
PUBLIC INTERNATIONAL BENCHMARKSFOR PARALLEL COMPUTERSPARKBENCH Committee: Report-1assembled by Roger Hockney (chairman) andMichael Berry (secretary)Computer Science DepartmentUniversity of TennesseeCS-93-213 November 1993

Public International Benchmarksfor Parallel ComputersPARKBENCH Committee: Report-1assembled by Roger Hockney (chairman) and Michael Berry (secretary)November 17, 1993



Contents
1 Introduction 31.1 Background and Objectives : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31.2 Procedures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41.3 Vendor's Commitment : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52 Methodology 62.1 Philosophy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62.2 Fundamental Metrics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72.3 Time Measurement : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72.4 Units and Symbols : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82.5 Floating-Point Operation Count : : : : : : : : : : : : : : : : : : : : : : : : : : 102.6 Performance Metrics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 102.6.1 Temporal Performance : : : : : : : : : : : : : : : : : : : : : : : : : : : : 112.6.2 Simulation Performance : : : : : : : : : : : : : : : : : : : : : : : : : : : 112.6.3 Benchmark Performance : : : : : : : : : : : : : : : : : : : : : : : : : : : 122.6.4 Hardware Performance : : : : : : : : : : : : : : : : : : : : : : : : : : : : 122.6.5 Speedup, E�ciency and Performance per Node : : : : : : : : : : : : : : 132.7 Performance Database : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 142.7.1 Design of a Performance Database : : : : : : : : : : : : : : : : : : : : : 152.7.2 PDS Features : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 162.7.3 PDS Availability : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 162.8 Interactive Graphical Interface : : : : : : : : : : : : : : : : : : : : : : : : : : : 172.9 Benchmarking Procedure and Code Optimisation : : : : : : : : : : : : : : : : : 173 Low-Level Benchmarks 193.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 193.1.1 Most Reported Benchmark: LINPACKD (n=100) : : : : : : : : : : : : 193.1.2 Performance Range: The Livermore Loops : : : : : : : : : : : : : : : : : 193.2 Single-Processor Benchmarks : : : : : : : : : : : : : : : : : : : : : : : : : : : : 203.2.1 Timer resolution: TICK1 : : : : : : : : : : : : : : : : : : : : : : : : : : 203.2.2 Timer value: TICK2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 213.2.3 Basic Arithmetic Operations: RINF1 : : : : : : : : : : : : : : : : : : : : 213.2.4 Memory-Bottleneck Benchmarks: POLY1 and POLY2 : : : : : : : : : : 223.3 Multi-Processor Benchmarks : : : : : : : : : : : : : : : : : : : : : : : : : : : : 223.3.1 Communication Benchmarks: COMMS1 and COMMS2 : : : : : : : : : 233.3.2 Total Saturation Bandwidth: COMMS3 : : : : : : : : : : : : : : : : : : 243.3.3 Communication Bottleneck: POLY3 : : : : : : : : : : : : : : : : : : : : 243.3.4 Synchronisation Benchmarks: SYNCH1 : : : : : : : : : : : : : : : : : : 251

3.4 Summary of Benchmarks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 253.4.1 Arithmetic Benchmark Results : : : : : : : : : : : : : : : : : : : : : : : 253.4.2 Example Results for the COMMS1 benchmark : : : : : : : : : : : : : : 264 Kernel Benchmarks 284.1 Introduction and Rationale : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 284.2 The Kernel Benchmarks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 294.2.1 Matrix benchmarks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 294.2.2 Fourier Transforms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 314.2.3 PDE Kernels : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 334.2.4 Other : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 344.3 Benchmark Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 354.4 Concluding Remarks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 355 Compact Applications 365.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 365.2 Criteria for Selection : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 365.2.1 Self Checking Applications : : : : : : : : : : : : : : : : : : : : : : : : : 375.2.2 Programming Languages : : : : : : : : : : : : : : : : : : : : : : : : : : : 375.3 Proposed Compact Application Benchmarks : : : : : : : : : : : : : : : : : : : : 385.4 Submitting to the Compact Application Suite : : : : : : : : : : : : : : : : : : : 386 HPF Compiler Benchmarks 406.1 Objectives : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 406.2 Low Level HPF Compiler Benchmarks : : : : : : : : : : : : : : : : : : : : : : : 416.2.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 416.2.2 FORALL statement - kernel FL : : : : : : : : : : : : : : : : : : : : : : 416.2.3 Explicit template - kernel TL : : : : : : : : : : : : : : : : : : : : : : : : 416.2.4 Communication detection in array assignments - kernels AA, SH, ST,and IR : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 426.2.5 INDEPENDENT assertion - kernel EP : : : : : : : : : : : : : : : : : : : 426.2.6 Non-elemental intrinsic functions - kernel RD : : : : : : : : : : : : : : : 426.2.7 Passing distributed arrays as subprograms' arguments - kernels AS, IT,IM and EI : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 426.3 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 437 Conclusions 44Bibliography 45Appendix 48A Compact Applications Submission Form 48B Sample Xnetlib/PDS Screens 52

2



Chapter 1Introduction�1.1 Background and ObjectivesThe PARKBENCH (PARallel Kernels and BENCHmarks) committee, originally called theParallel Benchmark Working Group, PBWG, was founded at Supercomputing'92 in Min-neapolis, when a group of about 50 people interested in computer benchmarking met underthe joint initiative of Tony Hey (University of Southampton, UK) and Jack Dongarra (Univer-sity of Tennessee/Oak Ridge National Laboratory). Most of the key players were present, fromthe Universities, Laboratories and industries, representing both computer manufacturers andcomputer users from both sides of the Atlantic. Roger Hockney (University of Southampton)chaired the meeting, and the objectives of the group were:1. To establish a comprehensive set of parallel benchmarks that is generally accepted byboth users and vendors of parallel system.2. To provide a focus for parallel benchmark activities and avoid unnecessary duplicationof e�ort and proliferation of benchmarks.3. To set standards for benchmarking methodology and result-reporting together with acontrol database/repository for both the benchmarks and the results.4. To make the benchmarks and results freely available in the public domain.The �rst year's work was to produce a report and an initial set of benchmarks for releaseat Supercomputing'93 in Portland, Oregon, November 1993. The committee has met at theUniversity of Tennessee Knoxville on March 1{2, 1993, May 24, 1993 and August 23, 1993 todiscuss the evolving draft of this report. The document reproduced here is the �nal result ofthese meetings, and is the �rst o�cial publication of the PARKBENCH committee. It wasdistributed at a public Birds of a Feather meeting at Supercomputing'93, Portland, on 17thNovember 1993, together with the �rst release of the PARKBENCH parallel benchmarks.The initial focus of the parallel benchmarks is on the new generation of scalable distributed-memory message-passing architectures for which there is a notable lack of existing benchmarks.For this reason the initial benchmark release concentrates on Fortran77 message-passing codesusing the widely available PVM [1] message passing interface for portability. Future versionswill undoubtedly adopt the proposed MPI [2] interface, when this is fully de�ned and becomes�written by Roger Hockney for whole committee 3

generally accepted. The committee's aim, however, is to cover all parallel architectures, andthis is expected to be achieved by producing versions of the benchmark codes using Fortran90and High Performance Fortran (HPF). Many shared-memory architectures provide e�cientnative implementations of PVM message-passing and are planning HPF compilers. They willbe covered by these routes.1.2 ProceduresThe PARKBENCH committee has agreed to divide its work between �ve subcommittees,corresponding to the �ve substantive chapters in the report, each with a leader (shown inparentheses) who is responsible for assembling the contents of his chapter and its benchmarksfor the committee's approval.1. Methodology (David Bailey):2. Low-level benchmarks (Roger Hockney):3. Kernel benchmarks (Tony Hey):4. Compact applications (David Walker):5. Compiler benchmarks (Tom Haupt):In order to facilitate discussion and exchange of information, the following e-mail addresseswere set up.1. pbwg-comm@cs.utk.edu for the Whole committee2. pbwg-method@cs.utk.edu for the Methodology subcommittee3. pbwg-lowlevel@cs.utk.edu for the Low level subcommittee4. pbwg-kernel@cs.utk.edu for the Kernel subcommittee5. pbwg-compactapp@cs.utk.edu for the Compact applications subcommitteeRecent practice, however, has been to send all mail to pbwg-comm so that all members maysee it. All mail is being collected and can be retrieved by sending email to netlib@ornl.govand in the mail message typing:1. send comm.archive from pbwg2. send lowlevel.archive from pbwg3. send compactapp.archive from pbwg4. send method.archive from pbwg5. send kernel.archive from pbwg6. send index from pbwgWe have setup a mail reector for correspondence, it is called pbwg-comm@cs.utk.edu.Mail to that address will be sent to the mailing list and also collected in netlib@ornl.gov.All PARKBENCH correspondence and benchmarks may be retrieved via anonymous ftp tonetlib2.cs.utk.edu. Alternatively, one can collect PARKBENCH mail by sending emailto netlib@ornl.gov and in the mail message type:4



send comm.archive from pbwgThe PARKBENCH committee is open without charge to anyone interested in computerbenchmarking and operates similarly to the HPFF (High Performance Fortran Forum). Any-one interested in joining in the discussion or preparing benchmarks should send e-mail to thate�ect to:dongarra@cs.utk.eduPARKBENCH is operating in a very tight budget (in reality, it has no budget at all). Severalparticipants are supported by the companies they represent, and support for several Europeanparticipants is being provided by ESPRIT.1.3 Vendor's CommitmentThe PARKBENCH committee is anxious that its parallel benchmarks do not put unduedemands on computer vendors by way of man power and resources, in a way that wouldprejudice the wide acceptance and use of the benchmarks. Initially it is felt reasonable toexpect that most vendors should have little di�culty in running the low-level and kernelbenchmarks, since these either involve basic hardware and software tests (such as COMMS1)that vendors would wish to perform in any case, or involve scienti�c library subroutines (suchas FFT) that they would be required to produce and optimise. In the latter case, they wouldno doubt be pleased to show the superior performance of their library routine compared withthat of the standard Fortran provided in the PARKBENCH benchmark suite.The case of compact applications is more di�cult, because these codes might requiresubstantial e�ort to optimise, and in some cases even to run satisfactorily. For these reasons,it is not expected that vendors would initially run all these codes, or indeed any of them. Theymight, however, choose to run a selection of them from subject areas of interest to their currentpotential customers, in order to demonstrate their computer's capability on some standardand relevant tests. In this way, and over a period of time, it is hoped that most of the compactapplications would be run in a natural way and without extra e�ort.
5

Chapter 2Methodology�2.1 PhilosophyOne might ask why anyone should care about developing a standardized, rigorous and sci-enti�cally tenable methodology for studying the performance of high-performance computersystems. There are several reasons why this is an important undertaking:1. To establish and maintain high standards of honesty and integrity in our profession.2. To improve the status of supercomputer performance analysis as a rigorous scienti�cdiscipline.3. To reduce confusion in the high-performance computing literature.4. To increase understanding of these systems, both at a low-level hardware or softwarelevel and at a high-level, total system performance level.5. To assist the purchasers of high-performance computing equipment in selecting systemsbest suited to their needs.6. To reduce the amount of time and resources vendors must expend in implementingmultiple, redundant benchmarks.7. To provide valuable feedback to vendors on bottlenecks that can be alleviated in futureproducts.It is important to note that researchers in many scienti�c disciplines have found it necessaryto establish and re�ne standards for performing experiments and reporting the results. Manyscientists have learned the importance of standard terminology and notation. Chemists, physi-cists and biologists long ago discovered the importance of controls in their experiments. Theissue of repeatability proved crucial in the recent cold fusion episode. Medical researchers havefound it necessary to perform double-blind experiments in their �eld. Psychologists and sociol-ogists have developed highly re�ned experimental methodologies and advanced data analysistechniques. Political scientists have found that subtle di�erences in the phrasing of a questioncan a�ect the results of a poll. Researchers in many �elds have found that environmentalfactors in their experiments can signi�cantly inuence the measured results; thus they mustcarefully report all such factors in their papers.�assembled by David Bailey for methodology subcommittee6



If supercomputer performance analysis and benchmarking is ever to be taken seriously asa scienti�c discipline, certainly its practitioners should be expected to adhere to standardsthat prevail in other disciplines. This document is dedicated to promoting these standards inour �eld.2.2 Fundamental MetricsThe conclusions drawn from a benchmark study of computer performance depend not onlyon the basic timing results obtained, but also on the way these are interpreted and convertedinto performance �gures. The choice of the performance metric, may itself inuence theconclusions. For example, do we want the computer that generates the most megaop persecond (or has the highest Speedup), or the computer that solves the problem in the leasttime? It is now well known that high values of the �rst metrics do not necessarily implythe second property. This confusion can be avoided by choosing a more suitable metric thatreects solution time directly, for example either the Temporal, Simulation or Benchmarkperformance, de�ned below. This issue of the sensible choice of performance metric is becomingincreasing important with the advent of massively parallel computers which have the potentialof very high megaop rates, but have much more limited potential for reducing solution time.2.3 Time MeasurementBefore other issues can be considered, we must discuss the measurement of run time. In recentyears a consensus has been reached among many scientists in the �eld that the most relevantmeasure of run time is actual wall-clock elapsed time. This measure of time will be requiredfor all PARKBENCH results that are posted to the database.Elapsed wall-clock time means the time that would be measured on an external clock thatrecords the time-of-day or even Coordinated Universal Time (UTC), between the start and�nish of the benchmark. We are not concerned with the origin of the time measurement,since we are taking a di�erence, but it is important that the time measured would be thesame as that given by a di�erence between two measurements of UTC, if it were possible tomake them. It is important to be clear about this, because many computer clocks (e.g., SunUnix function ETIME) measure elapsed CPU time, which is the total time that the processor job which calls it has been executing in the CPU. Such a clock does not record time (i.e.it stops ticking) when the job is swapped out of the CPU. It does not record, therefore, anywait time which must be included if we are to assess correctly the performance of a parallelprogram. On some systems, scientists have found that even for programs that perform noexplicit I/O, considerable system time is nonetheless involved, for example in fetching certainlibrary routines or other data.Only timings actually measured may be cited for PARKBENCH benchmarks (and westrongly recommend this practice for other benchmarks as well). Extrapolations and projec-tions, for instance to a larger number of nodes, may not be employed for any reason. Also, inthe interests of repeatability it is highly recommended that timing runs be repeated, severaltimes if possible.Two low-level benchmarks are provided in the PARKBENCH suite to test the precisionand accuracy of the clock that is to be used in the benchmarking. These should be run �rst,before any benchmark measurements are made. They are:1. TICK1 - measures the precision of the clock by measuring the time interval betweenticks of the clock. A clock is said to tick when it changes its value.7

2. TICK2 - measures the accuracy of the clock by comparing a given time interval measuredby an external wall-clock (the benchmarker's wrist watch is adequate) with the sameinterval measured by the computer clock. This tests the scale factor used to convertcomputer clock ticks to seconds, and immediately detects if a CPU-clock is incorrectlybeing used.The fundamental measurement made in any benchmark is the elapsed wall-clock time tocomplete some speci�ed task. All other performance �gures are derived from this basic timingmeasurement. The benchmark time, T (N ; p), will be a function of the problem size, N , andthe number of processors, p. Here, the problem size is represented by the vector variable, N ,which stands for a set of parameters characterising the size of the problem: e.g. the numberof mesh points in each dimension, and the number of particles in a particle-mesh simulation.Benchmark problems of di�erent sizes can be created by multiplying all the size parameters bysuitable powers of a single scale factor, thereby increasing the spatial and particle resolutionin a sensible way, and reducing the size parameters to a single size factor (usually called �).We believe that it is most important to regard execution time and performance as a functionof at least the two variables (N; p), which de�ne a parameter plane. Much confusion has arisenin the past by attempts to treat performance as a function of a single variable, by taking aparticular path through this plane, and not stating what path is taken. Many di�erent pathsmay be taken, and hence many di�erent conclusions can be drawn. It is important, therefore,always to de�ne the path through the performance plane, or better as we do here, to study theshape of the two-dimensional performance hill. In some cases there may even be an optimumpath up this hill. The following discussion of units and metrics is based on that of [11].2.4 Units and SymbolsA rational set of units and symbols is essential for any numerate science including benchmark-ing. The following extension of the internationally agreed SI system of physical units [3] ismade to accommodate the needs of computer benchmarking.The value of a variable comprises a pure number stating the number of units which equalthe value of the variable, followed by a unit symbol specifying the unit in which the variableis being measured. A new unit is required whenever a quantity of a new nature arises,such as the �rst appearance of vector operations, or message sends. Generally speaking aunit symbol should be as short as possible, consistent with being easily recognised and notalready used. The following have been found necessary in the characterisation of computerand benchmark performance in science and engineering. No doubt more will have to be de�nedas benchmarking enters new areas.New unit symbols and their meaning:1. op: oating-point operation [latex \op]2. inst: instruction of any kind [latex \inst]3. intop: integer operation [latex \inop]4. vecop: vector operation [latex \vecop]5. send: message send operation [latex \send]6. iter: iteration of loop [latex \iter]7. mref: memory reference (read or write) [latex \mref]8



8. barr: barrier operation [latex \barr]9. b: binary digit (bit) [latex \bit]10. B: byte (groups of 8 bits) [latex \B]11. sol: solution or single execution of benchmark [latex \sol]12. w: computer word. Symbol is lower case (W means watt) [latex \w]When required a subscript may be used to show the number of bits involved in the unit. Forexample: a 32-bit oating-point operation op32, a 64-bit word w64, also we have b = w1,B = w8, w64 = 8B.Note that op, mref and other multi-letter symbols are inseparable four or �ve-lettersymbols. The character case is signi�cant in all unit symbols so that e.g. Flop, Mref, W64 areincorrect. Unit symbols should always be printed in roman type, to contrast with variablesnames which are printed in italic. To aid in the use of roman type, especially within LaTex'smath mode, LaTex commands have been de�ned for each unit, these commands being abackslash followed by the unit symbol (except for `intop' and `b' whose names are changed inthe command to avoid a clash with already de�ned system commands). Such commands willprint in roman type wherever they occur. Because `s' is the SI unit for seconds, unit symbolslike `sheep' do not take `s' in the plural. Thus one counts: one op, two op, ..., one hundredop etc. This is especially important when the unit symbol is used in ordinary text as a usefulabbreviation, as often, quite sensibly, it is.SI provides the standard pre�xes:1. k : kilo meaning 1032. M : mega meaning 1063. G : giga meaning 1094. T : tera meaning 1012This means that we cannot use M to mean 10242 (the binary mega) as is often done indescribing computer memory capacity, e.g. 256 MB. We can however introduce the newpre�x:1. K : meaning 1024, then use a subscript 2 to indicate the binary versions2. M2 : binary mega 102423. G2 : binary giga 102434. T2 : binary tera 10244In most cases the di�erence between the mega and the binary mega (4%) is probably unim-portant, but it is important to be unambiguous. In this way one can continue with existingpractice if the di�erence doesn't matter, and have an agreed method of being more exact whennecessary. For example, the above memory capacity was probably intended to mean 256M2B.As a consequence of the above, an amount of computational work involving 4:5 � 1012oating-point operations is correctly written as 4.5 Top. Note that the unit symbol Topis never pluralised with an added `s', and it is therefore incorrect to write the above as 4.5Tops which could be confused with a rate per second. The most frequently used unit ofperformance, millions of oating-point operations per second is correctly written Mop/s, inanalogy to km/s. The slash is necessary and means `per', because the `p' is an integral partof the unit symbol `op' and cannot also be used to mean `per'.9

2.5 Floating-Point Operation CountAlthough we discourage the use of millions of oating-point operations per second as a per-formance metric, it can be a useful measure if the number of oating-point operations, F (N),needed to solve the benchmark problem is carefully de�ned.For simple problems (e.g. matrix multiply) it is su�cient to use a theoretical value for theoating-point operation count (in this case 2n3 op, for nxn matrices) obtained by inspectionof the code or consideration of the arithmetic in the algorithm. For more complex problemscontaining data-dependent conditional statements, an empirical method may have to be used.The sequential version of the benchmark code de�nes the problem and the algorithm to beused to solve it. Counters can be inserted into this code or a hardware monitor used tocount the number of oating-point operations. The latter is the procedure followed by thePERFECT Club [4]. In either case a decision has to be made regarding the number of opthat are to be credited for di�erent types of oating-point operations, and we see no goodreason to deviate from those chosen by McMahon [5] when the Mop/s measure was originallyde�ned. These are:add, subtract, multiply 1 opdivide, square-root 4 opexponential, sine etc. 8 op (this �gure will be adjusted)IF(X .REL. Y) 1 opSome members of the committee felt that these numbers, derived in the 1970s, no longercorrectly reected the situation on current computers. However, since these numbers are onlyused to calculate a nominal benchmark op-count, it is not so important that they be accurate.The important thing is that they do not change, otherwise all previous op-counts would haveto be renormalised. In any case, it is not possible for a single set of ratios to be valid for allcomputers and library software. I (rwh) suggest the committee stays with the above ratiosuntil such time as they become wildly wrong and extensive research provides us with a morerealistic set.We distinguish two types of operation count. The �rst is the nominal benchmark oating-point operation count, FB(N), which is found in the above way from the de�ning Fortran77sequential code. The other is the actual number of oating-point operations performed by thehardware when executing the distributed multi-node version, FH (N; p), which may be greaterthan the nominal benchmark count, due to the distributed version performing redundantarithmetic operations. Because of this, the hardware op count may also depend on thenumber of processors on which the benchmark is run, as shown in its argument list.2.6 Performance MetricsGiven the time of execution T (N ; p) and the op-count F (N) several di�erent performancemeasures can be de�ned. Each metric has its own uses, and gives di�erent information aboutthe computer and algorithm used in the benchmark. It is important therefore to distinguishthe metrics with di�erent names, symbols and units, and to understand clearly the di�erencebetween them. Much confusion and wasted work can arise from optimising a benchmark withrespect to an inappropriate metric. The principal performance metrics are discussed in thefollowing subsections. 10



2.6.1 Temporal PerformanceIf we are interested in comparing the performance of di�erent algorithms for the solution ofthe same problem, then the correct performance metric to use is the Temporal Performance,RT , which is de�ned as the inverse of the execution timeRT (N ; p) = T�1(N ; p) (2.1)The units of temporal performance are, in general, solutions per second (sol/s), or some moreappropriate absolute unit such as timesteps per second (tstep/s). With this metric we canbe sure that the algorithm with the highest performance executes in the least time, andis therefore the best algorithm. We note that the number of op does not appear in thisde�nition, because the objective of algorithm design is not to perform the most arithmetic persecond, but rather it is to solve a given problem in the least time, regardless of the amountof arithmetic involved. For this reason the temporal performance is also the metric that acomputer user should employ to select the best algorithm to solve his problem, because hisobjective is also to solve the problem in the least time, and he does not care how mucharithmetic is done to achieve this.2.6.2 Simulation PerformanceA special case of temporal performance occurs for simulation programs in which the benchmarkproblem is de�ned as the simulation of a certain period of physical time, rather than a certainnumber of timesteps. In this case we speak of the Simulation Performance and use unitssuch as simulated days per day (written sim-d/d or `d'/d) in weather forecasting, where theapostrophe is used to indicate `simulated'; or simulated pico-seconds per second (written sim-ps/s or `ps'/s) in electronic device simulation. It is important to use simulation performancerather than timestep/s if one is comparing di�erent simulation algorithms which may requiredi�erent sizes of timestep for the same accuracy (for example an implicit scheme that canuse a large timestep, compared with an explicit scheme that requires a much smaller step).In order to maintain numerical stability, explicit schemes also require the use of a smallertimestep as the spatial grid is made �ner. For such schemes the simulation performancefalls o� dramatically as the problem size is increased by introducing more mesh points inorder to re�ne the spatial resolution: the doubling of the number of mesh-points in eachof three dimensions can reduce the simulation performance by a factor near 16 because thetimestep must also be approximately halved. Even though the larger problem will generatemore Megaop per second, in forecasting, it is the simulated days per day (i.e. the simulationperformance) and not the Mop/s, that matter to the user.As we see below, benchmark performance is also measured in terms of the amount of arith-metic performed per second or Mop/s. However it is important to realise that it is incorrectto compare the Mop/s achieved by two algorithms and to conclude that the algorithm withthe highest Mop/s rating is the best algorithm. This is because the two algorithms maybe performing quite di�erent amounts of arithmetic during the solution of the same problem.The temporal performance metric, RT , de�ned above, has been introduced to overcome thisproblem, and provide a measure that can be used to compare di�erent algorithms for solvingthe same problem. However, it should be remembered that the temporal performance onlyhas the same meaning within the con�nes of a �xed problem, and no meaning can be attachedto a comparison of the temporal performance on one problem with the temporal performanceon another. 11

2.6.3 Benchmark PerformanceIn order to compare the performance of a computer on one benchmark with its performance onanother, account must be taken of the di�erent amounts of work (measured in op) that thedi�erent problems require for their solution. Using the op-count for the benchmark, FB(N),we can de�ne the Benchmark Performance asRB(N ; p) = FB(N)=T (N ; p) (2.2)The units of benchmark performance are Mop/s (benchmark name), where we include thename of the benchmark in parentheses to emphasise that the performance may depend stronglyon the problem being solved, and to emphasise that the values are based on the nominalbenchmark op-count. In other contexts such performance �gures would probably be quotedas examples of the so-called sustained performance of a computer. We feel that the use of thisterm is meaningless unless the problem being solved and the degree of code optimisation isquoted, because the performance is so varied across di�erent benchmarks and di�erent levelsof optimisation. Hence we favour the quotation of a selection of benchmark performance�gures, rather than a single sustained performance, because the latter implies that the quotedperformance is maintained over all problems.Note also that the op-count FB(N) is that for the de�ning sequential version of thebenchmark, and that the same count is used to calculate RB for the distributed-memory(DM) version of the program, even though the DM version may actually perform a di�erentnumber of operations. It is usual for DM programs to perform more arithmetic than thede�ning sequential version, because often numbers are recomputed on the nodes in order tosave communicating their values from a master processor. However such calculations areredundant (they have already been performed on the master) and it would be incorrect tocredit them to the op-count of the distributed program.Using the sequential op-count in the calculation of the DM programs benchmark perfor-mance has the additional advantage that it is possible to conclude that, for a given benchmark,the implementation that has the highest benchmark performance is the best because it exe-cutes in the least time. This would not necessarily be the case if a di�erent FB(N) were usedfor di�erent implementations of the benchmark. For example, the use of a better algorithmwhich obtains the solution with less than FB(N) operations will show up as higher bench-mark performance. For this reason it should cause no surprise if the benchmark performanceoccasionally exceeds the maximum possible hardware performance. To this extent benchmarkperformance Mop/s must be understood to be nominal values, and not necessarily exactlythe number of operations executed per second by the hardware, which is the subject of thenext metric. The purpose of benchmark performance is to compare di�erent implementationsand algorithms on di�erent computers for the solution of the same problem, on the basis thatthe best performance means the least execution time. For this to be true FB(N) must be keptthe same for all implementations and algorithms.2.6.4 Hardware PerformanceIf we wish to compare the observed performance with the theoretical capabilities of the com-puter hardware, we must compute the actual number of oating-point operations performed,FH(N ; p), and from it the actual Hardware PerformanceRH(N ; p) = FH(N; p)=T (N ; p) (2.3)The hardware performance also has the units Mop/s, and will have the same value as thebenchmark performance for the sequential version of the benchmark. However, the hardware12



performance may be higher than the benchmark performance for the distributed version,because the hardware performance gives credit for redundant arithmetic operations, whereasthe benchmark performance does not. Because the hardware performance measures the actualoating-point operations performed per second, unlike the benchmark performance, it cannever exceed the theoretical peak performance of the computer.Assuming a computer with multiple-CPUs each with multiple arithmetic pipelines, de-livering a maximum of one op per clock period, the theoretical peak value of hardwareperformance is r� = fl:pt:pipes=CPUclock:period � number:CPUs (2.4)with units of Mop/s if the clock period is expressed in microseconds. By comparing the mea-sured hardware performance, RH(N ; p), with the theoretical peak performance, we can assessthe fraction of the available performance that is being realised by a particular implementationof the benchmark.2.6.5 Speedup, E�ciency and Performance per NodeParallel speedup is a popular metric that has been used for many years in the study of parallelcomputer performance. However, its de�nition is open to ambiguity and misuse because italways begs the question \speedup over what?"Speedup is usually de�ned as T1Tp (2.5)where Tp is the p-processor time to perform some benchmark, and T1 is the one-processor time.There is no doubt about the meaning of Tp | this is the measured time T (N ; p) to performthe benchmark. There is often considerable dispute over the meaning of T1: should it bethe time for the parallel code running on one processor, which probably contains unnecessaryparallel overhead, or should it be the best serial code (possibly using a di�erent algorithm)running on one processor? Many scientists feel the latter is a more responsible choice, but thisrequires research to determine the best practical serial algorithm for the given application.If at a later time a better algorithm is found, current speedup �gures might be consideredobsolete. An additional di�culty with this de�nition is that even if a meaning for T1 is agreedto, there may be insu�cient memory on a single node to store an entire large problem. Thusin many cases it may be impossible to measure T1 using this de�nition.One principal objective in the �eld of performance analysis is benchmarking: to comparethe performance of di�erent computers. It is generally agreed that the best performancecorresponds to the least wall-clock execution time. In order to adapt the speedup statistic forbenchmarking, it is thus necessary to de�ne a single reference value of T1 to be used for allcalculations. It does not matter how T1 is de�ned, or what its value is, only that the samevalue of T1 is used to calculate all speedup values used in the comparison.However, de�ning T1 as a reference time unrelated to the parallel computer being bench-marked unfortunately has the consequence that many properties that many people regard asessential to the concept of parallel speedup are lost:1. It is no longer necessarily true that the speedup of the parallel code on one processor isunity. It may be, but only by chance.2. It is no longer true that the maximum speedup using p-processors is p.13

3. Because of the last item, e�ciency �gures computed as speedup divided by p are nolonger a meaningful measure of processor utilization.There are other di�culties with this formulation of speedup. If we use T1 as the run timeon a very fast single processor (currently, say, a Cray C90 or a NEC SX-3), then manufacturersof highly parallel systems will be reluctant to quote the speedup of their system in the aboveway. For example, if the speedup of a 100 processor parallel system over a single node of thesame system is a respectable factor of 80, it is likely that the speedup computed from thestandard T1 would be reduced to 10 or less. This is because a fast vector processor is typicallyat least ten times faster than the RISC processors used in many highly parallel systems of acomparable generation.Thus it appears that if one sharpens the de�nition of speedup to make it an acceptablemetric for comparing the performance of di�erent computers, one has to throw away the mainproperties that have made the concept of speedup useful in the past.Accordingly, the PARKBENCH committee has decided the following:1. No speedup statistic will be kept in the PARKBENCH database.2. Speedup statistics based on PARKBENCH benchmarks must never be used as �guresof merit when comparing the performance of di�erent systems. We further recommendthat speedup �gures based on other benchmarks not be used as �gures of merit in suchcomparisons.3. Speedup statistics may be used in a study of the performance characteristics of anindividual parallel system. But the basis for the determination of T1 must be clearlyand explicitly stated.4. The value of T1 should be based on an e�cient uniprocessor implementation. Codefor message passing, synchronization, etc. should not be present. The author shouldalso make a reasonable e�ort to insure that the algorithm used in the uniprocessorimplementation is the best practical serial algorithm for this purpose.5. Given that a large problem frequently does not �t on a single node, it is permissibleto cite speedup statistics based on the timing of a smaller number of nodes. In otherwords, it is permissible to compute speedup as Tp=Tm, for some m; 1 < m < p. If thisis done, however, this usage must be clearly stated, and full details of the basis of thiscalculation must be presented. As above, care must be taken to insure that the unittiming Tm is based on an e�cient implementation of appropriate algorithms.2.7 Performance DatabaseThe process of gathering, archiving, and distributing computer benchmark data is a cumber-some task usually performed by computer users and vendors with little coordination. WithinXnetlib [6] there is a mechanism to provide Internet-access to a performance database server(PDS) which can be used to extract current benchmark data and literature. PDS [7] providesan on-line catalog of public-domain computer benchmarks such as the LINPACK Benchmark[8], Perfect Benchmarks [4], and the NAS Parallel Benchmarks [9]. PDS does not reformator present the benchmark data in any way that conicts with the original methodology ofany particular benchmark; it is thereby devoid of any subjective interpretations of machineperformance. PDS is providing a more manageable approach to the development and supportof a large dynamic database of published performance metrics.14



The PDS system was developed at the University of Tennessee and Oak Ridge NationalLaboratory and is an initial attempt at performance data management. This on-line databaseof computer benchmarks is speci�cally designed to provide easy maintenance, data secu-rity, and data integrity in the benchmark information contained in a dynamic performancedatabase.PDS was designed with a simple tabular format that involves displaying the data in rows(machine con�guration) and columns (numbers). Graphical representations of tabular data,such as the representation by SPEC [10] with the obsolescent SPECmarks, are straightforward.2.7.1 Design of a Performance DatabaseBecause of the complexity and volume of the data involved in a performance database, it isnatural to exploit a database management system (DBMS) to archive and retrieve benchmarkdata. A DBMS will help not only in managing the data, but also in assuring that the variousbenchmarks are presented in some reasonable format for users: table or spreadsheet wheremachines are rows and benchmarks are columns.Of major concern is the organization of the data. It seems logical to organize data in theDBMS according to the benchmarks themselves: a LINPACK table, a Perfect table, etc. Itwould be nearly impossible to force these very di�erent presentation formats to conform toa single presentation standard just for the sake of reporting. Individual tables preserve thedisplay characteristics of each benchmark, but the DBMS should allow users to query all tablesfor various machines. Parsing benchmark data into these tables is straightforward provided acustomized parser is available for each benchmark set. In the parsing process, constructing araw data �le and building a standard format ASCII �le eases the incorporation of the datainto the database.The functionality required by PDS is not very di�erent from that of a standard databaseapplication. The di�erence lies in the user interface. Financial databases, for example, typi-cally involve speci�c queries likeEXTRACT ROW ACCT NO = R103049in which data points are usually discrete and the user is very familiar with the data. The user,in this case, knows exactly what account number to extract, and the format of retrieved data inresponse to queries. With our performance database, however, we would expect the contrary:the user does not really know (i) what kind of data is available, (ii) how to request/extractthe data, and (iii) what form to expect the returned data to be in. These assumptions arebased on the current lack of coordination in (public-domain) benchmark management. Thenumber of benchmarks in use continues to rise with no standard format for presenting them.The number of performance-literate users is increasing, but not at a rate su�cient to expectproper queries from the performance database. Quite often, users just wish to see the best-performing machines for a particular benchmark. Hence, a simple rank-ordering of the rowsof machines according to a speci�c benchmark column may be su�cient for a general user.Finally, the features of the PDS user interface should include(1) the ability to extract speci�c machine and benchmark combinations that are of interest,(2) the ability to search on multiple keywords across the entire dataset, and(3) the ability to view cross-referenced papers and bibliographic information about the bench-mark itself. 15

We include (3) in the list above to address the concern of proliferating numbers withoutany benchmark methodology information. PDS would provide abstracts and complete papersrelated to benchmarks and thereby provide a needed educational resource without riskingimproper interpretation of retrieved benchmark data.2.7.2 PDS FeaturesPDS provides the following retrieval-based functions for the user:(1) a browse feature to allow casual viewing and point-and-click navigation through thedatabase,(2) a search feature to permit multiple keyword searches with Boolean conditions,(3) a rank-ordering feature to sort and display the results for the user, and(4) a few additional features that aid the user in acquiring benchmark documentation andreferences.As discussed in [7], the Rank Ordering option in PDS allows the user to view a listingof machines that have been ranked by a particular performance metric such as megaop/sor elapsed CPU time. Both Rank Ordering and Papers options are menu-driven data ac-cess paths within PDS. With the Browse facility in PDS, the user �rst selects the vendor(s)and benchmark(s) of interest, then selects the large Process button to query the perfor-mance database. The PDS client then opens a socket connection to the server and, usingthe query language (rdb), remotely queries the database. The Search option in PDS permitsuser-speci�ed keyword searches over the entire performance database. Search utilizes literalcase-insensitive matching along with a moderate amount of aliasing. Multiple keywords arepermitted, and a Boolean ag is provided for more complicated searches. Using Search, theuser has the option of entering vendor names, machine aliases, benchmark names, or speci�cstrings, or producing a more complicated Boolean keyword search. Since any retrieved datawill be displayed to the screen (by default), the Save option allows the user to store any re-trieved performance data to an ASCII �le. Finally, the Bibliography option in PDS providesa list of relevant manuscripts and other information about the benchmarks. Future enhance-ments to PDS include the use of more sophisticated two-dimensional graphical displays formachine comparisons. Additional serial and parallel benchmarks will be added to the databaseas formal procedures for data acquisition are determined. The Browse and Search facilitiesavailable in the current version of PDS are illustrated in Appendix B.2.7.3 PDS AvailabilityTo receive Xnetlib with PDS support for Unix-based machines, send the electronic mail mes-sage send xnetlib.shar from xnetlib to netlib@ornl.gov. You can unshar the �le and compileit by answering the user-prompted questions upon installation. Use of shar will install thefull functionality of Xnetlib along with the latest PDS client tool. Questions concerning PDSshould be sent to utpds@cs.utk.edu. The University of Tennessee and Oak Ridge NationalLaboratory will be responsible for gathering and archiving additional (published) benchmarkdata.At present each benchmark measurement for a particular problem size N and processornumber p, is represented by one line in the database with variable length �elds chosen by thebenchmark writer as suitable and comprehensive to describe the conditions of the benchmarkrun. The �elds separated by a marker include, benchmarkers name and e-mail, computer16



location and date, hardware speci�cation, compiler date and optimisation level, N , p, T (N; p),RB(N;P ) and other metrics as deemed appropriate by the benchmark writer. Ideally, the linefor the database would be produced automatically as output by the benchmark program itself.2.8 Interactive Graphical InterfaceThe Southampton Group has agreed to provide an interactive graphical front end to thePARKBENCH database of performance results. To achieve this, the basic data held in thePerformance Data Base should be values of T (N ; p) for at least 4 values of problem size N ,each for su�cient p-values (say 5 to 10) to determine the trend of variation of performance withnumber of processors for constant problem size. It is important that there be enough p-valuesto see Amdahl saturation, if present, or any peak in performance followed by degradation.A graphical interface is really essential to allow this multidimensional data to be viewed inany of the metrics de�ned above, as chosen interactively by the user. The user could also beo�ered (by suitable interpolation) a display of the results in various scaled metrics, in whichthe problem size is expanded with the number of processors.In order to encompass as wide a range of performance and number of processors as possible,a log-scale on both axes is unavoidable, and the format and scale range should be kept �xedas long as possible to enable easy comparison between graphs. A three-cycle by three-cyclelog-log graph with range 1 to 1000 in both p and Mop/s would cover most needs in theimmediate future. Examples of such graphs are to be found in [11, 12].A log/log graph is also desirable because the size and shape of the Amdahl saturationcurve is the same wherever it is plotted on such a graph. That is to say there is a universalAmdahl curve that is invariant to its position on any log/log graph. Amdahl saturation is atwo-parameter description of any of the performance metrics, R, as a function of p for �xedN , which can be expressed by R = R1(1 + p 12 =p) (2.6)where R1 is the saturation performance approached as p ! 1 and p 12 is the number ofprocessors required to reach half the saturation performance. The graphical interface shouldallow this universal Amdahl curve to be moved around the graphical display, and be matchedagainst the performance curves. The changing values of the two parameters (R1,p 12 )shouldbe displayed as the Amdahl curve is moved.As more experience is gained with performance analysis, that is to say the �tting of per-formance data to parameterised formulae, it is to be expected that the graphical interfacewill allow more complicated formulae to be compared with the experimental data, perhapsallowing 3 to 5 parameters in the theoretical formula. But, as yet, we do not know what thesefor parameterised formula should be.2.9 Benchmarking Procedure and Code OptimisationManufacturers will always feel that any benchmark not tuned speci�cally by themselves, isan unfair test of their hardware and software. This is inevitable and from their viewpoint itis true. NASA have overcome this problem by only specifying the problems (the NAS paper-and-pencil benchmarks [13]) and leaving the manufacturers to write the code, but in manycircumstances this would require unjusti�able e�ort and take too long. It is also a perfectlyvalid question to ask how a particular parallel computer will perform on existing parallel code,and that is the viewpoint of PARKBENCH .17

The benchmarking procedure is to run the distributed PARKBENCH suite on an as-isbasis, making only such non-substantive changes that are required to make the code run (e.g.changing the names of header �les to a local variant). The as-is run may use the highest levelof automatic compiler optimisation that works, but the level used and compiler date shouldbe noted in the appropriate section of the performance database entry.After completing the as-is run, which gives a base-line result, any form of optimisation maybe applied to show the particular computer to its best advantage, up to completely rethinkingthe algorithm, and rewriting the code. The only requirement on the benchmarker is to statewhat has been done. However, remember that, even if the algorithm is changed, the o�cialop-count, FB(N) that is used in the calculation of nominal benchmark Mop/s, RB(N; p),does not. In this way a better algorithm will show up with a higher RB , as we would want itto, even though the hardware Mop/s is likely to be little changed.Typical steps in optimisation might be:1. explore the e�ect of di�erent compiler optimisations on a single processor, and choosethe best for the as-is run.2. perform the as-is run on multiple processors, using enough values of p to determine anypeak in performance or saturation.3. return to single processor and optimise code for vectorisation, if a vector processor isbeing used. This means restructuring loops to permit vectorisation.4. continue by replacement of selected loops with optimal assembly coded library routines(e.g. BLAS [14] where appropriate).5. replacement of whole benchmark by a tuned library routine with the same functionality.6. replace whole benchmark with locally written version with the same functionality butusing possibly an entirely di�erent algorithm that is more suited to the architecture.

18



Chapter 3Low-Level Benchmarks�3.1 IntroductionThe �rst step in the assessment of the performance of a massively parallel computer system isto measure the performance of a single processing node of the multi-node system. There existalready many good and well-established benchmarks for this purpose, notably the LINPACKbenchmarks and the Livermore Loops. These are not part of the PARKBENCH suite ofprograms, but PARKBENCH recommends that these be used to measure single-node per-formance, in addition to some speci�c low-level measurements of its own (see Section 3.2).There follows a brief description of existing benchmarks that are recommended for measuringsingle-node performance, with a discussion of their value.3.1.1 Most Reported Benchmark: LINPACKD (n=100)This well-known standard benchmark is a Fortran program for the solution of (100 � 100)dense set of linear equations by Gaussian elimination. It is distributed by Jack Dongarra ofthe University of Tennessee [8]. The results are quoted in Mop/s and are regularly publishedand available by electronic mail. The main value of this benchmark is that results are knownfor more computers than any other benchmark. Most of the compute time is contained invectorisable DO-loops such as the DAXPY (scalar times vector plus vector) and inner product.Therefore one expects vector computers to perform well on this benchmark. The weakness ofthe benchmark is that it tests only a small number of vector operations, but it does includethe e�ect of memory access and it is solving a complete (although small) real problem.3.1.2 Performance Range: The Livermore LoopsThese are a set of 24 Fortran DO-loops (The Livermore Fortran Kernels, LFK) extractedfrom operational codes used at the Lawrence Livermore National Laboratory [5]. They havebeen used since the early seventies to assess the arithmetic performance of computers andtheir compilers. They are a mixture of vectorisable and non-vectorisable loops and test ratherfully the computational capabilities of the hardware, and the skill of the software in compilinge�cient code, and in vectorisation. The main value of the benchmark is the range of per-formance that it demonstrates, and in this respect it complements the limited range of loopstested in the LINPACK benchmark. The benchmark provides the individual performance of�assembled by Roger Hockney for Low-Level subcommittee19

each loop, together with various averages (arithmetic, geometric, harmonic) and the quartilesof the distribution. However, it is di�cult to give a clear meaning to these averages, and thevalue of the benchmark is more in the distribution itself. In particular, the maximum andminimum give the range of likely performance in full applications. The ratio of maximum tominimum performance has been called the instability or the speciality [15], and is a measureof how di�cult it is to obtain good performance from the computer, and therefore how spe-cialised it is. The minimum or worst performance obtained on these loops is of special value,because there is much truth in the saying that \the best computer to choose is that with thebest worst-performance".3.2 Single-Processor BenchmarksThe single-processor low-level benchmarks provided by PARKBENCH , aim to measure per-formance parameters that characterise the basic architecture of the computer, and the compilersoftware through which it is used. For this reason, such benchmarks have also been calledappropriately basic architectural benchmarks. Following the methodology of Euroben [16], theaim is that these hardware/compiler parameters will be used in performance formulae thatpredict the timing and performance of the more complex kernels (see Chapter 4) and com-pact applications (see Chapter 5). They are therefore a set of synthetic benchmarks contrivedto measure theoretical parameters that describe the severity of some overhead or potentialbottleneck, or the properties of some item of hardware. Thus RINF1 characterises the ba-sic properties of the arithmetic pipelines by measuring the parameter (r1,n 12 ), and POLY1and POLY2 characterise the severity of the memory bottleneck by measuring the parameters(^r,f 12 ).The fundamental measurement in any benchmarking is the measurement of elapsed wall-clock time. Because the computer clocks on each node of a multi-node MPP are not synchro-nised, all benchmark time measurements must be made with a single clock on one node of thesystem. The benchmarks TICK1 and TICK2 have, respectively, been designed to measurethe resolution and to check the absolute value of this clock. These benchmarks should be runwith satisfactory results before any further benchmark measurements are made.3.2.1 Timer resolution: TICK1TICK1 measures the interval between ticks of the clock being used in the benchmark mea-surements. That is to say the resolution of the clock. A succession of calls to the timerroutine are inserted in a loop and executed many times. The di�erences between successivevalues given by the timer are then examined. If the changes in the clock value (or ticks) occurless frequently than the time taken to enter and leave the timer routine, then most of thesedi�erences will be zero. When a tick takes place, however, a di�erence equal to the tick valuewill be recorded, surrounded by many zero di�erences. This is the case with clocks of poorresolution; for example most UNIX clocks that tick typically every 10 ms. Such poor UNIXclocks can still be used for low-level benchmark measurements if the benchmark is repeated,say, 10,000 times, and the timer calls are made outside this repeat loop.With some computers, such as the CRAY series, the clock ticks every cycle of the com-puter, that is to say every 6ns on the Y-MP. The resolution of the CRAY clock is thereforeapproximately one million times better than a UNIX clock, and that is quite a di�erence! IfTICK1 is used on such a computer the di�erence between successive values of the timer is avery accurate measure of how long it takes to execute the instructions of the timer routine,and therefore is never zero. TICK1 takes the minimum of all such di�erences, and all it is20



possible to say is that the clock tick is less than or equal to this value. Typically this mini-mum will be several hundreds of clock ticks. With a clock ticking every computer cycle, wecan make low-level benchmark measurements without a repeat loop. Such measurements caneven be made on a busy timeshared system (where many users are contending for memoryaccess) by taking the minumum time recorded from a sample of, say, 10,000 single executionmeasurements. In this case, the minimum can usually be said to apply to a case when therewas no memory access delay caused by other users.TICK1 exists and forms part of the Genesis benchmarks [17].3.2.2 Timer value: TICK2TICK2 con�rms that the absolute values returned by the computer clock are correct, bycomparing its measurement of a given time interval with that of an external wall-clock (actuallythe benchmarker's wristwatch). Parallel benchmark performance can only be measured usingthe elapsed wall-clock time, because the objective of parallel execution is to reduce this time.Measurements made with a CPU-timer (which only records time when its job is executing inthe CPU) are clearly incorrect, because the clock does not record waiting time when the jobis out of the CPU. TICK2 will immediately detect the incorrect use of a CPU-time-for-this-job-only clock. An example of a timer that claims to measure elapsed time but is actually aCPU-timer, is the returned value of the popular Sun UNIX timer ETIME. TICK2 also checksthat the correct multiplier is being used in the computer system software to convert clockticks to true seconds.TICK2 exists and forms part of release 2.2 and later of the Genesis benchmarks [17].3.2.3 Basic Arithmetic Operations: RINF1This benchmark takes a set of common Fortran DO-loops and analyses their time of executionin terms of the two parameters (r1,n 12 )[18, 19, 20, 21, 22, 23]. r1 is the asymptotic perfor-mance rate in Mop/s which is approached as the loop (or vector) length, n, becomes longer.n 12 (the half-performance length) expresses how rapidly, in terms increasing vector length, theactual performance, r, approaches r1. It is de�ned as the vector length required to achievea performance of one half of r1. This means that the time, t, for a DO-loop correspond-ing to q vector operations (i.e. with q oating-point operations per element per iteration) isapproximated by t = q � (n+ n 12 )=r1 : (3.1)Then the performance rate is given byr = q � nt = r1(1 + n 12 =n) : (3.2)We can see from Eqn.(3.1) that n 12 is a way of measuring the importance of vector startupoverhead (=n 12 /r1) in terms of quantities known to the programmer (loop or vector length).In the benchmark program, the two parameters are determined by a least-squares �t of thedata to the straight line de�ned by Eqn.(3.1). A useful guide to the signi�cance of n 12 is tonote from Eqn.(3.2) that 80 percent of the asymptotic performance is achieved for vectorsof length 4 � n 12 . Generally speaking, n 12 values of upto about 50 are tolerable, whereas theperformance of computers with larger values of n 12 is severely constrained by the need to keepvector lengths signi�cantly longer than n 12 . This requirement makes the computers di�cult toprogram e�ciently, and often leads to disappointing performance, compared to the asymptoticrate advertised by the manufacturer. 21

RINF1 has been used extensively for about ten years as part of the Hockney and EuroBenbenchmarks (module MOD1AC) [24]. It is also included in the Genesis benchmarks [17].3.2.4 Memory-Bottleneck Benchmarks: POLY1 and POLY2Even if the vector lengths are long enough to overcome the vector startup overhead, thepeak rate of the arithmetic pipelines may not be realised because of the delays associatedwith obtaining data from the cache or main memory of the computer. The POLY1 andPOLY2 benchmarks quantify this dependence of computer performance on memory accessbottlenecks. The computational intensity, f , of a DO-loop is de�ned as the number of oating-point operations (op) performed per memory reference (mref) to an element of a vectorvariable [23]. The asymptotic performance, r1, of a computer is observed to increase asthe computational intensity increases, because as this becomes larger, the e�ects of memoryaccess delays become negligible compared to the time spent on arithmetic. This e�ect ischaracterised by the two parameters (^r,f 12 ), where ^ris the peak hardware performance of thearithmetic pipeline, and f 12 is the computational intensity required to achieve half this rate.That is to say the asymptotic performance is given by:r1 = ^r(1 + f 12 =f) (3.3)If memory access and arithmetic are not overlapped, then f 12 can be shown to be the ratioof arithmetic speed (in Mop/s) to memory access speed (in Mword/s) [23]. The parameterf 12 , like n 12 , measures an unwanted overhead and should be as small as possible. In order tovary f and allow the peak performance to be approached, we choose a kernel loop that can becomputed with maximum e�ciency on any hardware. This is the evaluation of a polynomialby Horner's rule, in which case the computational intensity is the order of the polynomial,and both the multiply and add pipelines can be used in parallel. To measure f 12 , the order ofthe polynomial is increased from one to ten, and the measured performance for long vectorsis �tted to Eqn.(3.3).The POLY1 benchmark repeats the polynomial evaluation for each order typically 1000times for vector lengths upto 10,000, which would normally �t into the cache of a cache-basedprocessor. Except for the �rst evaluation the data will therefore be found in the cache. POLY1is therefore an in-cache test of the memory bottleneck between the arithmetic registers of theprocessor and its cache.POLY2, on the other hand, ushes the cache prior to each di�erent order and then performsonly one polynomial evaluation, for vector lengths from 10,000 upto 100,000, which wouldnormally exceed the cache size. Data will have to be brought from o�-chip memory, andPOLY2 is an out-of-cache test of the memory bottleneck between o�-chip memory and thearithmetic registers.The POLY1 benchmark exists as MOD1G of the EuroBen benchmarks [24]. POLY2 existsas part of the Hockney benchmarks.3.3 Multi-Processor BenchmarksThe PARKBENCH suite of benchmark programs provide low-level benchmarks to charac-terise the basic communication properties of an MPP by measuring the parameters (r1,n 12 )forcommunication (COMMS1, COMMS2, COMMS3). The ratio of arithmetic speed to commu-nication speed (the hardware+compiler parameter f 12 for communication) is measured by the22



POLY3 benchmark. The ability to synchronise the processors in a large MPP, in an acceptabletime, is a key characteristic of such computers, and the SYNCH1 benchmark measures thenumber of barrier statements that can be executed per second as a function of the number ofprocessors taking part in the barrier.3.3.1 Communication Benchmarks: COMMS1 and COMMS2The purpose of the COMMS1, or Pingpong, benchmark [25, 15] is to measure the basic com-munication properties of a message-passing MIMD computer. A message of variable length, n,is sent from a master node to a slave node. The slave node receives the message into a Fortrandata array, and immediately returns it to the master. Half the time for this message pingpongis recorded as the time, t, to send a message of length, n. In the COMMS2 benchmark there isa message exchange in which two nodes simultaneously send messages to each other and returnthem. In this case advantage can be taken of bidirectional links, and a greater bandwidth canbe obtained than is possible with COMMS1. In both benchmarks, the time as a function ofmessage length is �tted by least squares using the parameters (r1,n 12 )[20, 23] to the followinglinear timing model: t = (n+ n 12 )=r1 (3.4)when the communication rate is given byr = r11 + n 12 =n = r1pipe(n=n 12 ) (3.5)where pipe(x) = 11 + 1=x (3.6)and the startup time is t0 = n 12 =r1 (3.7)In the above equations, r1is the asymptotic bandwidth of communication which is approachedas the message length tends to in�nity (hence the subscript), and n 12 is the message lengthrequired to achieve half this asymptotic rate. Hence n 12 is called the half-performance messagelength.The importance of the parameter n 12 is that it provides a yardstick with which to measuremessage-length, and thereby enables one to distinguish the two regimes of short and longmessages. For long messages (n > n 12 ), the denominator in equation 3.5 is approximatelyunity and the communication rate is approximately constant at its asymptotic rate, r1r � r1 (3.8)For short messages (n < n 12 ), the communication rate is best expressed in the algebraicallyequivalent form r = �0n(1 + n=n 12 ) (3.9)where �0 = t�10 = r1=n 12 (3.10)For short messages, the denominator in equation 3.9 is approximately unity, so thatr � �0n = n=t0 (3.11)In sharp contrast to the approximately constant rate in the long-message limit, the communi-cation rate in the short message limit is seen to be approximately proportional to the message23

length. The constant of proportionality, �0, is known as the speci�c performance, and can beexpressed conveniently in units of kilobyte per second per byte (kB/s)/B or `k/s'. Unfortu-nately since an SI pre�x, such as k, cannot stand alone without a unit symbol, this unit mustbe written either as 103/s or as kHz, where Hz is a special unit name for per second (s�1).Thus, in general, we may say that r1characterises the long-message performance and �0the short-message performance. The COMMS1 benchmark computes all four of the aboveparameters, (r1; n 12 ; t0; and�0), because each emphasises a di�erent aspect of performance.However only two of them are independent. In the case that there are di�erent modes oftransmission for messages shorter or longer than a certain length, the benchmark can readin this breakpoint and perform a separate least-squares �t for the two regions. An exampleis the Intel iPSC/860 which has a di�erent message protocol for messages shorter than andlonger than 100 byte.Because of the �nite (and often large) value of t0, the above is a two-parameter descriptionof communication performance. It is therefore incorrect, and sometimes positively misleading,to quote only one of the parameters (e.g. just r1, as is often done) to describe the performance.The most useful pairs of parameters are (r1,n 12 ), (�0; n 12 ) and (t0; r1), depending on whetherone is concerned with long vectors, short vectors or a direct comparison with hardware times.Note also that, although n 12 is de�ned as the message length required to obtain half theasymptotic rate r1, the two parameters (r1,n 12 ) are su�cient to calculate the communicationrate for any message length via equation 3.5, or equivalently using �0 instead of r1via 3.9.The COMMS1 and COMMS2 benchmarks exist as part of the Genesis benchmarks [17].3.3.2 Total Saturation Bandwidth: COMMS3To complement the above communication benchmarks, there is a need for a benchmark tomeasure the total saturation bandwidth of the complete communication system, and to seehow this scales with the number of processors. A natural generalisation of the COMMS2benchmark is made as follows, and called the COMMS3 benchmark: Each processor of a p-processor system sends a message of length n to the other (p� 1) processors. Each processorthen waits to receive the (p�1) messages directed at it. The timing of this generalised pingpongends when all messages have been successfully received by all processors; although the processwill be repeated many times to obtain an accurate measurement, and the overall time willbe divided by the number of repeats. The time for the generalised pingpong is the time tosend p(p � 1) messages of length n and can be analysed in the same way as COMMS1 andCOMMS2 into values of (r1,n 12 ). The value obtained for r1is the required total saturationbandwidth, and we are interested in how this scales up as the number of processors p increasesand with it the number of available links in the system.COMMS3 is a new benchmark written speci�cally for PARKBENCH .3.3.3 Communication Bottleneck: POLY3POLY3 assesses the severity of the communication bottleneck. It is the same as the POLY1benchmark except that the data for the polynomial evaluation is stored on a neighbouring pro-cessor. The value of f 12 obtained therefore measures the ratio of arithmetic to communicationperformance. Equation 3.3 shows that the computational intensity of the calculation must besigni�cantly greater than f 12 (say 4 times greater) if communication is not to be a bottleneck.In this case the computational intensity is the ratio of arithmetic performed on a processor towords transferred to/from it over communication links. In the common case that the amountof arithmetic is proportional to the volume of a region, and the data communicated is pro-portional to the surface of the region, the computational intensity is increased as the size of24



the region (or granularity of the decomposition) is increased. Then the f 12 obtained from thisbenchmark is directly related to the granularity that is required to make communication timeunimportant.POLY3 is a new benchmark written speci�cally for PARKBENCH .3.3.4 Synchronisation Benchmarks: SYNCH1SYNCH1 measures the time to execute a barrier synchronisation statement as a function ofthe number of processes taking part in the barrier. The practicability of massively parallelcomputation with thousands or tens of thousands of processors depends on this barrier timenot increasing too fast with the number of processors. The results are quoted both as a barriertime, and as the number of barrier statements executed per second (barr/s).The SYNCH1 benchmark exists as part of Genesis v2.1.1 [17].3.4 Summary of BenchmarksTable-3.1 summarises the current low-level benchmarks, and the architectural properties andparameters that they measure.Table 3.1: Current Low-Level benchmarks and the Parameters they measure. Notewe abbreviate performance (perf.), arithmetic (arith.), communication (comms.),operations (ops.).Benchmark Measures ParametersSINGLE-PROCESSORTICK1 Timer resolution tick intervalTICK2 Timer value wall-clock checkRINF1 Basic Arith. ops. (r1,n 12 )POLY1 Cache-bottleneck (^r,f 12 )POLY2 Memory-bottleneck (^r,f 12 )MULTI-PROCESSORCOMMS1 Basic Message perf. (r1,n 12 )COMMS2 Message exch. perf. (r1,n 12 )COMMS3 Saturation Bandwidth (r1,n 12 )POLY3 Comms. Bottleneck (^r,f 12 )SYNCH1 Barrier time and rate barr/s3.4.1 Arithmetic Benchmark ResultsAs an indication of the type of results given by the proposed low-level arithmetic benchmarks,Table-3.2 gives measurements made on a number of workstations, and microprocessor chipsthat are used as processing nodes in multiprocessor MIMD computers. The measurementsshown represent the state of a�airs on the date of the measurements, and both hardwareand software improvements since that time should have signi�cantly improved the results.They are presented here only to illustrate the type of results to be expected from the low-level benchmarks. They should not be taken as representing the current state of competitiveperformance in the very rapidly changing workstation and chip market. Such a comparison25

Table 3.2: Examples of low-level benchmark measurements on some common work-stations and microprocessor chips used in MIMD computers. Measurements weremade with the highest level of optimisation that ran, and are in Mop/s for 64-bitprecision. The units of n 12 are vector length, and f 12 are op/mref. Results are forthe best generally available compiler on the date shown. The RINF1 benchmarkgives values of the (r1,n 12 )parameters for the kernel A=B*C (vector = vector �vector) for contiguously stored vectors.Intel IBM RS/ DECBenchmark i860XP 6000-530 �50MHz 25MHz 133MHzd/m/y 12/10/93 14/6/90 13/1/93Linpackd 14.7 9.54 20.7n=100Livermore 28.8 31.8 46.6MaximumLivermore 2.62 1.34 4.47MinimumRINF1r1 7.64 26.4(n 12 ) (2.58) (5.6)POLY1^r 13.50 25.85 88.9(f 12 ) (0.44) (0.34) (0.71)POLY2^r 13.48 25.65(f 12 ) (1.12) (0.91)will only be possible if these benchmarks are routinely run on new hardware and software andthe results stored in the PARKBENCH interactive performance database, which would thencontain an up-to-date comparison of competitive hardware and software. Notwithstandingthese caveats, we feel it is helpful to give these examples of low-level benchmark measurementsthat happen to be available, even though some are a few years old and therefore probablyseriously outdated. In this small table we have not room to give the full speci�cation of theconditions for each measurement (full and exact description hardware, and of compiler andoptions used, etc.), but this information would be an essential and required component of anentry into the PARKBENCH database of benchmark results.3.4.2 Example Results for the COMMS1 benchmarkWe report below results for the COMMS1 benchmark on the SUPRENUM , and InteliPSC/860 [15], Touchstone Delta [26], Intel Paragon XP/S and Meiko CS-2 computers.Table-3.3 gives the values obtained for the communication parameters, in the version ofthe benchmark using the native SUPRENUM extensions to the Fortran90 language. Theseinclude a SEND and RECEIVE language statement with a syntax similar to that of theFortran READ and WRITE statement. The asymptotic stream rate, or bandwidth, (r1)shows considerable variation on the Suprenum, depending on how the data to be transferredis speci�ed in the I/O list of the SEND statement. A variable length array in Fortran90syntax in single precision achieves 0.67 MB/s, whereas the same statement speci�ed in doubleprecision achieves 4.8 MB/s. This double-precision rate is about twice that observed on26



the iPSC/860 with their CSEND Fortran subroutine, which sends an array whose length isspeci�ed in bytes. The principal di�erence between the two computers is the magnitude of thestartup time, t0, which is 73�s on the iPSC/860 compared with about 3ms on the Suprenum.Since the startup time, via �0, determines the transfer rate for short messages (say < 100B),we see that the Suprenum is 45 times slower than the iPSC/860 for short messages. On theother hand the Suprenum has almost twice the stream rate for long messages (as seen by thevalue of r1), provided the most favourable format (i.e. double precision or 64-bit) is used inthe I/O list. One may compute from these numbers that the iPSC/860 is faster at transferringmessages for all message lengths less than 16,481 Byte. The longer startup time on Suprenumresults in larger values of n 12 , showing that longer messages are needed to achieve any givenfraction of the asymptotic rate.The results for the Touchstone Delta show that this computer has the fastest short andlong message performance, judged respectively by the values of �0 and r1. However theimprovement of short message performance over the iPSC/860 is only marginal, and thelong message performance is only about one quarter of the advertised bandwidth of 25MB/s.However hardware and software improvements made since the measurements were made shouldhave improved the results.If we compare the new generation of production computers, the Intel Paragon XP/S andthe Meiko CS-2, we �nd, on the dates stated, the CS-2 to have a higher communicationperformance than the Paragon for both short (�0) and long messages (r1), and thereforefor all message lengths. However both computers are at an early state of the hardware andsoftware development, and both have considerable development potential. The COMMS1benchmark will continue to be used to track this competition in communication performance,and the success of both manufacturers to achieve a high performance for both short and longmessages.Table 3.3: Values of (r1,n 12 , t0, �0) for the communication of messages betweentwo nodes of the same cluster on the Suprenum and neighbouring nodes on theIntel iPSC/860, Touchstone Delta, Intel Paragon and Meiko CS-2 computers. TheDelta measurements were made on 17 Jan. 1992, and should have been improvedby subsequent hardware and software changes. Paragon measurements were madeat ORNL 25-28 May, 1993, and the CS-2 measurements were made at SouthamptonUniversity 9 July, 1993Speci�cation Range r1 n 12 t0 �0B* MB/s B ms kHzSUPRENUMsp SEND A(1:N) 0.67 2041 3.05 0.328dp SEND A(1:N) 4.82 12740 2.64 0.378INTEL iPSC/860CSEND (,A,N,,) N < 100 2.36 179 0.074 13.5N > 100 2.80 560 0.200 5.0INTEL DeltaCSEND (,A,N,,) N < 512 3.48 213 0.061 16.3N > 512 6.76 892 0.132 7.57INTEL Paragon XP/SCSEND (,A,N,,) N < 40000 23.5 4044 0.172 5.80Meiko CS-2PARMACS N < 40000 43.0 3747 0.087 11.5* B - byte 27

Chapter 4Kernel Benchmarks�4.1 Introduction and RationaleThe low-level benchmark codes are designed to measure the basic architectural features ofparallel machines. Full application codes obviously measure the performance of a parallelsystem on the full problem and this is ultimately what the user wants. However, in manyinstances, the full application codes are complex, contain many 100s of thousands of lines ofFortran, and are not available in a suitable parallel version. In order to obtain a guide to theperformance of any given parallel system on a particular application something less complexthan the full application is useful. A pro�le of the sequential version of the application enablesthe compute intensive portions of the program to be identi�ed. It is these compute-intensivesections of an application that we wish to model with the introduction of parallel kernelbenchmarks.The popular kernel benchmarks that have been used for traditional vector supercomputers,such as the Livermore Loops [5], the LINPACK benchmark [8] and the original NAS kernels[27], are clearly inappropriate for the performance evaluation of highly parallel machines.First of all, the tuning restrictions of these benchmarks rule out many widely used parallelextensions. More importantly, the computation and memory requirements of these programsdo not do justice to the vastly increased capabilities of the new parallel machines, particularlythose that will be available by the mid 1990's. For these reasons we believe that a new, widelyaccepted set of kernel benchmarks is desirable as a step on the way to more sensible andscienti�c performance reporting of parallel systems.The kernel codes are typically up to a few thousand lines of Fortran and are su�cientlysimple that the performance of a given parallel machine on this program may be relatedto the underlying architectural parameters. It must be acknowledged, however, that theperformance on kernels alone is insu�cient to completely assess the performance potential ofa parallel machine on full scienti�c applications. The chief di�culty is that a certain datastructure may be very e�cient on a certain system for one of the isolated kernels, and yet thisdata structure would be inappropriate if incorporated into a larger application. For example,the performance of a real CFD application on a parallel system is critically dependent ondata motion between di�erent computational kernels. In addition, full applications typicallyhave initialization phases, I/O and so on, so complete reproduction of these features can beof critical importance for a realistic guide to performance.For these reasons the PARKBENCH suite introduces a level of complexity above kernel�assembled by Tony Hey for Kernel subcommittee28



codes which is called compact applications. These are full but perhaps simpli�ed applicationcodes that contain all the necessary features of the full problem but are su�ciently simple torun and analyse. These are described in the Compact Application chapter of this document.4.2 The Kernel BenchmarksThe kernels attempt to span a reasonably wide range of application areas by including themost frequently encountered computationally intensive types of problems. We have tentativelygrouped them into four sections. Some of the benchmark codes are taken from existing parallelbenchmark suites (NAS [28], Genesis [12], etc). In order to avoid duplication and redundancy,we have attempted to list some of the attributes of the parallel system tested by each kernelbenchmark.4.2.1 Matrix benchmarksFor the past 15 years or so, there has been a great deal of activity in the area of algorithmsand software for solving linear algebra problems. The linear algebra community has longrecognized the need for help in developing algorithms into software libraries, and several yearsago, as a community e�ort, put together a de facto standard for identifying basic operationsrequired in linear algebra algorithms and software. The hope was that the routines making upthis standard, known collectively as the Basic Linear Algebra Subprograms (BLAS), would bee�ciently implemented on advanced-architecture computers by many manufacturers, makingit possible to reap the portability bene�ts of having them e�ciently implemented on a widerange of machines. This goal has been largely realized.The key insight of this approach to designing linear algebra algorithms for advanced archi-tecture computers is that the frequency with which data are moved between di�erent levels ofthe memory hierarchy must be minimized in order to attain high performance. Thus, our mainalgorithmic approach for exploiting both vectorization and parallelism in our implementationsis the use of block-partitioned algorithms, particularly in conjunction with highly-tuned ker-nels for performing matrix-vector and matrix-matrix operations (the Level 2 and 3 BLAS). Ingeneral, the use of block-partitioned algorithms requires data to be moved as blocks, ratherthan as vectors or scalars, so that although the total amount of data moved is unchanged,the latency (or startup cost) associated with the movement is greatly reduced because fewermessages are needed to move the data.A second key idea is that the performance of an algorithm can be tuned by a user byvarying the parameters that specify the data layout. On shared memory machines, this iscontrolled by the block size, while on distributed memory machines it is controlled by theblock size and the con�guration of the logical process mesh.The way in which an algorithm's data are distributed over the processors of a concurrentcomputer has a major impact on the load balance and communication characteristics of theconcurrent algorithm, and hence largely determines its performance and scalability. Theblock scattered (or block cyclic) decomposition provides a simple, yet general-purpose, way ofdistributing a block-partitioned matrix on distributed memory concurrent computers. In theblock scattered decomposition, described in detail in [29], a matrix is partitioned into blocksof size r � s, and blocks separated by a �xed stride in the column and row directions areassigned to the same processor. If the stride in the column and row directions is P and Qblocks respectively, then we require that P Q equals the number of processors, Np. Thus, it isuseful to imagine the processors arranged as a P �Q mesh, or template. Then the processor29

at position (p; q) (0 � p < P , 0 � q < Q) in the template is assigned the blocks indexed by,(p+ i P; q + j Q); (4.1)where i = 0; : : : ; b(Mb � p � 1)=P c, j = 0; : : : ; b(Nb � q � 1)=Qc, and Mb �Nb is the size ofthe matrix in blocks.Blocks are scattered in this way so that good load balance can be maintained in algorithms,such as LU factorization [30, 31], in which rows and/or columns of blocks of a matrix becomeeliminated as the algorithm progresses. However, for some of the distributed Level 3 BLASroutines a scattered decomposition does not improve load balance, and may result in higherconcurrent overhead. The general matrix-matrix multiplication routine xGEMM is an exampleof such a routine for which a pure block (i.e., nonscattered) decomposition is optimal whenconsidering the routine in isolation. However, xGEMM may be used in an application forwhich, overall, a scattered decomposition is best.The underlying concept of the implementations we have chosen for dense matrix computa-tions is the use of block-partitioned algorithms to minimize data movement between di�erentlevels in hierarchical memory. The ideas discussed here for dense linear algebra computationsare applicable to any computer with a hierarchical memory that (1) imposes a su�ciently largestartup cost on the movement of data between di�erent levels in the hierarchy, and for which(2) the cost of a context switch is too great to make �ne grain size multithreading worthwhile.These ideas have been exploited by the software packages LAPACK [14] and ScaLapack [32].The PARKBENCH suite includes �ve matrix kernels.1. Dense matrix multiply. Communication involves broadcast of data along rows of mesh,and periodic shift along column direction (or vice versa).2. Transpose. Matrix transpose is an important benchmark because it exercises the com-munications of computer heavily on a realistic problem where pairs of processors com-municate with each other simultaneously. It is a useful test of the total communicationscapacity of the network.3. Dense LU factorization with partial pivoting. Searching for a pivot is basically a reduc-tion operation within one column of the processor mesh. Exchange of pivot rows is apoint-to-point communication. Update phase requires data to be broadcast along rowsand columns of the processor mesh.4. QR Decomposition. In this benchmark parallelization is achieved by distribution of rowson a logical grid of processors using block interleaving.5. Matrix tridiagonalization, for eigenvalue computations of symmetric matrices.There have been many implementations of matrix multiplication algorithms on distributedmemory machines [33, 34, 35]. Many of them are limited in their use since they are imple-mented with a pure block (non-scattered) distribution, or speci�c (not general-purpose) datadistribution, and/or on square processor con�gurations with a speci�c number of processors(column and/or row numbers of processors are powers of 2). The software contained in thisbenchmark eliminates all of these constraints.Our matrix multiplication algorithm is a block scattered variant of that of Fox, Hey, andOtto [33], that deals with arbitrary rectangular processor templates.Suppose the matrix A has Mb block rows and Lb block columns, and the matrix B has Lbblock rows and Nb block columns. Block (I; J) of C is then given byC(I; J) = Lb�1XK=0 A(I;K) �B(K; J) (4.2)30



DO K = 0; Lb � 1[Columncast one block of B (B(I;MOD(I +K;Nb)); I = 0 : Lb)along each column across template]PARDO I = 0;Mb � 1KP = MOD(K + I; Lb)PARDO J = 0; Nb � 1C(I; J) = C(I; J) + A(I;KP ) � B(KP; J)END PARDOEND PARDO[Roll A leftwards]END DOFigure 4.1: A distributed block scattered matrix multiplication algorithm. The PARDO'sindicate over which indices the data are decomposed. All indices refer to blocks of elements.Communication phases are indicated in square brackets.where I = 0; 1; : : : ;Mb � 1, J = 0; 1; : : : ; Nb � 1. In Equation 4.2 the order of summation isarbitrary.Fox et al. initially considered only the case of square matrices in which each processorcontains a single row or a single column of blocks. That is, the blocks that start the summationlie along the diagonal. The summation is started at a di�erent point for each block row of Cso that in the phase of the parallel algorithm corresponding to summation index K, A(I;K)and B(K; J) can be multiplied in the processor to which C(I; J) is assigned.This requires each processor containing a block ofB to be multiplied in stepK to broadcastthat block along the column of the processor template at the start of the step. Also A mustbe rolled leftwards at the end of the step so that each column is overwritten by the one to theright, with the �rst column wrapping round to overwrite the last column. The pseudocode forthis algorithm is shown in Figure 4.1. Another variant of this algorithm involves broadcastingblocks of A over rows, and rolling B upwards.In Figure 4.1 a columncast is a communication phase in which one data item (typically ablock, or set of blocks) is taken from each block column of the matrix and is broadcast to allthe other processors in the same column of the processor template. A rowcast is similar, butbroadcasts a data item from each block row of the matrix to all processors in the same row ofthe template.The kernels for LU, QR and the reduction of a symmetric matrix to tridiagonal form inpreparation for eigenvalue computations all use block-partitioned algorithms. They rely onthe BLAS for most of the computational performance and the BLACS for communication.4.2.2 Fourier TransformsThe computational of the fast Fourier transforms (FFTs) is the cornerstone of many super-computer applications. These include not only the predictable digital signal processing, speechrecognition, image processing, and petroleum seismic analysis, but also other less obvious ap-plications, such as in computational uid dynamics, medical technology, multiple precisionarithmetic and computational number theory. Computations worthy of a highly parallel su-31

K = 0

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

K = 1

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5Figure 4.2: Snapshot of SDB algorithm. The blocks of the matrix B communicated in the�rst two stages of the matrix multiplication algorithm are shown shaded. In this case P = 2and Q = 3. In each stage, only one wrapped diagonal is columncast. The total number ofstages is Lb.percomputer generally fall into four categories: (1) one or a few very long 1-D FFTs; (2) manysmall or moderate-sized 1-D FFTs; (3) one or a few large 2-D FFTs; or (4) one or a few large3-D FFTs. The PARKBENCH suite includes two FFT test kernels, one for a large 1-D FFT,and one for a large 3-D FFT.1. 1-D FFT. In this kernel, two sequences of integers xi and yi are generated, with lengthn = 2m and values in the range 0 � xi; yi < M . The standard value ofM is 1024. Thesesequences are generated using the same uniform pseudo-random number generator asis used in the 3-D FFT kernel and the embarrassingly parallel kernel. Then the linearconvolution of these two sequences is computed using a complex-number FFT, i.e. bypadding x and y with zeroes to length 2n, then performing a forward FFT on x and y,multiplying the two resulting sequences of complex numbers, and �nally performing aninverse FFT on the result. The result sequence should have exclusively integer values,which permits a straightforward validity check.No restriction is placed on the FFT technique used to perform this convolution, exceptthat it be based on a complex-number FFT rather than, for example, a number-theoreticFFT. It is expected, however, that e�cient implementations will employ techniques, suchas Edson's algorithm and real-to-complex FFTs, that take advantage of the purely realnature of the input and output data to reduce the computational cost. The usage ofvendor-supplied library FFT routines is permitted. The serial implementation programincludes a reasonably e�cient 1-D FFT suitable for computation on a workstation orsingle processor vector system.2. 3-D FFT. The PARKBENCH 3-D FFT kernel is the 3-D FFT PDE benchmark fromthe NAS Parallel Benchmark suite [28]. It performs the essence of many spectral codesand is a rigorous test of long-distance communication performance. A brief descriptionof this benchmark is as follows. 32



Consider the partial di�erential equation (PDE)@u(x; t)@t = �r2u(x; t)where x is a position in three-dimensional space. When a Fourier transform is appliedto each side, this equation becomes@v(z; t)@t = �4��2jzj2v(z; t)where v(z; t) is the Fourier transform of u(x; t). This has the solutionv(z; t) = e�4��2jzj2tv(z; 0)In this benchmark problem, one starts with a 3-D complex array U , which represents uabove, which is �lled with pseudorandom data generated by the same scheme as used inthe embarrassingly parallel kernel. Then one computes V , the result of a forward 3-DFFT of U . For each of several iterations, one multiplies V by the appropriate exponentialfactors and performs an inverse 3-D FFT on the result.Any complex FFT algorithm may be used for the computation of the 3-D FFTs men-tioned above, and vendor-supplied library routines may be employed.4.2.3 PDE KernelsIn these PDE kernels communication is basically exchange with neighbors and the convergencecheck is a reduction. A variety of methods and update stencils may be used. The followingtwo PDE solvers have been proposed for inclusion in the parallel benchmark suite:1. Successive Over-Relaxation (SOR) kernel. The PARKBENCH SOR kernel is basedon the PDE1 benchmark from the GENESIS distributed memory benchmark suite [17].This benchmark solves the Poisson equation on a 3-dimensional grid by parallel red-blackrelaxation with Chebyshev acceleration. In this method the mesh points are divided intotwo groups according to whether the sum of indices is odd (`red') or even (`black'). Themethod proceeds in half iterations, during each of which only half the points are adjusted(alternately the `red' and `black' set of points). Thus all the `red' points can be adjustedin parallel during one half iteration, and similarly all the `black' points in parallel duringthe next half iteration. The problem is discretized using the ordinary 7-point di�erencestencil in a regular cubic grid. The value of the relaxation factor (!) changes at eachhalf iteration according to:!(0) = 1!(1=2) = 1=(1� 1=2�2)!(t+1=2) = 1=(1� 1=4�2!(t)); t = 0; 1=2; 1; :::;1; (4.3)where � is the convergence factor of the corresponding Jacobi iteration and the super-script t designates the iteration number. For large number of iterations, ! tends to theconstant relaxation factor that is used throughout the traditional SOR procedure. Theasymptotic convergence factor is therefore the same for both algorithms.In order to map the problem onto a parallel multiprocessor system the 3-dimensional gridis divided into cuboidal subgrids. Each subgrid is assigned to a node in such a way that33

neighbouring subgrids are mapped on neighbouring nodes. The grid variables in eachsubgrid are exclusively computed by its associated node. At the inner boundaries of thesubgrid the nodes need values at points which are contained in the neighbouring subgrid.Rather then transferring these values exactly at the time when they are needed { thiswould prevent vector processing within the node { they are stored in so-called overlapareas. After each iteration the values in the overlap areas are exchanged and updatedvia the message-passing communication mechanism. The introduction of overlap areasneeds a strict synchronization following each iteration step in order to ensure the correctexecution of the benchmark.Since the Chebyshev SOR method requires no extra arithmetic over the traditional SORalgorithm yet has more favourable initial error decay properties, it is one of the moste�cient PDE kernels. Note, however, that in this benchmark only nearest neighbourinteractions are required and the number of oating point operations per grid point isvery small when compared to more complex PDEs.2. Multigrid kernel.The PARKBENCH multigrid kernel is the multigrid benchmark from the NAS ParallelBenchmarks [28]. It requires highly structured long distance communication and testsboth short and long distance data communication.This kernel performs a V-cycle multigrid algorithm to obtain an approximate solutionu to the discrete Poisson problem r2u = von a 256� 256� 256 grid with periodic boundary conditions.One starts out with the array v = 0, except at a 20 particular points where v = �1. Theiterative solution starts with u = 0. Each iteration consists of the following two steps,where k = 8 = log2(256):r = v � A u (evaluate residual)u = u + Mk r (apply correction)Here Mk denotes a V-cycle multigrid operator, and A denotes a trilinear �nite elementdiscretization of the Laplacian r2.4.2.4 Other1. Embarrassingly Parallel. The Parkbench embarrassingly parallel kernel is taken from theNAS Parallel Benchmarks [28]. It provides an estimate of the upper achievable limitsfor oating point performance, i.e. the performance without signi�cant interprocessorcommunication.In this benchmark, one �rst generates pairs (xj ; yj) of uniformly distributed pseudo-random oating point values generated using the linear congruential generatorzk+1 = azk (mod 246)rk+1 = 2�46zk+1For each pair (xj ; yj), one tests to see if tj = x2j +y2j � 1. If not, this pair is rejected. Ifthis inequality holds, then one sets Xk = xjp(�2 log tj)=tj and Yk = yjp(�2 log tj)=tj .34



Then Xk and Yk are independent Gaussian deviates with mean zero and variance one.The benchmark problem is to count the number of these Gaussian deviates that lie invarious square annuli around the origin.2. Large Integer Sort.Although sorting has traditionally been thought of as of importance primarily in non-scienti�c computing, this operation is increasingly important in advanced scienti�c ap-plications. In particle method uid simulations, for example, sorting is the dominantcost.The PARKBENCH integer sort benchmark is taken from the NAS Parallel Bench-marks [28]. The kernel tests both integer computation speed and communication per-formance.In this benchmark, a vector of integer data is generated using the same pseu-dorandom number generator that is used in the embarrassingly parallel kernel. Thisdata is initially mapped according to a particular scheme. The benchmark problem is tosort this data by the most e�cient scheme for a particular architecture. Vendor-suppliedsort routines may be used to perform the sort operation.3. Input/Output. We propose a pencil and paper style benchmark { not tied to any par-ticular parallel platform or application but just measuring some key fundamental I/Oparameters of the system. A standard Fortran-77 version complements the detaileddescription given in the individual ReadMe �le. The I/O performance is tested by writ-ing and then reading di�erent sized data sets to and from disk. The read and writebu�er sizes are varied so that estimates of disk I/O start-up time, bandwidth and datatransference times may be made.4.3 Benchmark ImplementationThe PARKBENCH kernel benchmarks are written as far as possible in standard Fortran 77using 64-bit oating point arithmetic (DOUBLE PRECISION on most systems), unless otherwisestated. Both PVM/MPI [1, 2] and subset HPF versions exist for most of the codes in additionto the standard Fortran-77 versions. A description of each benchmark and instructions on howto run it are given in individual ReadMe �les. They also contain a speci�cation of the threeproblem sizes agreed upon for each code: (1) test problem (2) moderate size and (3) grandchallenge size. A formula should be given in the ReadMe �les to produce op counts for thekernel benchmarks along with precalculated �gures for each standard problem size. Make-�lesare supplied with each benchmark to handle compilation and linking in a Unix environment.4.4 Concluding RemarksThe contents of the PARKBENCH kernel benchmark suite should map reasonably well ontoany parallel library supplied by the vendors. This will allow comparative performance mea-surements across di�erent platforms using the PARKBENCH kernels but also performancecomparisons to the functionally similar and highly-optimized library routines on every partic-ular parallel system. Another advantage of the use of kernel benchmarks is that they shouldnot involve an unreasonable amount of labor on the part of vendors.
35

Chapter 5Compact Applications�5.1 IntroductionWhile kernel applications, such as those described in Chapter 3, provide a fairly straight-forward way of assessing the performance of parallel systems they are not representative ofscienti�c applications in general since they do not reect certain types of system behavior. Inparticular, many scienti�c applications involve data movement between phases of an applica-tion, and may also require signi�cant amounts of I/O. These types of behavior are di�cult togauge using kernel applications.One factor that has hindered the use of full application codes for benchmarking parallelcomputers in the past is that such codes are di�cult to parallelize and to port between targetarchitectures. In addition, full application codes that have been successfully parallelized areoften proprietary, and/or subject to distribution restrictions. To minimize the negative impactof these factors we propose to make use of compact applications in our benchmarking e�ort.Compact applications are typical of those found in research environments (as opposed toproduction or engineering environments), and usually consist of up to a few thousand lines ofsource code. Compact applications are distinct from kernel applications since they are capableof producing scienti�cally useful results. In many cases, compact applications are made up ofseveral kernels, interspersed with data movements and I/O operations between the kernels.In this chapter the criteria for selecting compact applications for the PARKBENCH suitewill be discussed. In addition, the general research areas that will be represented in the suiteare outlined.5.2 Criteria for SelectionThe three main criteria for inclusion of a parallel code in the Compact Applications suite are,1. The code must be a complete application and be capable of producing results of researchinterest. These two points distinguish a compact application from a kernel. For example,a code that only solves a randomly-generated, dense, linear system by LU factorizationshould be considered a kernel. Even though the code is complete, it does not produceresults of research interest. However, if the LU factorization is embedded in an appli-cation that uses the boundary element method to solve, for example, a two-dimensionalelastodynamics problem, then such an application could legitimately be considered a�assembled by David Walker for Compact Applications subcommittee36



compact application. Compact applications and full production codes are distinguishedby their software complexity, which is di�cult to quantify. Software complexity givesan indication of how hard it is to write, port and maintain an application, and may begauged very roughly by the length of the source code. However, there is no hard upperlimit on the length of a code in the Compact Applications suite. It is expected thatthe source code (excluding comments and repeated common blocks) for most compactapplications will be between 2000 and 10000 lines, but some may be longer.2. The code must be of high quality. This means it must have been extensively tested andvalidated, preferably on a wide selection of di�erent parallel architectures. The problemsize and number of processors used must not be hard-coded into the application, andshould be speci�ed at runtime as input to the program. Ideally, the parallel code shouldnot impose restrictions on the problem size that are not applicable for the correspondingsequential code. Thus, the parallel code should not require that the problem size beexactly divisible by the number of processors, or that the number of processors be apower of two. In some cases this latter requirement may have to be relaxed. For example,most parallel fast Fourier transform routines require the number of processors to be apower of two. It is preferable that the code be written so that it works correctly for anarbitrary one-to-one mapping between the logical process topology of the application andthe hardware topology of the parallel computer. This is desirable so that the assignmentof a location in the logical process topology to a physical processor can be easily adjustedwhen porting the application between platforms. For example a Gray code assignmentmay be best for a hypercube, and a natural ordering for a mesh architecture.3. The application must be well documented. The source code itself should contain anadequate number of comments, and each module should begin with a comment sectionthat describes what the routine does, and the arguments passed to it. In addition,there should be a Users' Guide to the application that describes the input and output,the parameterization of the problem size and processor layout, and details of what theapplication does. The Users' Guide should also contain a bibliography of related papers.In addition, to the three criteria discussed above, there are a number of other desirablefeatures that a PARKBENCH Compact Application should have. These are discussed in thefollowing subsections.5.2.1 Self Checking ApplicationsThe application should be self-checking. That is, at the end of the computation the applicationshould perform a check to validate the results of the run. The application may also outputa summary of performance results for the run, such as the Mop rate, and other pertinentinformation.5.2.2 Programming LanguagesThe code should be written in Fortran 77, Fortran 90, High Performance Fortran, or C. Datashould be passed between processors by explicit message passing. PARKBENCH does notspecify which message passing system should be used, but one that is available on a number ofparallel platforms is preferable. Eventually it is expected that MPI will become the messagepassing system of choice, but in the meantime portable systems such as PVM, PICL, Express,PARMACS, and P4 are acceptable alternatives. The codes in the Compact Applications suite37

should not contain any assembly coded portions, although assembly code may be used inoptimized versions of the code.5.3 Proposed Compact Application BenchmarksAt the time of writing (October 1993) the PARKBENCH organization is in the process ofsoliciting submission of applications for inclusion in the Compact Applications suite. Thus, theapplications that comprise the suite cannot yet be listed here. However, in this section the mainapplication areas that are expected to be in the suite are outlined. The intention is that theseareas should be representative of the �elds in which parallel computers are actually used. Thecodes should exercise a number of di�erent algorithms, and possess di�erent communicationand I/O characteristics. Initially the Compact Applications suite will consist of no more thanten codes. This restriction is imposed so that the resources needed to manage and distributethe suite can be assessed. The suite may be enlarged in the future if this seems manageable.Below is a list of the application areas that are expected to be represented in the suite. This isnot meant to be an exclusive list; submissions from other application areas will be consideredfor inclusion in the suite.� Climate and meteorological modeling� Computational uid dynamics (CFD)� Finance, e.g., portfolio optimization� Molecular dynamics� Plasma physics� Quantum chemistry� Quantum chromodynamics (QCD)� Reservoir modeling5.4 Submitting to the Compact Application SuiteThe procedure for submitting codes to the PARKBENCH Compact Applications suite is asfollows.1. Complete the submission form in Appendix A, and email it to David Walkerat walker@msr.epm.ornl.gov. The data on this form will be reviewed bythe PARKBENCH Compact Applications Subcommittee, and the submitter willbe noti�ed if the application is to be considered further for inclusion in thePARKBENCH suite.2. If PARKBENCH Compact Applications Subcommittee decides to consider the appli-cation further the submitter will be asked to submit the source code and input andoutput �les, together with any documentation and papers about the application. Sourcecode and input and output �les should be submitted by email, or ftp, unless the �les arevery large, in which case a tar �le on a 1/4 inch cassette tape. Wherever possible emailsubmission is preferred for all documents in man page, Latex and/or Postscipt format.38



These �les documents and papers together constitute the application package. The ap-plication package should be sent to the following address, and the subcommittee will thenmake a �nal decision on whether to include the application in the PARKBENCH suite.David W. WalkerOak Ridge National LaboratoryBldg. 6012/MS-6367P. O. Box 2008Oak Ridge, TN 37831-6367(615) 574-7401/0680 (phone/fax)walker@msr.epm.ornl.gov3. If the application is approved for inclusion in the PARKBENCH suite an authorizedperson from the submitting organization will be asked to complete and sign a formgivingPARKBENCH authority to distribute, and modify (if necessary), the applicationpackage.
39

Chapter 6HPF Compiler Benchmarks�6.1 ObjectivesFor most users, the performance of codes generated by a compiler is what that actuallymatters. This can be inferred from running HPF version of PARKBENCH codes describedin chapter 4 and 5. For HPF compiler developers, however, an additional benchmark suitemay be very useful: the benchmark suite that can evaluate speci�c HPF compilation phasesand the compiler runtime support. For that purpose, the relevant metric seems to be the ratioof execution times of compiler generated to hand coded programs as a function of the problemsize and number of processors engaged in the computation.The compilation process can be logically divided into several phases, and each of theminuence the e�ciency of the resulting code. The initial stage is parsing of a source code whichresults in an internal representation of the code. It is followed compiler transformations, likedata distribution, loop transformations, computation distribution, communication detection,sequentialization, insertion of calls to a runtime support, and others. This we will call a HPF-speci�c phase of compilation. The compilation is concluded by code generation phase. Forportable compilers that outputs f77+message passing code, the node compilation is obviouslyfactorized out and the e�ciency of the node compiler can be evaluated separately.This benchmark suite addresses the HPF-speci�c phase only. Thus, it is well suited forperformance evaluation of both translators (HPF to F77+message passing) and genuine HPFcompilers. The parsing phase is an element of the conventional compiler technology and it isnot of interest in this context. The code generation phase involves optimization techniquesdeveloped for sequential compilers (in particular, Fortran 90 compilers) as well as micro-grain parallelism or vectorization. The object codes for speci�c platforms may be stronglyarchitecture dependent (e.g., may be very di�erent for processors with vector capabilities thanfor those without it). Evaluation of performance of these aspects require di�erent techniquesthat these proposed here.It is worth noting, that the HPF-phase strongly a�ect the possibility of optimization ofthe node codes. For example, insertions of calls to the communication library may prohibitthe node compiler to perform many standard optimizations without expensive interproceduralanalysis. Therefore, capability to exploit opportunities for optimizations at HPF level and togenerate the output code that way it can be further optimized by the node compiler is animportant element of evaluation of HPF compilers. Nevertheless, evaluation of the HPF-phaseseparately is very valuable since the hand coded programs face the same problems. We will�assembled by Tom Haupt for Compiler Benchmarks subcommittee40



address these issues in the future releases of the benchmark suite.Compilers for massively parallel and distributed systems are still object of a research andlaboratory testing rather than commercial products. The parallel compiler technology as wellas methods of evaluating it is not mature yet. Nevertheless, the advent of the HPF standardgives opportunity to develop systematic benchmarking techniques.The current de�nition of HPF cannot be recognized as an ultimate solution for parallelcomputing. Its limitations are well known, and many researchers are working on extensions toHPF to address a broader class of real life, commercial and scienti�c applications. We expectnew language features to be added to the HPF de�nition in future versions of HPF, and wewill extend the benchmark suite accordingly. On the other hand, new parallel languages basedon languages other than Fortran, notably C++, become more and more popular. Since theparallelism is inherent in a problem and not its representation, we anticipate many common-alities in the parallel languages and corresponding compiler technologies, notably sharing theruntime support. Therefore, we decided to address this benchmark suite to these aspects ofthe compilation process that are inherent to parallel processing in general, rather than testingsyntactic details of the HPF.6.2 Low Level HPF Compiler Benchmarks6.2.1 OverviewThe benchmark suite comprises several simple, synthetic applications which test several as-pects of the HPF compilation. The current version of the suite addresses the basic featuresof HPF, and it is designed to measure performance of early implementations of the compiler.They concentrate on testing parallel implementation of explicitly parallel statements, i.e., ar-ray assignments, FORALL statements, INDEPENDENT DO loops, and intrinsic functionswith di�erent mapping directives. In addition, the low level compiler benchmarks addressproblem of passing distributed arrays as arguments to subprograms.The language features not included in the HPF subset are not addressed in this release ofthe suite. The next releases will contain more kernels that will address all features of HPF,and also they will be sensitive to advanced compiler transformations.The codes included in this suite are either adopted from existing benchmark suites, NASsuite [27], Livermore Loops [5], and the Purdue Set [36], or are developed at Syracuse Univer-sity.6.2.2 FORALL statement - kernel FLFORALL statement provides an convenient syntax for simultaneous assignments to largegroups of array elements. Such assignments lie at the heart of the data parallel computationsthat HPF is designed to express. The idea behind introducing FORALL in HPF is to generalizeFortran 90 array assignments to make expressing parallelism easier. Kernel FL provides severalexamples of FORALL statements that are di�cult or inconvenient to write using Fortran 90syntax.6.2.3 Explicit template - kernel TLParallel implementation of the array assignments, including FORALL statements, is a centralissue for an early HPF compiler. Given a data distribution, the compiler distributes compu-tation over available processors. An e�cient compiler achieves an optimal load balance withminimum interprocessor communication. 41

Sometimes, the programmers may help the compiler to minimize necessary interprocessorcommunication by suitable data mapping, in particular by de�ning a relative alignment ofdi�erent data object. This may be achieved by aligning the data objects with an explicitlydeclared template. Kernel TL provides an example of this kind.6.2.4 Communication detection in array assignments - kernels AA,SH, ST, and IROnce the data and iteration space is distributed, the next step that strongly inuences e�-ciency of the resulting codes is communication detection and code generation to execute datamovement. In general, the o�-processor data elements must be gathered before executionof an array assignment, and the results are to be scattered to destination processors afterthe assignment is completed. In other words, some of the array assignments may require apreprocessing phase to determine which o�-processor data elements are needed and executethe gather operation. Similarly, they may require postprocessing (scatter). Many di�erenttechniques may be used to optimize these operations. To achieve a high e�ciency, it maybe very important that compiler is able to recognize structured communication patterns, likeshift, multicast, etc. Kernels AA, SH, and ST introduce di�erent structured communica-tion patterns, and kernel IR is an example of an array assignment that require unstructuredcommunication (because of indirections).6.2.5 INDEPENDENT assertion - kernel EPIn addition to array assignments and FORALL statments, parallelism may be expressed byusing INDEPENDENT assertions. The EP kernel test performance of INDEPENDENT DOconstruct with NEW variables.6.2.6 Non-elemental intrinsic functions - kernel RDFortran 90 intrinsics and HPF functions o�er yet another way to express parallelism. KernelRD tests implementation of several reduction functions.6.2.7 Passing distributed arrays as subprograms' arguments - kernelsAS, IT, IM and EIThe last group of kernels, demonstrate passing distributed arrays as subprograms' arguments.They represents four typical cases:1. a known mapping of the actual argument is to be preserved by the dummy argument(AS).2. the mapping of the dummy argument is to be inherited from the actual argument, thusno remapping is necessary. The mapping is known at compile time (IT).3. the mapping of the dummy argument is to be identical to that of the actual argument,but the mapping is not known at the compile time (IM).4. a speci�c mapping of the dummy argument is forced, regardless the mapping of theactual elements (EI). 42



6.3 SummaryThe synthetic compiler benchmark suite described here is an addition to the benchmark kernelsand applications described in chapter 4 and 5. It is not meant as a tool to evaluate the overallperformance of the compiler generated codes. It has been introduced as an aid for compilerdevelopers to address some selected aspect of the HPF compilation process. In the currentversion, the suite does not comprise a comprehensive sample of HPF codes. Actually, itaddresses only the HPF subset. Hopefully, this way, we will contribute to establishment of asystematic compiler benchmarking methodology. We intend to continue our e�ort to developa complete, fully representative HPF benchmark suite.
43

Chapter 7Conclusions�The PARKBENCH benchmark suite comprises codes that vary from low-level benchmarksmeasuring basic machine parameters, through important application kernels, to compact re-search applications. This hierarchical structure allows information derived from the simplercodes to be used in explaining the performance characteristics of the more complicated codes.Thus the benchmark suite can be used to evaluate performance on a range of levels fromsimple machine parameters to full applications where e�ects due to non-parallelisable sectionsof code, and memory, communication or I/O bottlenecks may become important.AcknowledgementsSpecial thanks to all the contributors to this report: David Bailey (NASA Ames Research Cen-ter), Michael Berry (University of Tennessee), Jack Dongarra (University of Tennessee/OakRidge National Laboratory), Vladimir Getov (University of Southampton), Tom Haupt (Syra-cuse University), Tony Hey (University of Southampton), Roger Hockney (University ofSouthampton), and David Walker (Oak Ridge National Laboratory).The following PARKBENCH participants were instrumental in de�ning/promoting thee�ort, attending meetings, and providing helpful comments and suggestions: Ed Brocklehurst(National Physical Laboratory), Koushik Ghosh (Cray Research), Charles Grassl (Cray Re-search), Ed Kushner (Intel SSD), Brian LaRose (Hewlett Packard), Todd Letsche (Universityof Tennessee), David Mackay (Intel SSD), Joanne Martin (IBM), Ramesh Natarajan (IBM,Yorktown Heights), Bodo Parady (Sun Microsystems), Robert Pennington (Pittsburgh Super-computing Center), Philip Tannenbaum (NEC), Pearl Wang (George Mason University/USGeological Survey), and Patrick Worley (Oak Ridge National Laboratory).

�assembled by Roger Hockney for whole committee44



Bibliography[1] J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. Integrated pvm framework sup-ports heterogeneous network computing. Computers in Physics, 7(2):166{175, April 1993.[2] Message Passing Interface Forum. Document for a Standard Message-Passing Interface.Computer Science Dept. Technical Report CS-93-214, University of Tennessee, Knoxville,Tennessee, November 1993.[3] Quantities, Units and Symbols. The Royal Society, London, 1975.[4] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer, R. Rolo�, A. Sameh,E. Clementi, S. Chin, D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsiung,J. Schwarzmeier, K. Lue, S. Orszag, F. Seidl, O. Johnson, R. Goodrum, and J. Mar-tin. The PERFECT Club Benchmarks: E�ective Performance Evaluation of Computers.Intl. J. Supercomputer Appls., 3(3):5{40, 1989.[5] F. H. McMahon. The Livermore Fortran Kernels test of the Numerical PerformanceRange. In J. L. Martin, editor, Performance Evaluation of Supercomputers, pages 143{186. Elsevier Science B.V., North-Holland, Amsterdam, 1988.[6] J. Dongarra, T. Rowan, and R. Wade. Software Distribution Using XNETLIB DatabaseServer. Computer Science Dept. Technical Report CS-93-191, University of Tennessee,Knoxville, Tennessee, March 1993.[7] B. H. LaRose. The Development and Implementation of a Performance Database Server.Computer Science Dept. Technical Report CS-93-195, University of Tennessee, Knoxville,Tennessee, August 1993.[8] J. J. Dongarra. Performance of various Computers using Standard Linear EquationsSoftware in a Fortran Environment. Computer Science Dept. Technical Report CS-89-85, University of Tennessee, Knoxville, Tennessee, March 1990.[9] D. Bailey, J. Barton, T. Lasinski, and H. (editors) Simon. The NAS parallel benchmarks.Technical Report 103863, NASA Ames Research Center, Mo�ett Field, CA 94035, July1993.[10] Joseph Uniejewski. SPEC Benchmark Suite: Designed for Today's Advanced Systems.SPEC Newsletter, Fall 1989. Volume 1, Issue 1.[11] R. W. Hockney. A Framework for Benchmark Analysis. Supercomputer, 48(IX-2):9{22,1992. 45

[12] C. Addison, J. Allwright, N. Binsted, N. Bishop, B. Carpenter, P. Dalloz, D. Gee,V. Getov, A. Hey, R. Hockney, M. Lemke, J. Merlin, M. Pinches, C. Scott, and I. Wolton.The Genesis Distributed-Memory Benchmarks. Part 1: methodology and general relativ-ity benchmark with results for the SUPRENUM computer. Concurrency: Practice andExperience, 5(1):1{22, 1993.[13] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, P. Fred-erickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga.The NAS parallel benchmarks. Int. J. of Supercomputer Applications, 5(3):63 { 73, 1991.[14] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide.SIAM, Philadelphia, PA, 1992.[15] R. W. Hockney. Performance Parameters and Benchmarking of Supercomputers. ParallelComputing, 17:1111{1130, 1991.[16] A. Friedli, W. Gentzsch, R. Hockney, and A. van der Steen. A European SupercomputerBenchmark E�ort. Supercomputer 34, VI(6):14{17, 1989.[17] A. J. G. Hey. The Genesis Distributed-Memory Benchmarks. Parallel Computing,17:1275{1283, 1991.[18] R. W. Hockney. Super-Computer Architecture. In F. Sumner, editor, Infotech State ofthe Art Conference: Future Systems, pages 277{305. Infotech, Maidenhead, 1977.[19] Roger W. Hockney and Christopher R. Jesshope. Parallel Computers: Architecture,Programming and Algorithms. Adam Hilger, Bristol, 1981.[20] R. W. Hockney. Characterization of Parallel Computers and Algorithms. ComputerPhysics Communications, 26:285{29, 1982.[21] R. W. Hockney. Characterizing Computers and Optimizing the FACR(l) Poisson-Solveron Parallel Unicomputers. IEEE Trans. Comput., C32:933{941, 1983.[22] R. W. Hockney. Parametrization of computer performance. Parallel Computing, 5:97{103,1987.[23] Roger W. Hockney and Christopher R. Jesshope. Parallel Computers 2: Architecture,Programming and Algorithms. Adam Hilger/IOP Publishing, Bristol & Philadelphia,second edition, 1988. Distributed in the USA by IOP Publ. Inc., Public Ledger Bldg.,Suite 1035, Independence Square, Philadelphia, PA 19106.[24] A. J. van der Steen and P. P. M. de Rijk. Guidelines for use of the EuroBen Bench-mark. Technical Report TR3, EuroBen, The EuroBen Group, Utrecht, The Netherlands,February 1993.[25] R. W. Hockney. Synchronization and Communication Overheads on the LCAP MultipleFPS-164 Computer System. Parallel Computing, 9:279{290, 1988.[26] R. W. Hockney and E. A. Carmona. Comparison of Communications on the InteliPSC/860 and Touchstone Delta. Parallel Computing, 18:1067{1072, 1992.[27] D. Bailey and J. Barton. The NAS Kernel Benchmark Program. Technical Report 86711,NASA Ames Technical Memorandum, 1985.46



[28] D. H. Bailey, J. Barton, T. Lasinski, and H. (editors) Simon. The NAS parallel bench-marks. Technical Report RNR-91-02, NASA Ames Research Center, Mo�ett Field, CA94035, January 1991.[29] J. Choi, J. J. Dongarra, and D. W. Walker. The design of scalable software librariesfor distributed memory concurrent computers. In Proceedings of Environment and Toolsfor Parallel Scienti�c Computing Workshop, (Saint Hilaire du Touvet, France). ElsevierScience Publishers, September 7-8, 1992.[30] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linearalgebra library for distributed memory concurrent computers. In Proceedings of FourthSymposium on the Frontiers of Massively Parallel Computation (McLean, Virginia). IEEEComputer Society Press, Los Alamitos, California, October 19-21, 1992.[31] J. J. Dongarra, R. van de Geijn, and D. Walker. A look at scalable linear algebra libraries.In Proceedings of the 1992 Scalable High Performance Computing Conference, pages 372{379. IEEE Press, 1992.[32] J. Choi, J. Dongarra, R. Pozo, and D. Walker. ScaLAPACK: A Scalable Linear AlgebraLibrary for Distributed Memory Concurrent Computers. In IEEE, editor, Proceedingsof the Fourth Symposium on the Frontiers of Massively Parallel Computation, McLeanVirginia, pages 120{127. IEEE Publishers, October 1992.[33] G. C. Fox, S. W. Otto, and A. J. G. Hey. Matrix algorithms on a hypercube I: Matrixmultiplication. Parallel Computing, 4:17{31, 1987.[34] S. Huss-Lederman, E. M. Jacobson, A. Tsao, and G. Zhang. Matrix multiplication onthe Intel Touchstone Delta. Technical report, Supercomputing Research Center, 1993. inpreparation.[35] C. Lin and L. Snyder. A matrix product algorithm and its comparative performance onhypercubes. In Proceedings of the 1992 Scalable High Performance Computing Confer-ence, pages 190{194. IEEE Press, 1992.[36] J. Rice. Problems to Test Parallel and Vector Languages. Technical Report CSDTR 516,Purdue University, West Lafayette, Indiana, October 1990.
47

Appendix ACompact ApplicationsSubmission FormThis appendix gives the form to be completed when submitting a compact application forinclusion in the PARKBENCH suite. For an electronic version of this form send email towalker@msr.epm.ornl.gov or obtain a copy from netlib under pbwg (see Chapter 1). Thecompleted form should be emailed to the same address.Name of Program :Submitter's Name :Submitter's Organization :Submitter's Address :Submitter's Phone Number :Submitter's Fax Number :Submitter's Fax Email :Cognizant Expert(s) :CE's Organization :CE's Address :CE's Phone Number :CE's Fax Number :CE's Fax Email :Extent and timeliness with which CE is prepared to respond to questions and bug reportsfrom PARKBENCH :Major Application Field :Minor Application Field : 48



Application "pedigree" (origin, history, major ports and modi�cations) :

May this code be freely distributed (if not specify restrictions) :Give length in bytes of integers and oating-point numbers that should be used in this appli-cation: Integers: bytesFloats: bytesDocumentation describing the implementation of the application (at module level, or lower) :Research papers describing sequential code and/or algorithms :

Research papers describing parallel code and/or algorithms :

Other relevant research papers:
Application available in the following languages (give message passing system used, if appli-cable, and machines application runs on) :

Total number of lines in source code :Number of lines excluding comments :Size in bytes of source code :List input �les (�lename, number of lines, size in bytes, and if formatted) :

List output �les (�lename, number of lines, size in bytes, and if formatted) :49

Brief, high-level description of what application does :

Main algorithms used :
Skeleton sketch of application :

Brief description of I/O behavior :
Brief description of load balance behavior :

Describe the data distribution (if appropriate) :

Give parameters of the data distribution (if appropriate) :

Give parameters that determine the problem size :

Give memory as function of problem size :Give number of oating-point operations as function of problem size :Give communication overhead as function of problem size and data distribution :50



Give three problem sizes, small, medium, and large for which the benchmark should be run(give parameters for problem size, sizes of I/O �les, memory required, and number of oatingpoint operations) :
How did you determine the number of oating-point operations (hardware monitor, count byhand, etc.) :Other relevant information :

51

Appendix BSample Xnetlib/PDS ScreensWith the Browse facility in PDS (see Figure B.1), the user �rst selects the vendor(s) andbenchmark(s) of interest, then selects the large Process button to query the performancedatabase. The PDS client then opens a socket connection to the server and, using the querylanguage (rdb), remotely queries the database. The format of the returned result is shownin Figure B.2. Notice that the column headings which will vary with each benchmark. Thereturned data is displayed as an ASCII widget with scrollbars when needed.

Figure B.1: The browse facility provided by PDS52



Figure B.2: Sample data returned by the PDS Browse facilityThe Search option in PDS is illustrated in Figures B.3 and B.4. This feature permitsuser-speci�ed keyword searches over the entire performance database. Search utilizes literalcase-insensitive matching along with a moderate amount of aliasing. Multiple keywords arepermitted, and a Boolean ag is provided for more complicated searches. Notice the selectionof the Boolean And option in Figure B.3. Using Search, the user has the option of enteringvendor names, machine aliases, benchmark names, or speci�c strings, or producing a morecomplicated Boolean keyword search. The benchmarks returned from the Boolean And searchrios 550 linpack Perfectare shown in Figure B.4. The alias terms rios 550 are associated with the IBM RS/6000Model 550 series of workstations. The speci�cation of linpack and Perfect will limit the searchto the LINPACK and Perfect benchmarks only. Since any retrieved data will be displayed tothe screen (by default), the Save option allows the user to store any retrieved performancedata in an ASCII �le.
53

Figure B.3: Specifying a keyword search using the PDS Search facility

54



Figure B.4: Results of a keyword search using the PDS Search facility

55


