-and-stack mapping becausethe hierarchically-mapped subgrid represents a contiguous chunk of the landscapemap, keeping communications costs low. At the start of the each move, animalswhich are on one of the border rows or columns of the subgrid could be moved to theadjoining processor sub-grid. This would allow wider-ranging movement, but wouldnot require comparisons of pixel values across processor boundaries (which requiresthe use of time-consuming communication constructs). More moves per day mightbe required to obtain su�cient daily forage intake because of the restricted searcharea for each day. A single suitability index for each subgrid might be communicatedto neighboring subgrids to guide direction of movements. Whether these changesto the movement rule are su�ciently consistent with ecological theory or could becompensated for by other adjustments to the model is di�cult to judge at this point.73

7.5 Serial vs. Parallel Updating of Biomass LevelsA major concern in designing a parallel noyelpmodel would be the updating of totaland available resource levels, which provides each ungulate group with knowledgeof the grazing e�ects of animal groups which precede it in the movement series.The use of this movement series (which remains constant over the 180-day modelperiod) is critical to the serial processing of foraging activity. Its use implies a serialprocess which, by de�nition, constrains concurrent grazing behavior. However, it ispossible that sequential grazing and consequent partial knowledge of grazing e�ectsmay e�ectively simulate ecologically signi�cant phenomena, such as unequal �tnessand/or dominance ranking among population members ([Lomn92]).The inuences of the serial constraint on searching and foraging imposed by use ofa movement series, and the consequent need for intra-move biomass updating, variesover the 180 day noyelp cycle. Biomass updating is not particularly importantin early time steps (i.e., during the autumn), when animals are widely distributedover the landscape and infrequently choose the same destination pixel (Figure 7.7).However, during the winter months when snow cover is deep and available resourcesbecome scarce, animals tend to congregate in the low-elevation Mammoth-Gardiner(snow-shadow) area and on south slopes throughout the study area where there isless snow cover ([TWWR+93]). During these periods, population densities in themore favorable habitat pixels can build to high levels, as each group chooses a sharedresource pixel solely because that pixel has the highest available resource level in itssearch area, regardless of the number of other groups which may inhabit the same (1hectare) pixel. Results of the noyelpmodel run (Figure 7.7) indicate that from lateDecember through mid-February up to 80 groups (with 2 to 9 members per group)share an individual pixel on a given day. Depletion of available biomass by groupsthat rank high in the movement series can be a signi�cant factor in the selectionof destination pixels by lower ranked groups during this period. Category-speci�cresource updating can be a critical factor in determining animal movement duringthe winter. As such, the serial constraints associated with the use of the movementseries for biomass updating becomes important during this period.Once snow melt begins and these ungulate groups disperse, the importance ofbiomass updating decreases, and the movement rule again becomes somewhat lessconstraining to ungulate movement patterns.Allowing multiple groups to share destination pixels constitutes an important andecologically consistent movement condition which should be retained in the parallelmodel. However, biomass updating, which is based on the movement series, becomesproblematic when animal groups are required to make their destination choices inparallel. An exact parallel implementation of noyelp serial biomass updating wouldstill require the maintenance of a hierarchical ranking of animal groups (i.e., move-ment series) identical to that used in the serial model. The series would be used to74

18050 100 150

Time steps (days)

0

20

40

60
Nu

mb
er

 of
 gr

ou
ps

Figure 7.7: Maximum number of ungulate groups which share a pixel over the 180-day cycle of thenoyelp model.implement a parallel-based movement algorithm that can accommodate the absenceof the serial biomass updating scheme in the initial selection of destination pixels.In this parallel movement algorithm, animal groups on all processors would make agiven move as if no conict existed. If more than one group chose the same destinationpixel on the same move, a rollback ([BeTs89]) technique based on the movementseries could be used to duplicate the serial behavior by allowing the e�ects of theseinteractions to propagate backward to previous model decisions which were based onbiomass values that had not been updated to reect the foraging activities of animalgroups higher in the movement series ([Palm92]). Figure 7.8 illustrates the chainof events following the choice of the same destination pixel (pixel 9) by two animalgroups (1 and 2) on the third move of the day. The highest ranking group (group 1)would be allowed to graze and biomass would be updated for its selected destinationpixel. Then, the next lower ranked group which selected the same destination pixel(group 2) would roll back its pixel selection process by one move, reevaluating itssearch area to choose its new maximum resource pixel (considering grazing e�ects forthe day by higher ranked groups, but not by lower ranked groups). If this new pixelhad been previously grazed by another (lower ranked) animal group (group 3) on thesame move, or on a previous move on the same day, group 2 would graze the pixel andgroup 3's pixel selections would be rolled back to the previous move. Group 3 wouldreevaluate its search area and reselect its maximum resource pixel. The rollback75

move1 move2 move3

96

9

4

12 10

11

12

13

84

8

group1

group3

group4

group2

7

12

tentative move

final move

roll-back

final choice

first choice
3

3

12Figure 7.8: Rollback mechanism for resolving resource depletion updates in exact parallel imple-mentation of noyelp movement rule.sequence would be repeated after each move of a given day until all conicts wereresolved. As is evident in comparing the �rst and �nal choices of group 4 on move 2in Figure 7.8, a group may re-select the same pixel based on updated biomass. Allbiomass updates for the day would be held in stacked bu�ers (along with informationabout which group was responsible for the update) until all moves for a given day wereresolved. Note in Figure 7.8 that the rollback for group 3 was two moves, even thoughbiomass was updated after every move. Such multiple-move rollbacks are required toe�ectively duplicate the outputs of the serial algorithm, wherein a particular groupmakes all of its moves for a given day before groups lower in the movement seriesmake any moves.Based on this reasoning, it appears that when pixel sharing is important in thenoyelp model, as it is during winter, any parallel performance advantages wouldquickly be lost in the recursive roll-backs required to emulate serial updating of76

biomass values for making movement decisions. When the average number of groupsper destination pixel is large and the number of moves made per day is high, com-puting time required to implement this rollback procedure could quickly become pro-hibitive.If the goals of the parallelization e�ort were not driven by the need to duplicateserial behavior and output but were rather to develop and implement an equallymeaningful parallel movement rule, these multiple-move rollbacks would not be nec-essary. The parallel movement rule would resolve the issue of allocation of destinationpixel resources when multiple groups choose the same destination pixel in a way thatavoids this time-consuming serial component. One option would be to allow the sev-eral groups on the pixel to share available biomass equally. Thus, if n groups choosea pixel with resources of R kilograms, each could calculate their biomass consumptionfrom a base of R=n kg. An alternative option would be to allow the groups to grazethe destination pixel serially, with animal groups ranked low in the series grazingfrom pixels whose biomass has been diminished by groups ranked higher in the se-ries. If resources were very low, a low-ranked group might actually be shut out fromgrazing (as resources are depleted to the refuge level by previously grazing groups)even though alternate resource patches might be available in the search area.A third parallelization option, one which incorporates knowledge updating, wouldgive groups sharing resource-limited pixels another opportunity to choose a destina-tion (from among updated pixels). However, this capability would introduce anothertime-consuming serial component into the move-graze function. Many processorswould be idle waiting for a few groups to move and model performance would bedegraded.All of these alternatives would di�er from the serial movement rule in that someungulate groups might have initially chosen other pixels in their search area basedon their knowledge of the e�ects of grazing by higher ranked groups (i.e., if resourceupdating had occurred following the movement of each group).In a parallel version of the noyelp model, serial processing will be necessary atseveral points in the simulation, regardless of the movement rule implemented, forthe following reasons:1. The number of map pixels is greater than the number of MP-2 processors, re-quiring each processor to handle more than one habitat pixel. As discussedin Chapter 2, with 4096 processors and 320 � 640 habitat pixels, 50 pixels aremapped to each processor. These pixels are stored in data arrays within eachprocessor. Each PE can process only one pixel at a time, so the pixels areprocessed serially.2. A habitat pixel may be host to more than one animal group. Each group residingon a given pixel must be processed serially in its selection of a destination pixel.77

3. When more than one animal group chooses a particular destination pixel, a serialcomponent of some sort is unavoidably introduced into the move and grazefunctions.These unavoidable serial components should be recognized and exploited in par-allel approaches to modeling ecologically signi�cant animal behavior. Forcing serialbehavior at other points in the parallel model would cause performance degradationand should be avoided. If, as appears to be the case with the serial noyelp move-ment rule, parallel constraints cannot be compensated for by adjusting exible modelparameters, then modi�cation of the basic move-graze structure will be required fordevelopment of an e�cient parallel model.7.6 ConclusionsImprovements to the animal movement component of the serial noyelp model madeover the course of this study removedmuch of the computational complexity from theprogram loops and reduced execution time by an order of magnitude. Serial improve-ments and the fundamental incompatibility of the serial movement rule with parallelprocessing capabilities combined to make parallelization of animal movements on theMasPar MP-2 infeasible for this study. A revised movement rule is proposed whichwould exploit the advantages of parallel processing by incorporating the followingfeatures:1. Animal groups should be restricted to moving within the local processor subgridfor any given move to accomplish resource pixel comparisons and destination selectionwith a minimum of inter-processor communication. Hierarchical rather than cut-and-stack mapping would be used to exploit localized communication. This movementrule modi�cation would have great speed advantages, but would necessitate rulesgoverning when a group is moved from one processor to another.2. All animal groups should move and graze in parallel (within the constraintsof virtualization). A parallel move and graze algorithm requires di�erent approachesto biomass updating and allocation of resources when multiple groups are presenton a pixel. Available biomass values should be updated at the end of each parallelmove/graze action, so that on move m all groups are aware of any resource depletion(which has occurred due to foraging) on move m � 1 before choosing its next desti-nation pixel. An advantage of this feature would be the possible elimination of therequirement that animal groups not revisit the same pixel in the same day (whichwas implemented by setting the movement path to 0 on the available biomass map).This constraint was necessary in the serial version in part to compensate for the factthat an ungulate group could not see the e�ects of grazing by subsequent groups onthe same day. These other groups (lower in the movement series) might choose apreviously visited high-resource pixel and deplete its resources before the next graz-78

ing choice is made by the higher ranked group. In the parallel algorithm, all grazinge�ects would be recorded at the end of each parallel grazing event, so that groupscould make a more informed choice at each move of the day.The allocation of resources when multiple groups choose the same destination pixelis a more complex issue presented by a parallel move/graze algorithm. In the serialmodel, groups choose and graze in sequence, so a group chooses with knowledge of thegrazing e�ects of previous groups, and only chooses a given pixel if it is the maximumresource pixel in its search area. In the parallel model, multiple ungulate groupswill choose a pixel at the same time, before any grazing is recorded, unaware of howmany other animals are choosing the same pixel. If they could see grazing e�ects ofother groups sharing the destination pixel, they might choose a di�erent pixel as theirdestination pixel, perhaps one with a smaller current resource level, but with fewergrazers for the current move. To address this resource sharing issue, groups couldshare resources on the destination pixel evenly, or graze in sequence, based on theirposition in a movement series or randomly.Another potential problem with a parallel move/graze algorithm that involves nointra-move updating is that once animal groups share a pixel, they might tend to movetogether to the same destination pixel. If selection of destination pixels were basedsolely on available biomass at the start of the move, all groups on the pixel would havethe same available resource values to choose from and would choose the same pixel.This phenomenon has been referred to as arti�cial synchronization ([TWWR+93]).This situation is readily addressed by recognizing that animals located on the samepixel are processed on the same PE, and hence are processed in series, thereby pro-viding the opportunity to update biomass according to a movement series within aparticular move for groups on the same pixel. In other words, grazing e�ects for eachgroup could be recorded in sequence, giving subsequent groups on that pixel knowl-edge of these e�ects, as in the sequential algorithm. Groups making knowledge-baseddecisions would be less likely to choose the same destination pixel.3. One available biomass map should be employed for all animal categories ifpossible. This would eliminate category-speci�c variables in the calculation of avail-able biomass, the most time-consuming component of the serial animal movementalgorithm. Serial values for the category-speci�c component of the feedback calcu-lation (swhi) are currently 14 for elk calves, 15 for elk cows, 16 for elk bulls andbison calves, and 18 for bison cows and bulls. A single value could be chosen forall categories, and an attempt to compensate for this simpli�cation could be madeby substituting complexity in another model component (i.e., adjusting the foragingrate or maintenance energy values for each category). Category-speci�c informationcould be retained in the pre-grazing calculation of feedback for foraging. This featurecould also be incorporated into the serial model.79

Chapter 8ConclusionsFor this thesis, parallel kernels for performing cluster identi�cation and mean squaredradius computation were implemented on the MasPar MP-2 using both hierarchicaland cut-and-stack data mapping strategies. These kernels were tested on randommaps as well as on resource maps extracted from runs of the noyelp model. Speedimprovements for parallel implementations over serial algorithms for communication-intensive cluster identi�cation were modest (<12) for random maps of most sizesand densities tested. The hierarchical algorithm consistently outperformed the cut-and-stack algorithm, which was slower than the serial program for densities nearthe percolation threshold for all map sizes tested. Larger speed improvements weremeasured for dense maps with large, dominating clusters. For random maps withp = 0:85, the hierarchically-mapped version was over 15 times faster than the serialversion on a Sun SPARCstation 2. When cluster identi�cation is performed repeatedlyover time steps, as in the noyelp model, even small speed improvements can besigni�cant.Speed improvements for parallel implementations of the more computationally-intensive mean squared radius computation, which increased with map size and den-sity, were more substantial. Speed improvements of over 150 were realized for bothparallel mapping versions over the serial program on a Sun SPARCstation IPX on512�512 random maps with p � 0:85. These results make radius measurements a vi-able tool for many landscape ecology applications. Speed improvements for noyelp-derived maps were lower, due largely to the inclusion of many additional non-habitatpixels in the noyelp grid, which contributed to low densities for these maps. An areafor future research is the examination of strategies to improve SIMD performancefor applications with irregularly-shaped study areas, perhaps by blocking relevantdata (including locality-preserving references) out to the front-end machine and re-distributing data equitably among processors. Future work in this area should alsoinvolve a closer examination of the the spectrum of natural spatial patterns and clus-ter con�gurations encountered in landscape maps, the relative performance of parallel80

kernels on these con�gurations, and methods of optimizing parallel performance overthe range of patterns.Parallel kernels for cluster identi�cation or mean squared radius computation couldbe integrated into the noyelp model or other landscape ecology models for e�cientcluster analysis. Parallel kernels (running on the MasPar MP-2 DPU) could be calledby serial programs running on the DECstation 5000-200 front-end machine. Data tobe analyzed would be blocked out to the DPU, and results could either be returnedto the calling program or be written to an output �le.Serial modi�cations to the cluster identi�cation and animal movement componentsof the original Fortran-77 noyelp program resulted in a revised serial version whichexecutes 11 times faster than the original (CPU time on a Sun SPARCstation 2),with no change in functionality. Modi�cations included replacing the original localdi�usion-based cluster identi�cation algorithm with a more e�cient pseudo-recursivealgorithm and revising the calculation of available biomass in the animal movementcomponent. Non-category-speci�c components in available biomass calculations wereremoved from nested animal movement loops, so that these calculations are performedonce per time step rather than once per animal group per time step.The results of this thesis e�ort indicate that, if bene�ts are to be realized fromparallelization of animal movement, the number and complexity of movement opera-tions performed inside parallelizable program loops must be high enough to o�set theamount of interprocessor communication required to implement the movement rulechosen. The original serial noyelp model appeared to �t this criterion, spending95% of program execution time in the animal movement component of the model.Complex multi-variable calculations of available biomass feedback values are per-formed repetitively within a daily sequential loop through animal groups. However,performance improvements made to the movement component of the serial noyelpprogram (discussed above) resulted in a 24-fold speed improvement over the origi-nal movement component (on a Sun SPARCstation 2). After these modi�cations,insu�cient computational complexity remained within the animal movement loop tosupport the communication requirements associated with parallel implementation ofthe current movement rule with any signi�cant speed improvement.The results of this research highlight the fundamental incompatibility of the noyelpserial movement rule, with its intra-move biomass updating schedule, with parallelprocessing constraints. Integral to this movement rule is a movement series thatdetermines the order in which ungulate groups move and graze on the NYNP land-scape. The model updates biomass prior to each day's set of moves for each ungulategroup according to the movement series. It is concluded that e�cient parallelizationwould involve re-conceptualizing the movement rule. Recalibration of the parallelmodel with suitable ecological data would also be required.Components of a new parallel movement rule which exploit the advantages ofhierarchical mapping are proposed for noyelp and similar individual-based landscape81

ecology models. It is suggested that the search area for selection of resource pixelsbe limited for a given move to the pixels assigned to one processor, thereby limitingthe amount of inter-processor communication required. To expand the search area, agroup selecting a PE border pixel could be relocated to to the adjoining processor forthe next move. A composite suitability index could be computed for each processor'sresource subgrid and communicated to adjacent processors to inuence the direction ofmovement. Group-speci�c information (i.e., location, body weight, category) shouldbe distributed across processors independently of group location on the landscape,and maintained in one place rather than being moved when the group relocates.Available biomass values should be updated at the end of each parallel move/graze,to provide an acceptable level of knowledge in the foraging activities. Given parallelgrazing and updating, groups probably do not need to be constrained from revisitingpixels on a given day. When resource pixels are shared by animal groups, biomasscould be shared equally or be allocated according to a ranking scheme consistent withthe autecology of the particular species. In addition, the new rule should minimizethe use of category-speci�c variables in the calculation of available biomass.Further conceptualization and development of parallel algorithms to implementthe new movement rule are subjects for future research.

82

Bibliography

83

Bibliography[ApCM92] J. Apostolakis, P. Coddington and E. Marinari. A Multi-Grid ClusterLabeling Scheme. Europhys. Lett. 17(3), 1992.[BrTY91] R. C. Brower, P. Tamayo and B. York. A Parallel Multigrid Algorithmfor Percolation Clusters. Jour. of Stat. Phys. 63, 1991.[BeCM93a] M. Berry, J. Comiskey, and K. Minser. Parallel Map Analysis on 2-DGrids. Proceedings of the Sixth SIAM Conference on Parallel Processingfor Scienti�c Computing, Norfolk, VA, 312{319, 1993.[BeCM93b] M. Berry, J. Comiskey, and K. Minser. Parallel map analysis on theMasPar MP-2. Computer Science Department Technical Report CS-93-190, University of Tennessee, March 1993.[BeTs89] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and DistributedCommunication{Numerical Methods. Prentice-Hall, Englewood Cli�s,NJ, 1989.[FlTa92] M. Flanigan and P. Tamayo. A Parallel Cluster Labeling Method ForMonte Carlo Dynamics. Int. J. Mod. Phys. C, 3(1):1235{1249, 1992.[GaOT93] R. Gardner, R. V. O'Neill, and M. G. Turner. Ecological Implications ofLandscape Fragmentation. In: Humans as Components of Ecosystems:Subtle Human E�ects and the Ecology of Populated Areas. S. T. A. Pick-ett and M. J. McDonnell, Springer-Verlag, NY, 1992.[Haef92] J. W. Haefner Parallel Computers and Individual-Based Models: AnOverview. In: Individual Based Models and Approaches in Ecology.D. L. DeAngelis and L. J. Gross, Chapman & Hall, NY, 1992.[HGTR+92] W. W. Hargrove, R. H. Gardner, M. G. Turner, W. W. Romme, andD. G. Despain. Simulating Fire Patterns in Heterogeneous Landscapes.Preprint, 1992.[HoSa83] E. Horowitz and S. Sahni. Fundamentals of Data Structures. ComputerScience Press, 1983. 84

[HoKo76] J. Hoshen and R. Kopelman. Phys. Rev. B. 14, 1976.[HwBr93] K. Hwang and F. A. Briggs. Computer Architecture and Parallel Pro-cessing. McGraw-Hill, New York, 1984.[Lomn92] A. Lomnicki. Population Ecology from the Individual Perspective. In:Individual Based Models and Approaches in Ecology. D. L. DeAngelisand L. J. Gross, Chapman & Hall, NY, 1992.[MasP92a] Data-Parallel Programming Guide, MasPar Computer Corporation,Sunnyvale California, June (1992).[MasP92b] MasPar Parallel Application Language (MPL) Reference Manual, Mas-Par Computer Corporation, Sunnyvale California, June (1992).[MasP92c] MasPar Parallel Application Language (MPL) User Guide, MasParComputer Corporation, Sunnyvale California, June (1992).[Mins93] K. Minser. Technical Report CS-93-197, August 1993.[Palm92] J. Palmer. Hierarchical and Concurrent Individual Based Modeling. In:Individual Based Models and Approaches in Ecology. D. L. DeAngelisand L. J. Gross, Chapman & Hall, NY, 1992.[StAh91] D. Stau�er and A. Aharony. Introduction to Percolation Theory, Secondedition. Taylor & Francis Ltd, London, 1991.[TWWR+93] M. G. Turner, Y. Wu, L. L. Wallace, W. H. Romme and A. Brenkert.Simulating Interactions Among Ungulates, Vegetation and Fire inNorthern Yellowstone National Park During Winter. Submitted to Eco-logical Applications
85

Appendices

86

Appendix AMasPar Speci�cs

87

A.1 Family of MPIPL Functions for Virtual Array Conver-sionmpi1dcsto2dh - MPIPL function to convert a virtualized array from 1D cut-and-stack to 2D hierarchical.mpi1dhto2dh - MPIPL function to convert a virtualized array from 1D hierarchicalto 2D hierarchical.mpi1dhto2dh - MPIPL function to convert a virtualized array from 1D hierarchicalto 2D hierarchical.mpi2dcsto2dh - MPIPL function to convert a virtualized array from 2D cut-and-stack to 2D hierarchical.mpi2dhto1dcs - MPIPL function to convert a virtualized array from 2D hierarchicalto 1D cut-and-stack.mpi2dhto2dcs - MPIPL function to convert a virtualized array from 2D hierarchicalto 2D cut-and-stack.Each of these functions takes the form:mpi2sourceXtargetYN(imgSrc, rows, cols, imgDst),taking a virtual array of N-bit objects located at imgSrc using X virtualization, andreturning in imgDst the same array revirtualized to use a Y virtualization, whereN = 8; 16; or 32.
88

A.2 Using the MasParMuch of the code development for this project was done on the MasPar MP-1, main-tained by the Joint Institute for Computational Science at the University of Ten-nessee. This particular machine was upgraded in January (1993) to an MP-2, andall execution times included in this thesis reect MP-2 timings. The e�ective speedof the MP-2 ranges between 2 and 4 times faster than that of the MP-1. Althoughthe number of processors remained at 4,096, the MP-2 upgrade uses 32-bit PEs witha 16-bit datapath from PE memory to PE registers. The original MP-1 machine, onthe other hand, employed 4-bit PEs with a 4-bit datapath from PE memory to PEregisters.The progressive evolution of programming e�orts for this project has been drivenby bottleneck resolution. When an algorithm is modi�ed, performance and accuracyover all mapsizes and p-values must be re-evaluated. Some approaches work well forsome size/density combinations, but perform poorly for others. The MPPE pro�lingcapability has been very useful for pinpointing where execution time is spent, and forcomparing the e�ciency of alternative MPL functions.The (ANSI C compatible) MasPar Programming Language is fairly well docu-mented (except for the omission of speci�c data mapping examples) and it is relativelyeasy for a C programmer to write MPL code that works. However, initial e�orts areoften slow and ine�cient. Programming for performance is especially important forparallel applications, particularly in the following areas:1. Registers. - Each PE has 32 32-bit registers available for user-declared registervariables. Use of these registers gave a 25-35% performance improvement forcluster identi�cation and radius calculation codes.2. Communications - The availability of several communication constructs inMPL: (proc, three types of xnet, and global routing) provide exibility, allow-ing the programmer to minimize communication overhead within the constraintsof the application. In some situations (i.e., when a large percentage of PEs needto view the same value) it is more e�cient to store values in singular variablesvisible to all PEs and control access by limiting the active set rather than userouter constructs to broadcast these values selectively.3. Pipelining. - Stores to memory are always time-consuming, but the program-mer can take advantage of pipelining on the MasPar by intelligent use of registers.For example: registertemp=sum[n];registertemp+=value_to_store;sum[n]=registertemp;89

is signi�cantly faster thansum[n]+=value_to_store;4. Variable size. - Operations with shorts are twice as fast on MasPar PEs asoperations with ints, and operations with ints are twice as fast as operations withlong longs, so the programmer should carefully calculate the maximum variablesize needed. Signi�cant performance improvements were seen in this project byusing ints for low-level calculations, and casting to larger sizes as values areaccumulated.5. Storage of results. - Address space limitations on the ACU (where singularvariables are handled) are fairly restrictive. Rethinking of traditional program-ming approaches can often yield alternatives to array storage for collecting resultswhich are more e�cient for parallel applications and allow larger problems to besolved within the memory constraints.

90

Appendix BNOYELP Speci�cs

91

B.1 Outline of noyelp SubroutinesThe serial noyelp model is implemented as a 4736 line Fortran-77 program, dividedinto 13 subroutines.|||||||||||||||||||||||subroutine input()lines: 304Subroutine input() inputs the parameter values, snow index matrix, habitat typematrix, and interface choices, and sets initial rows and columns for bison distri-bution.parameters: nonecalled by: main()calls to to: none|||||||||||||||||||||||subroutine initial()lines: 701Subroutine initial() initializes biomass and ungulate location matrices and estab-lishes the chosen pattern of burned areas on the landscape.parameters: nonecalled by: main()calls to to: unevenb(), ranmap()|||||||||||||||||||||||subroutine unevenb()lines: 40Subroutine unevenb() creates an uneven biomass map for the landscape.parameters: nonecalled by: initial()calls to: none|||||||||||||||||||||||subroutine ranmap()lines: 63Subroutine ranmap() creates a random habitat map for the landscape, if randomlandscape is chosen.parameters: nonecalled by: initial()calls to: none|||||||||||||||||||||||92

subroutine ssnow()lines: 174Subroutine ssnow() distributes snow depth in each pixel and updates it at the startof each snow period (3 days).parameters: nonecalled by: main()calls to: none|||||||||||||||||||||||subroutine ungfind()lines: 153Subroutine ungfind() locates each ungulate group on the landscape map, then ini-tiates moving and grazing for the day.parameters: nonecalled by: main()calls to: graze(), move()|||||||||||||||||||||||subroutine graze(i,j,ungrank)lines: 128Subroutine graze() allows an ungulate in a resource pixel to forage. Total biomasson the grazed pixel is reduced by the amount consumed by the grazing ungulategroup. Foraging is precluded on a given site when biomass declines below arefuge level.parameters: integer i row (x-coord.) of current groupinteger j column (y-coord.) of current groupinteger ungrank rank of current group in movement seriescalled by: ungfind()calls to: move(), energet()|||||||||||||||||||||||subroutine move(i,j,ungrank)lines: 277Subroutine move() implements the destination resource pixel selection phase of themovement rule.parameters: integer i row (x-coord.) of current groupinteger j column (y-coord.) of current groupinteger ungrank rank of current group in movement seriescalled by: graze(), ungfind()calls to: none|||||||||||||||||||||||93

subroutine energet(i,j,ungrank)lines: 169Subroutine energet() calculates energy cost and gain each day for each ungulate.Body weight lost is tracked and mortality is simulated.parameters: integer i row (x-coord.) of current groupinteger j column (y-coord.) of current groupinteger ungrank rank of current group in movement seriescalled by: graze()calls to: none|||||||||||||||||||||||subroutine patch()lines: 350Subroutine patch() identi�es clusters of available biomass pixels and reports thenumber of clusters, average cluster size, and largest patch size for available re-sources. Cluster analysis is performed twice each day: once for pixels withavailable biomass above 0, and again for pixels with available biomass above apreset alpha level.parameters: nonecalled by: main()calls to: none|||||||||||||||||||||||subroutine statist()lines: 1018Subroutine statist() provides a statistical summary over all replicate runs andcalculates mean, minimum, maximum values and standard deviation for eachreplicate at day 180.parameters: nonecalled by: main()calls to: none|||||||||||||||||||||||subroutine outfile()lines: 109Subroutine outfile() writes summary results to an out�le.parameters: nonecalled by: main()calls to: none|||||||||||||||||||||||94

B.2 Selected Formulas used in noyelp model computationsFeedback due to foraging: represents the e�ect of a reduction in the amount ofavailable forage on the rate of forage intake.FBforage = 1 � REFBIOwhere:FBforage = value ranging from 0{1 (unitless),REF = refuge value of biomass not available to ungulates (kg/ha), andBIO = actual biomass in that pixel (kg/ha).Feedback due to snow: represents the e�ect of snow on the ability of an animal toforage. FBsnow = "1 � (SWE � SWLO)+SWHI � SWLO #+where:FBsnow = value ranging from 0{1 (unitless),SWE = actual snow water equivalent in that grid cell,SWLO = the SWE value at which limitation to foraging begins,SWHI = the SWE value at which feeding goes to zero, and+ indicates that the term must remain positive, i.e., it is set to zero if negative.DIST: maximum daily moving distance as modi�ed by snow conditions; used toconstrain animal movement such that elk or bison move a shorter distance whensnow conditions are severe. DIST = MDISTM1 + Y=100where:DIST = the modi�ed maximum daily moving distance in snow,MDISTM = the initial maximumdaily moving distance (category-speci�c) and,Y = the relative increase in travel energetics in snow.Energy balance equations: Ebalance = Egain � EcostEgain = I � ENPKEcost = Emaint � Etravel95

where:I = total intake of forage(kg), ENPK = forage energy content (kcal/kg),Emaint = metabolizable energy needed for zero energy balance, excluding travel(kcal), andEtravel = energy cost of travel (kcal).Energy content of forage:ENPK = GE � IV DMD �MCwhere:ENPK = forage energy content (kcal/kg),GE = gross energy (4400 kcal/kg),IV DMD = in vitro dry matter digestibility (0.374 from �eld data), andMC = metabolizable energy coe�cient (0.82).Emaint: Maintenance energy Emaint =ME �BW 0:75where:ME = metabolizable energy needed per kg body weight (kcal/kg), andBW = present body weight (kg) of the ungulate.Etravel(no snow): Energy cost of traveling in the absence of snow.Etravel(nosnow) = [2:97kcal=kg �BW�0:34] �BW � Swhere:S = distance traveled (km), andBW = present body weight of the animal (kg).Y: relative increase in energy costs for travel in snow (%)Y = [0:71 + 2:6(� � 0:2)] �RSD � e0:019+0:016(��0:2)] �RSDwhere:� = snow density (g/cm3), and RSD = relative sinking depth[(sinking depth/brisket height) � 100].96

Appendix CTiming Tables

97

Table C.1: Wall-clock times for cluster identi�cation with cut-and-stack data mapping on the MasParMP-2 (all times are in seconds). Map SizeOperation p-value 64 128 256 512 768 1024 2048Read 0.10 0.020 0.020 0.047 0.129 0.297 0.523 10.406Label 0.10 0.008 0.012 0.016 0.062 0.148 0.230 1.137Collect 0.10 0.004 0.004 0.004 0.066 0.289 0.813 11.797ClusterID 0.10 0.012 0.016 0.020 0.129 0.437 1.043 12.934Total 0.10 0.031 0.035 0.066 0.258 0.734 1.566 23.340Read 0.30 0.012 0.023 0.047 0.133 0.297 0.520 9.980Label 0.30 0.008 0.016 0.031 0.129 0.277 0.570 2.328Collect 0.30 0.004 0.000 0.020 0.086 0.328 0.895 12.152ClusterID 0.30 0.012 0.016 0.051 0.215 0.605 1.465 14.480Total 0.30 0.023 0.039 0.098 0.348 0.902 1.984 24.461Read 0.62 0.020 0.027 0.043 0.133 0.297 0.523 10.285Label 0.62 0.020 0.070 0.297 1.094 2.188 4.480 19.746Collect 0.62 0.023 0.043 0.066 0.164 0.437 1.055 12.648ClusterID 0.62 0.043 0.113 0.363 1.258 2.625 5.535 32.395Total 0.62 0.062 0.141 0.406 1.391 2.922 6.059 42.680Read 0.85 0.020 0.023 0.043 0.133 0.301 0.520 10.000Label 0.85 0.020 0.039 0.148 0.582 1.270 2.293 8.977Collect 0.85 0.035 0.039 0.047 0.082 0.191 0.445 5.168ClusterID 0.85 0.055 0.078 0.195 0.664 1.461 2.738 12.145Total 0.85 0.074 0.102 0.238 0.797 1.762 3.258 24.145Read 1.00 0.016 0.023 0.039 0.133 0.293 0.519 10.215Label 1.00 0.012 0.039 0.145 0.543 1.207 2.125 8.508Collect 1.00 0.039 0.043 0.039 0.043 0.059 0.070 0.176ClusterID 1.00 0.051 0.082 0.184 0.586 1.266 2.195 8.684Total 1.00 0.066 0.106 0.223 0.719 1.559 2.715 18.898Note: ClusterID is the sum of Label and Collect times.
98

Table C.2: Wall-clock times for cluster identi�cation with hierarchical data mapping on the MasParMP-2 (all times are in seconds). Map SizeOperation p-value 64 128 256 512 768 1024 2048Read 0.10 0.020 0.031 0.039 0.105 0.250 0.496 9.539Label 0.10 0.008 0.004 0.012 0.023 0.043 0.074 0.305Collect 0.10 0.000 0.000 0.004 0.016 0.047 0.113 0.801ClusterID 0.10 0.008 0.004 0.016 0.039 0.090 0.187 1.105Total 0.10 0.027 0.035 0.055 0.145 0.340 0.684 10.750Read 0.30 0.027 0.023 0.043 0.559 0.250 0.477 9.668Label 0.30 0.012 0.008 0.012 0.027 0.047 0.082 0.344Collect 0.30 0.000 0.000 0.004 0.039 0.117 0.289 2.098ClusterID 0.30 0.012 0.008 0.016 0.066 0.164 0.371 2.441Total 0.30 0.039 0.031 0.059 0.625 0.414 0.848 12.109Read 0.62 0.031 0.027 0.047 0.113 0.250 0.469 10.000Label 0.62 0.023 0.027 0.039 0.074 0.113 0.160 0.488Collect 0.62 0.023 0.027 0.062 0.141 0.273 0.519 4.723ClusterID 0.62 0.047 0.055 0.102 0.215 0.387 0.680 5.211Total 0.62 0.078 0.082 0.148 0.328 0.637 1.148 15.211Read 0.85 0.023 0.027 0.043 0.109 0.250 0.469 9.953Label 0.85 0.016 0.020 0.023 0.031 0.059 0.094 0.363Collect 0.85 0.035 0.043 0.047 0.066 0.105 0.152 0.855ClusterID 0.85 0.051 0.062 0.070 0.098 0.164 0.246 1.219Total 0.85 0.074 0.090 0.113 0.207 0.414 0.715 11.172Read 1.00 0.023 0.023 0.039 0.105 0.250 0.496 9.754Label 1.00 0.012 0.020 0.020 0.031 0.047 0.074 0.305Collect 1.00 0.043 0.039 0.039 0.043 0.047 0.047 0.666ClusterID 1.00 0.055 0.059 0.059 0.074 0.094 0.121 0.371Total 1.00 0.078 0.082 0.098 0.180 0.344 0.617 10.125Note: ClusterID is the sum of Label and Collect times.99

Table C.3: Wall-clock times for pseudo-recursive sequential Fortran cluster identi�cation programon Sun SPARCstation 2 (all times are in seconds). Map SizeOperation p-value 64 128 256 512 768 1024 2048Read 0.10 0.04 0.19 0.66 2.83 52.75 28.12 46.75ClusterID 0.10 0.00 0.01 0.08 0.32 0.76 1.32 5.31Total 0.10 0.06 0.23 0.93 3.78 55.04 31.84 62.11Read 0.30 0.33 1.34 0.68 23.69 6.34 11.45 46.53ClusterID 0.30 0.01 0.02 0.12 0.47 1.13 1.97 7.92Total 0.30 0.35 1.42 0.95 24.99 8.92 16.04 64.35Read 0.62 0.33 0.19 0.67 2.83 6.25 11.41 46.62ClusterID 0.62 0.01 0.04 0.17 0.68 1.58 2.75 11.16Total 0.62 0.35 0.26 0.99 4.12 9.34 16.74 66.28Read 0.85 0.05 0.15 0.68 23.90 6.57 11.67 46.52ClusterID 0.85 0.01 0.04 0.22 0.88 2.08 3.71 15.11Total 0.85 0.07 0.25 1.04 25.39 9.91 17.62 71.65Read 1.00 0.35 1.33 5.51 23.82 6.41 11.26 46.89ClusterID 1.00 0.02 0.06 0.27 1.14 2.71 4.70 19.40Total 1.00 0.38 1.43 6.00 25.62 10.52 18.65 75.93
100

Table C.4: Wall-clock times for total map analysis (including radius computation) with cut-and-stackdata mapping on the MasPar MP-2 (all times are in seconds).Map SizeOperation p-value 64 128 256 512Read 0.10 0.020 0.031 0.047 0.141ClusterID 0.10 0.016 0.020 0.039 0.145Radius 0.10 0.090 0.277 1.106 6.027Total 0.10 0.117 0.316 1.176 6.230Read 0.30 0.023 0.035 0.047 0.141ClusterID 0.30 0.016 0.023 0.059 0.246Radius 0.30 0.168 0.586 2.242 9.949Total 0.30 0.199 0.633 2.328 10.223Read 0.62 0.023 0.027 0.051 0.133ClusterID 0.62 0.074 0.172 0.703 2.684Radius 0.62 0.305 1.422 13.934 187.158Total 0.62 0.352 1.520 14.273 188.400Read 0.85 0.023 0.027 0.047 0.141ClusterID 0.85 0.102 0.234 0.758 2.863Radius 0.85 0.418 2.207 21.289 289.184Total 0.85 0.461 2.281 21.488 289.910Read 1.00 0.024 0.026 0.046 0.135ClusterID 1.00 0.109 0.266 0.855 3.215Radius 1.00 0.387 2.340 24.301 337.777Total 1.00 0.528 2.621 25.206 341.927
101

Table C.5: Wall-clock times for total map analysis (including radius computation) with hierarchicaldata mapping on the MasPar MP-2 (all times are in seconds).Map SizeOperation p-value 64 128 256 512Read 0.10 0.027 0.023 0.043 0.105ClusterID 0.10 0.016 0.016 0.027 0.086Radius 0.10 0.094 0.285 1.062 4.426Total 0.10 0.137 0.332 1.133 4.617Read 0.30 0.027 0.023 0.043 0.109ClusterID 0.30 0.012 0.016 0.027 0.125Radius 0.30 0.137 0.605 3.063 16.309Total 0.30 0.180 0.648 3.137 16.543Read 0.62 0.023 0.023 0.047 0.109ClusterID 0.62 0.051 0.059 0.086 0.207Radius 0.62 0.254 1.461 14.629 196.516Total 0.62 0.328 1.555 14.770 196.836Read 0.85 0.027 0.027 0.039 0.109ClusterID 0.85 0.059 0.062 0.074 0.117Radius 0.85 0.332 2.031 20.730 286.707Total 0.85 0.418 2.125 20.848 286.938Read 1.00 0.030 0.028 0.043 0.111ClusterID 1.00 0.062 0.062 0.152 0.078Radius 1.00 0.383 2.363 24.316 337.453Total 1.00 0.475 2.454 24.520 337.646Table C.6: Wall-clock times for optimized sequential C program for total map analysis, includingread time, cluster identi�cation, and mean squared radius computation on SPARCstation IPX (alltimes are in seconds). Map Sizep-value 64 128 256 5120.10 0.12 1.40 23.97 389.660.30 0.36 5.43 96.69 1515.390.62 3.24 37.27 1052.27 19914.670.85 9.57 165.70 2718.12 44156.011.00 17.84 236.44 3791.13 59379.85102

/**//* Original GMMSR mean squared radius* C program fragment:*/Radius(lbl,size,rms)int lbl;int size;double rms;{double rid,rjd,r2,s2,*istack,*jstack;int i,j,nstack;/* allocate space for map coordinate vectors */istack = (double *)malloc(((NROWS*NCOLS)+4)*sizeof(double))jstack = (double *)malloc(((NROWS*NCOLS)+4)*sizeof(double))/* fill istack with x-coordinates of cluster (not shown) *//* fill jstack with y-coordinates of cluster (not shown) *//* nstack = number of coordinates *//* calculate squared coordinate differences */for(i=0;i<nstack-1;i++){for(j=i+1;j<nstack;j++){rid = fabs(istack[j]-istack[i])+1;rjd = fabs(jstack[j]-jstack[i])+1;r2 += rid*rid + rjd*rjd;}}/* calculate mean radius */s2 = (double)size;s2 = s2*s2;*rms = sqrt(r2/s2);}/**/103

/**//* Modifications made to GMMSR for improved performance* (for array storage of x- and y-coordinates)*/Radius(lbl,size,rms)int lbl;int size;double rms;{int *istack,*jstack,nstack1,nstack,i,j;double rid,rjd,r2,s2;/* allocate space for map coordinate vectors */istack = (int *)malloc(size*sizeof(int))jstack = (int *)malloc(size*sizeof(int))/* fill istack with x-coordinates of cluster (not shown) *//* fill jstack with y-coordinates of cluster (not shown) *//* nstack = number of coordinates *//* calculate squared coordinate differences */nstack1=nstack-1;for(i=0;i<nstack1;i++){for(j=i+1;j<nstack;j++){rid = istack[j]-istack[i]+1;if((rjd = (jstack[j]-jstack[i]))<0) rjd=-rjd;rjd+=1;r2 += rid*rid + rjd*rjd;}}/* calculate mean radius */s2 = size;*rms = sqrt(r2)/s2;}/**/104

Table C.7: Comparison of CPU times on Sun SPARCstation IPX for Gardner/Minser mean squaredradius C program with four revision stages.� Map SizeAlgorithm p-value 64 128 256 512gmmsr: 0.10 0.09 1.41 25.25 406.230.30 0.35 5.48 102.39 1618.900.62 6.33 82.26 2166.23 36343.400.85 19.12 348.33 5595.56 89555.51stage1: 0.10 0.09 1.42 25.21 405.850.30 0.36 5.47 102.07 1607.330.62 3.25 54.75 1439.71 24311.350.85 9.44 232.30 3722.71 59800.57stage2: 0.10 0.10 1.32 23.67 380.220.30 0.33 5.07 95.58 1506.370.62 3.18 36.86 1047.55 17750.050.85 9.44 164.68 2707.21 43564.97stage3: 0.10 0.09 1.31 23.66 380.580.30 0.33 5.16 95.62 1507.750.62 3.21 36.86 1047.27 19701.130.85 9.49 164.60 2705.73 42282.11lookup: 0.10 0.07 0.94 18.76 303.550.30 0.24 3.67 75.72 1202.340.62 2.57 35.19 837.57 14011.500.85 6.23 99.81 1741.30 28252.92*See Table C.8 for a description of revision stages.
105

Table C.8: Optimizing modi�cations made to serial C program for computing mean squared radius.gmmsr: Gardner/Minser serial C program for mean squared radius computa-tion. Note: the declaration of istack and jstack as pointers to doublesand the subsequent calls to fabs() in the original program are more e�-cient (require less CPU time) than declaration as ints with calls to abs()on the architectures tested.Stage1: Eliminate calls to C library function fabs() by computing absolutevalues in place for y-coordinate di�erences (i.e., if(i < 0) i = �i). Dif-ferences in x-coordinates will always be positive as implemented, so noabsolute value need be computed for x-coordinate di�erences.Stage2: Use dynamically-allocated arrays which are the exact size of the clus-ter being analyzed to hold x- and y-coordinates; remove arithmetic fromfor loop indices.Stage3: Do not store x- and y-coordinates in arrays when clustersize is greaterthan half the map size. Instead, use indices of for loops to indicatepixel positions in map and accumulate squared di�erences as for loop isexecuted. This is somewhat faster for large clusters and reduces mem-ory demands. The optimal cut-o� size may vary for maps with di�erentcluster characteristics.Lookup: Read squared coordinate di�erences and square roots from lookuptables. Lookup tables are read from binary �les, with a separate �le foreach map size analyzed.
106

Appendix DPrologues of Selected Procedures

107

/** ** CSMSR ** **//**Description-----------Cluster identification and mean squared radius computation usingcut-and-stack data mapping. Map size is specified by NROWS andNCOLS in #define section.Input:---------Data values for map to be analyzed are read from a binary inputfile of size NROWS x NCOLS specified on the command line.Output:---------Results are written to screen.Cluster statistics: number of clusters, average cluster size,maximum cluster size, and mean squared radius.Wall-clock execution times: from gettimeofday(), in seconds,for read, label, collect, cluster ID and radius separately,for total I/O (read plus printout), and for total time.Functions called:---------CSlabel(): assigns final cluster labels to plural int variable"cluster[]".CScollect(): collects cluster information at head element of clusterand calculates cluster statistics.CSradius1(): calculates mean squared radius for small and largeclusters separately; returns largest mean squared radius asa double.CSradius2(): calculates mean squared radius for all clusters,regardless of size; returns largest mean squared radius asa double.***/108

/** ** CSlabel() ** **//***Description:---------Function CSlabel() identifies and labels clusters for programsusing cut-and-stack mapping, using xnet() to make N/S and E/Wcomparisons of cluster ID numbers. The numerically lowest IDnumber is assigned to all contiguous cluster elements. Thisalgorithm does not require a border of 0s around the map, anduses toroidal wrap to access stacked pages.Arguments:---------plural int cluster[NROWS*NCOLS/nproc];Output:---------modifies cluster[] array to hold final cluster labels for eachmap pixel.***/
109

/** ** CScollect() ** **//***Description:-----------Function CScollect() collects and sends cluster information fromcluster members to the head element of each cluster, andreports number of clusters, average cluster size, and size ofthe largest cluster. The address of the head element ofeach cluster can be calculated locally from each member'snew cluster label. Results are accumulated locally foreach cluster represented on a PE before using p_sendwithAdd()to transmit local sums to the head element.Arguments:---------plural int cluster[NROWS*NCOLS/nproc]plural int clustersize[NROWS*NCOLS/nproc]plural int headcount[NROWS*NCOLS/nproc]plural short headptr[NROWS*NCOLS/nproc]int largest;int numcl;float average;Output:---------o size of each cluster whose head element is located on local PEin the clustersize[] array (in the array position indexed bythe array position of the head cluster element in cluster[];)o size of the largest cluster in integer variable largesto number of clusters in singular integer variable numcl;o average cluster size in singular float variable average.***/110

/** ** CSradius1() ** **//***Description:-----------Function CSradius1() calculates mean squared radius for clusterswhich do not overlap 64 x 64 cut-and-stack "pages" separatelyfrom larger, overlapping clusters. To compute mean squaredradius, an xnet-shift operation is used to allow each elementon a page to view all other elements. Cluster labels are compared,and if elements are in the same cluster coordinate differencesare calculated, squared, and summed for all elements in a cluster;the square root is then taken and divided by the number of elementsin the cluster. Radius is computed for clusters which overlappages as in function CSradius2().Arguments:---------plural int cluster[NROWS*NCOLS/nproc]plural int clustersize[NROWS*NCOLS/nproc]plural int headcount[NROWS*NCOLS/nproc]int largest;Outputs:---------Largest radius is returned in singular double variable "rad".Radius values for all clusters are stored in plural double array"rsum";***/111

/** ** CSradius2() ** **//***Description:-----------Function CSradius2() calculates mean squared radius of each clusterand reports the largest mean squared radius among clusters havingthe largest number of elements (as determined by clusteridentification functions). To compute mean squared radius,differences between each element in a cluster and every otherelement are squared and summed. This is accomplished by copyingthe cluster label, x-coordinate and y-coordinate of cluster membersto singular (shared) variables visible to all PEs. Squareddifferences are summed for all elements in a cluster; the squareroot is then taken and divided by the number of elements in thecluster.Arguments:---------plural int cluster[NROWS*NCOLS/nproc]plural int clustersize[NROWS*NCOLS/nproc]int largest;Outputs:---------Largest radius is returned in singular double variable "rad".Radius values for all clusters are stored in plural double array"rsum";***/112

VITAEthel Jane Goodman Comiskey was born in Knoxville, Tennessee, January 17, 1948.She was Valedictorian of Rule High School in Knoxville and received the Bachelor ofArts degree in Botany from the University of Tennessee in May 1972. She is marriedto Dr. Charles Comiskey and has two daughters, Jennifer and Andrea. In August1990, she entered the Computer Science program at the University of Tennessee andwas awarded the Master of Science degree in Computer Science in August 1993.

113

