
Faster Checkpointing with N + 1 Parity

James S. Plank

�

Kai Li

y

University of Tennessee Technical Report CS-93-219

December, 1993

Submitted to FTCS-24

Abstract

This paper presents a way to perform fast, incremental checkpointing of multicomputers and

distributed systems by using N + 1 parity. A basic algorithm is described that uses two extra

processors for checkpointing and enables the system to tolerate any single processor failure. The

algorithm's speed comes from a combination of N+1 parity, extra physical memory, and virtual

memory hardware so that checkpoints need not be written to disk. This eliminates the most

time-consuming portion of checkpointing.

The algorithm requires each application processor to allocate a �xed amount of extra memory

for checkpointing. This amount may be statically set by the programmer, and need not be

equal to the size of the processor's writable address space. This alleviates a major restriction of

previous checkpointing algorithms using N + 1 parity [Pla93].

Finally, we outline how to extend our algorithm to tolerate any m processor failures with

the addition of 2m extra checkpointing processors.

1 Introduction

Checkpointing is an important topic in computer science as it is the only way to provide fault

tolerance in a general-purpose computing environment [AL81]. With the proliferation of large

parallel and distributed systems, checkpointing has been the method of choice for providing fault-

tolerance [Bir86, BBG

+

89, Joh89, KMBT91, EZ92, Pla93]. Checkpointing typically requires the

saving of one or more processors' address spaces to stable storage so that after a failure, the

machine's state may be restored to the saved checkpoint. Besides fault-tolerance, checkpointing

has been used for process migration, job swapping and debugging.

�

plank@cs.utk.edu, Department of Computer Science, University of Tennessee, Knoxville TN 37996.

y

li@princeton.edu, Department of Computer Science, Princeton University, Princeton NJ 08544.

1

The major overhead of checkpointing is writing the checkpoint to disk. Results of implementa-

tions have shown that the overriding concern in making checkpoints fast is either reducing or hiding

the overhead of disk writing. This is especially a concern in parallel and distributed systems, where

the number of processors is often vastly larger than the number of disks. Proposed solutions to re-

ducing the e�ect of disk writing have been to use incremental checkpointing [FB89, EJZ92], compiler

support [LF90], compression [LF90, Pla93], copy-on-write [LNP90], non-volatile RAM [KMBT91],

and pre-copying [EJZ92]. Although these methods succeed to varying degrees, they all default to

the speed of the storage medium as the bottleneck in decreasing overhead.

In this paper, we present a set of incremental checkpointing algorithms that perform no writing

to disk. Instead, they assume that no more than m processors fail in a parallel or distributed

system at any one time, and describe how to recover from such failures. We will start with a

detailed description of the algorithm when m equals one, and then describe how it can be modi�ed

for larger values of m. The bottom line is that with 2m extra processors, we can protect the system

from any m processors failing.

The algorithm revolves around 1 parity, previously used by Gibson [Gib90] to provide

reliability in disk arrays. 1 parity was proposed by Plank [Pla93] as a way to perform diskless

checkpointing, but the proposed algorithm is non-incremental, and needs each processor to maintain

two in-memory copies of local checkpoints. This forces each processor to allocate two thirds of its

physical memory for the sole use of checkpointing, which is unreasonable. The algorithm presented

here alleviates this problem with incremental checkpointing: Extra space is required only for the

portions of each processor's memory that have changed since the previous checkpoint. We allow

the user to specify an upper limit on this space and when it is consumed, a new checkpoint must

be taken. We show that this is a far more reasonable approach.

By omitting disk-writing from the checkpointing protocol, programmers should be able to check-

point far more frequently than when they have to write to disk. Instead of checkpointing on the

order of once an hour, programmers may checkpoint as frequently as once every second, or every

few seconds. This should drastically reduce the amount of lost work due to processor failures.

Moreover, this algorithm allows one's computational model to be one of a continuously running

parallel system. If a processor, or up to m processors fail, then they can be replaced instantly

with any available processor or processors. The system does not have to be halted and restarted

when the failing processors are reset. Moreover, the amount of work lost due to the failures is

small { on the order of seconds. Thus, the algorithm may be used for process migration and/or

load-balancing in a recon�gurable distributed system such as P M [B G

+

93]. Finally, as there is

no reliance on disk, there are no problems concerning the availability of stable storage following a

2

failure or migration.

Combined with an all-encompassing checkpointing method for wholesale system failures [85,

L 87, Joh89, LNP92, EZ92, Pla93], this algorithm provides an e cient composite system for fault-

tolerant computing: The faster algorithm is used to checkpoint at small intervals, like once a second,

and the all-encompassing method is used to checkpoint at large intervals, like once an hour. Thus,

the more frequent case of a few processors failing is dealt with swiftly, involving no disk interaction,

and a minimal loss of computation. The rarer case of the whole system failing is handled as well,

albeit more slowly, as it has more saved state from which to recover.

he asic lgorith

To describe the basic algorithm, we assume to have a collection of n 2 processors: p

1

; . . . ; p

n

,

p

c

and p

b

. Processors p

c

and p

b

are called the \checkpoint processor" and \backup processor"

respectively. Both are dedicated solely to checkpointing. Processors p

1

; . . . ; p

n

are free to execute

applications, and are thus called \application processors." The application processors must reserve

a �xed amount of memory for checkpointing. We denote this amount by . Finally, we assume

that the checkpointing mechanism is able to access the memory management unit MM of each

processor, enabling it to protect pages of memory as re d-on or re d-write, and to catch the

resulting page faults.

The basic idea of the algorithm is as follows: At all points in time, there will be a valid con-

sistent checkpoint maintained by the system in memory. Consistent checkpointing has been well-

documented and well-studied [CL85, KT87, L 87, CT90, LNP92]. A consistent checkpoint is

comprised of a local checkpoint for each application processor, and a log of messages. To recover

from a consistent checkpoint, each processor restores its execution to the state of its local check-

point, and then messages are re-sent from the message log. For the sake of simplicity, we assume

that the consistent checkpoint has no message state. For example, the processors can use the

\ ync-and- top" checkpointing protocol [Pla93] to guarantee no message state.

The consistent checkpoint is maintained cooperatively by all processors, p

1

; . . . ; p

n

; p

c

; p

b

, using

1 parity [Gib90]. peci�cally, each application processor will have a copy of its own local check-

point in physical memory. The checkpoint processor will have a copy of the \parity checkpoint,"

which is de�ned as follows:

� Let the si e of each application processor p 's checkpoint be .

3

� The checkpoint processor records each value of , for 1 n.

� The si e

c

of the parity checkpoint is the maximum for 1 n.

� Let

;

be the -th byte of of p 's checkpoint if , and 0 otherwise.

� Each byte

c;

of the parity checkpoint is equal to the bitwise exclusive or of the other

bytes:

c; 1; ;

. . .

n;

, for 1

c

.

The backup processor is used to keep a copy of the parity checkpoint when the checkpoint processor

needs to update its copy.

Now, if any application processor p fails, then the system can be recovered to the state of the

consistent checkpoint by having each non-failed processor restore its state to its local checkpoint,

and by having the failed processor calculate its checkpoint from all the other checkpoints, and from

the parity checkpoint. peci�cally, it retrieves its value of from the checkpoint processor or

from the backup processor if the checkpoint processor is changing its state . Then it calculates its

checkpoint:

; 1;

. . .

�1; +1;

. . .

n; c;

; for 1

If the checkpoint processor fails, then it restores its state from the backup processor, or by

recalculating the parity checkpoint from scratch. The backup processor may be restored similarly.

The actual algorithm works as follows: At the beginning of each application processor's execution,

it takes checkpoint 0: It sends the si e of its application's writable address space to the checkpoint

processor, along with the contents of this space. Next, it protects all of its pages as re d-on .

The checkpoint processor records each value of , and calculates the parity checkpoint from the

contents of each processor's address space. When the checkpoint processor �nishes calculating the

parity checkpoint, it sends a copy to the backup processor, which stores it.

After sending p

c

its address space, each application processor clears its bytes of extra memory.

This space is split in half, and each half is used as a checkpointing bu�er. We will call them the

ri r and se ond r checkpointing bu�ers. After designating the checkpointing bu�ers, the

processor is free to start executing its application. When the application generates a page-fault by

attempting to write a re d-on page, the processor catches the fault, and copies the page to its

primary checkpointing bu�er. It then resets the page's protection to re d-write, and returns from

the fault.

If any processor fails during this time, the system may be restored to the most recent checkpoint.

Each application processor's checkpoint consists of the re d-on pages in its writable address space,

and the pages in its primary checkpointing bu�er. The processor can restore this checkpoint by

copying or mapping the pages back from the bu�er, reprotecting them as re d-on , and then

restarting. bviously, if the checkpoint processor fails during this time, it can be restored from the

backup processor, and if the backup processor fails, then it can be restored from the checkpoint

processor.

Now, when any processor uses up all of its primary checkpointing bu�er, then it must start a

new global checkpoint. In other words, if the last completed checkpoint was checkpoint number ,

then it starts checkpoint 1. The processor performs any coordination required to make sure that

the new checkpoint is consistent, and then takes its local checkpoint. To take the local checkpoint,

it must do the following for each re d-write protected page ge in its address space:

� Calculate di ge , where is the saved copy of ge in the processor's

primary checkpointing bu�er.

� end di to the checkpoint processor, which 's it with its own copy of ge . This has

the e�ect of subtracting from the parity page and adding ge .

� et the protection of ge to be re d-on .

After sending all the pages, the processor swaps the identity of its primary and secondary check-

pointing bu�ers.

If an application processor fails during this period, the system can still restore itself to check-

point . First consider a non-failed application processor that has not started checkpoint 1. It

restores itself as described above, by copying or mapping all pages back from its primary check-

pointing bu�er, resetting the pages to re d-on , and restarting the processor from this checkpoint.

uppose instead that the application processor has started checkpoint 1. Then, it �rst restores

itself to the state of local checkpoint 1 by copying or mapping pages from the primary check-

pointing bu�er, and next, it restores itself to the state of checkpoint by copying or mapping pages

from the secondary checkpointing bu�er. When all these pages are restored, then the processor's

state is that of checkpoint . The checkpoint processor restores itself to checkpoint by copying

the parity checkpoint from the backup processor. The backup processor does nothing. nce all

non-failed processors have restored themselves, the failed processor can rebuild its state, and the

system can continue from checkpoint .

If the checkpoint processor fails during this period, then the application processors roll back to

the state of checkpoint , and the checkpoint processor restores itself from the backup processor.

5

If the backup processor fails, then the processors roll back to the state of checkpoint , and the

checkpoint processor's checkpoint is recalculated, and then copied to the backup.

When all processors have �nished taking their local checkpoints for global checkpoint 1, the

checkpoint processor sends a copy of its checkpoint to the backup processor, and the application

processors may jettison their secondary checkpointing bu�ers.

n a ple

In this section, we present an example of a six-processor system running this checkpointing al-

gorithm. Processors

1

; . . . ; are the application processors. Processor is the checkpoint

processor, and is the backup processor. Before starting the application, the processors take

checkpoint 0: They protect their writable address spaces to be re d-on , clear their checkpointing

bu�ers, and send the contents of their address spaces to . calculates the parity checkpoint,

and then sends it to the backup processor, . At this point, the system looks like Figure 1.

P P P P P P
 1 2 3 4 5 6

Secondary ckp buffer

Primary ckp buffer

Application’s address space
(protected read-only)

Parity
checkpoint #0

Backup of
Parity
Checkpoint #0

Figure 1: tate at checkpoint 0.

Next, the application processors run the application. When page faults occur, the faulting

pages are copied to the processor's primary checkpointing bu�er and set to re d-write, so that

the application may continue. The state of the system looks as in Figure 2. Processor

1

has

copied three pages to its primary checkpointing bu�er. Processors and have copied two

pages each, and has copied one. Were a failure occur to one of the application processors,

then the others would restore themselves to checkpoint 0 by copying or mapping the pages back

from the primary checkpointing bu�er to the application's memory and reprotecting those pages

6

as re d-on . The failed processor may then reconstruct its checkpoint from the other application

processors' checkpoints and from the parity checkpoint. If a non-application processor fails, then

it may restore itself from the other non-application processor.

P P P P P P
 1 2 3 4 5 6

Figure 2: tate slightly after checkpoint 0.

ince processor

1

has used up its primary checkpointing bu�er, checkpoint 1 must be started.

To do so,

1

goes through any synchroni ation necessary for the checkpoint to be consistent. When

it is time to take its local checkpoint,

1

's each changed page with its bu�ered copy and sends

the results to , which uses them to update the parity checkpoint.

1

then protects its pages to

be re d-on , and swaps the identity of the primary and secondary checkpoint bu�ers. The state

of the system is depicted in Figure 3.

P P P P P P
 1 2 3 4 5 6

+
+

+

Primary ckp buf

Secondary ckp buf

Reprotect to read-only

P P

SS

Figure 3: Processor

1

starts checkpoint 1.

If an application processor fails at this point, then the processors may again roll back to check-

7

point 0.

1

is able to do this by using pages from its secondary checkpoint bu�er. , and use

pages from their primary checkpoint bu�er as before. The checkpoint in must be used, as 's

checkpoint has been updated to re ect

1

's changes for checkpoint 1. If fails, then it copies its

checkpoint from , and the application processors roll back to checkpoint 0. If fails, then the

processors again roll back to checkpoint 0, and the parity and backup checkpoints are calculated

anew.

P P P P P P
 1 2 3 4 5 6

+

+

+

+

+

S S

PP

Figure : Processors , and take checkpoint 1.

Figure shows processors , and taking their local checkpoints. They their changed

pages with the bu�ered copies and send the results to . Then, they reprotect the pages and swap

the identities of the primary and secondary checkpoint bu�ers. If a failure occurs during these

activities, then the recovery is the same as in Figure 3: The processors still recover to checkpoint

0. Also during this time, processor

1

's application continues execution, and its pages are copied

to the new primary checkpoint bu�er. To restore itself to the state of checkpoint 0, it must copy

or map pages �rst from the primary checkpoint bu�er, and then from the secondary checkpoint

bu�er. As before, the parity checkpoint in the backup processor must be used.

Finally, Figure 5 depicts the state when all the local checkpoints are �nished: The parity check-

point in processor is copied to processor , and the application processors jettison their sec-

ondary checkpointing bu�ers. Any failure will now be restored to checkpoint 1.

8

P P P P P P
 1 2 3 4 5 6

Figure 5: Checkpoint 1 is complete.

olerating Failures o ore han ne Processor

The above algorithm allows the system to tolerate any one processor failure with two extra check-

pointing processors. In this section, we outline how to con�gure the system to tolerate any m

processor failures with 2m extra checkpointing processors. peci�cally, let there be n 2m pro-

cessors in the system. As before, processors p

1

; . . . ; p

n

are the application processors. The rest are

split into checkpointing and backup processors: p

c1

; . . . ; p

c

, and p

b1

; . . . ; p

b

. The checkpointing

and backup processors are paired up p

c

is paired with p

b

, and related like the checkpoint and

backup processors in the previous section: The backup processor p

b

contains the contents of p

c

at the time of the most recently committed checkpoint. This is so that there is a copy of p

c

from

which to restore if a failure occurs while p

c

is being updated.

The application processors perform the same actions as in the above algorithm, with one di�er-

ence: Instead of sending copies of their changed pages to just the one checkpoint processor, they

send their changed pages to all m checkpoint processors. The checkpoint processors are like the

original checkpoint processor above, except that they do not just calculate the bitwise parity of each

page. Instead, each one calculates a di�erent function of the bytes of the pages. This calculation

is such that if any m processors in the entire system fail, the rest may be used to recalculate the

values of the failed ones. The description of how each checkpoint processor makes its calculation

requires too much detail for this paper. Instead, it may be found in [PFL93]. We outline it in the

following paragraph:

The calculations resemble Reed- olomon codes [M 77, vL82]: Instead of performing bitwise

arithmetic as the checkpoint processor does in the algorithm of the previous sections, each proces-

9

sor breaks the pages into multi-bit words, and performs arithmetic on those words over a Galois

Field. The number of bits per word depends on the si e of n and m. Although more complex com-

putationally than 1 parity, this coding is not prohibitively complex: Instead of an exclusive-or

for each byte, each processor must perform a few table lookups and some bitwise arithmetic. Re-

covery involves gaussian elimination of an n n matrix, and then for each byte, more table lookups

and bitwise arithmetic. Again, complete details may be found in [PFL93]. ince each processor is

devoted solely to checkpointing, it is well-situated to perform the computation for checkpointing

and recovery, and the entire process should still be far faster than checkpointing to disk.

iscussion

There are two types of overhead that the basic algorithm imposes on user programs. First is the

time overhead of taking checkpoints. and second are the extra memory requirements, as manifested

by the variable .

The time overhead of checkpointing has the following components:

� The time to process page faults.

� The time to coordinate checkpoints for consistency.

� The time to send pages to the checkpoint processor.

� The frequency of checkpointing.

We do not analy e the �rst two components as they are they same for this algorithm as for other

incremental consistent checkpointing algorithms [EJZ92, Pla93]. They should not amount to as

much overhead as the third component. This component, the time to send pages to the checkpoint

processor, depends on the speed of the interconnection network, and the number of bytes sent.

We notice that this component may be improved by a simple optimi ation: This comes from the

fact that each processor sends di ge to the parity processor. This is as opposed

to normal incremental checkpointing algorithms [FB89, EJZ92] that send ge to stable storage

during an incremental checkpoint. The bene�t of sending di is that all bytes of ge which have

not been changed since the previous checkpoint will be ero in di . This allows us to optimi e

the algorithm by sending only the non- ero bytes of di , thereby lowering the number of bytes

sent to the checkpoint processor when only fractions of pages are altered. This technique { sending

10

the of the changed pages { should be a marked improvement over blindly sending di when

only a few bytes of a page are touched in a checkpointing interval.

The frequency of checkpointing is related to the extra memory requirements, and thus the two

are discussed together. As stated in the Introduction, were one to attempt to use 1 parity for

non-incremental checkpointing, as suggested in Plank's thesis [Pla93], each processor would need

to hold two extra copies of its checkpoint in main memory. This would require that the application

processors allocate two thirds of their physical memory for the sole use of checkpointing. We

consider this to be an unreasonable assumption.

The algorithm presented here alleviates this problem with incremental checkpointing: Extra

space is required only for the pages of each processor's memory that have changed since the previous

checkpoint. We allow the user to specify an upper limit on this space this is in the algorithm

and when it is exhausted, a new checkpoint must be taken. There are two reasons to believe that

this is a more reasonable approach.

First are previous results from Elno ahy, Johnson and Zwaenepoel [EJZ92]. They implemented

incremental, consistent checkpointing to a central �le server in a distributed system of 16 processors.

Although they checkpointed at a coarse interval of two minutes, in six out of their eight test

programs, incremental checkpoints consisted of less than half of the application's memory. For the

�ne-grained checkpointing intervals that we propose on the order of every second or every few

seconds , the memory requirements i.e. should be much smaller.

econd, we have instrumented some distributed programs in P M [B G

+

93] to record their

behavior under this algorithm for varying values of . The results in Table 1 display the in-

strumentation of multiplying two 1300x1300 matrices using eight EC alpha workstations six

for the application, one to record the parity checkpoint, and one to backup the parity processor

connected via an Ethernet. The �rst row of the table shows the per processor CP time of the

multiplication with no checkpointing. All other rows show average per processor values, where each

test was executed three times. Each application processor used 7.2 megabytes of memory without

checkpointing. The processors have 8 kilobyte pages.

The data shows that for this program, a value of 800 kilobytes for yields both a reasonable

checkpointing interval of around four seconds, and a reasonable 'd checkpoint si e of 172 kilo-

bytes. Moreover it shows that encoding di to include only non- ero bytes results in a signi�cant

amount of compression.

11

Average Time umber ncremental 'd Compression

bytes
etween Checkpoints of Checkpoint Checkpoint Ratio

CPU Seconds Checkpoints Size bytes Size bytes

one
3 2.23 - - -

1
. 3 19

2. 1 2 1

.33 2 1 2

1.
.9 39 3

3.2
19.9 1 1. 1 9

.
31.2 1 2. 1.3

.
.11 3 . 2.3 2

Table 1: Results of instrumenting a matrix multiply on 7 workstations

elated ork

Checkpointing is a well-documented topic in fault-tolerance. In parallel and distributed systems,

the �eld has been divided into pessimistic [BBG83, PP83, BBG

+

89], optimistic [85, Joh89],

and consistent checkpointing [CL85, K86, L 87, KT87, Ahu89, CT90, CJ91, KMBT91, LNP92].

Implementations have been tested on uniprocessors [FB89, LF90, L 92], multiprocessors [LNP90,

LMJ92], distributed systems [KMBT91, EJZ92], and multicomputers [Pla93]. All of these systems

have checkpointed to disk, and consequently taken e�orts to minimi e the overhead caused by disk

writes.

Johnson and Zwaenepoel presented an algorithm to reconstruct the message state of a distributed

system when at most one processor fails, with no disk-writing [JZ87]. The algorithm has the sending

processor save the message so that it may resend if the receiver fails. Processors save their own

execution states in disk checkpoints.

Keleher, Cox and Zwaenepoel used 's to propagate updates to shared pages in their dis-

tributed shared memory system \Munin" [KCZ92]. As in this paper, the 's are used to lower

the latency of transporting whole pages by sending fewer than a pageful of bytes when possible.

1 parity was used to provide single-site fault-tolerance by Garth Gibson in his design and

implementation of RAI disk arrays [Gib90]. Gibson also addresses multiple-site failures, and gives

an algorithm for for tolerating 2-site failures with 2n extra disks. This algorithm scales to tolerate

m-site failures with mn extra disks. Reed- olomon codes are mentioned as a way to reduce the

number of extra disks, but dismissed because of the extra complexity that such codes would require

12

in the disk hardware. This isn't a problem in our system because the unit of fault-tolerance is a

processor, well-capable of handling the extra calculations.

Conclusion

We have presented a fast incremental checkpointing algorithm for distributed memory programming

environments and multicomputers. This algorithm is unique as it checkpoints the entire system

without using any stable storage. Therefore, its speed is not limited by the speed of secondary

storage devices.

The basic algorithm presented above tolerates the failure of any one processor with the addition

of two checkpointing processors. This algorithm generali es so that any m processor failures can

be tolerated with the addition of 2m checkpointing processors.

f concern in this algorithm is the amount of extra memory per processor required for check-

pointing. In the discussion above, we argue that a �xed amount of extra memory is reasonable for

this algorithm's e cient operation. Results from Elno ahy, Johnson and Zwaenepoel [EJZ92], as

well as our own instrumentation of a distributed matrix multiply corroborate this claim.

We have begun working to convert the above instrumentation into a full-blown checkpointing

implementation on P M. While P M supports a wide variety of processors, our implementation

will focus on EC alpha workstations. This is because the alpha combines high performance,

user-level access to page protection and fast page fault handling. The goal of this implementation

will be to provide general fault-tolerance for P M applications on EC alphas, and to assess the

overhead of checkpointing with 1 parity, as compared to checkpointing implementations to

stable storage [LF90, LNP90, EJZ92, Pla93].

e erences

[Ahu 9] . Ahuja. Repeated global snapshots in asynchronous distributed systems. Technical Report

SU-C SRC- 9 TR , hio State University, August 19 9.

[A 1] T. Anderson and P. A. ee. F u t To e n e in i e nd ti e. Prentice all nternational,

nc., nglewood Cli s, ew ersey, 19 1.

[3] A. org, . aumbach, and S. lazer. A message system supporting fault tolerance. n o eed-

in o t e C S m o ium on e tin S tem in i e , pages 9 {99, Atlanta, eorgia,

ctober 19 3.

13

[9] A. org, . lau, . raetsch, F. errman, and . berle. Fault tolerance under U .

C T n tion o Com ute S tem , 1 :1{2 , Feb 19 9.

[D 93] A. . eguelin, . . Dongarra, A. eist, R. . anchek, and . S. Sunderam. eterogeneous

network computing. n Si t S Con e en e on e o e in , 1993.

[ir] . P. irman. S S: A system for fault-tolerant distributed computing. Technical Report TR

- , Cornell University, April 19 .

[C 91] F. Cristian and F. ahanain. A timestamp-based checkpointing protocol for long-lived distributed

computations. n o eedin o t e t S m o ium on e i b e i t ibuted S tem , pages 12{

2 , ctober 1991.

[C] . . Chandy and . amport. Distributed snapshots: Determining global states of distributed

systems. C T n tion on Com ute S tem , 3 1 :3{ , February 19 .

[CT9] C. Critchlow and . Taylor. The inhibition spectrum and the achievement of causal consistency.

Technical Report TR 9 -11 1, Cornell University, February 199 .

[92] . . lnozahy, D. . ohnson, and . waenepoel. The performance of consistent checkpoint-

ing. n o eedin o t e t S m o ium on e i b e i t ibuted S tem , 1992.

[92] . . lnozahy and . waenepoel. anetho: Transparent rollback-recovery with low overhead,

limited rollback and fast output commit. T n tion on Com ute S e i ue on

F u t-To e nt Com utin , 1 , ay 1992.

[F 9] S. Feldman and C. rown. gor: A system for program debugging via reversible execution. C

S oti e , o o on e nd i t ibuted ebu in , 2 1 :112{123, an 19 9.

[ib9] arth Alan ibson. edund nt i : e i b e, e Se ond Sto e. PhD thesis,

University of California, erkeley, December 199 .

[oh 9] David . ohnson. i t ibuted S tem F u t To e n e in e e o in nd C e ointin .

PhD thesis, Rice University, December 19 9.

[] D. . ohnson and . waenepoel. Sender-based message logging. n o eedin o t e t

nte n tion S m o ium on F u t-To e nt Com utin , pages 1 {19, une 19 .

[C 92] P. eleher, A. . Cox, and . waenepoel. azy consistency for software distributed shared

memory. n o eedin o t e t nnu S m o ium on Com ute ite tu e, pages 13{21,

ay 1992.

[T91] . F. aashoek, R. ichiels, . . al, and A. S. Tanenbaum. Transparent fault-tolerance in

parallel rca programs. Technical Report R-2 , rije Universiteit, Amsterdam, ctober 1991.

[T] R. oo and S. Toueg. Checkpointing and rollback-recovery for distributed systems.

T n tion on So t e n inee in , S -13 1 :23{31, anuary 19 .

[F9] C-C. . i and . . Fuchs. CATC { Compiler-assisted techniques for checkpointing. n o-

eedin o t e 2 t nte n tion S m o ium on F u t To e nt Com utin , pages { 1, 199 .

1

[92] . A. aranjeira, . alek, and R. enevein. xperimental evaluation of techniques for fault-

tolerance. Technical Report TR-92-32, Department of Computer Sciences, University of Texas

at Austin, uly 1992.

[P9] . i, . F. aughton, and . S. Plank. Real-time, concurrent checkpoint for parallel programs.

n Se ond C S S m o ium on in i e nd ti e o e o mmin ,

pages 9{ , Seattle, ashington, ar 199 .

[P92] . i, . F. aughton, and . S. Plank. An e cient checkpointing method for multicomputers

with wormhole routing. nte n tion ou n o e o e in , 2 3 , une 1992.

[S92] . itzkow and . Solomon. Supporting checkpointing and process migration outside the Unix

kernel. n Con e en e o eedin , eni inte 2 Te ni Con e en e, pages 2 3{29 ,

anuary 1992.

[] T. . ai and T. . ang. n distributed snapshots. n o m tion o e in ette , 2 :1 3{1 ,

ay 19 .

[S] F. . ac illiams and . .A. Sloane. T e T eo o o -Co e tin Code , t . orth-

olland Publishing Company, Amsterdam, ew ork, xford, 19 .

[PF 93] . S. Plank, . Friedman, and . i. Recovering from m erasures with m extra words. n

Preparation, 1993.

[Pla93] ames S. Plank. ient C e ointin on ite tu e . PhD thesis, Princeton Uni-

versity, anuary 1993.

[PP 3] . . Powell and D. . Presotto. Publishing: A reliable broadcast communication mechanism.

n o eedin o t e C S S S m o ium on e tin S tem in i e , pages 1 {1 9,

ctober 19 3.

[S] . Spezialetti and P. earns. cient distributed snapshots. n o eedin o T e Si t

nte n tion Con e en e on i t ibuted Com utin S tem , pages 3 2{3 , Cambridge, as-

sachusetts, ay 19 . Computer Society.

[S] R. . Strom and S. emini. ptimistic recovery in distributed systems. C T n tion on

Com ute S tem , pages 2 {22 , August 19 .

[v 2] . . van int. nt odu tion to Codin T eo . Springer- erlag, ew ork, 19 2.

15

