
A Highly Parallel Algorithm for the Reduction ofa Nonsymmetric Matrix to Block Upper-Hessenberg FormMichael W. Berryy Jack J. Dongarra �y Youngbae KimyFebruary 6, 1994AbstractIn this paper, we present an algorithm for the reduction to block upper-Hessenberg formwhich can be used to solve the nonsymmetric eigenvalue problem on message-passing multicom-puters. On such multicomputers, a nonsymmetric matrix can be distributed across processingnodes con�gured into a network of two-dimensionalmesh processor array using a block-scattereddecomposition. Based on the matrix partitioning and mapping, the algorithm employs bothHouseholder re
ectors and Givens rotations within each reduction step.We analyze the arithmetic and communication complexities and describe the implemen-tation details of the algorithm on message-passing multicomputers. We discuss two di�erentimplementations|synchronous and asynchronous|and present performance results on the In-tel iPSC/860 and DELTA. We conclude with an evaluation of the algorithm's communicationcost, and suggest areas for further improvement.1 IntroductionWe present an algorithm for reducing an n � n nonsymmetric matrix to block upper-Hessenbergform in preparation for solving the nonsymmetric eigenvalue problem using orthogonal transfor-mations on message-passing multicomputers. On sequential machines, similarity transformationsare typically used to reduce an n � n nonsymmetric matrix A to upper-Hessenberg form so thatthe QR algorithm can be applied to the n � n upper-Hessenberg matrix H and thereby computethe eigenvalues of A. Two types of similarity transformations are available for the reduction. The�rst type uses orthogonal or unitary factorizations based on re
ectors or rotations, and the secondtype uses nonorthogonal or nonunitary factorization based on Gaussian elimination (i.e. elementaryre
ectors). Although the �rst type costs twice as much as the second type, orthogonal or unitarytransformations are more commonly used because they guarantee stability.The reduction of an n � n real matrix to upper-Hessenberg form using orthogonal similaritytransformations is formalized asH = QTAQ = QTn�2 : : :QT2QT1AQ1Q2 : : :Qn�2;�Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831-8083yDepartment of Computer Science, University of Tennessee, Knoxville, TN 37996. This work is funded in part bythe Applied Mathematical Sciences subprogram of the O�ce of Energy Research, U.S. Department of Energy, underContract DE-AC05-84OR21400, by the Defense Advanced Research Projects Agency under contract DAAL03-91-C-0047, administered by the Army Research O�ce, and by the National Science Foundation Science and TechnologyCenter Cooperative Agreement No. CCR-8809615. 1

where A is an n � n real nonsymmetric matrix, Q is an orthogonal matrix and QTQ = I , andH is an upper-Hessenberg matrix. We note that Q is a product of the n � 2 orthogonal matricesQ1; Q2; : : : ; Qn�2 computed through the n� 2 steps of an orthogonal factorization.For a block version of the reduction to block upper-Hessenberg form on sequential machines,the n � n matrix A can be partitioned into N �N blocks with equal block size of bA = 0BBB@ A11 A12A21 A22 1CCCA ;where A11 2 Rb�b, A12 2 Rb�(n�b), A21 2 R(n�b)�b, A22 2 R(n�b)�(n�b), and n = bN .Suppose that we have computed the QR factorization A21 = ~Q1R1 and that ~Q1 = I +W1Y T1 ,an orthogonal matrix of the WY form, where W and Y are (n � b) � n matrices [9]. The blockrepresentation of the reduction algorithm is then given byQT1AQ1 = 0BBB@ A11 A12 ~Q1R1 ~QT1A22 ~Q1, 1CCCA ; where Q1 = 0BBB@ Ib 00 ~Q1 1CCCA ;and Ib is an b� b identity matrix.Finally, after N � 1 block reduction steps, we obtain a block upper-Hessenberg matrix, H ofthe following form H = QTAQ = 0BBBBBBB@ H11 H12 : : : : : : H1NH21 H22 : : : : : : H2N0 H32 . . . : : : H3N...0 0 : : : HN;N�1 HNN 1CCCCCCCA ;where each Hij is a b� b dense matrix and Q = Q1 : : :QN�1 with each Qk in WY form. Note thatHi+1;i, the subdiagonal blocks of H are upper triangular so that the matrix H has lower bandwidthb. In computing the nonsymmetric eigensystem associated with A, the original matrix A must alsobe postmultiplied by the orthogonal matrix, Qk.Two schemes are available for orthogonal factorizations: Householder re
ectors and Givensrotations. Householder re
ectors involve half the number of arithmetic operations as do Givensrotations [9]. On traditional sequential machines, therefore, where the cost of a
oating-pointoperation dominates the cost of a memory reference, Householder-based algorithms are generallypreferred. Several sequential algorithms have been developed for the reduction of a general densematrix to upper-Hessenberg form. For example, one can use DGEHRD from LAPACK [5]. Sinceblock methods on high-performance computers improve processing e�ciency by grouping memoryreferences, DGEHRD is implemented using block Householder re
ectors.On a parallel machine where memory access times may dominate
op times, Givens algorithmsmay be preferable. In [4], for example, it was shown that on the Denelcor HEP (a shared-memorymultiprocessor), Givens algorithms were twice as fast as Householder algorithms (see also [2]).2

Dongarra and Ostrouchov have also developed a parallel algorithm for reducing a matrix to upper-Hessenberg form on distributed-memory multiprocessors [3]; the implementation in LAPACK is dis-cussed by Dongarra and van de Geijn in [7]. In 1989, Pothen and Raghavan [10] showed thata hybrid algorithm could take advantage of both low-cost arithmetic operations of Householderalgorithm and low-cost communication costs of Givens algorithms.In this paper, we design and implement a parallel algorithm for message-passing multicomput-ers, in which processors are easily recon�gured into a p� q mesh-connected processor array. Ourapproach achieves processing e�ciency by partitioning a general dense matrix into block submatri-ces and distributing the blocks among processors in block-scattered fashion to exploit the natureof row-oriented and column-oriented computations. It then applies QR factorizations based onHouseholder re
ectors and Givens rotations for all o�-diagonal blocks at each reduction step.The remainder of this paper is organized as follows. In Section 2, we discuss our parallel al-gorithm for the reduction to block upper-Hessenberg form. We present a communication modelfor message-passing multicomputers, and discuss matrix partitioning and mapping of the data us-ing such a model. In Section 3, two di�erent implementations of our parallel algorithm on somemessage-passing multicomputers are presented. Section 4 discusses the arithmetic and communi-cation complexities of the algorithm. Section 5 presents the performance results of experimentswith two implementations on the Intel iPSC/860 hypercube and the Intel Touchstone DELTA meshmulticomputers. Finally, Sections 6 and 7 discuss the communications complexities and suggestareas for enhancing the new parallel algorithm.2 The Parallel AlgorithmIn this section, we describe a general communication topology and the details of our parallel al-gorithm. We also show how the original matrix is partitioned and mapped onto processors ofmessage-passing multicomputers. The speci�c details of the algorithm are discussed in Section 2.3.2.1 Communication TopologyWe assume that processing nodes of message-passing multicomputers can easily be recon�guredinto a network of a two-dimensional mesh, or a processor grid. Assume the processor grid has pprocessors in each row and q processors in each column, and that neighboring processors in thegrid may or may not be physically connected. For example, in hypercube architectures, a subcubecan be recon�gured into a processor grid, but it has di�erent connections between the neighboringprocessors. Figure 1(a) shows a typical processor grid as a mesh-connected processor array, andFigure 1(b) shows a 24 subcube recon�gured into a 4 � 4 mesh-connected processor array. Note
(a) A mesh-connected processor grid (b) A cube reconfigured into a 4 x 4 meshFigure 1: 4� 4 mesh-connected processor arrays3

that a \�" represents a processing node and that each physical connection is represented by a solidline.In our algorithm, each intermediate transformation matrix computed to reduce a block must bebroadcast to all processors on the corresponding row and column to update the remaining blocksof the original matrix at each reduction step. This broadcasting strategy totally depends upon thenetwork of message-passing multicomputers, and therefore has a great e�ect on the performance ofour algorithm.Two general message-passing methods can be used to update the rest of the matrix A: one-to-one broadcasting in pipelined fashion and one-to-many broadcasting. Figure 2 shows thosebroadcasting methods. For convenience, we use Pi;j to denote the processor in the (i; j) positionof the processor grid, and Pi;� and P�;j to denote the processors assigned to the ith row and jthcolumn of the grid. In one-to-one broadcasting, the processor being reduced �rst sends a messageto the next row processor, Pi;j+1 and then sends it to the processor Pi;j+2, etc. As soon as thediagonal processor, Pi;i, receives a message, it sends the message to both the next row and columnprocessors. In one-to-many broadcasting, the processor, Pi;j being reduced broadcasts a messageto the corresponding row and column processors, Pi;� and P�;j simultaneously. Further details ofsuch message-passing methods will be discussed in the next section.2.2 Matrix Partitioning and MappingSince message-passing multicomputers typically have no globally-shared memory, the data mustbe distributed among the processing nodes in some way. Typically, data is distributed by rowsif the computation is row-oriented, and by columns if it is column-oriented. For the reductionalgorithms using similarity transformations, the matrix A must be updated by both premultiplyingand postmultiplying an intermediate orthogonal matrix at each reduction step. Thus, the compu-tations of the algorithm are both row-oriented and column-oriented, and hence parallelism of ouralgorithm stems from the computations along both row and column with processors con�gured intoa processor grid.In our algorithm, an n � n matrix is distributed into processors in block-scattered fashion, i.e.via N �N blocks of equal size b, where N = n=b. Figure 3 illustrates the partitioning of a 48� 48matrix into 12 � 12 block submatrices with equal block size of 4 so that the partitioned blocksubmatrices are mapped onto a 4� 4 processor grid.In summary, the matrix mapping strategy is essentially a wrapping of the rows of the n � nmatrix A around the p processor rows, namely, P1;�, P2;�, : : : , Pp;� or a wrapping of the columnsof A around the q processor columns, namely, P�;1, P�;2, : : : , P�;q. Hence, if the nodes of a p � q
(a) One-to-many broadcasting (b) One-to-one broadcasting using a unidirectional ringFigure 2: The communication patterns for broadcasting on a 4� 4 processor grid4

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

Pi,j

(a) A 4 x 4 block A(I,J)

3

4

5

6

7

9

10

12

11

8

2

1

1 2 3 4 5 6 7 8 9 10 11 12

(c) A 12 x 12 block matrix mapped onto a 4 x 4 processor grid.

Block Column J

Block Row I

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

(b) A 4 x 4 processor gridFigure 3: Matrix Partitioning and Mappingprocessor grid are indexed by (i; j), where 1 � i � p, and 1 � j � q, then the blocks can bewrapped onto this grid by assigning AI;J to node (I mod p; J mod q).2.3 The AlgorithmBased on the matrix partitioning, mapping, and communication model described in the precedingsections, the algorithm applies both Householder re
ectors and Givens rotations to reduce all o�-diagonal blocks at each step. The algorithm consists of two di�erent phases: a QR factorizationphase and a Givens phase. While the QR factorization phase is based on Householder re
ectorsto reduce each block in the current block column to upper-triangular form, the Givens phaseuses Givens rotations to annihilate all elements of each triangularized block except for the mainsubdiagonal block.Suppose that the jth block column is being reduced and i is the row index of a block submatrixin block column j. The processor that owns the block submatrix Aij has a row index of i mod pand a column index of j mod q. In the QR factorization phase, Householder re
ectors are usedto compute Qij such that Aij = QijRij. The o�-diagonal blocks in the current block columnare reduced to upper triangular form. This phase can be carried out locally by each processorwithout any global communication. The rest of the original matrix A is then updated by pre- andpostmultiplication by Qij . Once each processor computes an orthogonal matrix Qij for each o�-diagonal block using Householder re
ectors, it broadcasts Qij to all processors on its processorrow and on its corresponding processor column i. Figure 4 illustrates the subsequent matrixtriangularization. Figure 5 depicts the message
ows in this phase.Throughout the Givens phase, all o�-diagonal blocks except for the main subdiagonal block areannihilated. This phase applies a sequence of Givens rotations between two blocks for eliminatingall elements of one block with the other block as a pivot block. Figure 6 illustrates the process5

P

P

P P P P

PPP

P P P

PPP
12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

1

2

3

4

5

6

7

8

9

10

11

12

P

Blocks to be updated

Triangularized blocks

Zeroed-out blocks

1 2 3 4 5 6 7 8 9 10 11 12

11

Columns to be updated

Rows to be updatedFigure 4: The matrix triangularized in the QR factorization phase
1 2 3 4 5 6 7 8 9 10 11 12

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

1

2

3

4

5

6

7

8

9

10

11

12

P

message flows

Blocks to be updated

Triangularized blocks

Zeroed-out blocks

Columns to be updated by postmultiplication

Rows to be updated by premultiplication

P

P

P

P

P
i,j-1

i+1,j

i,j+1

i-1,j

i,j

A(I,I)

(b) Message flow of a diagonal processor

(a) Message Flows after triangularized in the QR factorization phase.Figure 5: Message Flows after triangularized by Householder algorithms6

local annihilation within a block

global annihilation between two blocks

zeroed-out element

1
2

3

2

1

1

pivot block

Zeroed blockFigure 6: A sequence of Givens rotations between two blocksof computing a sequence of Givens rotations between two 3 � 3 blocks. The reduction of the jthcurrent block column to block upper-Hessenberg form is composed of two steps: local annihilationand global annihilation.In Step 1 of the Givens phase (local annihilation), each processor in the current column thatowns all o�-diagonal blocks annihilates all elements of its local o�-diagonal blocks with its lowest-numbered local block as a pivot block. Once a sequence of Givens rotations for each of two blocks iscomputed, it must be broadcast to all processors on its row and corresponding column for updatingthe rest of matrix. Hence, after this step, each processor has left only one local o�-diagonal blockwith lowest-numbered index (see Figure 7).In Step 2 of the Givens phase (global annihilation), the lowest-numbered block of each processoron the current column is paired with that of other processor, and then one of two global blocksis annihilated by computing a sequence of Givens rotations with other block as a pivot block.This annihilation step requires all pairs of processors to participate in computing a sequence ofGivens rotations between two paired blocks regardless of whether any computational work remainsfor a particular processor. This step requires communications between the paired processors forexchanging its whole row blocks. The step can be done recursively in log2 p stages, where p is thenumber of processor rows (see Figure 8).For convenience, we denote a \pivoting processor" as a processor that owns a pivot block anda \zeroing processor" as a processor that owns a block to be annihilated. The pivoting processorhas a lower-numbered row block index than that of the zeroing processor; hence, only the pivotingprocessors at the previous stage participate in the next stage. At the beginning of each of log pstages, every processor is paired with the nearest neighboring processor that owns a nonzero block.Then, every processor exchanges its current local pivot block to the current paired processor. Bothprocessors should compute the same sequence of Givens rotations to zero out one block. Whileone processor zeros out the received block with a pivot block as its own block, the other processorzeros out its own block with a pivot block as the received block. Between the two stages, both thepivoting and zeroing processors must broadcast a Givens sequence computed at the previous stageto the processors on its row and corresponding column of the processor grid. After log2 p stages,only one triangular block (i.e., the main subdiagonal block) remains. Thus, the current blockcolumn is reduced to block upper-Hessenberg form. This process completes a reduction step of thealgorithm and is repeated on the remaining unreduced block columns. A complete pseudocode ofthe algorithm is given in Figure 9. 7

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

P

P

P P P

PP

P P

PP
11 12 14

21 22 24

32 34

41 42 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P

PP

P P

PP
11 12 14

21 22 24

32 34

41 42 44

31

P

P

P

P P P

PP

P P

PP
11 12 14

21 22 24

32 34

41 42 44

31

P

1 2 3 4 5 6 7 8 9 10 11 12

P

P

P
13

23

33

P

P

P

P
13

23

33

43

P

P

P

P
13

23

33

43

P
43

P

P

P
13

23

33

P

P

P

P
13

23

33

43

P

P

P

P
13

23

33

43

P
43

Column 3

Blocks to be updated

Triangularized blocks

Zeroed-out blocks

Columns to be updated

Rows to be updated

Triangular blocks to be zeroedFigure 7: The matrix after the step I of Givens phase
1

2

3

4

5

6

7

8

9

10

11

12

P

P

P P P

PP

P P

PP
11 12 14

21 22 24

32 34

41 42 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P P

PPP

P P P

PPP
11 12 13 14

21 22 23 24

32 33 34

41 42 43 44

31

P

P

P

P P P

PP

P P

PP
11 12 14

21 22 24

32 34

41 42 44

31

P

P

P

P P P

PP

P P

PP
11 12 14

21 22 24

32 34

41 42 44

31

P

1 2 3 4 5 6 7 8 9 10 11 12

P

P

P
13

23

33

P

P

P

P
13

23

33

43

P

P

P

P
13

23

33

43

P
43

P

P

P
13

23

33

P

P

P

P
13

23

33

43

P

P

P

P
13

23

33

43

P
43

2
1

1

Column 3

Blocks to be updated

Triangularized blocks

Zeroed-out blocks

Triangularized blocks to be zeroed

Columns to be updated

Rows to be updated

1

2

3

4

5

6

7

8

9

10

11

12 Figure 8: The matrix after the step II of Givens phase8

Algorithm:for each block col j = 1 to N doQRfact(j); QR factorization phaseGivens(j); Givens phaseendforprocedure: QRfact(j)for each local row block i = j + 1 to N � 1 dodgeqr(Qij); Compute Qijbcast(Qij); to processors in row i and col irowupdate(Qij); premultiplication, QTi;jAi;�if i is my col thencolupdate(Qij); postmultiplication, A�;iQi;jendifendforprocedure: Givens(j)1. local annihilationfor each local row block i = j + 2 to N � 1 dodzeroblk(Gij); Compute Gijbcast(Gij); to processors in row i and col irowupdate(Gij); premultiplication, GTi;jAi;�if i is my col thencolupdate(Gij); postmultiplication, A�;iGi;jendifendfor2. global annihilationfor k = 1 to log2 p doif my top row block not zeroed out thenexchange(all blocks in the top row)dzeroblk(Gij); Compute Gijbcast(Gij); to processors in row i and col irowupdate(Gij); premultiplication, GTi;jAi;�if i is my col thenif necessary thenexchange (all blocks in the corresponding col)endifcolupdate(Gij); postmultiplication, A�;iGi;jendifendifendfor Figure 9: A Pseudocode of the Algorithm9

3 Time Complexity AnalysisIn this section, we analyze the time complexity of both the arithmetic operations and the commu-nications of our parallel algorithm. We denote tA as the arithmetic time complexity and tC as thecommunication time complexity. For simplicity, we ignore the extra communication cost requiredfor pairs of processors to exchange the whole block column for a column update in Step 2 of theGivens phase in cases where a processor grid is not square.First, we compute the computation and communication costs of each phase on the jth blockcolumn at each reduction step. Then, we sum over all block columns to get the complexity of thephase for the entire algorithm. Suppose that the dimension of the block matrix is N with blocksize of b and that the processor grid is p � q. Thus, a processor has dN=pe row blocks and dN=qecolumn blocks. We assume that p divides N and q divides N .3.1 Arithmetic ComplexityIn the QR factorization phase, a processor on the jth block column computes (N � j)=p QRfactorizations of the b� b o�-diagonal block submatrices. Row processors that must premultiply Aby these transformations have (N � j)=p� (N � j)=q blocks to update. Column processors thatmust postmultiply A have N=p�(N�j)=q blocks to update. For each block, the arithmetic cost forthe orthogonal factorization is 43b3
oating-point operations (
ops). The premultiplication of eachblock row requires 2b3(N � j)=q
ops, and the postmultiplication of each block column requires2b3N=p
ops. While the arithmetic complexity for the premultiplication of each block row in theQR factorization phase is then multiplied by the number of block rows, (N � j)=p, the arithmeticcomplexity for the postmultiplication of each block column is multiplied by the number of blockcolumns, (N � j)=q. The arithmetic complexity summed over all the block columns is then givenby tA(QR) = N�1Xj=1 �N � jp � 4b33 + 2b3N � jq + 2b3Nq !:In the Givens phase, the arithmetic cost results from the two di�erent steps, local and globalannihilation. The arithmetic cost of local annihilation on the jth block column istA(I) = �N � jp ��b(b+ 1)2 ��6 + 6bN � jq + 6bNp � :While the arithmetic cost for global annihilation in log2p stages istA(II) = (log2 p)�b(b+ 1)2 ��6 + 6bN � jq + 6bNp � :Hence, the total arithmetic cost of the Givens phase istA(Givens) = N�2Xj=1 (tA(I) + tA(II)) = N�2Xj=1 �N � jp + log2 p��b(b+ 1)2 ��6 + 6bN � jq + 6bNp �:10

3.2 Communication ComplexityThe communication complexity of the QR factorization phase on the jth block column is dominatedby the cost of broadcasting a transformation of each block matrix, Aij to all processors on the rowand column. Suppose that � is the communication startup cost and � is the transmission time per
oating-point number. In the store-and-forward mechanism, the message transfer time between twoadjacent processors can be represented as �+m�, where m is the number of
oating-point numbersin the messages. If a message is delivered h hops away, the message transfer time can be roughlyestimated as h(�+m�). In the wormhole routing mechanism used in the Intel DELTA, the messagetransfer time is almost independent of the distance (number of hops) between processors [1]. Inthis case, if network contention is not considered, the message transfer time can be represented as�+m� regardless of the distance that a message has to traverse. In our analysis, for convenience, weassume that the message transfer time is �+m� for m
oating-point numbers. The communicationcost for the QR factorization phase is therefore given bytC(QR) = N�1Xj=1 �N � jp ��� + � b(b+ 1)2 �:Similarly, the communication costs for two di�erent steps of the Givens phase on the jth blockcolumn are given by tC(I) = �N � jp � (�+ b(b+ 1)�) ;and tC(II) = (log2 p) (�+ b(b+ 1)�) + (2 log2 p)���+ b2N � jq ��+ ��+ b2Np ��� :Hence, the total communication cost of the Givens phase is given bytC(Givens) = N�2Xj=1 (tC(I) + tC(II))= N�2Xj=1 ��N � jp + log2 p� (�+ b(b+ 1)�) + (2 log2 p)���+ b2N � jq ��+ �� + b2Np ���� :Arithmetic Cost (tA) Communication Cost (tC)QR 53pqN3b3 + (23p + 2pq)N2b3 + O(n) 12p(N2 + 4N)�+ 14p(N2b2 +N2b+O(n))�Givens I 1pq (N3b3 +N3b2) + 32p2 (N3b3 +N3b2) +O(n2) 12pN2�+ 12p �N2b2 +N2b+O(n)��Givens II � 32q + 3p� (N2b3 +N2b2) log2 p+O(n log2 p) 5N� log2 p+ (1q + 2p)(N2b2 + O(n))� log2 pTable 1: Complexity Summary of the Algorithm11

5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
0

0.5

1

1.5

2

2.5

The Size of Matrix, n

P
re

di
ct

ed
 T

im
es

 in
 s

ec
 (

x
10

00
)

Arithmetic time of QR

Arithmetic time of Givens

Comm. time of QR

Comm. time of GivensFigure 10: Predicted Timing Results of the Algorithm based on the Complexity Analysis.(For theIntel DELTA, block size, b = 25, processor grid = 16� 16, and N = n=b)3.3 Complexity SummaryThe complexity of the algorithm is summarized in Table 1. While the arithmetic cost of ouralgorithm remains unchanged once a processor grid is given, the communication cost dominatesthe total cost of the algorithm. Furthermore, the communication cost depends on how a message isbroadcast to the row and column. For a rectangular processor grid, for example, the communicationcost of the Givens phase is increased by the extra communications required for a column update inboth Step 1 and Step 2. Based on our complexity analysis, Figure 10 shows the predicted timingresults of the algorithm for the block size 25 on a 16� 16 processor grid of the Intel DELTA as thematrix size is varied between 5; 000 and 10; 000.4 ImplementationsThe target architectures for our algorithm are message-passing multicomputers such as the InteliPSC/860, the Intel DELTA, the TMC CM-5, the Cray T3D, and the Ncube nCUBE. A message-passing multicomputer is a distributed-memory multiprocessor in which each memory module isphysically associated with each processor. A point-to-point interprocessor communication networkprovides a mechanism for communication between processors.Several factors a�ect the performance of the algorithm on such multicomputers. First, withblock-scattered decomposition, the block size raises the issue of granularity in communication aswell as in computation of the algorithm. Speci�cally, as the block size increases, the number ofcomputations and the size of a message to transfer also increase, while the number of communica-tions to broadcast a message decreases. Second, an important aspect in the mapping technique isload balancing. Our algorithm maintains load balancing statically by wrapped mapping on boththe row and column. Third, and most important, is the waiting time when messages are broadcastalong the row and column simultaneously. This waiting time is a�ected mostly by the broadcasting12

mechanisms that the machine's system software supplies.In this section, we describe two di�erent implementations of the algorithm on the Intel iPSC/860and the DELTA: blocking and nonblocking. Blocking refers to the case when a processor receiv-ing/sending a message from/to another processor must wait until the receiving/sending processis complete; nonblocking refers to the case when receiving/sending a message does not block theprocessor. These blocking and nonblocking mechanisms are often referred to as \synchronous" and\asynchronous" message passing, respectively. We have used the BLAS [8] and LAPACK routines fordoing all basic block computations. No global combine operations among processors are requiredin the current implementations.4.1 Communication routines on Intel machinesOn Intel machines, a program running on one processor can send a message to and receive amessage from another processor by calling two di�erent sets of communication primitives providedby the operating system. The set for blocking calls comprises csend() and crecv(). The set fornonblocking calls comprises isend() and irecv(); the msgdone() call is used to check whether anasynchronous operation has completed.4.2 Synchronous ImplementationFor our synchronous implementation, we use the BLACS (Basic Linear Algebra CommunicationSubprograms) communication library [6]. The BLACS are a linear algebra communication librarywritten using communication primitives of message-passing multicomputers. The library providesportable, e�cient, and modular high-level routines for manipulating and communicating data struc-tures that are distributed among the memories of message-passing multicomputers. Also, it embedsseveral di�erent communication topologies and supports various broadcasting schemes for process-ing nodes of multicomputers logically con�gured as a rectangular mesh, or grid. 1Our synchronous implementation contains three di�erent versions: STREE, IRING, and DRING.Each of which depends on how a message is broadcast in a linear array of row processors orcolumn processors. IRING, DRING, and STREE, were implemented using broadcasting schemes thatthe BLACS supports: increasing ring, decreasing ring, and minimum spanning tree, respectively.Those broadcasting schemes require unidirectional ring topologies or linear arrays.Seidel [11] has shown that in ring broadcasts such as increasing ring and decreasing ring, whilethe original sending processor is required to spend only the amount of time to send a message tothe next processor, the last processor must waste p times as much as that of receiving and sendinga message.Minimum spanning tree broadcasting requires that p be an integer power of 2. This schemetakes log2p times as much as that of receiving and sending a message. Thus, the minimum spanningtree broadcasting consumes less waiting time than ring broadcasting. In addition, we use force-typed messages for paired processors to exchange a whole block row with each other in the GivensStep 2.4.3 Asynchronous ImplementationSynchronous implementations could block further computations that are independent of incomingmessages. The goal of an asynchronous implementation is to reduce the time wasted in waiting forincoming messages.1Note that the BLACS currently do not support nonblocking routines.13

In the asynchronous implementation, a message is broadcast to all processors on the row andcolumn simultaneously, without being send to intermediate nodes. This scheme has two principaldisadvantages: it can cause network contentions, and the sending processor takes much more timethan receiving processors. For this implementation, we must use the Intel nonblocking low-levelcommunication primitives directly. Note that in order to maintain the ordering of computations forrow updating and column updating, some data structures are used to manage queues for incomingmessages received by each processor. Also, no force-typed messages are used.5 Experimental ResultsOur implementations were run and timed on both the Intel iPSC/860 and the DELTA. All testruns were performed in 64-bit arithmetic for random matrices with values between 0:0 and 1:0.The asynchronous implementation performed better than the synchronous implementations ona rectangular processor grid, say 16 � 4. Figure 11 shows this performance improvement in caseswhere the number of processor rows is greater than that of processor columns. The explanationrests with the fact that for a rectangular processor grid p � q, where p > q, more parallelism isachieved along row computations, and the waiting time of broadcasting messages along rows is lessin the asynchronous implementation than in the synchronous implementations.
10 12 14 16 18 20 22 24 26 28 30

1500

2000

2500

3000

3500

4000

4500

Block Size

T
im

e
in

 s
ec

s

Synchronous, 16x4

Synchronous, 8x8

Asynchronous, 16x4Figure 11: Performances on the iPSC/860 for matrices of order 5; 000 on di�erent processor gridsof 64 processing nodes.The synchronous implementations perform better on a square processor grid than on a rectan-gular processor grid, due to signi�cant amount of waiting time or extra communication spent inthe Givens phase. Hence, all test runs were performed on the square processor grid of maximumsize that the machines provide. On the iPSC/860, the processor grid 8 � 8 was used for a matrixof order 6; 000. On the DELTA, the processor grid was 16 � 16 for a matrix of order 10; 000.The asynchronous implementation was also run with identical matrices on the both machines forcomparison purposes. All timings were performed for di�erent block sizes to �nd the best blocksize. 14

Figures 12 and 13 show the performance results among the current implementations.
10 15 20 25 30 35

290

300

310

320

330

340

350

360

Block Size

P
er

fo
rm

an
ce

 in
 M

flo
ps

Asynchronous

Spanning tree

Decreasing ring

Increasing ringFigure 12: Performances for STREE, DRING, IRING, and asynchronous codes on the iPSC/860 formatrices of order 6; 000 on an 8� 8 processor grid.
10 15 20 25 30 35

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Block Size

P
er

fo
rm

an
ce

 in
 G

flo
ps

Asynchronous

Spanning tree

Decreasing ring

Increasing ringFigure 13: Performance STREE, DRING, IRING, and asynchronous codes on the Intel DELTA formatrices of order 10; 000 on a 16� 16 processor grid.For the purpose of comparing detailed timing and performance results of computation andcommunication parts of the algorithm, the STREE code of the synchronous implementation was runfor a matrix of order 6; 000 with the same processor grid 8 � 8 on the both machines. Detailed15

timing results are shown in Figures 14 and 15, and their numeric data are provided in Tables2 and 3 of the Appendix. In these tables, \Row" stands for row updating of blocks, \Col" forcolumn updating, \QR" for computing QR factorization of blocks, \Givens" for computing Givensrotations of blocks, and \Bcast" for broadcasting messages to their corresponding row and columnprocessors.6 ConclusionsThe performance results of the current implementations of our algorithm on the Intel iPSC/860and DELTA are quite consistent, considering the distinct characteristics of both machines. Wedraw several conclusions from these results:� The STREE code performs better than any of the other synchronous codes on the both ma-chines, even though the DELTA has a mesh architecture.� The asynchronous implementation performs best among implementations. This superior per-formance stems from less waiting time because of nonblocking communications.� The most important factor limiting the performance of the synchronous implementation isblocking receiving processors. Speci�cally, the receiving processors spend most of their timewaiting for messages (transformation matrices) from row and column processors. Further-more, once messages are received, all blocks on the corresponding row and column are updatedsynchronously. Thus, synchronous communications limit the performance.� Premultiplication (row updating) is much slower than postmultiplication (column updating),even without any communications. Furthermore, the ratio of premultiplication versus post-multiplication is improved and both premultiplication and postmultiplication are faster asthe block size becomes larger; however, communication becomes slower for larger block sizechoices.� The timing ratio of row updating versus column updating the in Givens phase is larger thanthat in the QR-factorization phase. This may be due to di�erences in memory access patternsand possible cache misses when blocks are accessed for updating in the Givens phase.� The best block size for our current implementations is between 20 and 30.7 Future WorkThe reduction to Hessenberg form inherently requires very large numbers of computations of 103 n3
ops for n�n matrices. In our parallel algorithm, the computation cost still dominates the total costof the algorithm, and the communication cost is inexpensive. Thus, there is a tradeo� between theimproved performance possible by using more number of processors and the degradation resultingfrom more communications.In view of the overhead of managing some data structures for handing asynchronous sendsand receives, one might explore the use of hsend() and hrecv(). These Intel routines behavelike interrupt handlers, invoking a routine speci�ed as arguments when a program running on aprocessor receives an incoming message. To use them, however, we need to use large common blocksin Fortran to handle asynchronous message passing.16

Another area for research is load balancing. When the block size is large, wrap-mapping in around-robin fashion is not optimal. A mapping created by wrapping processors on the row andcolumn alternately in reverse order would be better.Finally, we envision this algorithm as a highly parallel algorithm for massive parallel mul-ticomputers with more than one-thousand processing nodes, such as the Intel Paragon, or onmessage-passing multicomputers with smaller communication latency.8 AcknowledgementWe acknowledge valuable comments and suggestions by Prof. Gene H. Golub of Stanford University.This research was performed in part using the Intel Touchstone DELTA System operated by theCalifornia Institute of Technology on behalf of the Concurrent Supercomputing Consortium andalso conducted on the Intel iPSC/860 System located at the Oak Ridge National Laboratory.References[1] M. Barnett, D. G. Payne, and R. van de Geijn. Optimal broadcasting in mesh-connectedarchitectures. Technical Report TR-91-38, University of Texas, 1991.[2] Eleanor Chu and Alan George. QR factorization of a dense matrix on a hypercube multipro-cessor. SIAM J. Sci. Stat. Comput., 11(5):990{1028, 1990.[3] J. J. Dongarra and S. Ostrouchov. LAPACK block factorization algorithms on the intelipsc/860. Technical Report CS-90-115, University of Tennessee, 1990. LAPACK WorkingNote 24.[4] J. J. Dongarra, A. H. Sameh, and D. C. Sorensen. Implementation of some concurrent algo-rithms for matrix factorizations. Parallel Computing, 3:25{34, 1986.[5] J. J. Dongarra, D. C. Sorensen, and S. Hammarling. Block reduction of matrices to con-densed forms for eigenvalue computations. Journal of Computational and Applied Mathemat-ics, 27:215{227, 1989.[6] J. J. Dongarra, R. van de Geijn, and R. C. Whaley. A users' guide to the BLACS. TechnicalReport CS-93-187, University of Tennessee, 1993. LAPACK Working Note 57.[7] J. J. Dongarra and R. A. van de Geijn. Reduction to condensed form for the eigenvalue problemon distributed memory architectures. Parallel Computing, 18:973{982, 1992.[8] J.J. Dongarra, J. DuCroz, and S. Hammerling. A set of level 3 basic linear algebra subprograms.ACM Trans.on Math. Soft., 16(1):1{17, 1990.[9] G. H. Golub and C. V. Van Loan. Matrix Computations, 2nd ed. The Johns Hopkins UniversityPress, lBaltimore, Mayland, 1989.[10] Alex Pothen and Padma Raghavan. Distributed orthogonal factorization: Givens and House-holder algorithms. SIAM J. Sci. Stat. Comput., 10(6):1113{1134, 1989.[11] Steven R. Seidel. Broadcasting on linear arrays and meshes. Technical Report ORNL/TM-12356, Oak Ridge National Laboratory, 1990.17

Appendix QR fact. (Ops, Secs, %) Givens (Ops, Secs, %)NB Total (secs) Op Counts Time % Op Counts Time %10 3320.96 0.3559 1181.96 35.6 0.591 2138.97 64.415 3072.65 0.3577 923.06 30.0 0.571 2149.57 70.020 2861.63 0.3581 856.20 29.9 0.561 2005.42 70.125 2735.18 0.3582 780.80 28.5 0.555 1954.37 71.530 2852.59 0.3582 763.60 26.8 0.550 2088.98 73.235 2908.16 0.3580 795.54 27.3 0.546 2112.61 72.740 2947.40 0.3578 853.50 29.0 0.543 2093.89 71.0QR fact. Phase (secs) Givens Phase I (secs) Givens Phase II (secs)NB QR Bcast Row Col Givens Bcast Row Col Givens Bcast Row Col10 6.17 186.34 725.66 261.90 7.16 102.95 1354.93 478.86 2.73 125.61 36.01 23.3815 4.57 190.39 486.22 241.02 6.66 109.29 1275.16 512.88 3.88 151.83 50.64 35.6920 3.92 210.65 401.41 239.71 6.61 70.04 1236.66 451.71 5.19 119.98 65.86 47.6625 3.39 227.38 327.71 221.99 6.31 134.05 1001.41 479.01 6.26 197.33 72.27 56.6530 3.19 250.30 292.06 217.80 6.21 147.12 1131.41 406.15 7.55 235.89 92.94 62.0635 3.22 270.80 289.47 231.83 6.62 103.84 1136.93 499.16 9.03 168.61 107.48 81.6840 3.02 371.75 259.06 219.50 6.30 144.78 1118.76 404.05 10.37 197.07 124.69 89.11Table 2: STREE: Detailed Timing Results on the Intel iPSC/860 for a matrix of order 6; 000 on an8� 8 processor grid QR fact. (Ops, Secs, %) Givens (Ops, Secs, %)NB Total (secs) Op Counts Time % Op Counts Time %10 3138.22 0.3559 1099.42 35.0 0.591 2038.77 65.015 2906.21 0.3577 830.71 28.6 0.571 2075.49 71.420 2692.83 0.3581 749.86 27.8 0.561 1942.96 72.225 2543.63 0.3582 663.70 26.1 0.555 1879.92 73.930 2639.85 0.3582 638.68 24.2 0.550 2001.17 75.835 2677.06 0.3580 647.57 24.2 0.546 2029.49 75.840 2709.29 0.3578 679.67 25.1 0.543 2029.62 74.9QR fact. Phase (secs) Givens Phase I (secs) Givens Phase II (secs)NB QR Bcast Row Col Givens Bcast Row Col Givens Bcast Row Col10 4.60 109.51 722.95 260.64 3.46 54.44 1321.15 478.41 1.69 114.7 35.34 22.8315 3.49 100.41 485.25 240.76 3.27 43.10 1264.03 512.45 2.00 161.31 51.22 34.6320 3.06 107.59 400.00 238.74 3.27 24.65 1224.01 450.24 2.63 123.06 66.47 46.6425 2.71 111.04 327.08 222.58 3.17 38.67 1003.83 478.64 3.19 222.56 73.16 55.4630 2.59 127.31 290.77 217.78 3.16 37.89 1119.47 405.51 3.84 276.63 92.68 61.4335 2.67 123.54 288.80 232.36 3.46 19.31 1139.42 498.32 4.74 175.11 107.81 81.2440 2.56 199.62 258.24 219.10 3.30 29.96 1110.17 403.37 5.45 265.65 124.68 88.00Table 3: STREE: Detailed Timing Results on the Intel DELTA for a matrix of order 6; 000 on an8� 8 processor grid 18

10 15 20 25 30 35 40
100

200

300

400

500

600

700

800

Block Size

T
im

e
in

 s
ec

s

(a) QR factorization phase

Row Update

Col Update

Broadcast

10 20 30 40
0

200

400

600

800

1000

1200

1400

Block Size

Ti
m

e
in

 s
ec

s

(b) Givens phase I

Row Update

Col Update

Broadcast

10 20 30 40

50

100

150

200

(c) Givens phase II

Broadcast

Row Update

Col UpdateFigure 14: Detailed times on the iPSC/860 for matrices of order 6; 000 on an 8� 8 processor grid19

10 15 20 25 30 35 40
100

200

300

400

500

600

700

800

Block Size

T
im

e
in

 s
ec

s

(a) QR factorization phase

Row Update

Col Update

Broadcast

10 20 30 40
0

200

400

600

800

1000

1200

1400

Block Size

Ti
m

e
in

 s
ec

s

(b) Givens phase I

Row Update

Col Update

Broadcast

10 20 30 40
0

50

100

150

200

250

300
(c) Givens phase II

Broadcast

Row Update

Col UpdateFigure 15: Detailed times on the Intel DELTA for matrices of order 6; 000 on an 8 � 8 processorgrid 20

