PUBLIC INTERNATIONAL BENCHMARKS
FOR PARALLEL COMPUTERS

PARKBENCH Committee: Report-1

assembled by Roger Hockney (chairman) and
Michael Berry (secretary)

Computer Science Department
University of Tennessee

CS-93-213 November 1993

Public International Benchmarks
for Parallel Computers

PARKBENCH Committee: Report-1
assembled by Roger Hockney (chairman) and Michael Berry (secretary)

November 17, 1993

Contents

3.2

3.3

1 Introduction
1.1 Background and Objectives
1.2 Procedures
1.3 Vendor’'s Commitment
2 Methodology
2.1 Philosophy
2.2 Fundamental Metrics
2.3 Time Measurement
24 Units and Symbols
2.5 Floating-Point Operation Count
2.6 Performance Metrics L Lo
2.6.1 Temporal Performance . .
2.6.2 Simulation Performance .
2.6.3 Benchmark Performance .
2.6.4 Hardware Performance
2.6.5 Speedup, Efficiency and Performance per Node
2.7 Performance Database L o L.
2.7.1 Design of a Performance Database
.2 PDSFeatures
2.7.3 PDS Availability
2.8 Interactive Graphical Interface
2.9 Benchmarking Procedure and Code Optimisation
3 Low-Level Benchmarks
3.1 Imtroduction

3.1.1 Most Reported Benchmark: LINPACKD (n=100)
3.1.2 Performance Range: The Livermore Loops
Single-Processor Benchmarks o o 0.
3.2.1 Timer resolution: TICK1

3.2.2 Timer value: TICK2 . . .
3.2.3 Basic Arithmetic Operations: RINF1
3.2.4 Memory-Bottleneck Benchmarks: POLY1 and POLY2
Multi-Processor Benchmarks
3.3.1 Communication Benchmarks: COMMS1 and COMMS2
3.3.2 Total Saturation Bandwidth: COMMS3
3.3.3 Communication Bottleneck: POLY3
3.3.4 Synchronisation Benchmarks: SYNCH1

3.4 Summary of Benchmarks 00000000
3.4.1 Arithmetic Benchmark Results
3.4.2 Example Results for the COMMS1 benchmark

4 Kernel Benchmarks
4.1 Introduction and Rationale0 0L
4.2 The Kernel Benchmarks
4.2.1 Matrix benchmarks
4.2.2 Fourier Transforms
423 PDEKernels
4.24 Other
4.3 Benchmark Implementation L
44 Concluding Remarks L o oL o

5 Compact Applications

5.1 Introduction
5.2 Criteria for Selection L Lo

5.2.1 Self Checking Applications
2

5.

.2 Programming Languages.
5.3 Proposed Compact Application Benchmarks
5.4 Submitting to the Compact Application Suite

6 HPF Compiler Benchmarks
6.1 Objectives
6.2 Low Level HPF Compiler Benchmarks
6.2.1 Overview
6.2.2 FORALL statement - kernel FL.

6.2.3 Explicit template - kernel TL 0oL
6.2.4 Communication detection in array assignments - kernels AA, SH, ST,
and IRo L
6.2.5 INDEPENDENT assertion - kernel EP
6.2.6 Nomn-elemental intrinsic functions - kernel RD
6.2.7 Passing distributed arrays as subprograms’ arguments - kernels AS, IT,

IMand EL.
6.3 Summary

7 Conclusions

Bibliography

Appendix

A Compact Applications Submission Form

B Sample Xnetlib/PDS Screens

44

45

48

48

52

Chapter 1

Introduction*

1.1 Background and Objectives

The PARKBENCH (PARallel Kernels and BENCHmarks) committee, originally called the
Parallel Benchmark Working Group, PBWG, was founded at Supercomputing’92 in Min-
neapolis, when a group of about 50 people interested in computer benchmarking met under
the joint initiative of Tony Hey (University of Southampton, UK) and Jack Dongarra (Univer-
sity of Tennessee/Oak Ridge National Laboratory). Most of the key players were present, from
the Universities, Laboratories and industries, representing both computer manufacturers and
computer users from both sides of the Atlantic. Roger Hockney (University of Southampton)
chaired the meeting, and the objectives of the group were:

1. To establish a comprehensive set of parallel benchmarks that is generally accepted by
both users and vendors of parallel system.

2. To provide a focus for parallel benchmark activities and avoid unnecessary duplication
of effort and proliferation of benchmarks.

3. To set standards for benchmarking methodology and result-reporting together with a
control database/repository for both the benchmarks and the results.

4. To make the benchmarks and results freely available in the public domain.

The first year’s work was to produce a report and an initial set of benchmarks for release
at Supercomputing’93 in Portland, Oregon, November 1993. The committee has met at the
University of Tennessee Knoxville on March 1-2, 1993, May 24, 1993 and August 23, 1993 to
discuss the evolving draft of this report. The document reproduced here is the final result of
these meetings, and is the first official publication of the PARKBENCH committee. It was
distributed at a public Birds of a Feather meeting at Supercomputing’93, Portland, on 17th
November 1993, together with the first release of the PARKBENCH parallel benchmarks.

The initial focus of the parallel benchmarks is on the new generation of scalable distributed-
memory message-passing architectures for which there is a notable lack of existing benchmarks.
For this reason the initial benchmark release concentrates on Fortran77 message-passing codes
using the widely available PVM [1] message passing interface for portability. Future versions
will undoubtedly adopt the proposed MPI [2] interface, when this is fully defined and becomes

“written by Roger Hockney for whole committee

generally accepted. The committee’s aim, however, is to cover all parallel architectures, and
this is expected to be achieved by producing versions of the benchmark codes using Fortran90
and High Performance Fortran (HPF). Many shared-memory architectures provide efficient
native implementations of PVM message-passing and are planning HPF compilers. They will
be covered by these routes.

1.2 Procedures

The PARKBENCH committee has agreed to divide its work between five subcommittees,
corresponding to the five substantive chapters in the report, each with a leader (shown in
parentheses) who is responsible for assembling the contents of his chapter and its benchmarks
for the committee’s approval.

1. Methodology (David Bailey):

2. Low-level benchmarks (Roger Hockney):
3. Kernel benchmarks (Tony Hey):

4. Compact applications (David Walker):
5

5. Compiler benchmarks (Tom Haupt):

In order to facilitate discussion and exchange of information, the following e-mail addresses
were set up.

1. pbwg-comm@cs.utk.edu for the Whole committee

2. pbwg-method@cs.utk.edu for the Methodology subcommittee
3. pbwg-lowlevel@cs.utk.edu for the Low level subcommittee
4. pbwg-kernel@cs.utk.edu for the Kernel subcommittee

5. pbwg-compactapp@cs.utk.edu for the Compact applications subcommittee

Recent practice, however, has been to send all mail to pbwg-comm so that all members may
see it. All mail is being collected and can be retrieved by sending email to netlib@ornl.gov
and in the mail message typing:

1. send comm.archive from pbwg

2. send lowlevel.archive from pbwg

3. send compactapp.archive from pbwg
4. send method.archive from pbwg

5. send kernel.archive from pbwg

6. send index from pbwg

We have setup a mail reflector for correspondence, it is called pbwg-comm@cs.utk.edu.
Mail to that address will be sent to the mailing list and also collected in netlib@ornl.gov.
All PARKBENCH correspondence and benchmarks may be retrieved via anonymous ftp to
netlib2.cs.utk.edu. Alternatively, one can collect PARKBENCH mail by sending email
to netlib@ornl.gov and in the mail message type:

send comm.archive from pbwg

The PARKBENCH committee is open without charge to anyone interested in computer
benchmarking and operates similarly to the HPFF (High Performance Fortran Forum). Any-
one interested in joining in the discussion or preparing benchmarks should send e-mail to that
effect to:

dongarra@cs.utk.edu

PARKBENCH is operating in a very tight budget (in reality, it has no budget at all). Several
participants are supported by the companies they represent, and support for several European
participants is being provided by ESPRIT.

1.3 Vendor’s Commitment

The PARKBENCH committee is anxious that its parallel benchmarks do not put undue
demands on computer vendors by way of man power and resources, in a way that would
prejudice the wide acceptance and use of the benchmarks. Initially it is felt reasonable to
expect that most vendors should have little difficulty in running the low-level and kernel
benchmarks, since these either involve basic hardware and software tests (such as COMMS1)
that vendors would wish to perform in any case, or involve scientific library subroutines (such
as FFT) that they would be required to produce and optimise. In the latter case, they would
no doubt be pleased to show the superior performance of their library routine compared with
that of the standard Fortran provided in the PARKBENCH benchmark suite.

The case of compact applications is more difficult, because these codes might require
substantial effort to optimise, and in some cases even to run satisfactorily. For these reasons,
it is not expected that vendors would initially run all these codes, or indeed any of them. They
might, however, choose to run a selection of them from subject areas of interest to their current
potential customers, in order to demonstrate their computer’s capability on some standard
and relevant tests. In this way, and over a period of time, it is hoped that most of the compact
applications would be run in a natural way and without extra effort.

wt

Chapter 2

Methodology*™

2.1 Philosophy

One might ask why anyone should care about developing a standardized, rigorous and sci-
entifically tenable methodology for studying the performance of high-performance computer
systems. There are several reasons why this is an important undertaking:

1. To establish and maintain high standards of honesty and integrity in our profession.

2. To improve the status of supercomputer performance analysis as a rigorous scientific
discipline.

3. To reduce confusion in the high-performance computing literature.

4. To increase understanding of these systems, both at a low-level hardware or software
level and at a high-level, total system performance level.

ot

. To assist the purchasers of high-performance computing equipment in selecting systems
best suited to their needs.

6. To reduce the amount of time and resources vendors must expend in implementing
multiple, redundant benchmarks.

~1

. To provide valuable feedback to vendors on bottlenecks that can be alleviated in future
products.

It is important to note that researchers in many scientific disciplines have found it necessary
to establish and refine standards for performing experiments and reporting the results. Many
scientists have learned the importance of standard terminology and notation. Chemists, physi-
cists and biologists long ago discovered the importance of controls in their experiments. The
issue of repeatability proved crucial in the recent cold fusion episode. Medical researchers have
found it necessary to perform double-blind experiments in their field. Psychologists and sociol-
ogists have developed highly refined experimental methodologies and advanced data analysis
techniques. Political scientists have found that subtle differences in the phrasing of a question
can affect the results of a poll. Researchers in many fields have found that environmental
factors in their experiments can significantly influence the measured results; thus they must
carefully report all such factors in their papers.

“assembled by David Bailey for methodology subcommittee

If supercomputer performance analysis and benchmarking is ever to be taken seriously as
a scientific discipline, certainly its practitioners should be expected to adhere to standards
that prevail in other disciplines. This document is dedicated to promoting these standards in
our field.

2.2 Fundamental Metrics

The conclusions drawn from a benchmark study of computer performance depend not only
on the basic timing results obtained, but also on the way these are interpreted and converted
into performance figures. The choice of the performance metric, may itself influence the
conclusions. For example, do we want the computer that generates the most megaflop per
second (or has the highest Speedup), or the computer that solves the problem in the least
time? It is now well known that high values of the first metrics do not necessarily imply
the second property. This confusion can be avoided by choosing a more suitable metric that
reflects solution time directly, for example either the Temporal, Simulation or Benchmark
performance, defined below. This issue of the sensible choice of performance metric is becoming
increasing important with the advent of massively parallel computers which have the potential
of very high megaflop rates, but have much more limited potential for reducing solution time.

2.3 Time Measurement

Before other issues can be considered, we must discuss the measurement of run time. In recent
years a consensus has been reached among many scientists in the field that the most relevant
measure of run time is actual wall-clock elapsed time. This measure of time will be required
for all PARKBENCH results that are posted to the database.

Elapsed wall-clock time means the time that would be measured on an external clock that
records the time-of-day or even Coordinated Universal Time (UTC), between the start and
finish of the benchmark. We are not concerned with the origin of the time measurement,
since we are taking a difference, but it is important that the time measured would be the
same as that given by a difference between two measurements of UTC, if it were possible to
make them. It is important to be clear about this, because many computer clocks (e.g., Sun
Unix function ETIME) measure elapsed CPU time, which is the total time that the process
or job which calls it has been executing in the CPU. Such a clock does not record time (i.e.
it stops ticking) when the job is swapped out of the CPU. It does not record, therefore, any
wait time which must be included if we are to assess correctly the performance of a parallel
program. On some systems, scientists have found that even for programs that perform no
explicit T/O, considerable system time is nonetheless involved, for example in fetching certain
library routines or other data.

Ounly timings actually measured may be cited for PARKBENCH benchmarks (and we
strongly recommend this practice for other benchmarks as well). Extrapolations and projec-
tions, for instance to a larger number of nodes, may not be employed for any reason. Also, in
the interests of repeatability it is highly recommended that timing runs be repeated, several
times if possible.

Two low-level benchmarks are provided in the PARKBENCH suite to test the precision
and accuracy of the clock that is to be used in the benchmarking. These should be run first,
before any benchmark measurements are made. They are:

1. TICK1 - measures the precision of the clock by measuring the time interval between
ticks of the clock. A clock is said to tick when it changes its value.

~1

2. TICK2 - measures the accuracy of the clock by comparing a given time interval measured
by an external wall-clock (the benchmarker’s wrist watch is adequate) with the same
interval measured by the computer clock. This tests the scale factor used to convert
computer clock ticks to seconds, and immediately detects if a CPU-clock is incorrectly
being used.

The fundamental measurement made in any benchmark is the elapsed wall-clock time to
complete some specified task. All other performance figures are derived from this basic timing
measurement. The benchmark time, T'(N; p), will be a function of the problem size, N, and
the number of processors, p. Here, the problem size is represented by the vector variable, N,
which stands for a set of parameters characterising the size of the problem: e.g. the number
of mesh points in each dimension, and the number of particles in a particle-mesh simulation.
Benchmark problems of different sizes can be created by multiplying all the size parameters by
suitable powers of a single scale factor, thereby increasing the spatial and particle resolution
in a sensible way, and reducing the size parameters to a single size factor (usually called a).

We believe that it is most important to regard execution time and performance as a function
of at least the two variables (N, p), which define a parameter plane. Much confusion has arisen
in the past by attempts to treat performance as a function of a single variable, by taking a
particular path through this plane, and not stating what path is taken. Many different paths
may be taken, and hence many different conclusions can be drawn. It is important, therefore,
always to define the path through the performance plane, or better as we do here, to study the
shape of the two-dimensional performance hill. In some cases there may even be an optimum
path up this hill. The following discussion of units and metrics is based on that of [11].

2.4 Units and Symbols

A rational set of units and symbols is essential for any numerate science including benchmark-
ing. The following extension of the internationally agreed SI system of physical units [3] is
made to accommodate the needs of computer benchmarking.

The value of a variable comprises a pure number stating the number of units which equal
the value of the variable, followed by a unit symbol specifying the unit in which the variable
is being measured. A new unit is required whenever a quantity of a new nature arises,
such as the first appearance of vector operations, or message sends. Generally speaking a
unit symbol should be as short as possible, consistent with being easily recognised and not
already used. The following have been found necessary in the characterisation of computer
and benchmark performance in science and engineering. No doubt more will have to be defined
as benchmarking enters new areas.

New unit symbols and their meaning:

1. flop: floating-point operation [latex \flop]

2. inst: instruction of any kind [latex \inst]
. intop: integer operation [latex \inop]

3
4. vecop: vector operation [latex \vecop]

ot

. send: message send operation [latex \send]

6. iter: iteration of loop [latex \iter]

-1

. mref: memory reference (read or write) [latex \mref]

8. barr: barrier operation [latex \barr]

9. b: binary digit (bit) [latex \bit]

10. B: byte (groups of 8 bits) [latex \B]

11. sol: solution or single execution of benchmark [latex \sol]

12. w: computer word. Symbol is lower case (W means watt) [latex \w]

When required a subscript may be used to show the number of bits involved in the unit. For
example: a 32-bit floating-point operation flops,, a 64-bit word wey, also we have b = wy,
B = wg, wgq = 8B.

Note that flop, mref and other multi-letter symbols are inseparable four or five-letter
symbols. The character case is significant in all unit symbols so that e.g. Flop, Mref, Wg4 are
incorrect. Unit symbols should always be printed in roman type, to contrast with variables
names which are printed in italic. To aid in the use of roman type, especially within LaTex’s
math mode, LaTex commands have been defined for each unit, these commands being a
backslash followed by the unit symbol (except for ‘intop’ and ‘b’ whose names are changed in
the command to avoid a clash with already defined system commands). Such commands will
print in roman type wherever they occur. Because ‘s’ is the ST unit for seconds, unit symbols
like ‘sheep’ do not take ‘s’ in the plural. Thus one counts: one flop, two flop, ..., one hundred
flop ete. This is especially important when the unit symbol is used in ordinary text as a useful
abbreviation, as often, quite sensibly, it is.

SI provides the standard prefixes:

1. k : kilo meaning 10°

2. M : mega meaning 10°

3. G : giga meaning 10°

4. T : tera meaning 102

This means that we cannot use M to mean 10242 (the binary mega) as is often done in
describing computer memory capacity, e.g. 256 MB. We can however introduce the new
prefix:

1. K : meaning 1024, then use a subscript 2 to indicate the binary versions
2. M, : binary mega 10242

3. Gy : binary giga 1024°

4. Ty : binary tera 1024*

In most cases the difference between the mega and the binary mega (4%) is probably unim-
portant, but it is important to be unambiguous. In this way one can continue with existing
practice if the difference doesn’t matter, and have an agreed method of being more exact when
necessary. For example, the above memory capacity was probably intended to mean 256M»B.

As a consequence of the above, an amount of computational work involving 4.5 x 10'2
floating-point operations is correctly written as 4.5 Tflop. Note that the unit symbol Tflop
is never pluralised with an added ‘s’, and it is therefore incorrect to write the above as 4.5
Tflops which could be confused with a rate per second. The most frequently used unit of
performance, millions of floating-point operations per second is correctly written Mflop/s, in
analogy to km/s. The slash is necessary and means ‘per’, because the ‘p’ is an integral part
of the unit symbol ‘flop” and cannot also be used to mean ‘per’.

2.5 Floating-Point Operation Count

Although we discourage the use of millions of floating-point operations per second as a per-
formance metric, it can be a useful measure if the number of floating-point operations, F(N),
needed to solve the benchmark problem is carefully defined.

For simple problems (e.g. matrix multiply) it is sufficient to use a theoretical value for the
floating-point operation count (in this case 2n® flop, for nxn matrices) obtained by inspection
of the code or consideration of the arithmetic in the algorithm. For more complex problems
containing data-dependent conditional statements, an empirical method may have to be used.
The sequential version of the benchmark code defines the problem and the algorithm to be
used to solve it. Counters can be inserted into this code or a hardware monitor used to
count the number of floating-point operations. The latter is the procedure followed by the
PERFECT Club [4]. In either case a decision has to be made regarding the number of flop
that are to be credited for different types of floating-point operations, and we see no good
reason to deviate from those chosen by McMahon [5] when the Mflop/s measure was originally
defined. These are:

add, subtract, multiply 1 flop

divide, square-root 4 flop
exponential, sine etc. 8 flop (this figure will be adjusted)
IF(X REL.Y) 1 flop

Some members of the committee felt that these numbers, derived in the 1970s, no longer
correctly reflected the situation on current computers. However, since these numbers are only
used to calculate a nominal benchmark flop-count, it is not so important that they be accurate.
The important thing is that they do not change, otherwise all previous flop-counts would have
to be renormalised. In any case, it is not possible for a single set of ratios to be valid for all
computers and library software. I (rwh) suggest the committee stays with the above ratios
until such time as they become wildly wrong and extensive research provides us with a more
realistic set.

We distinguish two types of operation count. The first is the nominal benchmark floating-
point operation count, Fg(N), which is found in the above way from the defining Fortran77
sequential code. The other is the actual number of floating-point operations performed by the
hardware when executing the distributed multi-node version, Fp (N, p), which may be greater
than the nominal benchmark count, due to the distributed version performing redundant
arithmetic operations. Because of this, the hardware flop count may also depend on the
number of processors on which the benchmark is run, as shown in its argument list.

2.6 Performance Metrics

Given the time of execution T(N;p) and the flop-count F(N) several different performance
measures can be defined. Each metric has its own uses, and gives different information about
the computer and algorithm used in the benchmark. It is important therefore to distinguish
the metrics with different names, symbols and units, and to understand clearly the difference
between them. Much confusion and wasted work can arise from optimising a benchmark with
respect to an inappropriate metric. The principal performance metrics are discussed in the
following subsections.

10

2.6.1 Temporal Performance

If we are interested in comparing the performance of different algorithms for the solution of
the same problem, then the correct performance metric to use is the Temporal Performance,
R, which is defined as the inverse of the execution time

Ry(N;p) = T7H(N3p) (2.1)

The units of temporal performance are, in general, solutions per second (sol/s), or some more
appropriate absolute unit such as timesteps per second (tstep/s). With this metric we can
be sure that the algorithm with the highest performance executes in the least time, and
is therefore the best algorithm. We note that the number of flop does not appear in this
definition, because the objective of algorithm design is not to perform the most arithmetic per
second, but rather it is to solve a given problem in the least time, regardless of the amount
of arithmetic involved. For this reason the temporal performance is also the metric that a
computer user should employ to select the best algorithm to solve his problem, because his
objective is also to solve the problem in the least time, and he does not care how much
arithmetic is done to achieve this.

2.6.2 Simulation Performance

A special case of temporal performance occurs for simulation programs in which the benchmark
problem is defined as the simulation of a certain period of physical time, rather than a certain
number of timesteps. In this case we speak of the Simulation Performance and use units
such as simulated days per day (written sim-d/d or ‘d’/d) in weather forecasting, where the
apostrophe is used to indicate ‘simulated’; or simulated pico-seconds per second (written sim-
ps/s or ‘ps’/s) in electronic device simulation. It is important to use simulation performance
rather than timestep/s if one is comparing different simulation algorithms which may require
different sizes of timestep for the same accuracy (for example an implicit scheme that can
use a large timestep, compared with an explicit scheme that requires a much smaller step).
In order to maintain numerical stability, explicit schemes also require the use of a smaller
timestep as the spatial grid is made finer. For such schemes the simulation performance
falls off dramatically as the problem size is increased by introducing more mesh points in
order to refine the spatial resolution: the doubling of the number of mesh-points in each
of three dimensions can reduce the simulation performance by a factor near 16 because the
timestep must also be approximately halved. Even though the larger problem will generate
more Megaflop per second, in forecasting, it is the simulated days per day (i.e. the simulation
performance) and not the Mflop/s, that matter to the user.

As we see below, benchmark performance is also measured in terms of the amount of arith-
metic performed per second or Mflop/s. However it is important to realise that it is incorrect
to compare the Mflop/s achieved by two algorithms and to conclude that the algorithm with
the highest Mflop/s rating is the best algorithm. This is because the two algorithms may
be performing quite different amounts of arithmetic during the solution of the same problem.
The temporal performance metric, Ry, defined above, has been introduced to overcome this
problem, and provide a measure that can be used to compare different algorithms for solving
the same problem. However, it should be remembered that the temporal performance only
has the same meaning within the confines of a fixed problem, and no meaning can be attached
to a comparison of the temporal performance on one problem with the temporal performance
on another.

11

2.6.3 Benchmark Performance

In order to compare the performance of a computer on one benchmark with its performance on
another, account must be taken of the different amounts of work (measured in flop) that the
different problems require for their solution. Using the flop-count for the benchmark, Fg(N),
we can define the Benchmark Performance as

R(N:p) = Fg(N)/T(N;p) (22)

The units of benchmark performance are Mflop/s (benchmark name), where we include the
name of the benchmark in parentheses to emphasise that the performance may depend strongly
on the problem being solved, and to emphasise that the values are based on the nominal
benchmark flop-count. In other contexts such performance figures would probably be quoted
as examples of the so-called sustained performance of a computer. We feel that the use of this
term is meaningless unless the problem being solved and the degree of code optimisation is
quoted, because the performance is so varied across different benchmarks and different levels
of optimisation. Hence we favour the quotation of a selection of benchmark performance
figures, rather than a single sustained performance, because the latter implies that the quoted
performance is maintained over all problems.

Note also that the flop-count Fig(N) is that for the defining sequential version of the
benchmark, and that the same count is used to calculate Rp for the distributed-memory
(DM) version of the program, even though the DM version may actually perform a different
number of operations. It is usual for DM programs to perform more arithmetic than the
defining sequential version, because often numbers are recomputed on the nodes in order to
save communicating their values from a master processor. However such calculations are
redundant (they have already been performed on the master) and it would be incorrect to
credit them to the flop-count of the distributed program.

Using the sequential flop-count in the calculation of the DM programs benchmark perfor-
mance has the additional advantage that it is possible to conclude that, for a given benchmark,
the implementation that has the highest benchmark performance is the best because it exe-
cutes in the least time. This would not necessarily be the case if a different Fg(N) were used
for different implementations of the benchmark. For example, the use of a better algorithm
which obtains the solution with less than F(N) operations will show up as higher bench-
mark performance. For this reason it should cause no surprise if the benchmark performance
occasionally exceeds the maximum possible hardware performance. To this extent benchmark
performance Mflop/s must be understood to be nominal values, and not necessarily exactly
the number of operations executed per second by the hardware, which is the subject of the
next metric. The purpose of benchmark performance is to compare different implementations
and algorithms on different computers for the solution of the same problem, on the basis that
the best performance means the least execution time. For this to be true Fg(N) must be kept
the same for all implementations and algorithms.

2.6.4 Hardware Performance

If we wish to compare the observed performance with the theoretical capabilities of the com-
puter hardware, we must compute the actual number of floating-point operations performed,
Fy(N;p), and from it the actual Hardware Performance

Ry(N:p) = Fyr(N.p)/T(N:p) (23)
The hardware performance also has the units Mflop/s, and will have the same value as the

benchmark performance for the sequential version of the benchmark. However, the hardware

12

performance may be higher than the benchmark performance for the distributed version,
because the hardware performance gives credit for redundant arithmetic operations, whereas
the benchmark performance does not. Because the hardware performance measures the actual
floating-point operations performed per second, unlike the benchmark performance, it can
never exceed the theoretical peak performance of the computer.

Assuming a computer with multiple-CPUs each with multiple arithmetic pipelines, de-
livering a maximum of one flop per clock period, the theoretical peak value of hardware
performance is

oo fl.pt.pipes/CPU

number.CPUs 2.4
clock.period x number.CPUs (2.4)

with units of Mflop/s if the clock period is expressed in microseconds. By comparing the mea-
sured hardware performance, Ry (N;p), with the theoretical peak performance, we can assess
the fraction of the available performance that is being realised by a particular implementation
of the benchmark.

2.6.5 Speedup, Efficiency and Performance per Node

Parallel speedup is a popular metric that has been used for many years in the study of parallel
computer performance. However, its definition is open to ambiguity and misuse because it
always begs the question “speedup over what?”

Speedup is usually defined as

Ty

I
where T, is the p-processor time to perform some benchmark, and T is the one-processor time.
There is no doubt about the meaning of T, this is the measured time T'(N;p) to perform
the benchmark. There is often considerable dispute over the meaning of Ti: should it be
the time for the parallel code running on one processor, which probably contains unnecessary
parallel overhead, or should it be the best serial code (possibly using a different algorithm)
running on one processor? Many scientists feel the latter is a more responsible choice, but this
requires research to determine the best practical serial algorithm for the given application.
If at a later time a better algorithm is found, current speedup figures might be considered
obsolete. An additional difficulty with this definition is that even if a meaning for T} is agreed
to, there may be insufficient memory on a single node to store an entire large problem. Thus
in many cases it may be impossible to measure T using this definition.

One principal objective in the field of performance analysis is benchmarking: to compare
the performance of different computers. It is generally agreed that the best performance
corresponds to the least wall-clock execution time. In order to adapt the speedup statistic for
benchmarking, it is thus necessary to define a single reference value of T; to be used for all
calculations. It does not matter how 7} is defined, or what its value is, only that the same
value of T} is used to calculate all speedup values used in the comparison.

However, defining T; as a reference time unrelated to the parallel computer being bench-
marked unfortunately has the consequence that many properties that many people regard as
essential to the concept of parallel speedup are lost:

(2.5)

1. It is no longer necessarily true that the speedup of the parallel code on one processor is
unity. It may be, but only by chance.

2. It is no longer true that the maximum speedup using p-processors is p.

13

3. Because of the last item, efficiency figures computed as speedup divided by p are no
longer a meaningful measure of processor utilization.

There are other difficulties with this formulation of speedup. If we use T as the run time
on a very fast single processor (currently, say, a Cray C90 or a NEC SX-3), then manufacturers
of highly parallel systems will be reluctant to quote the speedup of their system in the above
way. For example, if the speedup of a 100 processor parallel system over a single node of the
same system is a respectable factor of 80, it is likely that the speedup computed from the
standard Ty would be reduced to 10 or less. This is because a fast vector processor is typically
at least ten times faster than the RISC processors used in many highly parallel systems of a
comparable generation.

Thus it appears that if one sharpens the definition of speedup to make it an acceptable
metric for comparing the performance of different computers, one has to throw away the main
properties that have made the concept of speedup useful in the past.

Accordingly, the PARKBENCH committee has decided the following:

1. No speedup statistic will be kept in the PARKBENCH database.

2. Speedup statistics based on PARKBENCH benchmarks must never be used as figures
of merit when comparing the performance of different systems. We further recommend
that speedup figures based on other benchmarks not be used as figures of merit in such
comparisons.

3. Speedup statistics may be used in a study of the performance characteristics of an
individual parallel system. But the basis for the determination of T; must be clearly
and explicitly stated.

4. The value of T} should be based on an efficient uniprocessor implementation. Code
for message passing, synchronization, etc. should not be present. The author should
also make a reasonable effort to insure that the algorithm used in the uniprocessor
implementation is the best practical serial algorithm for this purpose.

ot

. Given that a large problem frequently does not fit on a single node, it is permissible
to cite speedup statistics based on the timing of a smaller number of nodes. In other
words, it is permissible to compute speedup as T}, /Ty, for some m, 1 < m < p. If this
is done, however, this usage must be clearly stated, and full details of the basis of this
calculation must be presented. As above, care must be taken to insure that the unit
timing 7}, is based on an efficient implementation of appropriate algorithms.

2.7 Performance Database

The process of gathering, archiving, and distributing computer benchmark data is a cumber-
some task usually performed by computer users and vendors with little coordination. Within
Xnetlib [6] there is a mechanism to provide Internet-access to a performance database server
(PDS) which can be used to extract current benchmark data and literature. PDS [7] provides
an on-line catalog of public-domain computer benchmarks such as the LINPACK Benchmark
[8], Perfect Benchmarks [4], and the NAS Parallel Benchmarks [9]. PDS does not reformat
or present the benchmark data in any way that conflicts with the original methodology of
any particular benchmark; it is thereby devoid of any subjective interpretations of machine
performance. PDS is providing a more manageable approach to the development and support
of a large dynamic database of published performance metrics.

14

The PDS system was developed at the University of Tennessee and Oak Ridge National
Laboratory and is an initial attempt at performance data management. This on-line database
of computer benchmarks is specifically designed to provide easy maintenance, data secu-
rity, and data integrity in the benchmark information contained in a dynamic performance
database.

PDS was designed with a simple tabular format that involves displaying the data in rows
(machine configuration) and columns (numbers). Graphical representations of tabular data,
such as the representation by SPEC [10] with the obsolescent SPECmarks, are straightforward.

2.7.1 Design of a Performance Database

Because of the complexity and volume of the data involved in a performance database, it is
natural to exploit a database management system (DBMS) to archive and retrieve benchmark
data. A DBMS will help not only in managing the data, but also in assuring that the various
benchmarks are presented in some reasonable format for users: table or spreadsheet where
machines are rows and benchmarks are columns.

Of major concern is the organization of the data. It seems logical to organize data in the
DBMS according to the benchmarks themselves: a LINPACK table, a Perfect table, etc. It
would be nearly impossible to force these very different presentation formats to conform to
a single presentation standard just for the sake of reporting. Individual tables preserve the
display characteristics of each benchmark, but the DBMS should allow users to query all tables
for various machines. Parsing benchmark data into these tables is straightforward provided a
customized parser is available for each benchmark set. In the parsing process, constructing a
raw data file and building a standard format ASCII file eases the incorporation of the data
into the database.

The functionality required by PDS is not very different from that of a standard database
application. The difference lies in the user interface. Financial databases, for example, typi-
cally involve specific queries like

EXTRACT ROW ACCT_NO = R103049

in which data points are usually discrete and the user is very familiar with the data. The user,
in this case, knows exactly what account number to extract, and the format of retrieved data in
response to queries. With our performance database, however, we would expect the contrary:
the user does not really know (z) what kind of data is available, (i7) how to request/extract
the data, and (ii7) what form to expect the returned data to be in. These assumptions are
based on the current lack of coordination in (public-domain) benchmark management. The
number of benchmarks in use continues to rise with no standard format for presenting them.
The number of performance-literate users is increasing, but not at a rate sufficient to expect.
proper queries from the performance database. Quite often, users just wish to see the best-
performing machines for a particular benchmark. Hence, a simple rank-ordering of the rows
of machines according to a specific benchmark column may be sufficient for a general user.
Finally, the features of the PDS user interface should include

(1) the ability to extract specific machine and benchmark combinations that are of interest,
(2) the ability to search on multiple keywords across the entire dataset, and

(3) the ability to view cross-referenced papers and bibliographic information about the bench-
mark itself.

We include (3) in the list above to address the concern of proliferating numbers without
any benchmark methodology information. PDS would provide abstracts and complete papers
related to benchmarks and thereby provide a needed educational resource without risking
improper interpretation of retrieved benchmark data.

2.7.2 PDS Features
PDS provides the following retrieval-based functions for the user:

(1) a browse feature to allow casual viewing and point-and-click navigation through the
database,

(2) a search feature to permit multiple keyword searches with Boolean conditions,
(3) a rank-ordering feature to sort and display the results for the user, and

(4) a few additional features that aid the user in acquiring benchmark documentation and
references.

As discussed in [7], the Rank Ordering option in PDS allows the user to view a listing
of machines that have been ranked by a particular performance metric such as megaflop/s
or elapsed CPU time. Both Rank Ordering and Papers options are menu-driven data ac-
cess paths within PDS. With the Browse facility in PDS, the user first selects the vendor(s)
and benchmark(s) of interest, then selects the large Process button to query the perfor-
mance database. The PDS client then opens a socket connection to the server and, using
the query language (rdb), remotely queries the database. The Search option in PDS permits
user-specified keyword searches over the entire performance database. Search utilizes literal
case-insensitive matching along with a moderate amount of aliasing. Multiple keywords are
permitted, and a Boolean flag is provided for more complicated searches. Using Search, the
user has the option of entering vendor names, machine aliases, benchmark names, or specific
strings, or producing a more complicated Boolean keyword search. Since any retrieved data
will be displayed to the screen (by default), the Save option allows the user to store any re-
trieved performance data to an ASCII file. Finally, the Bibliography option in PDS provides
a list of relevant manuscripts and other information about the benchmarks. Future enhance-
ments to PDS include the use of more sophisticated two-dimensional graphical displays for
machine comparisons. Additional serial and parallel benchmarks will be added to the database
as formal procedures for data acquisition are determined. The Browse and Search facilities
available in the current version of PDS are illustrated in Appendix B.

2.7.3 PDS Availability

To receive Xnetlib with PDS support for Unix-based machines, send the electronic mail mes-
sage send znetlib.shar from znetlib to netlib@ornl.gov. You can unshar the file and compile
it by answering the user-prompted questions upon installation. Use of shar will install the
full functionality of Xnetlib along with the latest PDS client tool. Questions concerning PDS
should be sent to utpds@cs.utk.edu. The University of Tennessee and Oak Ridge National
Laboratory will be responsible for gathering and archiving additional (published) benchmark
data.

At present each benchmark measurement for a particular problem size N and processor
number p, is represented by one line in the database with variable length fields chosen by the
benchmark writer as suitable and comprehensive to describe the conditions of the benchmark
run. The fields separated by a marker include, benchmarkers name and e-mail, computer

16

location and date, hardware specification, compiler date and optimisation level, N, p, T(N, p),
Rp(N, P) and other metrics as deemed appropriate by the benchmark writer. Ideally, the line
for the database would be produced automatically as output by the benchmark program itself.

2.8 Interactive Graphical Interface

The Southampton Group has agreed to provide an interactive graphical front end to the
PARKBENCH database of performance results. To achieve this, the basic data held in the
Performance Data Base should be values of T(N;p) for at least 4 values of problem size N,
each for sufficient p-values (say 5 to 10) to determine the trend of variation of performance with
number of processors for constant problem size. It is important that there be enough p-values
to see Amdahl saturation, if present, or any peak in performance followed by degradation.
A graphical interface is really essential to allow this multidimensional data to be viewed in
any of the metrics defined above, as chosen interactively by the user. The user could also be
offered (by suitable interpolation) a display of the results in various scaled metrics, in which
the problem size is expanded with the number of processors.

In order to encompass as wide a range of performance and number of processors as possible,
a log-scale on both axes is unavoidable, and the format and scale range should be kept fixed
as long as possible to enable easy comparison between graphs. A three-cycle by three-cycle
log-log graph with range 1 to 1000 in both p and Mflop/s would cover most needs in the
immediate future. Examples of such graphs are to be found in [11, 12].

A log/log graph is also desirable because the size and shape of the Amdahl saturation
curve is the same wherever it is plotted on such a graph. That is to say there is a universal
Amdahl curve that is invariant to its position on any log/log graph. Amdahl saturation is a
two-parameter description of any of the performance metrics, R, as a function of p for fixed
N, which can be expressed by

— ROO
(1+py/p)

where R, is the saturation performance approached as p — oo and p%is the number of
processors required to reach half the saturation performance. The graphical interface should
allow this universal Amdahl curve to be moved around the graphical display, and be matched
against the performance curves. The changing values of the two parameters (Roo,py)should
be displayed as the Amdahl curve is moved. °

As more experience is gained with performance analysis, that is to say the fitting of per-
formance data to parameterised formulae, it is to be expected that the graphical interface
will allow more complicated formulae to be compared with the experimental data, perhaps
allowing 3 to 5 parameters in the theoretical formula. But, as yet, we do not know what these
for parameterised formula should be.

(2.6)

2.9 Benchmarking Procedure and Code Optimisation

Manufacturers will always feel that any benchmark not tuned specifically by themselves, is
an unfair test of their hardware and software. This is inevitable and from their viewpoint it
is true. NASA have overcome this problem by only specifying the problems (the NAS paper-
and-pencil benchmarks [13]) and leaving the manufacturers to write the code, but in many
circumstances this would require unjustifiable effort and take too long. It is also a perfectly
valid question to ask how a particular parallel computer will perform on existing parallel code,
and that is the viewpoint of PARKBENCH .

17

The benchmarking procedure is to run the distributed PARKBENCH suite on an as-is
basis, making only such non-substantive changes that are required to make the code run (e.g.
changing the names of header files to a local variant). The as-is run may use the highest level
of automatic compiler optimisation that works, but the level used and compiler date should
be noted in the appropriate section of the performance database entry.

After completing the as-is run, which gives a base-line result, any form of optimisation may
be applied to show the particular computer to its best advantage, up to completely rethinking
the algorithm, and rewriting the code. The only requirement on the benchmarker is to state
what has been done. However, remember that, even if the algorithm is changed, the official
flop-count, Fg(N) that is used in the calculation of nominal henchmark Mflop/s, Rg(N,p),
does not. In this way a better algorithm will show up with a higher Ry, as we would want it
to, even though the hardware Mflop/s is likely to be little changed.

Typical steps in optimisation might be:

1. explore the effect of different compiler optimisations on a single processor, and choose
the best for the as-is run.

2. perform the as-is run on multiple processors, using enough values of p to determine any
peak in performance or saturation.
3. return to single processor and optimise code for vectorisation, if a vector processor is

being used. This means restructuring loops to permit vectorisation.

4. continue by replacement of selected loops with optimal assembly coded library routines
(e.g. BLAS [14] where appropriate).

wt

. replacement of whole benchmark by a tuned library routine with the same functionality.

6. replace whole benchmark with locally written version with the same functionality but
using possibly an entirely different algorithm that is more suited to the architecture.

18

Chapter 3

Low-Level Benchmarks*

3.1 Introduction

The first step in the assessment of the performance of a massively parallel computer system is
to measure the performance of a single processing node of the multi-node system. There exist
already many good and well-established benchmarks for this purpose, notably the LINPACK
benchmarks and the Livermore Loops. These are not part of the PARKBENCH suite of
programs, but PARKBENCH recommends that these be used to measure single-node per-
formance, in addition to some specific low-level measurements of its own (see Section 3.2).
There follows a brief description of existing benchmarks that are recommended for measuring
single-node performance, with a discussion of their value.

3.1.1 Most Reported Benchmark: LINPACKD (n=100)

This well-known standard benchmark is a Fortran program for the solution of (100 x 100)
dense set of linear equations by Gaussian elimination. It is distributed by Jack Dongarra of
the University of Tennessee [8]. The results are quoted in Mflop/s and are regularly published
and available by electronic mail. The main value of this benchmark is that results are known
for more computers than any other benchmark. Most of the compute time is contained in
vectorisable DO-loops such as the DAXPY (scalar times vector plus vector) and inner product.
Therefore one expects vector computers to perform well on this benchmark. The weakness of
the benchmark is that it tests only a small number of vector operations, but it does include
the effect of memory access and it is solving a complete (although small) real problem.

3.1.2 Performance Range: The Livermore Loops

These are a set of 24 Fortran DO-loops (The Livermore Fortran Kernels, LFK) extracted
from operational codes used at the Lawrence Livermore National Laboratory [5]. They have
been used since the early seventies to assess the arithmetic performance of computers and
their compilers. They are a mixture of vectorisable and non-vectorisable loops and test rather
fully the computational capabilities of the hardware, and the skill of the software in compiling
efficient code, and in vectorisation. The main value of the benchmark is the range of per-
formance that it demonstrates, and in this respect it complements the limited range of loops
tested in the LINPACK benchmark. The benchmark provides the individual performance of

“assembled by Roger Hockney for Low-Level subcommittee

19

each loop, together with various averages (arithmetic, geometric, harmonic) and the quartiles
of the distribution. However, it is difficult to give a clear meaning to these averages, and the
value of the benchmark is more in the distribution itself. In particular, the maximum and
minimum give the range of likely performance in full applications. The ratio of maximum to
minimum performance has been called the instability or the speciality [15], and is a measure
of how difficult it is to obtain good performance from the computer, and therefore how spe-
cialised it is. The minimum or worst performance obtained on these loops is of special value,
because there is much truth in the saying that “the best computer to choose is that with the
best worst-performance”.

3.2 Single-Processor Benchmarks

The single-processor low-level benchmarks provided by PARKBENCH , aim to measure per-
formance parameters that characterise the basic architecture of the computer, and the compiler
software through which it is used. For this reason, such benchmarks have also been called
appropriately basic architectural benchmarks. Following the methodology of Euroben [16], the
aim is that these hardware/compiler parameters will be used in performance formulae that
predict the timing and performance of the more complex kernels (see Chapter 4) and com-
pact applications (see Chapter 5). They are therefore a set of synthetic benchmarks contrived
to measure theoretical parameters that describe the severity of some overhead or potential
bottleneck, or the properties of some item of hardware. Thus RINF1 characterises the ba-
sic properties of the arithmetic pipelines by measuring the parameter (‘rco,n%), and POLY1
and POLY2 characterise the severity of the memory bottleneck by measuring the parameters
(7,f1)-

The fundamental measurement in any benchmarking is the measurement of elapsed wall-
clock time. Because the computer clocks on each node of a multi-node MPP are not synchro-
nised, all benchmark time measurements must be made with a single clock on one node of the
system. The benchmarks TICK1 and TICK2 have, respectively, been designed to measure
the resolution and to check the absolute value of this clock. These benchmarks should be run
with satisfactory results before any further benchmark measurements are made.

3.2.1 Timer resolution: TICK1

TICK1 measures the interval between ticks of the clock being used in the benchmark mea-
surements. That is to say the resolution of the clock. A succession of calls to the timer
routine are inserted in a loop and executed many times. The differences between successive
values given by the timer are then examined. If the changes in the clock value (or ticks) occur
less frequently than the time taken to enter and leave the timer routine, then most of these
differences will be zero. When a tick takes place, however, a difference equal to the tick value
will be recorded, surrounded by many zero differences. This is the case with clocks of poor
resolution; for example most UNIX clocks that tick typically every 10 ms. Such poor UNIX
clocks can still be used for low-level benchmark measurements if the benchmark is repeated,
say, 10,000 times, and the timer calls are made outside this repeat loop.

With some computers, such as the CRAY series, the clock ticks every cycle of the com-
puter, that is to say every 6ns on the Y-MP. The resolution of the CRAY clock is therefore
approximately one million times better than a UNIX clock, and that is quite a difference! If
TICK1 is used on such a computer the difference hetween successive values of the timer is a
very accurate measure of how long it takes to execute the instructions of the timer routine,
and therefore is never zero. TICK1 takes the minimum of all such differences, and all it is

20

possible to say is that the clock tick is less than or equal to this value. Typically this mini-
mum will be several hundreds of clock ticks. With a clock ticking every computer cycle, we
can make low-level benchmark measurements without a repeat loop. Such measurements can
even be made on a busy timeshared system (where many users are contending for memory
access) by taking the minumum time recorded from a sample of, say, 10,000 single execution
measurements. In this case, the minimum can usually be said to apply to a case when there
was no memory access delay caused by other users.
TICK1 exists and forms part of the Genesis benchmarks [17].

3.2.2 Timer value: TICK2

TICK2 confirms that the absolute values returned by the computer clock are correct, by
comparing its measurement of a given time interval with that of an external wall-clock (actually
the benchmarker’s wristwatch). Parallel benchmark performance can only be measured using
the elapsed wall-clock time, because the objective of parallel execution is to reduce this time.
Measurements made with a CPU-timer (which only records time when its job is executing in
the CPU) are clearly incorrect, because the clock does not record waiting time when the job
is out of the CPU. TICK2 will immediately detect the incorrect use of a CPU-time-for-this-
job-only clock. An example of a timer that claims to measure elapsed time but is actually a
CPU-timer, is the returned value of the popular Sun UNIX timer ETIME. TICK2 also checks
that the correct multiplier is being used in the computer system software to convert clock
ticks to true seconds.
TICK2 exists and forms part of release 2.2 and later of the Genesis benchmarks [17].

3.2.3 Basic Arithmetic Operations: RINF1

This benchmark takes a set of common Fortran DO-loops and analyses their time of execution
in terms of the two parameters (ro ,‘)1%)[18, 19, 20, 21, 22, 23]. 7o is the asymptotic perfor-
mance rate in Mflop/s which is approached as the loop (or vector) length, n, becomes longer.
ny (the half-performance length) expresses how rapidly, in terms increasing vector length, the
actual performance, r, approaches ro.. It is defined as the vector length required to achieve
a performance of one half of ro,. This means that the time, ¢, for a DO-loop correspond-
ing to ¢ vector operations (i.e. with ¢ floating-point operations per element per iteration) is
approximated by

t=gqx(n+ny)/re . (3.1)

Then the performance rate is given by

(32)

We can see from Eqn.(3.1) that niis a way of measuring the importance of vector startup
overhead (=n1/re) in terms of quantities known to the programmer (loop or vector length).
In the benchmark program, the two parameters are determined by a least-squares fit of the
data to the straight line defined by Eqn.(3.1). A useful guide to the significance of nis to
note from Eqn.(3.2) that 80 percent of the asymptotic performance is achieved for vectors
of length 4 x ni. Generally speaking, n1values of upto about 50 are tolerable, whereas the
performance of computers with larger values of n%is severely constrained by the need to keep
vector lengths significantly longer than ny. This requirement makes the computers difficult to
program efficiently, and often leads to disappointing performance, compared to the asymptotic
rate advertised by the manufacturer.

21

RINF1 has been used extensively for about ten years as part of the Hockney and EuroBen
benchmarks (module MOD1AC) [24]. It is also included in the Genesis benchmarks [17].

3.2.4 Memory-Bottleneck Benchmarks: POLY1 and POLY2

Even if the vector lengths are long enough to overcome the vector startup overhead, the
peak rate of the arithmetic pipelines may not be realised because of the delays associated
with obtaining data from the cache or main memory of the computer. The POLY1 and
POLY2 benchmarks quantify this dependence of computer performance on memory access
bottlenecks. The computational intensity, f, of a DO-loop is defined as the number of floating-
point operations (flop) performed per memory reference (mref) to an element of a vector
variable [23]. The asymptotic performance, ro,, of a computer is observed to increase as
the computational intensity increases, because as this becomes larger, the effects of memory
access delays become negligible compared to the time spent on arithmetic. This effect is
characterised by the two parameters (7, f%), where 7is the peak hardware performance of the
arithmetic pipeline, and fiis the computational intensity required to achieve half this rate.
That is to say the asymptotic performance is given by:

T OERID o

If memory access and arithmetic are not overlapped, then fican be shown to be the ratio
of arithmetic speed (in Mflop/s) to memory access speed (in I\[word/s) [23]. The parameter
fi, like ny, measures an unwanted overhead and should be as small as possible. In order to
vary f and allow the peak performance to be approached, we choose a kernel loop that can be
computed with maximum efficiency on any hardware. This is the evaluation of a polynomial
by Horner’s rule, in which case the computational intensity is the order of the polynomial,
and both the multiply and add pipelines can be used in parallel. To measure f1, the order of
the polynomial is increased from one to ten, and the measured performance for long vectors
is fitted to Eqn.(3.3).

The POLY1 benchmark repeats the polynomial evaluation for each order typically 1000
times for vector lengths upto 10,000, which would normally fit into the cache of a cache-based
processor. Except for the first evaluation the data will therefore be found in the cache. POLY1
is therefore an in-cache test of the memory bottleneck between the arithmetic registers of the
processor and its cache.

POLY?2, on the other hand, flushes the cache prior to each different order and then performs
only one polynomial evaluation, for vector lengths from 10,000 upto 100,000, which would
normally exceed the cache size. Data will have to be brought from off-chip memory, and
POLY?2 is an out-of-cache test of the memory bottleneck between off-chip memory and the
arithmetic registers.

The POLY1 benchmark exists as MOD1G of the EuroBen benchmarks [24]. POLY?2 exists
as part of the Hockney benchmarks.

3.3 Multi-Processor Benchmarks

The PARKBENCH suite of benchmark programs provide low-level benchmarks to charac-
terise the basic communication properties of an MPP by measuring the parameters (roo.n%)for
communication (COMMS1, COMMS2, COMMS3). The ratio of arithmetic speed to commu-
nication speed (the hardware+compiler parameter fifor communication) is measured by the

22

POLY3 benchmark. The ability to synchronise the processors in a large MPP, in an acceptable
time, is a key characteristic of such computers, and the SYNCH1 benchmark measures the
number of barrier statements that can be executed per second as a function of the number of
processors taking part in the barrier.

3.3.1 Communication Benchmarks: COMMS1 and COMMS2

The purpose of the COMMS1, or Pingpong, benchmark [25, 15] is to measure the basic com-
munication properties of a message-passing MIMD computer. A message of variable length, n,
is sent from a master node to a slave node. The slave node receives the message into a Fortran
data array, and immediately returns it to the master. Half the time for this message pingpong
is recorded as the time, t, to send a message of length, n. In the COMMS2 benchmark there is
a message exchange in which two nodes simultaneously send messages to each other and return
them. In this case advantage can be taken of bidirectional links, and a greater bandwidth can
be obtained than is possible with COMMSI. In both benchmarks, the time as a function of
message length is fitted by least squares using the parameters (re,n1)[20, 23] to the following
linear timing model: N

t=(n+ny)/re (3.4)
when the communication rate is given by
Too . -
=T . pipe(n/ni 3.5
Ul ey il pipe(n/ny) (3.5)
1 ipe(r) = 1 (36)
here pipe(z) = ——— X
v PP T+1/z
and the startup time is
to=ny/re (3.7)

In the above equations, reis the asymptotic bandwidth of communication which is approached
as the message length tends to infinity (hence the subscript), and n 1is the message length
required to achieve half this asymptotic rate. Hence n.is called the half-performance message
length. N

The importance of the parameter n1is that it provides a yardstick with which to measure
message-length, and thereby enables one to distinguish the two regimes of short and long
messages. For long messages (n > n 1), the denominator in equation 3.5 is approximately
unity and the communication rate is approximately constant at its asymptotic rate, ro

TR Too (3.8)

For short messages (n < ny), the communication rate is best expressed in the algebraically
equivalent form

Ton
r= (Hfm (3.9)
where m=tyt = Too /Ty (3.10)
For short messages, the denominator in equation 3.9 is approximately unity, so that
r = 7mon =n/ty (3.11)

In sharp contrast to the approximately constant rate in the long-message limit, the communi-
cation rate in the short message limit is seen to be approximately proportional to the message

23

length. The constant of proportionality, 7o, is known as the specific performance, and can be
expressed conveniently in units of kilobyte per second per byte (kB/s)/B or ‘k/s’. Unfortu-
nately since an SI prefix, such as k, cannot stand alone without a unit symbol, this unit must
be written either as 10%/s or as kHz, where Hz is a special unit name for per second (s7!).

Thus, in general, we may say that r..characterises the long-message performance and 7
the short-message performance. The COMMS1 benchmark computes all four of the above
parameters, (roo,n%,tg,andﬂg), because each emphasises a different aspect of performance.
However only two of them are independent. In the case that there are different modes of
transmission for messages shorter or longer than a certain length, the benchmark can read
in this breakpoint and perform a separate least-squares fit for the two regions. An example
is the Intel iPSC/860 which has a different message protocol for messages shorter than and
longer than 100 byte.

Because of the finite (and often large) value of to, the above is a two-parameter description
of communication performance. It is therefore incorrect, and sometimes positively misleading,
to quote only one of the parameters (e.g. just r, as is often done) to describe the performance.
The most useful pairs of parameters are (rx,,n%), (mo,my) and (to, 7o), depending on whether
one is concerned with long vectors, short vectors or a direct comparison with hardware times.
Note also that, although ny is defined as the message length required to obtain half the
asymptotic rate ro, the two i)al'alllet(‘l's (roosn %) are sufficient to calculate the communication
rate for any message length via equation 3.5, or equivalently using 7, instead of ro via 3.9.

The COMMS1 and COMMS2 benchmarks exist as part of the Genesis benchmarks [17].

3.3.2 Total Saturation Bandwidth: COMMS3

To complement the above communication benchmarks, there is a need for a benchmark to
measure the total saturation bandwidth of the complete communication system, and to see
how this scales with the number of processors. A natural generalisation of the COMMS2
benchmark is made as follows, and called the COMMS3 benchmark: Each processor of a p-
processor system sends a message of length n to the other (p — 1) processors. Each processor
then waits to receive the (p—1) messages directed at it. The timing of this generalised pingpong
ends when all messages have been successfully received by all processors; although the process
will be repeated many times to obtain an accurate measurement, and the overall time will
be divided by the number of repeats. The time for the generalised pingpong is the time to
send p(p — 1) messages of length n and can be analysed in the same way as COMMS1 and
COMMS?2 into values of (rx,,n%). The value obtained for reis the required total saturation
bandwidth, and we are interested in how this scales up as the number of processors p increases
and with it the number of available links in the system.
COMMSS3 is a new benchmark written specifically for PARKBENCH .

3.3.3 Communication Bottleneck: POLY3

POLY3 assesses the severity of the communication bottleneck. It is the same as the POLY1
benchmark except that the data for the polynomial evaluation is stored on a neighbouring pro-
cessor. The value of f 1 obtained therefore measures the ratio of arithmetic to communication
performance. Equation 3.3 shows that the computational intensity of the calculation must be
significantly greater than fi(say 4 times greater) if communication is not to be a bottleneck.
In this case the computational intensity is the ratio of arithmetic performed on a processor to
words transferred to/from it over communication links. In the common case that the amount
of arithmetic is proportional to the volume of a region, and the data communicated is pro-
portional to the surface of the region, the computational intensity is increased as the size of

24

the region (or granularity of the decomposition) is increased. Then the f, Lobtained from this
benchmark is directly related to the granularity that is required to make communication time
unimportant.

POLY3 is a new benchmark written specifically for PARKBENCH .

3.3.4 Synchronisation Benchmarks: SYNCH1

SYNCH1 measures the time to execute a barrier synchronisation statement as a function of
the number of processes taking part in the barrier. The practicability of massively parallel
computation with thousands or tens of thousands of processors depends on this barrier time
not increasing too fast with the number of processors. The results are quoted both as a barrier
time, and as the number of barrier statements executed per second (barr/s).

The SYNCH1 benchmark exists as part of Genesis v2.1.1 [17].

3.4 Summary of Benchmarks

Table-3.1 summarises the current low-level benchmarks, and the architectural properties and
parameters that they measure.

Table 3.1: Current Low-Level benchmarks and the Parameters they measure. Note
we abbreviate performance (perf.), arithmetic (arith.), communication (comms.),
operations (ops.).

Benchmark Measures Parameters

SINGLE-PROCESSOR

TICK1 Timer resolution tick interval
TICK2 Timer value wall-clock check
RINF1 Basic Arith. ops. (re,my)
POLY1 Cache-bottleneck (7.f1)
POLY?2 Memory-bottleneck (f,fl)
MULTI-PROCESSOR

COMMS1 Basic Message perf. (rocymy)
COMMS2 Message exch. perf. (rooim1)
COMMS3 Saturation Bandwidth (roo,n;)
POLY3 Comms. Bottleneck (f'.f%‘j
SYNCH1 Barrier time and rate barr“/s

3.4.1 Arithmetic Benchmark Results

As an indication of the type of results given by the proposed low-level arithmetic benchmarks,
Table-3.2 gives measurements made on a number of workstations, and microprocessor chips
that are used as processing nodes in multiprocessor MIMD computers. The measurements
shown represent the state of affairs on the date of the measurements, and both hardware
and software improvements since that time should have significantly improved the results.
They are presented here only to illustrate the type of results to be expected from the low-
level benchmarks. They should not be taken as representing the current state of competitive
performance in the very rapidly changing workstation and chip market. Such a comparison

Table 3.2: Examples of low-level benchmark measurements on some common work-
stations and microprocessor chips used in MIMD computers. Measurements were
made with the highest level of optimisation that ran, and are in Mflop/s for 64-bit
precision. The units of nare vector length, and fiare flop/mref. Results are for
the best generally available compiler on the date shown. The RINF1 benchmark
gives values of the (rec,ny)parameters for the kernel A=B*C (vector = vector x
vector) for contiguously stored vectors.
Intel IBM RS/ DEC
Benchmark i860XP 6000-530 a
50MHz 25MHz 133MHz

d/m/y 12/10/93 14/6/90 13/1/93
Linpackd 14.7 9.54 20.7
n=100

Livermore 28.8 318 46.6
Maximum

Livermore 2.62 1.34 4.47
Minimum

RINF1

Too 7.64 26.4
(n1) (2.58) (5.6)
POLY1

T 13.50 25.85 88.9
(f1) (0.44) (0.34) (0.71)
POLY2

T 13.48 25.65

(f1) (112) (0.91)

will only be possible if these benchmarks are routinely run on new hardware and software and
the results stored in the PARKBENCH interactive performance database, which would then
contain an up-to-date comparison of competitive hardware and software. Notwithstanding
these caveats, we feel it is helpful to give these examples of low-level benchmark measurements
that happen to be available, even though some are a few years old and therefore probably
seriously outdated. In this small table we have not room to give the full specification of the
conditions for each measurement (full and exact description hardware, and of compiler and
options used, etc.), but this information would be an essential and required component of an
entry into the PARKBENCH database of benchmark results.

3.4.2 Example Results for the COMMS1 benchmark

We report below results for the COMMS1 benchmark on the SUPRENUM , and Intel
iPSC/860 [15], Touchstone Delta [26], Intel Paragon XP/S and Meiko CS-2 computers.
Table-3.3 gives the values obtained for the communication parameters, in the version of
the benchmark using the native SUPRENUM extensions to the Fortran90 language. These
include a SEND and RECEIVE language statement with a syntax similar to that of the
Fortran READ and WRITE statement. The asymptotic stream rate, or bandwidth, (rs)
shows considerable variation on the Suprenum, depending on how the data to be transferred
is specified in the I/O list of the SEND statement. A variable length array in Fortran90
syntax in single precision achieves 0.67 MB/s, whereas the same statement specified in double
precision achieves 4.8 MB/s. This double-precision rate is about twice that observed on

26

the iPSC/860 with their CSEND Fortran subroutine, which sends an array whose length is
specified in bytes. The principal difference between the two computers is the magnitude of the
startup time, fo, which is 73us on the iPSC/860 compared with about 3ms on the Suprenum.
Since the startup time, via 7o, determines the transfer rate for short messages (say < 100B),
we see that the Suprenum is 45 times slower than the iPSC/860 for short messages. On the
other hand the Suprenum has almost twice the stream rate for long messages (as seen by the
value of r,), provided the most favourable format (i.e. double precision or 64-bit) is used in
the T/0O list. One may compute from these numbers that the iPSC/860 is faster at transferring
messages for all message lengths less than 16,481 Byte. The longer startup time on Suprenum
results in larger values of ny, showing that longer messages are needed to achieve any given
fraction of the asymptotic rate.

The results for the Touchstone Delta show that this computer has the fastest short and
long message performance, judged respectively by the values of 7y and ro.. However the
improvement of short message performance over the iPSC/860 is only marginal, and the
long message performance is only about one quarter of the advertised bandwidth of 25MB/s.
However hardware and software improvements made since the measurements were made should
have improved the results.

If we compare the new generation of production computers, the Intel Paragon XP/S and
the Meiko CS-2, we find, on the dates stated, the CS-2 to have a higher communication
performance than the Paragon for both short (m) and long messages (ro.), and therefore
for all message lengths. However both computers are at an early state of the hardware and
software development, and both have considerable development potential. The COMMS1
benchmark will continue to be used to track this competition in communication performance,
and the success of both manufacturers to achieve a high performance for both short and long
messages.

Table 3.3: Values of (rx,n%‘ to, 7o) for the communication of messages between
two nodes of the same cluster on the Suprenum and neighbouring nodes on the
Intel iPSC/860, Touchstone Delta, Intel Paragon and Meiko CS-2 computers. The
Delta measurements were made on 17 Jan. 1992, and should have been improved
by subsequent hardware and software changes. Paragon measurements were made

at ORNL 25-28 May, 1993, and the CS-2 measurements were made at Southampton
University 9 July, 1993
Specification Range Too ny to o
B* MB/s B ms kHz
SUPRENUM
sp SEND A(L:N) 0.67 2041 3.05 0.328
dp SEND A(1:N) 4.82 12740 2.64 0.378
INTEL iPSC/860
CSEND (,AN,) N < 100 236 179 0074 135
N > 100 2.80 560 0.200 5.0
INTEL Delta
CSEND (,AN,,) N <512 3.48 213 0.061 16.3
N > 512 6.76 892 0.132 7.57
INTEL Paragon XP/S
CSEND (,A,N,,) N <40000 235 4044 0172 5.80
Meiko CS-2
PARMACS N < 40000 43.0 3747 0.087 115
* B - byte

Chapter 4

Kernel Benchmarks*

4.1 Introduction and Rationale

The low-level benchmark codes are designed to measure the basic architectural features of
parallel machines. Full application codes obviously measure the performance of a parallel
system on the full problem and this is ultimately what the user wants. However, in many
instances, the full application codes are complex, contain many 100s of thousands of lines of
Fortran, and are not available in a suitable parallel version. In order to obtain a guide to the
performance of any given parallel system on a particular application something less complex
than the full application is useful. A profile of the sequential version of the application enables
the compute intensive portions of the program to be identified. It is these compute-intensive
sections of an application that we wish to model with the introduction of parallel kernel
benchmarks.

The popular kernel benchmarks that have been used for traditional vector supercomputers,
such as the Livermore Loops [5], the LINPACK benchmark [8] and the original NAS kernels
[27], are clearly inappropriate for the performance evaluation of highly parallel machines.
First of all, the tuning restrictions of these benchmarks rule out many widely used parallel
extensions. More importantly, the computation and memory requirements of these programs
do not do justice to the vastly increased capabilities of the new parallel machines, particularly
those that will be available by the mid 1990’s. For these reasons we believe that a new, widely
accepted set of kernel benchmarks is desirable as a step on the way to more sensible and
scientific performance reporting of parallel systems.

The kernel codes are typically up to a few thousand lines of Fortran and are sufficiently
simple that the performance of a given parallel machine on this program may be related
to the underlying architectural parameters. It must be acknowledged, however, that the
performance on kernels alone is insufficient to completely assess the performance potential of
a parallel machine on full scientific applications. The chief difficulty is that a certain data
structure may be very efficient on a certain system for one of the isolated kernels, and yet this
data structure would be inappropriate if incorporated into a larger application. For example,
the performance of a real CFD application on a parallel system is critically dependent on
data motion between different computational kernels. In addition, full applications typically
have initialization phases, I/O and so on, so complete reproduction of these features can be
of critical importance for a realistic guide to performance.

For these reasons the PARKBENCH suite introduces a level of complexity above kernel

*assembled by Tony Hey for Kernel subcommittee

28

codes which is called compact applications. These are full but perhaps simplified application
codes that contain all the necessary features of the full problem but are sufficiently simple to
run and analyse. These are described in the Compact Application chapter of this document.

4.2 The Kernel Benchmarks

The kernels attempt to span a reasonably wide range of application areas by including the
most frequently encountered computationally intensive types of problems. We have tentatively
grouped them into four sections. Some of the benchmark codes are taken from existing parallel
benchmark suites (NAS [28], Genesis [12], etc). In order to avoid duplication and redundancy,
we have attempted to list some of the attributes of the parallel system tested by each kernel
benchmark.

4.2.1 Matrix benchmarks

For the past 15 years or so, there has been a great deal of activity in the area of algorithms
and software for solving linear algebra problems. The linear algebra community has long
recognized the need for help in developing algorithms into software libraries, and several years
ago, as a community effort, put together a de facto standard for identifying basic operations
required in linear algebra algorithms and software. The hope was that the routines making up
this standard, known collectively as the Basic Linear Algebra Subprograms (BLAS), would be
efficiently implemented on advanced-architecture computers by many manufacturers, making
it possible to reap the portability benefits of having them efficiently implemented on a wide
range of machines. This goal has been largely realized.

The key insight of this approach to designing linear algebra algorithms for advanced archi-
tecture computers is that the frequency with which data are moved between different levels of
the memory hierarchy must be minimized in order to attain high performance. Thus, our main
algorithmic approach for exploiting both vectorization and parallelism in our implementations
is the use of block-partitioned algorithms, particularly in conjunction with highly-tuned ker-
nels for performing matrix-vector and matrix-matrix operations (the Level 2 and 3 BLAS). In
general, the use of block-partitioned algorithms requires data to be moved as blocks, rather
than as vectors or scalars, so that although the total amount of data moved is unchanged,
the latency (or startup cost) associated with the movement is greatly reduced because fewer
messages are needed to move the data.

A second key idea is that the performance of an algorithm can be tuned by a user by
varying the parameters that specify the data layout. On shared memory machines, this is
controlled by the block size, while on distributed memory machines it is controlled by the
block size and the configuration of the logical process mesh.

The way in which an algorithm’s data are distributed over the processors of a concurrent
computer has a major impact on the load balance and communication characteristics of the
concurrent algorithm, and hence largely determines its performance and scalability. The
block scattered (or block cyclic) decomposition provides a simple, yet general-purpose, way of
distributing a block-partitioned matrix on distributed memory concurrent computers. In the
block scattered decomposition, described in detail in [29], a matrix is partitioned into blocks
of size r x s, and blocks separated by a fixed stride in the column and row directions are
assigned to the same processor. If the stride in the column and row directions is P and @
blocks respectively, then we require that P @ equals the number of processors, N,. Thus, it is
useful to imagine the processors arranged as a P x @) mesh, or template. Then the processor

29

at position (p,q) (0<p< P,0<¢< Q) in the template is assigned the blocks indexed by,

(p+iP q¢+3Q), (4.1)

where i = 0,...,[(My —p—1)/P], j=0,...,[(Ns —q¢ —1)/Q], and M, x Nj is the size of
the matrix in blocks.

Blocks are scattered in this way so that good load balance can be maintained in algorithms,
such as LU factorization [30, 31], in which rows and/or columns of blocks of a matrix become
eliminated as the algorithm progresses. However, for some of the distributed Level 3 BLAS
routines a scattered decomposition does not improve load balance, and may result in higher
concurrent overhead. The general matrix-matrix multiplication routine xGEMM is an example
of such a routine for which a pure block (i.e., nonscattered) decomposition is optimal when
considering the routine in isolation. However, xGEMM may be used in an application for
which, overall, a scattered decomposition is best.

The underlying concept of the implementations we have chosen for dense matrix computa-
tions is the use of block-partitioned algorithms to minimize data movement between different
levels in hierarchical memory. The ideas discussed here for dense linear algebra computations
are applicable to any computer with a hierarchical memory that (1) imposes a sufficiently large
startup cost on the movement of data between different levels in the hierarchy, and for which
(2) the cost of a context switch is too great to make fine grain size multithreading worthwhile.
These ideas have been exploited by the software packages LAPACK [14] and ScaLapack [32].
The PARKBENCH suite includes five matrix kernels.

1. Dense matrix multiply. Communication involves broadcast of data along rows of mesh,
and periodic shift along column direction (or vice versa).

¥

. Transpose. Matrix transpose is an important benchmark because it exercises the com-
munications of computer heavily on a realistic problem where pairs of processors com-
municate with each other simultaneously. It is a useful test of the total communications
capacity of the network.

w

. Dense LU factorization with partial pivoting. Searching for a pivot is basically a reduc-
tion operation within one column of the processor mesh. Exchange of pivot rows is a
point-to-point communication. Update phase requires data to be broadcast along rows
and columns of the processor mesh.

4. QR Decomposition. In this benchmark parallelization is achieved by distribution of rows
on a logical grid of processors using block interleaving.

. Matrix tridiagonalization, for eigenvalue computations of symmetric matrices.

ot

There have been many implementations of matrix multiplication algorithms on distributed
memory machines [33, 34, 35]. Many of them are limited in their use since they are imple-
mented with a pure block (non-scattered) distribution, or specific (not general-purpose) data
distribution, and/or on square processor configurations with a specific number of processors
(column and/or row numbers of processors are powers of 2). The software contained in this
benchmark eliminates all of these constraints.

Our matrix multiplication algorithm is a block scattered variant of that of Fox, Hey, and
Otto [33], that deals with arbitrary rectangular processor templates.

Suppose the matrix A has M, block rows and L; block columns, and the matrix B has L
block rows and N, block columns. Block (7, .J) of C is then given by

Ly—1
C(I,J) =Y A(I,K)-B(K,J) (4.2)

K=0

30

DOK=0,L,—-1
[Columncast one block of B (B(1,MOD(I + K, N)), I =0: L)
along each column across template]
PARDO I =0,M;,—1
KP =MOD(K +1I,L,)
PARDO J=0,N, — 1
C(I,J)=C(I,J)+ A(I,KP)-B(KP,J)
END PARDO
END PARDO
[Roll A leftwards]
END DO

Figure 4.1: A distributed block scattered matrix multiplication algorithm. The PARDO’s
indicate over which indices the data are decomposed. All indices refer to blocks of elements.
Communication phases are indicated in square brackets.

where I =0,1,...,M, — 1, J =0,1,...,] N, — 1. In Equation 4.2 the order of summation is
arbitrary.

Fox et al. initially considered only the case of square matrices in which each processor
contains a single row or a single column of blocks. That is, the blocks that start the summation
lie along the diagonal. The summation is started at a different point for each block row of C
so that in the phase of the parallel algorithm corresponding to summation index K, A(I, K)
and B(K,J) can be multiplied in the processor to which C(I,J) is assigned.

This requires each processor containing a block of B to be multiplied in step K to broadcast
that block along the column of the processor template at the start of the step. Also A must
be rolled leftwards at the end of the step so that each column is overwritten by the one to the
right, with the first column wrapping round to overwrite the last column. The pseudocode for
this algorithm is shown in Figure 4.1. Another variant of this algorithm involves broadcasting
blocks of A over rows, and rolling B upwards.

In Figure 4.1 a columncast is a communication phase in which one data item (typically a
block, or set of blocks) is taken from each block column of the matrix and is broadcast to all
the other processors in the same column of the processor template. A rowcast is similar, but
broadcasts a data item from each block row of the matrix to all processors in the same row of
the template.

The kernels for LU, QR and the reduction of a symmetric matrix to tridiagonal form in
preparation for eigenvalue computations all use block-partitioned algorithms. They rely on
the BLAS for most of the computational performance and the BLACS for communication.

4.2.2 Fourier Transforms

The computational of the fast Fourier transforms (FFTs) is the cornerstone of many super-
computer applications. These include not only the predictable digital signal processing, speech
recognition, image processing, and petroleum seismic analysis, but also other less obvious ap-
plications, such as in computational fluid dynamics, medical technology, multiple precision
arithmetic and computational number theory. Computations worthy of a highly parallel su-

31

0/1]2|0[1/2]0]1]2]0[1]2 0/1/2|0]1/2]0]1]2]0[1|2
3/45|/3/4|5|3/4/5|3/4|5 34/5|3/4|5|3/4/5|3/41|5
0/1]2]0[1/2]0]1]2]0[1]2 0f/1/2|0[1/2]|0]1]2]0[1]2
3/4/5|3/4|5|3/4/5|3/4|5 3/4/5|3/4|5|3/4/5|3/4|5
0/1]2|0]1/2]0]1]2]0[1]2 0/1/2|0]1/2]0]1]2]0[1]2
3/4/5|3/4|5(3/4/5|3/4|5 3/4/5|/3|4/5/3/4/5|3/4|5
0/1]2|0[1/2]0]1]2]0[1]2 0/1/2|0[1/2]0]1]2]0[1]2
3/4/5|3/4/5/3]4/5/3/4|5 3/4/5|/3/4/5|3/4/5|3/4|5
0/1]2|0[1/2]0]1]2]0[1]2 0/1/2|0[1/2]0]1]2]0[1]2
3/4/5|3/4/5/3/4/5|3/4|5 3/4/5|/3/4/5|3/4]5|3/4|5
0/1]2|0[1/2]0]1]2]0[1]2 0/1/2|0[1/2]0]1]2]0[1[2
314/513/41513/4/5134]5 314/513/41513/4/513/4]5
K=0 K=1

Figure 4.2: Snapshot of SDB algorithm. The blocks of the matrix B communicated in the
first two stages of the matrix multiplication algorithm are shown shaded. In this case P = 2
and @ = 3. In each stage, only one wrapped diagonal is columncast. The total number of
stages is Lj.

percomputer generally fall into four categories: (1) one or a few very long 1-D FFTs; (2) many
small or moderate-sized 1-D FFTs; (3) one or a few large 2-D FFTs; or (4) one or a few large
3-D FFTs. The PARKBENCH suite includes two FFT test kernels, one for a large 1-D FFT,
and one for a large 3-D FFT.

1. 1-D FFT. In this kernel, two sequences of integers z; and y; are generated, with length
n = 2™ and values in the range 0 < z;, y; < M. The standard value of M is 1024. These
sequences are generated using the same uniform pseudo-random number generator as
is used in the 3-D FFT kernel and the embarrassingly parallel kernel. Then the linear
convolution of these two sequences is computed using a complex-number FFT, i.e. by
padding = and y with zeroes to length 2n, then performing a forward FFT on = and y,
multiplying the two resulting sequences of complex numbers, and finally performing an
inverse FFT on the result. The result sequence should have exclusively integer values,
which permits a straightforward validity check.

No restriction is placed on the FFT technique used to perform this convolution, except
that it be based on a complex-number FFT rather than, for example, a number-theoretic
FFT. It is expected, however, that efficient implementations will employ techniques, such
as Edson’s algorithm and real-to-complex FFTs, that take advantage of the purely real
nature of the input and output data to reduce the computational cost. The usage of
vendor-supplied library FFT routines is permitted. The serial implementation program
includes a reasonably efficient 1-D FFT suitable for computation on a workstation or
single processor vector system.

2. 3-D FFT. The PARKBENCH 3-D FFT kernel is the 3-D FFT PDE benchmark from
the NAS Parallel Benchmark suite [28]. It performs the essence of many spectral codes
and is a rigorous test of long-distance communication performance. A brief description
of this benchmark is as follows.

32

Consider the partial differential equation (PDE)

Ou(x,t) 2
—_— aViu(z,t
5t (w,1)
where z is a position in three-dimensional space. When a Fourier transform is applied
to each side, this equation becomes
dv(z,t)

= —4ar?|z|?v(z,t)

where v(z,t) is the Fourier transform of u(z,t). This has the solution
v(z,t) = e"‘”z‘z‘hv(;,o)

In this benchmark problem, one starts with a 3-D complex array U, which represents u
above, which is filled with pseudorandom data generated by the same scheme as used in
the embarrassingly parallel kernel. Then one computes V', the result of a forward 3-D
FFT of U. For each of several iterations, one multiplies V' by the appropriate exponential
factors and performs an inverse 3-D FFT on the result.

Any complex FFT algorithm may be used for the computation of the 3-D FFTs men-
tioned above, and vendor-supplied library routines may be employed.

4.2.3 PDE Kernels

In these PDE kernels communication is basically exchange with neighbors and the convergence
check is a reduction. A variety of methods and update stencils may be used. The following
two PDE solvers have been proposed for inclusion in the parallel benchmark suite:

1. Successive Over-Relaxation (SOR) kernel. The PARKBENCH SOR kernel is based
on the PDE1 benchmark from the GENESIS distributed memory benchmark suite [17].
This benchmark solves the Poisson equation on a 3-dimensional grid by parallel red-black
relaxation with Chebyshev acceleration. In this method the mesh points are divided into
two groups according to whether the sum of indices is odd (‘red’) or even (‘black’). The
method proceeds in half iterations, during each of which only half the points are adjusted
(alternately the ‘red” and ‘black’ set of points). Thus all the ‘red’ points can be adjusted
in parallel during one half iteration, and similarly all the ‘black’ points in parallel during
the next half iteration. The problem is discretized using the ordinary 7-point difference
stencil in a regular cubic grid. The value of the relaxation factor (w) changes at each
half iteration according to:

w® =1
W= 1/ (11207
W2 = 1)1 - 1/4p*w®), t=0,1/2,1,..., 00, (4.3)

where p is the convergence factor of the corresponding Jacobi iteration and the super-
script ¢ designates the iteration number. For large number of iterations, w tends to the
constant relaxation factor that is used throughout the traditional SOR procedure. The
asymptotic convergence factor is therefore the same for both algorithms.

In order to map the problem onto a parallel multiprocessor system the 3-dimensional grid
is divided into cuboidal subgrids. Each subgrid is assigned to a node in such a way that

33

neighbouring subgrids are mapped on neighbouring nodes. The grid variables in each
subgrid are exclusively computed by its associated node. At the inner boundaries of the
subgrid the nodes need values at points which are contained in the neighbouring subgrid.
Rather then transferring these values exactly at the time when they are needed — this
would prevent vector processing within the node — they are stored in so-called overlap
areas. After each iteration the values in the overlap areas are exchanged and updated
via the message-passing communication mechanism. The introduction of overlap areas
needs a strict synchronization following each iteration step in order to ensure the correct
execution of the benchmark.

Since the Chebyshev SOR method requires no extra arithmetic over the traditional SOR
algorithm yet has more favourable initial error decay properties, it is one of the most
efficient PDE kernels. Note, however, that in this benchmark only nearest neighbour
interactions are required and the number of floating point operations per grid point is
very small when compared to more complex PDEs.

. Multigrid kernel.

The PARKBENCH multigrid kernel is the multigrid benchmark from the NAS Parallel
Benchmarks [28]. It requires highly structured long distance communication and tests
both short and long distance data communication.

This kernel performs a V-cycle multigrid algorithm to obtain an approximate solution
u to the discrete Poisson problem

Viu = w

on a 256 x 256 x 256 grid with periodic boundary conditions.
One starts out with the array v = 0, except at a 20 particular points where v = +1. The
iterative solution starts with u = 0. Each iteration consists of the following two steps,
where k = 8 = log,(256):

r=v— Au (evaluate residual)

w=u+ My (apply correction)

Here M* denotes a V-cycle multigrid operator, and A denotes a trilinear finite element
discretization of the Laplacian V2.

4.2.4 Other
1.

Embarrassingly Parallel. The Parkbench embarrassingly parallel kernel is taken from the
NAS Parallel Benchmarks [28]. It provides an estimate of the upper achievable limits
for floating point performance, i.e. the performance without significant interprocessor
communication.

In this benchmark, one first generates pairs (z;, y;) of uniformly distributed pseudo-
random floating point values generated using the linear congruential generator

2kp1 = az (mod 21%)

- — —46.,
eyl = 27 UzZpsa

For each pair (x;, y;), one tests to see if t; = 27 +y7 < 1. If not, this pair is rejected. If

this inequality holds, then one sets X = x;/(—2logt;)/t; and Y}, = y;+/(—2logt;)/t;.

34

Then X, and Y}, are independent Gaussian deviates with mean zero and variance one.
The benchmark problem is to count the number of these Gaussian deviates that lie in
various square annuli around the origin.

2. Large Integer Sort.

Although sorting has traditionally been thought of as of importance primarily in non-
scientific computing, this operation is increasingly important in advanced scientific ap-
plications. In particle method fluid simulations, for example, sorting is the dominant
cost.

The PARKBENCH integer sort benchmark is taken from the NAS Parallel Bench-
marks [28]. The kernel tests both integer computation speed and communication per-
formance.In this benchmark, a vector of integer data is generated using the same pseu-
dorandom number generator that is used in the embarrassingly parallel kernel. This
data is initially mapped according to a particular scheme. The benchmark problem is to
sort this data by the most efficient scheme for a particular architecture. Vendor-supplied
sort routines may be used to perform the sort operation.

w

. Input/Output. We propose a pencil and paper style benchmark — not tied to any par-
ticular parallel platform or application but just measuring some key fundamental 1/O
parameters of the system. A standard Fortran-77 version complements the detailed
description given in the individual ReadMe file. The I/O performance is tested by writ-
ing and then reading different sized data sets to and from disk. The read and write
buffer sizes are varied so that estimates of disk I/O start-up time, bandwidth and data
transference times may be made.

4.3 Benchmark Implementation

The PARKBENCH kernel benchmarks are written as far as possible in standard Fortran 77
using 64-bit floating point arithmetic (DOUBLE PRECISION on most systems), unless otherwise
stated. Both PVM/MPI [1, 2] and subset HPF versions exist for most of the codes in addition
to the standard Fortran-77 versions. A description of each benchmark and instructions on how
to run it are given in individual ReadMe files. They also contain a specification of the three
problem sizes agreed upon for each code: (1) test problem (2) moderate size and (3) grand
challenge size. A formula should be given in the ReadMe files to produce flop counts for the
kernel benchmarks along with precalculated figures for each standard problem size. Make-files
are supplied with each benchmark to handle compilation and linking in a Unix environment.

4.4 Concluding Remarks

The contents of the PARKBENCH kernel benchmark suite should map reasonably well onto
any parallel library supplied by the vendors. This will allow comparative performance mea-
surements across different platforms using the PARKBENCH kernels but also performance
comparisons to the functionally similar and highly-optimized library routines on every partic-
ular parallel system. Another advantage of the use of kernel benchmarks is that they should
not involve an unreasonable amount of labor on the part of vendors.

Chapter 5

Compact Applications™

5.1 Introduction

While kernel applications, such as those described in Chapter 3, provide a fairly straight-
forward way of assessing the performance of parallel systems they are not representative of
scientific applications in general since they do not reflect certain types of system behavior. In
particular, many scientific applications involve data movement between phases of an applica-
tion, and may also require significant amounts of 1/O. These types of behavior are difficult to
gauge using kernel applications.

One factor that has hindered the use of full application codes for benchmarking parallel
computers in the past is that such codes are difficult to parallelize and to port between target
architectures. In addition, full application codes that have been successfully parallelized are
often proprietary, and/or subject to distribution restrictions. To minimize the negative impact
of these factors we propose to make use of compact applications in our benchmarking effort.

Compact applications are typical of those found in research environments (as opposed to
production or engineering environments), and usually consist of up to a few thousand lines of
source code. Compact applications are distinct from kernel applications since they are capable
of producing scientifically useful results. In many cases, compact applications are made up of
several kernels, interspersed with data movements and I/O operations between the kernels.

In this chapter the criteria for selecting compact applications for the PARKBENCH suite
will be discussed. In addition, the general research areas that will be represented in the suite
are outlined.

5.2 Criteria for Selection

The three main criteria for inclusion of a parallel code in the Compact Applications suite are,

1. The code must be a complete application and be capable of producing results of research
interest. These two points distinguish a compact application from a kernel. For example,
a code that only solves a randomly-generated, dense, linear system by LU factorization
should be considered a kernel. Even though the code is complete, it does not produce
results of research interest. However, if the LU factorization is embedded in an appli-
cation that uses the boundary element method to solve, for example, a two-dimensional
elastodynamics problem, then such an application could legitimately be considered a

“assembled by David Walker for Compact Applications subcommittee

36

compact application. Compact applications and full production codes are distinguished
by their software complexity, which is difficult to quantify. Software complexity gives
an indication of how hard it is to write, port and maintain an application, and may be
gauged very roughly by the length of the source code. However, there is no hard upper
limit on the length of a code in the Compact Applications suite. It is expected that
the source code (excluding comments and repeated common blocks) for most compact
applications will be between 2000 and 10000 lines, but some may be longer.

2. The code must be of high quality. This means it must have been extensively tested and
validated, preferably on a wide selection of different parallel architectures. The problem
size and number of processors used must not be hard-coded into the application, and
should be specified at runtime as input to the program. Ideally, the parallel code should
not impose restrictions on the problem size that are not applicable for the corresponding
sequential code. Thus, the parallel code should not require that the problem size be
exactly divisible by the number of processors, or that the number of processors be a
power of two. In some cases this latter requirement may have to be relaxed. For example,
most parallel fast Fourier transform routines require the number of processors to be a
power of two. It is preferable that the code be written so that it works correctly for an
arbitrary one-to-one mapping between the logical process topology of the application and
the hardware topology of the parallel computer. This is desirable so that the assignment
of a location in the logical process topology to a physical processor can be easily adjusted
when porting the application between platforms. For example a Gray code assignment
may be best for a hypercube, and a natural ordering for a mesh architecture.

3. The application must be well documented. The source code itself should contain an
adequate number of comments, and each module should begin with a comment section
that describes what the routine does, and the arguments passed to it. In addition,
there should be a Users’ Guide to the application that describes the input and output,
the parameterization of the problem size and processor layout, and details of what the
application does. The Users’ Guide should also contain a bibliography of related papers.

In addition, to the three criteria discussed above, there are a number of other desirable
features that a PARKBENCH Compact Application should have. These are discussed in the
following subsections.

5.2.1 Self Checking Applications

The application should be self-checking. That is, at the end of the computation the application
should perform a check to validate the results of the run. The application may also output
a summary of performance results for the run, such as the Mflop rate, and other pertinent
information.

5.2.2 Programming Languages

The code should be written in Fortran 77, Fortran 90, High Performance Fortran, or C. Data
should be passed between processors by explicit message passing. PARKBENCH does not
specify which message passing system should be used, but one that is available on a number of
parallel platforms is preferable. Eventually it is expected that MPI will become the message
passing system of choice, but in the meantime portable systems such as PVM, PICL, Express,
PARMACS, and P4 are acceptable alternatives. The codes in the Compact Applications suite

should not contain any assembly coded portions, although assembly code may be used in
optimized versions of the code.

5.3 Proposed Compact Application Benchmarks

At the time of writing (October 1993) the PARKBENCH organization is in the process of
soliciting submission of applications for inclusion in the Compact Applications suite. Thus, the
applications that comprise the suite cannot yet be listed here. However, in this section the main
application areas that are expected to be in the suite are outlined. The intention is that these
areas should be representative of the fields in which parallel computers are actually used. The
codes should exercise a number of different algorithms, and possess different communication
and I/O characteristics. Initially the Compact Applications suite will consist of no more than
ten codes. This restriction is imposed so that the resources needed to manage and distribute
the suite can be assessed. The suite may be enlarged in the future if this seems manageable.
Below is a list of the application areas that are expected to be represented in the suite. This is
not meant to be an exclusive list; submissions from other application areas will be considered
for inclusion in the suite.

Climate and meteorological modeling

Computational fluid dynamics (CFD)

Finance, e.g., portfolio optimization

Molecular dynamics

Plasma physics

Quantum chemistry

Quantum chromodynamics (QCD)

Reservoir modeling

5.4 Submitting to the Compact Application Suite

The procedure for submitting codes to the PARKBENCH Compact Applications suite is as
follows.

1. Complete the submission form in Appendix A, and email it to David Walker
at walker@msr.epm.ornl.gov. The data on this form will be reviewed by
the PARKBENCH Compact Applications Subcommittee, and the submitter will
be notified if the application is to be considered further for inclusion in the
PARKBENCH suite.

2. If PARKBENCH Compact Applications Subcommittee decides to consider the appli-
cation further the submitter will be asked to submit the source code and input and
output files, together with any documentation and papers about the application. Source
code and input and output files should be submitted by email, or ftp, unless the files are
very large, in which case a tar file on a 1/4 inch cassette tape. Wherever possible email
submission is preferred for all documents in man page, Latex and/or Postscipt format.

38

w

These files documents and papers together constitute the application package. The ap-
plication package should be sent to the following address, and the subcommittee will then
make a final decision on whether to include the application in the PARKBENCH suite.

David W. Walker

Oak Ridge National Laboratory
Bldg. 6012/MS-6367

P. O. Box 2008

Oak Ridge, TN 37831-6367
(615) 574-7401/0680 (phone/fax)

walker@msr.epm.ornl.gov

. If the application is approved for inclusion in the PARKBENCH suite an authorized

person from the submitting organization will be asked to complete and sign a form
giving PARKBENCH authority to distribute, and modify (if necessary), the application
package.

39

Chapter 6

HPF Compiler Benchmarks*

6.1 Objectives

For most users, the performance of codes generated by a compiler is what that actually
matters. This can be inferred from running HPF version of PARKBENCH codes described
in chapter 4 and 5. For HPF compiler developers, however, an additional benchmark suite
may be very useful: the benchmark suite that can evaluate specific HPF compilation phases
and the compiler runtime support. For that purpose, the relevant metric seems to be the ratio
of execution times of compiler generated to hand coded programs as a function of the problem
size and number of processors engaged in the computation.

The compilation process can be logically divided into several phases, and each of them
influence the efficiency of the resulting code. The initial stage is parsing of a source code which
results in an internal representation of the code. It is followed compiler transformations, like
data distribution, loop transformations, computation distribution, communication detection,
sequentialization, insertion of calls to a runtime support, and others. This we will call a HPF-
specific phase of compilation. The compilation is concluded by code generation phase. For
portable compilers that outputs £77+message passing code, the node compilation is obviously
factorized out and the efficiency of the node compiler can be evaluated separately.

This benchmark suite addresses the HPF-specific phase only. Thus, it is well suited for
performance evaluation of both translators (HPF to F77+message passing) and genuine HPF
compilers. The parsing phase is an element of the conventional compiler technology and it is
not of interest in this context. The code generation phase involves optimization techniques
developed for sequential compilers (in particular, Fortran 90 compilers) as well as micro-
grain parallelism or vectorization. The object codes for specific platforms may be strongly
architecture dependent (e.g., may be very different for processors with vector capabilities than
for those without it). Evaluation of performance of these aspects require different techniques
that these proposed here.

It is worth noting, that the HPF-phase strongly affect the possibility of optimization of
the node codes. For example, insertions of calls to the communication library may prohibit
the node compiler to perform many standard optimizations without expensive interprocedural
analysis. Therefore, capability to exploit opportunities for optimizations at HPF level and to
generate the output code that way it can be further optimized by the node compiler is an
important element of evaluation of HPF compilers. Nevertheless, evaluation of the HPF-phase
separately is very valuable since the hand coded programs face the same problems. We will

*assembled by Tom Haupt for Compiler Benchmarks subcommittee

40

address these issues in the future releases of the benchmark suite.

Compilers for massively parallel and distributed systems are still object of a research and
laboratory testing rather than commercial products. The parallel compiler technology as well
as methods of evaluating it is not mature yet. Nevertheless, the advent of the HPF standard
gives opportunity to develop systematic benchmarking techniques.

The current definition of HPF cannot be recognized as an ultimate solution for parallel
computing. Its limitations are well known, and many researchers are working on extensions to
HPF to address a broader class of real life, commercial and scientific applications. We expect
new language features to be added to the HPF definition in future versions of HPF, and we
will extend the benchmark suite accordingly. On the other hand, new parallel languages based
on languages other than Fortran, notably C++, become more and more popular. Since the
parallelism is inherent in a problem and not its representation, we anticipate many common-
alities in the parallel languages and corresponding compiler technologies, notably sharing the
runtime support. Therefore, we decided to address this benchmark suite to these aspects of
the compilation process that are inherent to parallel processing in general, rather than testing
syntactic details of the HPF.

6.2 Low Level HPF Compiler Benchmarks

6.2.1 Overview

The benchmark suite comprises several simple, synthetic applications which test several as-
pects of the HPF compilation. The current version of the suite addresses the basic features
of HPF, and it is designed to measure performance of early implementations of the compiler.
They concentrate on testing parallel implementation of explicitly parallel statements, i.e., ar-
ray assignments, FORALL statements, INDEPENDENT DO loops, and intrinsic functions
with different mapping directives. In addition, the low level compiler benchmarks address
problem of passing distributed arrays as arguments to subprograms.

The language features not included in the HPF subset are not addressed in this release of
the suite. The next releases will contain more kernels that will address all features of HPF,
and also they will be sensitive to advanced compiler transformations.

The codes included in this suite are either adopted from existing benchmark suites, NAS
suite [27], Livermore Loops [5], and the Purdue Set [36], or are developed at Syracuse Univer-
sity.

6.2.2 FORALL statement - kernel FL

FORALL statement provides an convenient syntax for simultaneous assignments to large
groups of array elements. Such assignments lie at the heart of the data parallel computations
that HPF is designed to express. The idea behind introducing FORALL in HPF is to generalize
Fortran 90 array assignments to make expressing parallelism easier. Kernel FL provides several
examples of FORALL statements that are difficult or inconvenient to write using Fortran 90
syntax.

6.2.3 Explicit template - kernel TL

Parallel implementation of the array assignments, including FORALL statements, is a central
issue for an early HPF compiler. Given a data distribution, the compiler distributes compu-
tation over available processors. An efficient compiler achieves an optimal load balance with
minimum interprocessor communication.

41

Sometimes, the programmers may help the compiler to minimize necessary interprocessor
communication by suitable data mapping, in particular by defining a relative alignment of
different data object. This may be achieved by aligning the data objects with an explicitly
declared template. Kernel TL provides an example of this kind.

6.2.4 Communication detection in array assignments - kernels AA,
SH, ST, and IR

Once the data and iteration space is distributed, the next step that strongly influences effi-
ciency of the resulting codes is communication detection and code generation to execute data
movement. In general, the off-processor data elements must be gathered before execution
of an array assignment, and the results are to be scattered to destination processors after
the assignment is completed. In other words, some of the array assignments may require a
preprocessing phase to determine which off-processor data elements are needed and execute
the gather operation. Similarly, they may require postprocessing (scatter). Many different
techniques may be used to optimize these operations. To achieve a high efficiency, it may
be very important that compiler is able to recognize structured communication patterns, like
shift, multicast, etc. Kernels AA, SH, and ST introduce different structured communica-
tion patterns, and kernel IR is an example of an array assignment that require unstructured
communication (because of indirections).

6.2.5 INDEPENDENT assertion - kernel EP

In addition to array assignments and FORALL statments, parallelism may be expressed by
using INDEPENDENT assertions. The EP kernel test performance of INDEPENDENT DO
construct with NEW variables.

6.2.6 Non-elemental intrinsic functions - kernel RD
Fortran 90 intrinsics and HPF functions offer yet another way to express parallelism. Kernel

RD tests implementation of several reduction functions.

6.2.7 Passing distributed arrays as subprograms’ arguments - kernels
AS, IT, IM and EI

The last group of kernels, demonstrate passing distributed arrays as subprograms’ arguments.
They represents four typical cases:

1. a known mapping of the actual argument is to be preserved by the dummy argument
(AS).

¥

. the mapping of the dummy argument is to be inherited from the actual argument, thus
no remapping is necessary. The mapping is known at compile time (IT).

3. the mapping of the dummy argument is to be identical to that of the actual argument,
but the mapping is not known at the compile time (IM).

4. a specific mapping of the dummy argument is forced, regardless the mapping of the
actual elements (EI).

42

6.3 Summary

The synthetic compiler benchmark suite described here is an addition to the benchmark kernels
and applications described in chapter 4 and 5. It is not meant as a tool to evaluate the overall
performance of the compiler generated codes. It has been introduced as an aid for compiler
developers to address some selected aspect of the HPF compilation process. In the current
version, the suite does not comprise a comprehensive sample of HPF codes. Actually, it
addresses only the HPF subset. Hopefully, this way, we will contribute to establishment of a
systematic compiler benchmarking methodology. We intend to continue our effort to develop
a complete, fully representative HPF benchmark suite.

43

Chapter 7

Conclusions*

The PARKBENCH benchmark suite comprises codes that vary from low-level benchmarks
measuring basic machine parameters, through important application kernels, to compact re-
search applications. This hierarchical structure allows information derived from the simpler
codes to be used in explaining the performance characteristics of the more complicated codes.
Thus the benchmark suite can be used to evaluate performance on a range of levels from
simple machine parameters to full applications where effects due to non-parallelisable sections
of code, and memory, communication or I/O bottlenecks may become important.

Acknowledgements

Special thanks to all the contributors to this report: David Bailey (NASA Ames Research Cen-
ter), Michael Berry (University of Tennessee), Jack Dongarra (University of Tennessee/Oak
Ridge National Laboratory), Vladimir Getov (University of Southampton), Tom Haupt (Syra-
cuse University), Tony Hey (University of Southampton), Roger Hockney (University of
Southampton), and David Walker (Oak Ridge National Laboratory).

The following PARKBENCH participants were instrumental in defining/promoting the
effort, attending meetings, and providing helpful comments and suggestions: Ed Brocklehurst
(National Physical Laboratory), Koushik Ghosh (Cray Research), Charles Grassl (Cray Re-
search), Ed Kushner (Intel SSD), Brian LaRose (Hewlett Packard), Todd Letsche (University
of Tennessee), David Mackay (Intel SSD), Joanne Martin (IBM), Ramesh Natarajan (IBM,
Yorktown Heights), Bodo Parady (Sun Microsystems), Robert Pennington (Pittsburgh Super-
computing Center), Philip Tannenbaum (NEC), Pearl Wang (George Mason University /US
Geological Survey), and Patrick Worley (Oak Ridge National Laboratory).

“assembled by Roger Hockney for whole committee

44

Bibliography

(1

2

ot

[10

(11]

J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. Integrated pvmn framework sup-
ports heterogeneous network computing. Computers in Physics, 7(2):166 175, April 1993.

Message Passing Interface Forum. Document for a Standard Message-Passing Interface.
Computer Science Dept. Technical Report CS-93-214, University of Tennessee, Knoxville,
Tennessee, November 1993.

Quantities, Units and Symbols. The Royal Society, London, 1975.

M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer, R. Roloff, A. Sameh,
E. Clementi, S. Chin, D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsiung,
J. Schwarzmeier, K. Lue, S. Orszag, F. Seidl, O. Johnson, R. Goodrum, and J. Mar-
tin. The PERFECT Club Benchmarks: Effective Performance Evaluation of Computers.
Intl. J. Supercomputer Appls., 3(3):5-40, 1989.

F. H. McMahon. The Livermore Fortran Kernels test of the Numerical Performance
Range. In J. L. Martin, editor, Performance Evaluation of Supercomputers, pages 143
186. Elsevier Science B.V., North-Holland, Amsterdam, 1988.

J. Dongarra, T. Rowan, and R. Wade. Software Distribution Using XNETLIB Database
Server. Computer Science Dept. Technical Report CS-93-191, University of Tennessee,
Knoxville, Tennessee, March 1993.

B. H. LaRose. The Development and Implementation of a Performance Database Server.
Computer Science Dept. Technical Report CS-93-195, University of Tennessee, Knoxville,
Tennessee, August 1993.

J. J. Dongarra. Performance of various Computers using Standard Linear Equations
Software in a Fortran Environment. Computer Science Dept. Technical Report CS-89-
85, University of Tennessee, Knoxville, Tennessee, March 1990.

D. Bailey, J. Barton, T. Lasinski, and H. (editors) Simon. The NAS parallel benchmarks.
Technical Report 103863, NASA Ames Research Center, Moffett Field, CA 94035, July
1993.

Joseph Uniejewski. SPEC Benchmark Suite: Designed for Today’s Advanced Systems.
SPEC Newsletter, Fall 1989. Volume 1, Issue 1.

R. W. Hockney. A Framework for Benchmark Analysis. Supercomputer, 48(1X-2):9 22,
1992.

(12]

(13]

(14]

(16]

(17]

(18]

(19]

[20]

e
£

[24]

[25]

(26]

[27]

C. Addison, J. Allwright, N. Binsted, N. Bishop, B. Carpenter, P. Dalloz, D. Gee,
V. Getov, A. Hey, R. Hockney, M. Lemke, J. Merlin, M. Pinches, C. Scott, and I. Wolton.
The Genesis Distributed-Memory Benchmarks. Part 1: methodology and general relativ-
ity benchmark with results for the SUPRENUM computer. Concurrency: Practice and
Eaperience, 5(1):1-22, 1993.

D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, P. Fred-
erickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga.
The NAS parallel benchmarks. Int. J. of Supercomputer Applications, 5(3):63 73, 1991.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, PA, 1992.

R. W. Hockney. Performance Parameters and Benchmarking of Supercomputers. Parallel
Computing, 17:1111-1130, 1991.

A. Friedli, W. Gentzsch, R. Hockney, and A. van der Steen. A European Supercomputer
Benchmark Effort. Supercomputer 34, V1(6):14-17, 1989.

A. J. G. Hey. The Genesis Distributed-Memory Benchmarks. Parallel Computing,
17:1275 1283, 1991.

R. W. Hockney. Super-Computer Architecture. In F. Sumner, editor, Infotech State of
the Art Conference: Future Systems, pages 277-305. Infotech, Maidenhead, 1977.

Roger W. Hockney and Christopher R. Jesshope. Parallel Computers: Architecture,
Programming and Algorithms. Adam Hilger, Bristol, 1981.

R. W. Hockney. Characterization of Parallel Computers and Algorithms. Computer
Physics Communications, 26:285 29, 1982.

R. W. Hockney. Characterizing Computers and Optimizing the FACR(1) Poisson-Solver
on Parallel Unicomputers. IEEE Trans. Comput., C32:933-941, 1983.

R. W. Hockney. Parametrization of computer performance. Parallel Computing, 5:97-103,
1987.

Roger W. Hockney and Christopher R. Jesshope. Parallel Computers 2: Architecture,
Programming and Algorithms. Adam Hilger/IOP Publishing, Bristol & Philadelphia,
second edition, 1988. Distributed in the USA by IOP Publ. Inc., Public Ledger Bldg.,
Suite 1035, Independence Square, Philadelphia, PA 19106.

A. J. van der Steen and P. P. M. de Rijk. Guidelines for use of the EuroBen Bench-
mark. Technical Report TR3, EuroBen, The EuroBen Group, Utrecht, The Netherlands,
February 1993.

R. W. Hockney. Synchronization and Communication Overheads on the LCAP Multiple
FPS-164 Computer System. Parallel Computing, 9:279-290, 1988.

R. W. Hockney and E. A. Carmona. Comparison of Communications on the Intel
iPSC/860 and Touchstone Delta. Parallel Computing, 18:1067 1072, 1992.

D. Bailey and J. Barton. The NAS Kernel Benchmark Program. Technical Report 86711,
NASA Ames Technical Memorandum, 1985.

46

[28]

[29]

(30]

(33]

[34]

(35]

(36]

D. H. Bailey, J. Barton, T. Lasinski, and H. (editors) Simon. The NAS parallel bench-
marks. Technical Report RNR-91-02, NASA Ames Research Center, Moffett Field, CA
94035, January 1991.

J. Choi, J. J. Dongarra, and D. W. Walker. The design of scalable software libraries
for distributed memory concurrent computers. In Proceedings of Environment and Tools
for Parallel Scientific Computing Workshop, (Saint Hilaire du Touvet, France). Elsevier
Science Publishers, September 7-8, 1992.

J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linear
algebra library for distributed memory concurrent computers. In Proceedings of Fourth
Symposium on the Frontiers of Massively Parallel Computation (McLean, Virginia). IEEE
Computer Society Press, Los Alamitos, California, October 19-21, 1992.

J. J. Dongarra, R. van de Geijn, and D. Walker. A look at scalable linear algebra libraries.
In Proceedings of the 1992 Scalable High Performance Computing Conference, pages 372
379. IEEE Press, 1992.

J. Choi, J. Dongarra, R. Pozo, and D. Walker. ScaLAPACK: A Scalable Linear Algebra
Library for Distributed Memory Concurrent Computers. In IEEE, editor, Proceedings
of the Fourth Symposium on the Frontiers of Massively Parallel Computation, McLean
Virginia, pages 120-127. IEEE Publishers, October 1992.

G. C. Fox, 3. W. Otto, and A. J. G. Hey. Matrix algorithms on a hypercube I: Matrix
multiplication. Parallel Computing, 4:17-31, 1987.

S. Huss-Lederman, E. M. Jacobson, A. Tsao, and G. Zhang. Matrix multiplication on
the Intel Touchstone Delta. Technical report, Supercomputing Research Center, 1993. in
preparation.

C. Lin and L. Snyder. A matrix product algorithm and its comparative performance on
hypercubes. In Proceedings of the 1992 Scalable High Performance Computing Confer-
ence, pages 190 194. IEEE Press, 1992.

J. Rice. Problems to Test Parallel and Vector Languages. Technical Report CSDTR 516,
Purdue University, West Lafayette, Indiana, October 1990.

Appendix A

Compact Applications
Submission Form

This appendix gives the form to be completed when submitting a compact application for
inclusion in the PARKBENCH suite. For an electronic version of this form send email to
walker@msr.epm.ornl.gov or obtain a copy from netlib under pbwg (see Chapter 1). The
completed form should be emailed to the same address.

Name of Program

Submitter’s Name
Submitter’s Organization
Submitter’s Address

Submitter’s Phone Number
Submitter’s Fax Number
Submitter’s Fax Email

Cognizant Expert(s)
CE’s Organization
CE’s Address

CE’s Phone Number
CE’s Fax Number
CE’s Fax Email

Extent and timeliness with which CE is prepared to respond to questions and bug reports
from PARKBENCH :

Major Application Field
Minor Application Field

48

Application "pedigree” (origin, history, major ports and modifications) :

May this code be freely distributed (if not specify restrictions) :

Give length in bytes of integers and floating-point numbers that should be used in this appli-
cation:

Integers: bytes

Floats: bytes

Documentation describing the implementation of the application (at module level, or lower) :

Research papers describing sequential code and/or algorithms :

Research papers describing parallel code and/or algorithms :

Other relevant research papers:

Application available in the following languages (give message passing system used, if appli-
cable, and machines application runs on) :

Total number of lines in source code
Number of lines excluding comments
Size in bytes of source code

List input files (filename, number of lines, size in bytes, and if formatted) :

List output files (filename, number of lines, size in bytes, and if formatted) :

49

Brief, high-level description of what application does :

Main algorithms used :

Skeleton sketch of application :

Brief description of I/O behavior :

Brief description of load balance behavior :

Describe the data distribution (if appropriate) :

Give parameters of the data distribution (if appropriate) :

Give parameters that determine the problem size :

Give memory as function of problem size :

Give number of floating-point operations as function of problem size :

Give communication overhead as function of problem size and data distribution :

50

Give three problem sizes, small, medium, and large for which the benchmark should be run
(give parameters for problem size, sizes of I/O files, memory required, and number of floating

point operations) :

How did you determine the number of floating-point operations (hardware monitor, count by

hand, etc.) :

Other relevant information :

Appendix B

Sample Xnetlib/PDS Screens

With the Browse facility in PDS (see Figure B.1), the user first selects the vendor(s) and
benchmark(s) of interest, then selects the large Process button to query the performance
database. The PDS client then opens a socket connection to the server and, using the query
language (rdb), remotely queries the database. The format of the returned result is shown
in Figure B.2. Notice that the column headings which will vary with each benchmark. The
returned data is displayed as an ASCII widget with scrollbars when needed.

e
Performance Database Server
(6o U} Classifications {Dovnlvast

@ Tinely Hessage| [Conferences| [Performance| [Show in New Window| [Contextual Help] [H

Xnetlib 3.4

[Rank ordering |[EBrouse |[Search |[save][Papers & Notes][Bibliography]

] Please select vendor(s) and benchnark(s) and then [Process] to view.
| Pracess the current lists and return results |
et Available Clear et Available Clear
all Vendors all all Benchnarks all
[Linpack !
Andahl ETA NeXT [CERN]
PS Prine [Parallel-Tinpack]
ApalTo Fujitsu Fyranid [bonnie]
[Flops]
ATT _sa___ Tt Peak]
[_axp___][Hitachi [Siemens]| |[Thourstene]

[_@c__ [Honeywer1 |[_norse || | TET T

CH HE Solbourne [hanoi]
|| [heapsort]
[Concurrent |[_1rIS][Stardent] [nsieve |
[nath]
[Cray Res |[Kendall squ[Tandy | [Perfect]
54 [Hassconp][Tektronix] | |L genesis]
[Data cenera INEIGNEM [Titan | [clinpack]
[sin 1
 —— [tiftdp]

ENCORE nCUBE

Figure B.1: The browse facility provided by PDS

performance Database Server
Classifications] Biwninad

B Tinely Message| [Conferences| [Perfornance] [Show in New window] [Contextual Help

Xnetlib 3.4
Rank _Ordering Erovse Search || Save || Papers & Notes || Bibliography
Results fron FLOPS Benchnark notes: : ; flops public donain benchnark

August 3 1993
Alfred A. Aburto aburto@nosc.mil
Naval Ocean Systens Center San Diego

SYSTEM 05/COMPTLER CPU/FPU FPU(HHZ) SCALAR_MFLOPS REF
486DX2/66 EISA_ NOTE 023, IBM 05/2 2.0 80486DX2 2.8658 36
IEM PS/2 Model55 NOTE 038, HS DOS 5.0 38ESK/-——m 0.0057 32
IEM RS/6000 320H ALX 3.2.2, Pover RISC 6.6116 17
IEM RS/6000 370 AIX 3.2.3, cc -DUNIX -0 Pouer RISC 23.5727 37
IBM RS/6000 530 AIX 3.1.5, cc -DUNIX -0 Power RISC 8.9897 21
IEM RS/6000 540 AIX 3.2, XIc -DUNIX -0 Pover Risc 11.1608 39
IBM RS/6000 540 cc -DUNIX -0 Pover RISC 10.9878 11
IBM RS/6000 550 3.2.3,cc -0 -qfloat=nonaf Pouer RISC 13,7101 12
IBH RS/600D 550 -4 Pover RISC 15,5674 1
IEM RS/6000 550 Pover RISC 15.5820 12
IBH RS/600D 550 Pover RISC 15,5036 11
IEM RS/6000 560 Pover RISC 18,2496 3
IBH RS/6000 950 .21, Pover RISC 11.0800 17
IEM RS/6000 980 cc -DUNIX -DROPT -0 -Q Pouer RISC 62.5 22.6087 14
IBH Value Point NOTE 038, HS DOS 5.0 486SK/-——— 25.0 0.0242 32
Insight 4BEDX-50 NOTE 026, IEM 0S/2 2.1 80486DX £0.0 2.0807 41
SGI 4D/20 Irix3.2,cc -DUNIX_01d -03 R20 12.5 3.6821 28
SGI 4D/RPC Irix 4.0.5, cc -DUNIX -00 R3000/R3010 33, 3.6707 28
SGI 4D/RPC 4.0.5, cc -DUNIX -03 R3000/R3010 3. 9.6501 28
SCI Iris 4D/3s 4.0.5, cc -DUNIX -00 R3000/R3010 26.0 4.1529 7
SGI Iris 4D/35 4.0.5, cc -DUNIX -01 R3000/R3010 36.0 9.1449 7
SCI Iris 4D/35 4.0.5, cc -DUNIX -02 R3000/R3010 26.0 10.7828 7
SGI Iris 4D/35 4.0.5, cc -DUNIX -03 R3000/R3010 36.0 10.7549 7
SCI Iris Indigo 015 R3000/R3010 33, 10,1848 11
SGI Iris Indigo cc R3000/R3010 33.0 9.1272 9
SGI Iris RPCS0 cc —03 R4000/R4010 100.0 18.0685 9

Figure B.2: Sample data returned by the PDS Browse facility

The Search option in PDS is illustrated in Figures B.3 and B.4. This feature permits
user-specified keyword searches over the entire performance database. Search utilizes literal
case-insensitive matching along with a moderate amount of aliasing. Multiple keywords are
permitted, and a Boolean flag is provided for more complicated searches. Notice the selection
of the Boolean And option in Figure B.3. Using Search, the user has the option of entering
vendor names, machine aliases, benchmark names, or specific strings, or producing a more
complicated Boolean keyword search. The benchmarks returned from the Boolean And search

rios 550 linpack Perfect

are shown in Figure B.4. The alias terms rios 550 are associated with the IBM RS/6000
Model 550 series of workstations. The specification of linpack and Perfect will limit the search
to the LINPACK and Perfect benchmarks only. Since any retrieved data will be displayed to
the screen (by default), the Save option allows the user to store any retrieved performance
data in an ASCII file.

Perfornance Database Server

(% iy} [@Index| [Library]| [Classifications] {bownloatt

[@Tinely Hessage| [Conferences| [Perfarmance| [Show in New Windov| [Contextual Help|

Xnetlib 3.4

Rank ordering |[Brovse |[Search |[save][Papers & Notes|[Bibliography|

Boolean search type:

search string: [rios 550 Tinpack Perfect, | press return. ..

[and | Connand set: [clear display|[clear search field|

B L L L T T

Please NOTE: The search facility allows users to BUILD up query results

Performance Database search :

To search through the perfornance_ database please enter a
key or _series of keywords and Boolean search type. Type <return>
to begin the search.

clear display - clears the output vindow and prepares it for a
new search result.

clear search field - resets the search string to null.

search infornation::

truly a literal search over all the data. By selecting 'and’ the
return results are ONLY records matching ALL keys. In selecting
‘or’ the return results are ANY records matching ANY key.

fron_nunerous queries in_the same screen and then save them.
To clear the search results select 'clear display’.

Figure B.3: Specifying a keyword search using the PDS Search facility

Performance Database Server

{¢s Uy} [@ Index] [Library] [Classifications] {Downined

[@Tinely Hessage| [Conferences]| [Performance] [Shou in New Window] [Contextual Help]

Xnetlib 3.4

Papers & Notes||[Bibliography|

Rank Ordering |[Browse |[Search

Boolean search type: [or] [N

Conmand set:

[c1ear display|[clear search field]

search string: [rios 550 Tinpack Perfect,

| press return...

i ; Linpack Performance Report
93; Jack Dongarra dongarra@cs.u

Results fron Linpack Benchmark notes:
Septenber 1 19
University of Tennessee Knoxville
Conputer 05/Conpiler N=100(HfTops) N-1000,
v2.2.1 X1F -0 -P -Wp,-ead78 2%
19

IBM RISC Sys/6000-550 (42 MHz)
IBM RISC Sys/6000-550L(42 MHZ)

Results from Perfect Benchmark

v2.3.0 ¥1f -0 —P -Wp,-ead78

notes: ; Perfect Club Report
3

n

Dave Schneider

schneidecsrd, wiuc. edu

CSRD VIUC I1linois

To review bibliography click Papers .
EDNA-bepu DYFESM-bcpu LD

VENDOR HODEL Location

ADM-bcpu ARC2D-bepu
310.810

Name

99.350 21.460

38.930

IBM RS6000-550 NCSA

RS550

Figure B.4: Results of a keyword search using the PDS Search facility

55

