
Jgraph – A Filter for Plotting
Graphs in PostScript
James S. Plank – Princeton University

ABSTRACT

Jgraph is a non-interactive filter for plotting two-dimensional scatter, line, and bar
graphs in PostScript. It has also been used as a general-purpose drawing utility. Jgraph’s
strengths lie in its portability, flexibility, and integration into the UNIX environment. Jgraph
is free software available on netlib or by anonymous ftp.

Introduction

Scientists in all disciplines frequently need to
display information graphically on a variety of high-
quality output devices. However, there is no stan-
dard tool on the UNIX platform that achieves this
purpose. Although many software packages exist to
facilitate plotting graphs, they all have limitations.
Some are only available on certain machines; some
can only be integrated into certain text processing
systems; some require specific data formats; some
are available only as part of colossal computing
environments.

Jgraph attempts to provide a simple, yet flexi-
ble and powerful graph-plotting package. It is a
filter that takes a description of a graph or graphs as
input, and produces PostScript [1] as output.
PostScript was chosen because it is a standard for-
mat for producing high-quality graphic output.
PostScript can be viewed on the computer screen
with a PostScript viewer like gs, printed directly on
PostScript printers, or, when in encapsulated
PostScript (EPS) format, embedded in a text or
graphics processing system such as TeX, LaTeX,
troff, Scribe, or Adobe Illustrator 88. Moreover,
since PostScript is in ASCII format, it can be stored
on all hardware platforms and sent freely in all elec-
tronic mail systems. Jgraph has the option of produc-
ing either EPS or regular PostScript files.

Unlike almost all other graph-plotting packages,
jgraph is non-interactive. In these days of ‘‘user-
friendly’’ systems, this might be seen as a disadvan-
tage, but the advantages of this decision are three-
fold. First, it allows jgraph to be used on all plat-
forms, as it is not bound to specific terminal types,
window systems or even operating systems. Second,
it means that jgraph can solve one problem – graph
plotting – and solve it well. This is in contrast to
systems that provide their own editors, window sys-
tems, output viewers, etcetera, which are bound to
conflict with the ones to which their users are accus-
tomed. Finally, by being non-interactive, jgraph
integrates well with the powerful utilities in UNIX
(e.g., sed, nawk, make). Jgraph can be used in
makefiles and as part of multistage UNIX pipes, and

it can also execute shell commands from within its
input. This gives the user a great deal of flexibility
often absent from other graph-plotting packages.

Jgraph is free, portable, and well-documented.
It is public-domain software that can be obtained
over the internet either through netlib1 or by
anonymous ftp.2 It is written in machine-
independent C and comes with an 18-page manual
and many example graphs, including those presented
in this paper. It has been installed at over 60 loca-
tions under various operating systems, including all
flavors of UNIX, as well as VMS and DOS. I am
not aware of any environment containing a C com-
piler on which jgraph cannot be installed.

Jgraph Overview

Jgraph reads a description of graphs on the
standard input and produces PostScript on the stan-
dard output. The input format is simple enough to
let users create useful graphs as soon as they start
learning the tool, yet flexible enough be general-
purpose. Input consists of keywords followed by
values, where a value is either a number, a string or
another keyword. White space is ignored except
within strings, so that input files may be indented for
readability as in the figures below.

Appendix A gives a complete formal
specification of the jgraph syntax. This section gives
an overview of the salient features of jgraph, as well
as a flavor for typical jgraph input and output files.

The major unit of jgraph’s input is a graph:
Users may specify any number of graphs for jgraph
to plot on a page. Each graph consists of the fol-
lowing parts: X and Y axes, curves, strings, a title, a
legend, and a position relative to other graphs.

The most important part of a graph are the
curves. Users may specify any number of curves in a
graph. Each curve consists of points, mark

1Send email with only the text: send jgraph.shar
from misc to netlib@ornl.gov.

2Ftp to princeton.edu, and get the file
pub/jgraph.Z.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 63

Jgraph – A Filter for Plotting Graphs in PostScript Plank

attributes, line attributes, and a label. The points are
(x, y) pairs that are plotted in the order given. Mark
attributes define what gets plotted at each point (e.g.,
nothing, a circle, a box, text, or a bar-graph line to
either axis). Line attributes define what kind of line
gets plotted between points (e.g., none, solid, dot-
ted). The label defines the legend entry for the
curve.

Jgraph chooses defaults for all attributes, mak-
ing simple graphs simple to create. The example in
Figure 1 below shows the jgraph input and realized
PostScript output of a simple graph with three
curves. The topmost curve lets jgraph choose all the
curve attributes–the only things specified are the
points. The middle one plots triangles connected by
a solid line, and the bottom one plots just a dashed
line between the points. Jgraph sets up default values
for all other parts of the graph.

0 1 2 3 4 5
0

5

10

15

20

newgraph

 newcurve
 pts 0 6 1 9 2 11 3 14 4 18 5 20

 newcurve
 marktype triangle
 linetype solid
 pts 0 3 1 4 2 7 3 9 4 10 5 13

 newcurve
 marktype none
 linetype dashed
 pts 0 0 1 2 2 3 3 5 4 6 5 9

Figure 1: A simple jgraph input and output

Users may change the other graph attributes just as
the curve attributes are changed in Figure 1. For
example, for both axes, users may alter the axis size,
maximum and minimum values, scaling (linear or
logarithmic), location and spacing of hash marks,
etcetera. Users also have control over the appear-
ance and location of a graph’s legends and titles, as
well as the ability to plot arbitrary text strings any-
where on a graph.

Example 1: Figure 2 shows a more complex
example graph in which many of the jgraph defaults

are changed to get a desired effect. Here a label has
been added to the x-axis, the y-axis is not drawn,
and two strings are plotted with each bar: one to
describe the bar, and one to state the bar’s value.
Note also the use of copystring, which copies
the default values from the previous string. The
tokens copycurve and copygraph are defined to
do the same thing for curves and graphs.

newgraph
xaxis
 size 3 min 0 max 41
 mhash 1 (* Put 1 tick between hash marks *)
 hash_labels font Times-Italic
 label : Qualifications...

yaxis
 size 1.5 min 0
 nodraw (* Don’t draw the y-axis *)

newcurve marktype ybar marksize 0 .6 fill .9
 pts 41 4 35 3 17 2 14 1

newstring
 hjl vjc (* These define justification *)
 fontsize 9
 font Helvetica-Narrow
 x 1 y 4 : Led league in wins

(* Copystring copies the defaults *)
copystring y 3 : Played for first place team
copystring y 2 : Led league in ERA
copystring y 1 : Led league in K’s

copystring x 42 y 4 : 41
copystring x 36 y 3 : 35
copystring x 18 y 2 : 17
copystring x 15 y 1 : 14

newstring
 hjr vjb
 fontsize 6
 x 41 y 0.1
 : Source: USA Today research

0 10 20 30 40

Qualifications of the 55 Cy Young winners
who were starting pitchers

Led league in wins

Played for first place team

Led league in ERA

Led league in K’s

41

35

17

14

Source: USA Today research

Figure 2: A more complex example

The treatment of strings is one of the elegant
features of jgraph. All strings and string-like attri-
butes are treated in the same manner. That is,
strings, axis labels, the title, hash labels, legend
entries and text marks are all manipulated by the
same keywords. For example, there is a special
string for each axis called hash_labels, which
treats all hash labels on that axis as a unit. Thus,
for example, the user can change the font on all the
hash labels by changing the font of the string

64 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Plank Jgraph – A Filter for Plotting Graphs in PostScript

hash_labels, as in Figure 2 above. Similarly,
there is a special string for legends that controls all
the legend entries as a unit.

Jgraph supports grayscales and color. Users
can set the color or grayness of every part (strings,
axes, lines, marks) of each graph. Figure 2 uses
grayscale to shade each bar. Figure 4 shows a far
more complex and effective use of grayscale in
jgraph.

0 100000 200000 300000

Number of indexed Records (N)

0

50

100

R
un

ni
ng

 t
im

e
(s

ec
on

ds
)

Data
N log N / 35000

xaxis size 2.5
 hash_labels font Helvetica
 label : Number of indexed Records (N)
yaxis size 2.1
 label : Running time (seconds)
 hash_labels font Helvetica

newcurve
 marktype cross
 label : Data
 pts shell : nawk ’{print $5, $8}’ data.txt

newcurve
 marktype none linetype solid
 label : N log N / 35000
 pts shell : nawk \
 ’ $5 != 0 { \
 print $5, $5 * log($5) / 35000}’ \
 data.txt

Figure 3: A more complex graph using the shell construct of jgraph

Accessing UNIX from jgraph

Jgraph’s include and shell constructs
allow users to include files and shell commands from
within the jgraph input. This has two benefits.
First, it enables the user to specify his or her own
formats for data files and extract the data using
UNIX utilities such as sed, nawk, or even C pro-
grams. This is in opposition to other programs
which require data to be in a specific format.

Second, it frees jgraph from attempting to pro-
vide function plotting. Some graph-plotting pack-
ages include a facility to plot functions, usually
something resembling a subset of a more general
language (such as an expression evaluator in C with
certain math libraries included, as in gnuplot).
Jgraph omits any such facility, because users usually
have their own resources for evaluating mathemati-
cal expressions which are more robust and powerful
than those included in typical graph-plotting pack-
ages. The shell construct allows users to tap the
powers of these resources in a simple and concise
way.

Example 2: This example shows how to use
the shell construct for both data extraction and
function-plotting. In this example, the user has
timed a program which sorts indexed records using a
binary tree and would like to see how its running
time compares with the theoretical running time of
O (nlogn), where n is the number of records. The
program’s output for varying values of n has been
stored in the text file data.txt, which has the

following format:

Number of records = 0 Time = 0
Number of records = 5000 Time = 2
Number of records = 10000 Time = 3
...

Thus the user can extract the data points for a graph
of n versus time with a simple nawk script, which
prints columns five and eight of data.txt. This is
done in the first curve of the jgraph input in Fig-
ure 3. Next, the user wants to plot the function
nlogn/k, where k is a constant that makes the data in
data.txt fit the function. After determining a
value of k=35000 the user can plot the function
using the nawk script in the second curve of Fig-
ure 3. Thus, the shell construct of jgraph gives
the user all the powers of the tools available under
UNIX.

More complex graphs and drawings

Since jgraph allows users to control all parts of
a graph and lets them arrange multiple graphs on a
page, it can be used to plot arbitrarily complex
graphs and even general purpose drawings. Since
jgraph is non-interactive, it can be used as a back-
end graphics language for making drawings that use
graph constructs (such as axes and legends) or that
have an iterative structure. Figure 4 is an example
by Dave Wortman [11] which uses jgraph in such a
way. The input file for this picture was created by a
nawk script that processes data and emits jgraph
output. ‘‘WYSIWYG’’ drawing tools like xfig or
MacDraw are not suited for such tasks.

Figures 5 and 6 show further examples of com-
plex, structured drawings that are straightforward to
produce with jgraph but would be difficult to pro-
duce with a WYSIWYG tool. Figure 5, from [9] is
a jgraph drawing which depicts processor communi-
cation over time. It makes use of jgraph’s ability to
plot axes and legends in a general-purpose drawing.
Figure 6 is a jgraph drawing produced by a nawk
script written by Adam Buchsbaum that takes a

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 65

Jgraph – A Filter for Plotting Graphs in PostScript Plank

description of trees and produces jgraph output [4].
It treats jgraph as a convenient back-end graphics
language.

0 1000 2000 3000 4000

Time (clock ticks)

1

2

3

4

5

6

7

8

P
ro

ce
ss

or

Lexical Analysis

Import

Splitter

Parse/Dcl Analysis

Stmt Processing

Merge

Figure 4: Results of a nawk-to-jgraph data processing program

1 2 3 4 5 6 7 8 9 10

Time

C-L Marker
N-S Marker
Stop Message
Normal Message

A

B

C

m

n

A doesn’t log n

B logs m

Figure 5: A jgraph drawing depicting processor communication

a

b c

d

e

f

g h

i

a

b c

d

e

f

g h

i

a

b c

d e

f

g h

i

pull pull

Figure 6: Results of a nawk-to-jgraph tree-drawing program

Related Work

There are many programs that can be used for
graph-plotting, ranging from simple filters like
jgraph, to more complex software packages. The

two standard UNIX programs for graph-plotting are
graph [7] and grap [3]. Like jgraph, both are
non-interactive filters, with graph producing output
for the UNIX plot routine, and grap producing
pic output for inclusion in troff documents.

Graph is a primitive program whose func-
tionality comprises a restricted subset of jgraph’s.
Grap on the other hand, is a powerful tool with

66 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Plank Jgraph – A Filter for Plotting Graphs in PostScript

many of the same advantages as jgraph in terms of
flexibility. However, grap was designed for use
with pic and troff and therefore suffers from a
few problems. First, troff and its family of pro-
grams were designed before the advent of today’s
high-quality PostScript printers. Therefore, the out-
put of such programs, even when converted into
PostScript, is often inferior to programs such as
LaTeX, Scribe, or Adobe Illustrator 88. Second, it
is non-trivial to convert grap output into usable
PostScript. For example, one can get TeX from
grap by using the program tpic, and one can get
printable PostScript from grap by using psroff or
psdit. However, it is impossible to get encapsu-
lated PostScript without hand-editing output files.
Third, although grap is considered a standard part
of UNIX, it is not available on all UNIX systems
and is not easily ported to non-UNIX systems.
Finally, most users (at least in the computer science
community) use TeX and LaTeX instead of troff
to process text, so they aren’t prepared to take
advantage of the flexibility offered by grap, as it
relies on a thorough knowledge of pic and troff
macros and constructs.

There are many interactive programs for draw-
ing graphs: Xgraph [8], Gnuplot [10], and
Mathematica [12] all run under UNIX. Xgraph
is best described as graph with an Xwindows inter-
face. Like graph, it suffers from a lack of flexibil-
ity. Gnuplot and Mathematica on the other
hand are quite powerful, including facilities for
function-plotting and 3D graph-plotting as well as
for scatter, line, and bar graph plotting. Their
interactiveness, however, makes them more cumber-
some to use than jgraph for all but the simplest of
plots, and in the tasks to which both they and jgraph
are applicable, jgraph has the simpler interface.

There are other graph-plotting programs for
non-UNIX systems, such as CricketGraph [6] and
Excel [5] for the Macintosh and other personal com-
puters, and RS/1 [2], a massive data processing
package available on VMS. None of these are port-
able to Unix systems, nor are any of them free
software.

Acknowledgements

The author would like to thank Matt Blaze,
Heather Booth, Adam Buchsbaum, and Norman
Ramsey for their comments concerning this paper,
Kent Landfield and Reed Wade for helping to distri-
bute the software, and Dave Wortman for creating
beautiful jgraph drawings. The author has been
funded in part by an AT&T fellowship.

References

[1] Adobe Systems Incorporated. PostScript
Language Reference Manual. Addison-Wesley,
Reading, Massachusetts, 1985.

[2] Bolt, Beranek, and Newman. RS/1 Users
Guide. BBN Software Product Corporation,
1987.

[3] Jon L. Bentley and Brian W. Kernighan.
GRAP – A language for typesetting graphs
tutorial and user manual. Technical Report
#114, AT&T Bell Laboratories, December
1984.

[4] Adam L. Buchsbaum and Robert E. Tarjan.
Confluently persistent deques via data structural
bootstrapping. In Proceedings of the 4th
ACM-SIAM Symposium on Discrete Algorithms,
January 1993.

[5] Douglas F. Cobb, Allan McGuffy, and Mark
Dodge. Microsoft Excel 3 companion. Micro-
soft Press, Redmond, Washingon, 1991.

[6] Desktop Software Guide. Computer Associates
International Inc., Islandia, NY, 1992.

[7] graph – draw a graph. Unix man page, 1983.
[8] David Harrison. xgraph – draw a graph on an

x11 display. Unix man page, 1989.
[9] Kai Li, Jeffrey F. Naughton, and James S.

Plank. An efficient checkpointing method for
multicomputers with wormhole routing. Inter-
national Journal of Parallel Processing, 20(3),
June 1992.

[10] Thomas Williams. gnuplot – an interactive
plotting program. Unix man page, 1990.

[11] David B. Wortman and Michael D. Junkin. A
concurrent compiler for Modula-2+. ACM SIG-
PLAN ’92 Conference on Programming
Language Design and Implementation, in SIG-
PLAN Notices, 27(7):68-81, July 1992.

[12] Stephen Wolfram. Mathematica, A System for
Doing Mathematics by Computer. Addison-
Wesley, Redwood City, California, 1988.

Author Information

Jim Plank is an assistant professor at the
University of Tennessee in Knoxville. He received
his PhD from Princeton University in December,
1992. His research area is general fault-tolerance in
parallel and distributed computing. Jgraph is a
hobby. He can be reached at: Department of Com-
puter Science; University of Tennessee; Knoxville,
TN 37966 or by Email at plank@cs.utk.edu.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 67

Jgraph – A Filter for Plotting Graphs in PostScript Plank

APPENDIX A: Formal Syntax of Jgraph

<top-level> := % Top Level commands
 <nil> |
 <top-level>* |

 newgraph <graph> | % Choose/edit graphs
 graph <int> <graph> |
 copygraph [<int>] <graph> |

 newpage | % General layout commands
 bbox <int> <int> <int> <int> |
 X [<float>] | Y [<float>] |
 preamble <file> | epilogue <file>

<graph> :=
 <nil> |
 <graph>* |

 newcurve <curve> | % Edit curves
 curve <int> <curve> |
 copycurve [<int>] <curve> |
 newline <curve> |

 xaxis <axis> | % Edit the attributes
 yaxis <axis> | % of each axis

 newstring <string> | % Edit and plot
 string <int> <string> | % arbitrary strings
 copystring [<int>] <string> |

 title <string> | % Edit the graph’s title
 legend <legend> | % Edit the legend

 border | noborder | % Draw a border around the graph
 clip | noclip | % Clip inside this border

 x_translate [<float>] | % The graph’s position
 y_translate [<float>] % relative to other graphs

<curve> := % These commands allow the user to
 <nil> | % enter curve points and attributes
 <curve>* | % enter curve points and attributes

 pts [<float> <float>]* | %Point definitions
 x_epts [<float> <float> <float> <float>]* |
 y_epts [<float> <float> <float> <float>]* |

 marktype <marktype> | % Mark definitions
 marksize [<float>] [<float>] |
 mrotate [<float>] |
 gmarks [<float> <float>]* |
 postscript <file> |
 fill [<float>] | cfill [<float> <float> <float>] |

 linetype <linetype> | % Line definitions
 linethickness [<float>] |
 glines [<float>]* |
 gray [<float>] | color [<float> <float> <float>] |
 pfill [<float>] | pcfill [<float> <float> <float>] |
 bezier | nobezier |

 % Arrowheads on lines
 larrow | rarrow | nolarrow | norarrow |
 larrows | rarrows | nolarrows | norarrows |
 asize [<float>] [<float>] |
 afill [<float>] | acfill [<float> <float> <float>] |

 label <string> % The legend entry
 clip | noclip | % Whether to show points outside the
 % max and min axis values

<marktype> := % Different types of marks
 none | general |
 circle | box | diamond | triangle | x |
 cross | ellipse | xbar | ybar | text | postscript

<linetype> := % Different types of lines
 none | general |
 solid | dotted | dashed | longdash |
 dotdash | dotdotdash | dotdotdashdash

<string> := % These commands let the user change the
 <nil> | % appearance and location of any string
 <string>* |

 : <chars> |
 x [<float>] | y [<float>] |
 rotate [<float>] |
 hjl | hjr | hjc | vjt | vjb | vjc | % Justification
 font <fontname> | fontsize [<float>] |
 linesep [<float>] |
 lgray [<float>] | lcolor [<float> <float> <float>] |

<axis> := % These commands let the user edit the
 <nil> | % attributes of an axis
 <axis>* |

 linear | log | log_base [<float>] |
 min [<float>] | max [<float>] | size [<float>] |

 label <string> |

 draw | nodraw |
 gray [<float>] | color [<float> <float> <float>] |

 draw_axis | nodraw_axis | draw_at [<float>] |
 draw_axis_label | nodraw_axis_label |
 grid_lines | no_grid_lines |
 mgrid_lines | no_mgrid_lines |

 hash [<float>] | % These commands let the user change
 shash [<float>] | % the appearance of the hash marks
 mhash [<int>] | % and labels
 precision [<int>] |
 hash_at [<float>] | mhash_at [<float>] |
 hash_label <hash_label> |
 hash_labels <string> |
 hash_scale [<float>] |
 draw_hash_marks | nodraw_hash_marks |
 draw_hash_labels | nodraw_hash_labels |
 draw_hash_marks_at [<float>] |
 draw_hash_labels_at [<float>] |
 auto_hash_marks | no_auto_hash_marks |
 auto_hash_labels | no_auto_hash_labels

<hash_label> := % These commands let the user create
 <nil> | % his or her own hash labels
 <hash_label>* |
 at [<float>] |
 : <chars>

<legend> := % These commands govern the legend
 <nil> |
 <legend>* |

 on | off | left | right | % Location
 top | bottom | custom |
 x [<float>] | y [<float>] |

 linelength [<float>] |
 linebreak [<float>] |
 midspace [<float>] |

 defaults <string>

% Other tokens are obvious -- e.g. <int> and <float>.
% At any point in the input, you may have:

include <file> % Include the contents of the <file>.
shell : <chars> % Execute the <chars> as a shell command
 % and include the contents of stdout.

(* <chars> *) % Comments, which are ignored

68 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

