
To the Graduate Council:I am submitting herewith a thesis written by Robert J. Manchek entitled \Designand Implementation of PVM Version 3." I have examined the �nal copy of thisthesis for form and content and recommend that it be accepted in partial ful�llmentof the requirements for the degree of Master of Science with a major in ComputerScience. Dr. Jack Dongarra, Major ProfessorWe have read this thesisand recommend its acceptance:
Accepted for the Council:Associate Vice Chancellorand Dean of The Graduate School

STATEMENT OF PERMISSION TO USEIn presenting this thesis in partial ful�llment of the requirements for a Master'sdegree at The University of Tennessee, Knoxville, I agree that the Library shall makeit available to borrowers under rules of the Library. Brief quotations from this thesisare allowable without special permission, provided that accurate acknowledgmentof the source is made.Permission for extensive quotation from or reproduction of this thesis may begranted by my major professor, or in his absence, by the Head of Interlibrary Serviceswhen, in the opinion of either, the proposed use of the material is for scholarlypurposes. Any copying or use of the material in this thesis for �nancial gain shallnot be allowed without my written permission.SignatureDate

DESIGN AND IMPLEMENTATION OF PVMVERSION 3
A ThesisPresented for theMaster of Science DegreeThe University of Tennessee, Knoxville

Robert J. ManchekMay, 1994

ACKNOWLEDGEMENTSI would like to thank my advisor, Dr. Jack Dongarra, for the guidance heprovided, and a job that was a lot of fun. I thank Dr. David Straight and Dr.Jim Plank for serving on my committee and some �ne discussions about caves andcomputer-related stu�. Thanks to my friends for dealing with me as I wrote thisevil thing: Chris Jepeway, Sharon Lewis, Reed Wade, Jan Jones, Al Geist, JamesGarnett, and especially Carolyn Aebischer. Thanks to my mom for all the stu�she taught me way a long time ago, without which I couldn't have done any ofthis. Thanks to Robert Benway, Ace PVM Debugger, for asking too many goodquestions.The PVM project is the result of the e�orts of several people. Involved in var-ious ways are: Jack Dongarra, Al Geist, Vaidy Sunderam, Weicheng Jiang, AdamBeguelin, Jim Kohl, Keith Moore, Honbo Zhou and Carolyn Aebischer, distributedseemingly at random at: the University of Tennessee, Oak Ridge National Labora-tory, Emory University, Carnegie Mellon University and the Pittsburgh Supercom-puting Center.Funding for this work was provided by the O�ce of Scienti�c Computing, U.S.Department of Energy, under Contract DE-AC05-84OR21400, the National Sci-ence Foundation Science and Technology Center Cooperative Agreement No. CCR-8809615, and the Science Alliance, a state-supported program at the University ofTennessee.In addition, a number of computer vendors have encouraged and provided valu-able input to the development of PVM. We thank Cray Research Inc., IBM, ConvexComputer, Silicon Graphics, Sequent Computer, and Sun Microsystems.ii

ABSTRACTThere is a growing trend toward distributed computing { writing programs thatrun across multiple networked computers { to speed up computation, solve largerproblems or withstand machine failures. A programming model commonly used towrite distributed applications is message-passing, in which a program is decomposedinto distinct subprograms that communicate and synchronize with one another byexplicitly sending and receiving blocks of data.PVM (Parallel Virtual Machine) is a generic message-passing system composedof a programming library and manager processes. It ties together separate physicalmachines (possibly of di�erent types), providing communication and control betweenthe subprograms and detection of machine failures. The resulting virtual machineappears as a single, manageable resource. PVM is portable to a wide variety of ma-chine architectures and operating systems, including workstations, supercomputers,PCs and multiprocessors.In this paper I describe the design, implementation and testing of version 3.3 ofPVM, and survey related works.
iii

TABLE OF CONTENTSCHAPTER PAGE1. INTRODUCTION : 11.1 The Distributed Computing Scene : : : : : : : : : : : : : : : : : : 11.2 Message Passing Programming : 31.3 History of PVM : 41.4 Typographical Conventions : 42. RELATED WORK : 52.1 Virtual Shared Memory : 52.2 Parallel Languages for Distributed Systems : : : : : : : : : : : : : 62.3 Distributed Object Systems : 72.4 Parallel Programming Systems : 82.5 Message-Passing Environments : 82.6 Distributed Operating Systems : 113. DESIGN : 143.1 Goals : 143.2 Assumptions : 143.3 Architecture Classes : 153.4 PVM Daemon : 153.5 Programming Library : 163.6 Task Identi�ers : 163.7 Message Model : 183.8 Asynchronous Noti�cation : 19iv

4. IMPLEMENTATION : 214.1 Messages : 214.1.1 Fragments and Databufs : 214.1.2 Messages in Libpvm : 224.1.3 Messages in the Pvmd : 234.1.4 Pvmd Entry Points : 244.1.5 Control Messages : 254.2 PVM Daemon : 254.2.1 Startup : 254.2.2 Shutdown : 264.2.3 Host Table and Machine Con�guration : : : : : : : : : : : : 264.2.4 Task Management : 274.2.5 Wait Contexts : 284.2.6 Fault Detection and Recovery : : : : : : : : : : : : : : : : : 304.2.7 Pvmd' : 304.2.8 Starting Slave Pvmds : 314.3 Libpvm Library : 344.3.1 Language Support : 344.3.2 Connecting to the Pvmd : 354.4 Protocols : 364.4.1 Messages : 364.4.2 Pvmd-Pvmd : 374.4.3 Pvmd-Task and Task-Task : : : : : : : : : : : : : : : : : : : 414.5 Message Routing : 424.5.1 Pvmd : 424.5.2 Pvmd and Foreign Tasks : 444.5.3 Libpvm : 454.5.4 Multicasting : 47v

4.6 Task Environment : 484.6.1 Environment Variables : 484.6.2 Standard Input and Output : : : : : : : : : : : : : : : : : : 484.6.3 Tracing : 514.6.4 Debugging : 514.7 Console Program : 524.8 Resource Limitations : 524.8.1 In the PVM Daemon : 534.8.2 In the Task : 534.9 Debugging the System : 544.9.1 Sane Heap : 544.9.2 Runtime Debug Masks : 554.9.3 Statistics : 565. WATER TEST : 575.1 Performance Measurements : 575.1.1 Message Latency : 575.1.2 Message Throughput : 595.2 Analyzing the Performance : 595.2.1 Latency : 595.2.2 Throughput : 626. CONCLUSIONS : 666.1 Results : 666.1.1 Fault Tolerance : 666.1.2 Portability : 676.1.3 Performance : 676.1.4 Scalability : 686.1.5 Heterogeneity : 69vi

6.1.6 How Real is It? : 696.2 Recommendations : 706.2.1 Richer Programming Interface : : : : : : : : : : : : : : : : : 706.2.2 Losing the Master Pvmd : 716.2.3 After-Market Options : 716.2.4 Distributed Debuggers : 726.3 Availability of the Code : 73BIBLIOGRAPHY : 74VITA : 81

vii

LIST OF FIGURESFIGURE PAGE1 Generic Task ID : 172 Multiprocessor Task ID : 183 Message Storage in Libpvm : 224 Message Storage in Pvmd : 245 Host Table : 276 Task Table : 287 Host Table : 298 Timeline of Addhost Operation : 339 Message Header : 3710 Pvmd-pvmd Packet Header : 3811 Host Descriptors with Send Queues : : : : : : : : : : : : : : : : : : : 4012 Pvmd-Task Packet Header : 4213 Packet and Message Routing in pvmd : : : : : : : : : : : : : : : : : 4314 Task-Task Connection State Diagram : : : : : : : : : : : : : : : : : 4615 Output States of a Task : 5016 Typical On-host and Inter-host Latencies : : : : : : : : : : : : : : : 5817 Minimum, Maximum On-host Latency, Sparc IPX : : : : : : : : : : 6018 Median On-host Latency, Sparc IPX : : : : : : : : : : : : : : : : : : 6119 Median Inter-host Latency, Sparc IPX : : : : : : : : : : : : : : : : : 6220 Median Inter-host Throughput, Sparc IPX : : : : : : : : : : : : : : : 6321 Median On-host Throughput, Sparc IPX : : : : : : : : : : : : : : : : 65viii

CHAPTER 1INTRODUCTION1.1 The Distributed Computing SceneDistributed computing { running programs across several or many computers ona network { is fast becoming a popular way to build state-of-the-art applications. Itis an evolutionary step in technology that has simple origins, but is fundamentallydi�erent than using a single computer. Distributed computing is attractive forseveral reasons and can be implemented in a variety of ways.Performance is one motivation behind distributed computing. By connectingseveral machines together, we can access more compute power, memory and I/Obandwidth. Groups of workstation-class machines can provide very high perfor-mance more cheaply than traditional supercomputers. Workstations can be con-nected to supercomputers to provide a desk-top interface, and we can intercon-nect supercomputers to solve Grand Challenge problems.Scalar (single instructionstream) processors run only as fast as the technology used to fabricate the com-ponents. This limit is expensive to exceed, perhaps by picking abnormally fastcomponents from production lots or by switching to a more esoteric technology.Vector processors, multiple instruction units and tightly-coupled multiprocessorsgive an order of magnitude more speed. Memory access is the bottleneck, becauseN processors contend for a single shared memory, unless some kind of (usually ex-pensive) switching network is used. Distributed-memory multiprocessors increasememory bandwidth by giving each processor a private local memory and accessto other processors through some sort of network. Aggregate processor power andmemory size can grow very large. The challenge is to partition programs so as1

to minimize communication, since it's expensive compared to memory access, andmaximize processor utilization (no one waiting). This is sometimes easy, for ex-ample when the computation is completely separable (\embarrassingly parallel")and expensive enough to balance the cost of sending the data. 1 We can connectcomplete machines (workstations or mainframes) together over a local- or wide-areanetwork, to form yet another type of distributed memory machine. The divisionbetween traditional multiprocessors and networks of computers is not a sharp line.The main di�erences are: 1. The ratio of communication to computation costs isusually higher for network-based machines, because the processors are larger andfaster while the network is a general-purpose one { noisier and slower. 2. Parts ofthe network machine can go down (due to power outage, hardware failure, reboot),leaving the rest still running.A second motivation is the availability of machines to connect. At a typicaluniversity or industrial site, there is a workstation for every person, and some largerserver machines. Much of the processor power goes unused; it's attractive to thinkof doing something with it. Modern operating systems (e.g. UNIX 2) [LMKQ89]have networking capability, allowing us to do simple remote operations such asexecute processes (the rsh command), or access �les (NFS [Sun89]), but to buildreal distributed applications using these raw tools entails a lot of work. Namingsystems for nodes and processes must be created. Communication protocols mustbe embedded in the application code. Implementation details at this level varyfrom machine to machine, even between di�erent versions of an operating system;the same problems are solved repeatedly. We'd like to have a single programmingsystem that encompasses single-processor machines and multiprocessors as well asnetworks of machines. It should allow one to write portable code, and hide thedetails of process control and communication from the programmer.1A classic example is computing fractals.2UNIX is a registered trademark of UNIX System Laboratories Inc.2

A third reason is fault tolerance. If a program is distributed across severalphysically separate computers, it should be able to tolerate a few of them goingdown. When computing on workstations, with each under the control of a di�erentowner, fault tolerance seems necessary just to have a reasonable probability that aprogram will run to completion.Finally, shared resources (both hardware and software) are inherently distributed.Not every site can a�ord a supercomputer, but if several sites go in on one together,somebody has to take it home. Large databases should be shared instead of repli-cated. 3 The same programming model we use to connect machines together on alocal network can allow us to access remote ones.1.2 Message Passing ProgrammingMessage passing is a programming model, generated by distributed-memory ma-chines but applicable to others, for example multiprogrammed single-processors. Aprogram is divided into components or subprograms, which may run on di�erentnodes of the machine. The same subprogram might run on every node (SPMD) orthey may all run completely di�erent programs (MPMD). The components com-municate with one another by explicitly sending and receiving messages, which arearrays of data copied from one node to another.PVM is a message-passing system that can be implemented in di�erent envi-ronments. It ties together separate physical machines into a virtual machine, andprovides the means for components to communicate with and control one another,and the virtual machine itself. Applications written in PVM can be run on di�erentvirtual machine con�gurations without modi�cation.3The Information Superhighway, doncha know.3

1.3 History of PVMThe �rst version of PVM was written during the summer of 1989 at Oak RidgeNational Laboratory by Vaidy Sunderam and Al Geist. It was used to build severalapplications, and showed promise as a computing platform. The main troubles werelack of portability, and an incompletely-de�ned programming interface. It neededtuning on a per-application basis to get it to do the right thing. However, it didattempt to implement some interesting concepts such as simulated shared memoryand majority-rule data conversion [Sun90, GS92].I wrote Version 2 in March 1991 [BDG+91] in a �t of angst caused by trying touse Version 1 in an application { a parallel graphical language derived from Schedule[DS86] that later evolved into HeNCE [BDG+93]. Very little was redesigned in therewrite; it was mainly an e�ort to clean up the code. The programming interfacewas simpli�ed and some unsupportable features were removed.I wrote Version 3 during the Summer and Fall of 1992, after we redesigned thesystem to be more portable and to allow fault tolerance. Since it was released ayear ago, over 3000 copies have been snagged. It is now actively in use at hundredsof sites, and is o�ered as a supported product by several vendors.1.4 Typographical ConventionsLiteral identi�ers such as �le names or variables, and examples of input or out-put appear in typewriter font, for example PvmDataDefault. Function names arefollowed by parenthesis, for example pvm exit(). Identi�ers are always spelled cor-rectly (case-sensitive), even when they occur at the beginnings of sentences. Non-literal terms are emphasized, for example pvmd, as are meta-identi�ers or variableparts of real identi�ers, for example /tmp/pvmd.uid.4

CHAPTER 2RELATED WORKIn this section I discuss related research: Alternative programming systems, andwork that is used by or can build on PVM.2.1 Virtual Shared MemoryShared memory is an alternative model that can be used to program eithertightly-coupled or distributed-memory multiprocessors. There is much discussionabout which is the lower layer: Messages can be implemented in terms of sharedmemory, or the other way around.Active Messages [vECGS92] are a portable form of asynchronous communicationimplemented on top of low-level message operations. When a message arrives at aprocessor, a handler function determined from the message header is automaticallyinvoked to extract data from the message and integrate it into the program runningin the foreground. Active messages are used to support Split-C, a modi�cationto C that combines aspects from shared memory and message passing paradigms.It supports a global address space using special assignment operators to optimizeremote access by overlapping communication with computation.The Shrimp [BLA+94] system uses a virtual memory-mapped network interfaceto give applications protected but direct access to network hardware, eliminating theoverhead of system calls. This allows high-bandwidth, low-latency data exchangeand can be used to support either message-passing or shared memory.5

2.2 Parallel Languages for Distributed SystemsMessage passing can be viewed either as an end programming medium or a sortof assembly language, which would be the output from compilation of a parallellanguage. Much of the work and fun of creating a parallel application lies in build-ing the communication and synchronization methods, and less of this would be lessrequired if these menial tasks could be automated. The problems are then to designa language expressive enough so a programmer can get his work done without spec-ifying all the details, and to build a compiler that can translate the language intosomething that runs e�ciently.Some parallel languages are intended to run on shared-memory machines andassume that access to all memory is inexpensive; those are not considered here. Mostmodern language designs take data distribution into account and, (for example)schedule communication with regard to network costs. As the central issues are howto divide up data and computation, many parallel languages just let the programmerdeal with one or both of those directly, using constructs such as hints or declarations.DINO [RSW90] is a language for writing parallel programs for distributed mem-ory machines, with emphasis on data-parallel computations that occur in numericalprograms. Based on standard C, it has extensions to let the programmer specify avirtual parallel computer, map data structures across the PEs, and specify concur-rent procedures. Programs written in DINO are compiled into normal C code bythe DINO compiler, which handles mapping of processes and data to real machineson a network, for example an Intel iPSC/2 hypercube.HPF [KLS+94] is a set of extensions to Fortran 90, designed to be able to becompiled to run e�ciently on computers with non-uniform memory costs. It includesnew directives, syntax and library routines, and also speci�es restrictions on existingfeatures of Fortran that lead to ine�ciency in distributed memory environments.Phred [BN91] is a parallel language in which the programmer speci�es a program6

as a graph, where nodes hold computation (written in a standard serial language) ordata. The graphical language is very expressive, and includes constructs for varioustypes of parallelism and synchronization. The graph can be analyzed to see if theresulting program runs in a deterministic fashion.Jade [RSL92] is a language for managing coarse-grained parallel applications.Concurrency is implicit; programs are written as sequential code, accessing a sharedaddress space. Annotations to the program tell the system how data is accessed. Theruntime system matches the parallelism to the real hardware and does dynamic loadbalancing. Data conversion is done between machines with di�erent number repre-sentations. Jade is implemented as an extension to C, and runs on shared memorymachines (SGI multiprocessors), distributed memory machines (Intel iPSC/860), aswell as networks of workstations (using PVM Version 2).2.3 Distributed Object SystemsOther parallel systems give the programmer the abstraction of distributed sharedmemory (DSM). Data structures or objects are shared across a set of processors,without specifying exactly how the sharing is done.Midway [BZS93] is a distributed shared memory system that runs on Mach 3.0.Midway programs are written in C, with explicit associations between data andsynchronization objects, which control access to the data. It has tunable memoryconsistency, allowing the programmer to select a strongly consistent model for quickdevelopment or porting, or weaker consistency for more carefully-designed parallelprograms.Dome [Beg94] is a system under development at Carnegie Mellon University. Thegoal of the Dome project is to build sets of distributed objects which can be usedto program heterogeneous networks of computers. Dome addresses the problems ofload balancing, heterogeneity, ease of programming, and fault tolerance.DoPVM [HS93] is an object oriented distributed environment implemented on7

top of PVM Version 3. It is a portable shared-object toolkit written in C++,composed of macros, libraries and object servers. It de�nes shared object classes,using operator overloading to move data transparently between processes, and alsoprovides process scheduling tools.2.4 Parallel Programming SystemsLinda 1 [CG89] is a parallel programming model that can be added to a variety ofordinary sequential languages, for example C, Fortran or PostScript. It is based on atuple space, which is a kind of shared memory. Processes share data by storing it intuples, where it can be read or modi�ed by other processes. Process control comesfrom the tuple space: To do concurrent computation, a process creates a live tuple,causing another process to be started. That process carries out its computationusing the data in the tuple, which then becomes an ordinary (data carrying) tuple.Linda and Linda-like systems have been used on shared and distributed memorymachines and networks, and incorporated into operating systems [Lel90]. A Public-domain implementation, POSYBL, [Sch91] runs on networks of UNIX machines.Still other systems extract parallelism automatically from sequential programs.Forge 2 [LW89] is a commercial product which analyzes normal sequential code to�nd parallelism. It translates a sequential program into separate ones which can berun on shared or distributed memory machines.2.5 Message-Passing EnvironmentsHundreds of message-passing systems have been built in the past several years,ranging in complexity from simple to baroque. Following is a survey of the severalthat are similar to PVM.1Linda is a product of Scienti�c Computing Associates.2Forge is a product of Applied Parallel Research.8

p4 [BL92] is a portable parallel toolkit created at Argonne National Labora-tory, which includes functions for explicitly programming shared memory machines(using monitors [Hoa74]) or distributed memory machines (using message passing).On shared memory machines, either or both of the programming models may beemployed. Programs can be written in either C or Fortran. The process model canbe either SPMD or MPMD, though all components of a program are listed in a proc-group �le and started by the system. p4 is descended from other systems created atArgonne, notably the Argonne Macros or Monmacs, [LO83] and has been the basisfor several other systems as well.Express 3 [FKB91] is a collection of tools for programming distributed memorymultiprocessors, both true multiprocessors and UNIX network clusters. It includesa message-passing interface and tools for automatic parallelization of serial code,debugging and visualization.ISIS [BM89] is a message passing programming system for workstation clusters.The system uses a concept called virtual synchrony and knowledge of the level ofsynchronization necessary between application components to e�ciently maintaindistributed data structures. Isis applications can be programmed in C, Lisp orFortran. The system can replicate data and processes in order to tolerate machinefailures, and can also con�gure a new virtual machine and restart a whole applicationafter a large crash.PICL [GHPW91] is a portable message-passing library designed to standardizemessage functions available on machines such as the Intel iPSC/2, iPSC/860 andNcube/3200. It also provides higher-level functions such as global broadcast andcombine, and barrier synchronization. Execution of a PICL program can be tracedat di�erent levels of detail, and the trace output can be viewed on an X-Windowdisplay using the ParaGraph [Hea90] tool. In addition to the multiprocessors listedabove, PICL has been ported to other platforms: The Cosmic Environment, Linda,3Express is a product of ParaSoft, Inc. 9

and PVM Version 2.CHIMP [CHI91] is a message-passing library callable from C or Fortran pro-grams. CHIMP programs can run on networks of UNIX machines or on a MeikoComputing Surface machine.LAM [Bur89] is an instance of Trollius, a portable kernel/operating system thatruns on multicomputers, single-board computers, and other special-purpose ma-chines, allowing them to be hosted over a network by, e.g. a workstation. LAM isa message-passing environment that runs across a network of UNIX machines. Ap-plications can be written in C or Fortran, and data conversion can be done betweendi�erent types of nodes. File access is provided via a custom version of the stdiolibrary. In addition to its own programming interface, the LAM package provideslibraries for compatibility with PVM and MPI.TCGMSG [Har91] is a message passing toolkit, inspired by the Argonne Macros.It is designed to be small and e�cient, and simplify the task of writing scienti�cprograms for distributed memory environments. It is portable to true messagepassing machines and UNIX workstations, and can use sockets or shared memoryas a transport layer. It supports Fortran or C applications and asynchronous sendand receive primitives for e�ciency. An SPMD process model is used.APPL [QCB93] is a library of message passing subroutines callable from C orFortran programs. It was created at NASA/Lewis in order to have a portable pro-gramming system for their shared memory (System-5), distributed memory andnetworked machines (TCP). It is based on TCGMSG and p4, but is more compact,including only the essential point-to-point message passing operations and scat-ter/gather operations such as broadcast and global sum. It provides an SPMD pro-cess model: N copies of a program are automatically started and named 0 : : :N�1.Parform [CS92] is a parallel programming system that runs on a network ofUNIX workstations. It incorporates a dynamic load-balancing system and sensoron each machine to adjust the size of jobs assigned to machines as workloads vary.10

Processes are started and managed automatically by the system according to a host-�le. Communication is done in terms of handles, which are UNIX �le descriptorsconnected through sockets between processes, and data can be converted betweendi�erent machine types.The MPI Forum [For93] is an e�ort to collect the knowledge gained in the lastten years of building message-passing systems into a single standard programminginterface. The main concerns are that the resulting system is e�cient, able to runon a heterogeneous system, is portable to many di�erent types of machines, allowsC and Fortran language bindings, and has a thread-safe library. However, MPI onlyde�nes communication functions. Process control, �le access, and other facilities areneeded to build a complete program.2.6 Distributed Operating SystemsPVM is similar to a distributed operating system (DOS). The PVM daemons(pvmds, x3.4) provide a virtual machine, that runs user processes. Issues such asprocess control, naming and communication must be addressed, as with a real op-erating system.Real DOSs are composed of many kernels or microkernels running on physicalmachines, connected together by some kind of network. They can be symmetrical,or have a central controlling part. The microkernels provide a software backplane(or virtual machine) on top of which servers and applications can be built. A surveyof distributed operating systems and related topics is presented in [Mul93].There are two main di�erences between a parallel programming system like PVMand a true DOS. First, a DOS normally is ported to the hardware of the targetmachines, whereas PVM runs on top of an existing operating system, (e.g. UNIX)though it doesn't have to) Second and more important, a DOS provides a morecomplete environment than PVM, for example a �lesystem and management ofmemory and peripheral devices like teletypes and card punches. Because PVM11

stays above the operating system, it is more easily ported between machines.Mach [ABB+86] is a microkernel system intended to provide a machine indepen-dent platform for di�erent operating system environments, such as UNIX. Servers tomanage �lesystems and virtual memory are implemented outside the kernel, whichis a message router and security door. Clients and servers in Mach communicatevia messages, and (in later versions) can reside on separate physical machines.The V Distributed System [Che88b] runs on clusters of workstations connectedby a high-speed network. It is composed of a microkernel, a copy of which runson each machine, servers for �lesystem and external network, and the usual pro-gramming libraries and commands. Processes communicate by sending messages toone another, and system services are requested by processes sending messages tospecial kernel ports, much like in PVM. The VMTP [Che88a] transport protocol, aby-product of the V project, was considered for use in PVM (x4.4).Sprite [OCD+88] is a distributed operating system that runs on networks ofworkstations. It uses a monolithic kernel and is oriented around a high-performanceshared �lesystem, in which �les and devices, including memory, on remote machinesare transparently accessible. Processes can migrate from one processor to another.Sprite supports UNIX-style applications that in general are not parallel (though aredistributed).The Amoeba [MvRT+90] operating system supports distributed computing ona network, with a central pool of processors, each running a monolithic kernel,and remote terminals for users. Hardware of di�erent types and with di�erentdata representations can be mixed. The user environment is similar to UNIX, butfocuses on parallel programming. RPC is used both in the kernel and by applicationprograms. Programs can be written in several normal languages (C, Fortran, Modula2, etc.), as well as Orca, a parallel language that provides virtually shared dataobjects, that can be migrated from machine to machine.The Open Software Foundation DCE (Distributed Computing Environment)12

[Har92] system is one of the few to address the problem of connecting machines dis-tributed over a wide-area network, instead of a local-area or campus net. However,the system is mainly a collection of several popular network �le service, name serviceand communication protocols. The utility for process-process interaction is RPC(Remote Procedure Call) [Sun88], in which operations are inherently nested, disal-lowing parallel operation, though there are RPC options to perform multicast/single-response handshaking. Parallel programming systems have been built on RPC, butthey must cheat it in order to leave called processes running and reconnect to themlater. DCE is a computing environment only in the sense that the Internet is adistributed computer.

13

CHAPTER 3DESIGN3.1 GoalsThe most important goals for version 3 are fault tolerance, scalability, hetero-geneity and portability. PVM is able to withstand host and network failures. Itdoesn't automatically recover an application after a crash, but it provides pollingand noti�cation primitives to allow fault-tolerant applications to be built. Thevirtual machine is dynamically recon�gurable. This goes hand-in-hand with faulttolerance { an application may need to acquire more resources in order to con-tinue running once a host has failed. Management is as decentralized and localizedas possible, so virtual machines should be able to scale to hundreds of hosts andrun thousands of tasks. PVM can connect computers of di�erent types togetherin a single session. It runs with minimal modi�cation on any avor of UNIX, oroperating system with comparable facilities (multitasking, networkable). The pro-gramming interface is simple but complete, and any user can install the packagewithout special privileges. 3.2 AssumptionsTo allow PVM to be highly portable, I avoid the use of operating system andlanguage features that would be be hard to retro�t if unavailable, such as multi-threaded processes and asynchronous I/O. These exist in many versions of UNIX,but they vary enough from product to product that di�erent versions of PVM mightneed to be maintained. The generic port is kept as simple as possible, though PVM14

can always be optimized for any particular machine.I assume the use of sockets for interprocess communication and that each host ina virtual machine group can connect directly to every other host via TCP [Pos81a]and UDP [Pos81b] protocols. The requirement of full IP connectivity could beremoved by specifying message routes and using the pvmds to forward messages.Some multiprocessor machines don't make sockets available on the processing nodes,but do have them on the front-end (where the pvmd runs).3.3 Architecture ClassesPVM assigns an architecture name to each kind of machine on which it runs,to distinguish between machines that run di�erent executables, due to hardware oroperating system di�erences. Many standard names are de�ned and others can beadded.Some machines with incompatible executables use the same binary data rep-resentation. PVM takes advantage of this to avoid data conversion. Architecturenames are mapped to data encoding numbers, and the encoding numbers are usedto determine when it is necessary to convert.3.4 PVM DaemonOne pvmd runs on each host of a virtual machine. Pvmds owned by (runningas) one user do not interact with those owned by others, in order to reduce securityrisk, and minimize the impact of one PVM user on another.The pvmd serves as a message router and controller. It provides a point of con-tact, authentication, process control and fault detection. An idle pvmd occasionallychecks that its peers are still running. Pvmds continue to run even if applicationprograms crash, to aid in debugging.The �rst pvmd (started by hand) is designated the master, while the others15

(started by the master) are called slaves. During normal operation, all are consideredequal. But only the master can start new slaves and add them to the con�guration.Recon�guration requests originating on a slave host are forwarded to the master.Likewise, only the master can forcibly delete hosts from the machine.3.5 Programming LibraryThe libpvm library allows a task to interface with the pvmd and other tasks. Itcontains functions for packing (composing) and unpacking messages, and functionsto perform PVM syscalls by using the message functions to send service requests tothe pvmd. It is made as small and simple as possible. Since it shares an addressspace with unknown, possibly buggy, code, it can be broken or subverted. Minimalsanity-checking of parameters is performed, leaving further authentication to thepvmd.The top level of the libpvm library, including most of the programming interfacefunctions, is written in a machine-independent style. The bottom level is keptseparate and can be modi�ed or replaced with a new machine-speci�c �le whenporting PVM to a new environment.3.6 Task Identi�ersPVM uses a task identi�er (TID) to address pvmds, tasks, and groups of taskswithin a virtual machine. The TID contains four �elds as shown in �gure 1. Sincethe TID is used so heavily, it is made to �t into the largest integer data type (32bits) available on a wide range of machines.The �elds S, G and H have global meaning { each pvmd of a virtual machineinterprets them in the same way. The H �eld contains a host number relative tothe virtual machine. As it starts up, each pvmd is con�gured with a unique hostnumber and therefore owns part of the TID address space. The maximum number16

31 0

S G H L

1830 Figure 1: Generic Task IDof hosts in a virtual machine is limited to 2H � 1 (4095). The mapping betweenhost numbers and hosts is known to each pvmd, synchronized by a global host table.Host number zero is used, depending on context, to refer to the local pvmd or ashadow pvmd, called pvmd' (x4.2.7).The S bit is used to address pvmds, with the H �eld set to the host numberand the L �eld cleared. This bit is a historical leftover, and causes slightly schizoidnaming; sometimes pvmds are addressed with the S bit cleared. It should somedaybe reclaimed to make the H or L space larger.The G bit is set to form multicast addresses (GIDs), which refer to groups oftasks. Multicasting is described in x4.5.4.Each pvmd is allowed to assign its own meaning to the L �eld (with the H �eldset to its own host number), except that all bits cleared is reserved to mean thepvmd itself. The L �eld is 18 bits wide, so up to 218�1 tasks can exist concurrentlyon each host.In the generic UNIX port, L values are assigned by a counter, and the pvmdmaintains a map between L values and UNIX process IDs. In multiprocessor portsthe L �eld is subdivided as shown in �gure 2. The P �eld speci�es a machinepartition, (physical group of processors), sometimes called a process type or job.The node number (N) determines a processor in a partition, and the W bit indicateswhether a task runs on a compute node or host processor (service node).The design of the TID enables the implementation to meet the design goals.Tasks can be assigned TIDs by their local pvmds without o�-host communication.Messages can be routed from anywhere in a virtual machine to anywhere else, dueto hierarchical naming. Portability is enhanced because the L �eld can be rede�ned.17

31 0

S G H

1830

W P N

17 11Figure 2: Multiprocessor Task IDWhen sending a message, a task on a multiprocessor node can compare its own TIDto the destination to determine whether to use native communication or send to thepvmd for routing. Finally, space is reserved for error codes. When a function canreturn a vector of TIDs mixed with error codes, it is useful if the error codes don'tcorrespond to legal TIDs. The TID space is divided up as follows:Use S G H LTask identi�er 0 0 1::Hmax 1::LmaxPvmd identi�er 1 0 1::Hmax 0Local pvmd (from task) 1 0 0 0Pvmd' from master pvmd 1 0 0 0Multicast address 0 1 1::Hmax 0::LmaxError code 1 1 (small neg. number)Naturally, TIDs are intended to be opaque to the application and the program-mer should not attempt to predict their values or modify them without using func-tions supplied in the programming library. More symbolic naming can be obtainedby using a name server library layered on top of the raw PVM calls, if the conve-nience is deemed worth the cost of name lookup.3.7 Message ModelPVM daemons and tasks can compose and send messages of arbitrary lengthscontaining typed data. The data can be converted using XDR [Sun87] when passingbetween hosts with incompatible data formats. Messages are tagged at send timewith a user-de�ned integer code, and can be selected for receipt by source address18

or tag.The sender of a message does not wait for an acknowledgement from the receiver,but continues as soon as the message has been handed to the network and themessage bu�er can be safely deleted or reused. Messages are bu�ered at the receivingend until received. PVM reliably delivers messages, provided the destination exists.Message order from each sender to each receiver in the system is preserved; if oneentity sends several messages to another, they will be received in the same order.Both blocking and non-blocking receive primitives are provided, so a task canwait for a message without (necessarily) consuming processor time by polling forit. Or, it can poll for a message without hanging. A receive with timeout is alsoprovided, which returns after a speci�ed time if no message has arrived.No acknowledgements are used between sender and receiver. Messages are reli-ably delivered and bu�ered by the system. If we ignore fault recovery, then eitheran application will run to completion or, if some component goes down, it won't. Inorder to provide fault recovery, a task (TA) must be prepared for another task (TB,from which it wants a message) to crash, and be able to take corrective action. Forexample, it might re-schedule its request to a di�erent server, or even start a newserver. From the viewpoint of TA, it doesn't matter speci�cally when TB crashesrelative to messages sent from TA. While waiting for TB, TA will receive eithera message from TB or noti�cation that TB has crashed. For the purposes of owcontrol, a fully blocking send can easily be built using the semi-synchronous sendprimitive. 3.8 Asynchronous Noti�cationPVM provides noti�cation messages as a means to implement fault recovery inan application. A task can request that the system send a message on one of thefollowing three events: 19

Type MeaningPvmTaskExit Task exits or crashesPvmHostDelete Host is deleted or crashesPvmHostAdd New hosts are added to the VMNotify requests are stored in the pvmds, attached to objects they monitor. Re-quests for remote events (occurring on a di�erent host than the requester) are kepton both hosts. The remote pvmd sends the message if the event occurs, while thelocal one sends the message if the remote host goes down. The assumption is thata local pvmd can be trusted; if it goes down, tasks running under it won't be ableto do anything, so they don't need to be noti�ed.

20

CHAPTER 4IMPLEMENTATIONThis section describes the implementation of the generic (UNIX) port, which wasthe �rst written. Details of ports to multiprocessors and other operating systemsare described elsewhere. 4.1 Messages4.1.1 Fragments and DatabufsThe pvmd and libpvm manage message bu�ers, which potentially hold largeamounts of dynamic data. Bu�ers need to be shared e�ciently, for example toattach a multicast message to several send queues (x4.5.4). To avoid copying, allpointers are to a single instance of the data (a databuf), which is refcounted byallocating a few extra bytes for an integer at the head of the data. A pointer to thedata itself is passed around, and routines subtract from it to access the refcount orfree the block. When the refcount of a databuf decrements to zero, it is freed.PVM messages are composed without declaring a maximum length ahead oftime. The pack functions allocate memory in steps, using databufs to store thedata, and frag descriptors to chain the databufs together.A frag descriptor struct frag holds a pointer (fr dat) to a block of data andits length (fr len). It also keeps a pointer (fr buf) to the databuf and its totallength (fr max); these reserve space to prepend or append data. Frags can alsoreference static (non-databuf) data. A frag has link pointers so it can be chainedinto a list. Each frag keeps a count of references to it, when the refcount decrements21

to zero, the frag is freed and the underlying databuf refcount decremented. In thecase where a frag descriptor is the head of a list, its refcount applies to the entirelist. When it reaches zero, every frag in the list is freed. Figure 3 shows a list offragments storing a message.
struct
umbuf

nref

Integer
message
ID

len
tag
src
...

struct
frag

databuf

frag
list

current
frag

0

0

pvmmidh

link

link

1

buf

dat

Message heap Encoder function vector

codef

frag

cfrag

enc−init
enc−byte
enc−int
...

dec−init
dec−byte
dec−int
...

Figure 3: Message Storage in Libpvm4.1.2 Messages in LibpvmLibpvm provides functions to pack all primitive data types into a message, inone of �ve encoding formats. Each message bu�er has an encoder and decoder setassociated with it. When creating a new message, the encoder set is determined bythe format parameter to pvm mkbuf(). When receiving a message, the decoders aredetermined by the encoding �eld of the message header. The two most commonlyused ones pack data in raw (host native) and default (XDR) formats. Inplace en-22

coders pack descriptors of the data (the frags point to static data), so the messageis sent without copying the data to a bu�er. There are no inplace decoders. Fooencoders use a machine-independent format simpler than XDR, and are used whencommunicating with the pvmd. Alien decoders are installed when a received mes-sage can't be unpacked because its encoding doesn't match the data format of thehost. A message in an alien data format can be held or forwarded, but any attemptto read data from it results in an error.Figure 3 shows libpvm message management. To allow the PVM programmerto handle message bu�ers, they are labeled with integer message IDs (MIDs), whichare simply indices into the message heap. When a message bu�er is freed, its MIDis recycled. The heap starts out small and is extended if it becomes full. Generally,only a few messages exist at any time, unless the an application explicitly storesthem.A vector of functions for encoding/decoding primitive types (struct encvec) isinitialized when a message bu�er is created. To pack a long integer, the generic packfunction pvm pklong() calls (message heap[mid].ub codef->enc long)() of thebu�er. Encoder vectors were used for speed (as opposed to having a case switch ineach pack function). One drawback is that every encoder for every format is touched(by naming it in the code), so the linker must include them all in every executable,even when some are not used.4.1.3 Messages in the PvmdBy comparison to libpvm, message packing in the pvmd is very simple. Messagesare handled using struct mesg (shown in �gure 4). There are encoders for signedand unsigned integers and strings, which use in the libpvm foo format. Integersoccupy four bytes each with bytes in network order (bits 31..24 followed by bits23..16, ...). Byte strings are packed as an integer length (including the terminatingnull for ASCII strings), followed by the data and zero to three null bytes to round23

the total length to a multiple of four.
nrefstruct

frag

databuf

frag
list

current
frag

struct
mesg

len
tag
src
wid
...

(mp)

link

0

0

link

1

buf

dat

frag

cfrag

Figure 4: Message Storage in Pvmd4.1.4 Pvmd Entry PointsMessages for the pvmd are reassembled from packets in loclinpkt() if from alocal task, or in netinpkt() if from another pvmd or foreign task. Reassembledmessages are passed to one of three entry points:Function Messages Fromloclentry() Local tasksnetentry() Remote pvmdsschedentry() Special tasks (Resource manager, Hoster, Tasker)If the message tag and contents are valid, a new thread of action is started tohandle the request. Invalid messages are discarded.24

4.1.5 Control MessagesControl messages are sent to a task like regular messages, but have tags in areserved space (between TC FIRST and TC LAST). Normally, when a task downloadsa message, it queues it for receipt by the program. Control messages are insteadpassed to pvmmctl(), and then discarded. Like the entry points in the pvmd,pvmmctl() is an entry point in the task, causing it to take some asynchronousaction. The main di�erence is that control messages can't be used to get the task'sattention, since it must be in mxfer(), sending or receiving, in order to get them.The following control message tags are de�ned. The �rst three are used by thedirect routing mechanism (x4.5.3). TC OUTPUT is used to implement pvm catchout()(x4.6.2). User-de�nable control messages may be added in the future as a way ofimplementing PVM signal handlers.Tag MeaningTC CONREQ Connection requestTC CONACK Connection ackTC TASKEXIT Task exited/doesn't existTC NOOP Do nothingTC OUTPUT Claim child stdout dataTC SETTMASK Change task trace mask4.2 PVM Daemon4.2.1 StartupAt startup, a pvmd con�gures itself as a master or slave, depending on its com-mand line arguments. It creates and binds sockets to talk to tasks and other pvmds,opens an error log �le /tmp/pvml.uid. A master pvmd reads the host �le if supplied,otherwise it uses default parameters. A slave pvmd gets its parameters from themaster pvmd via the command line and con�guration messages.25

After con�guration, the pvmd enters a loop in function work(). At the core ofthe work loop is a call to select() that probes all sources of input for the pvmd(local tasks and the network). Packets are received and routed to send queues.Messages to the pvmd are reassembled and passed to the entry points.4.2.2 ShutdownA pvmd shuts down when it is deleted from the virtual machine, killed (signaled),loses contact with the master pvmd, or breaks (e.g. with a bus error). When a pvmdshuts down, it takes two �nal actions. First, it kills any tasks running under it, withsignal SIGTERM. Second, it sends a �nal shutdown message (x4.4.2) to every otherpvmd in its host table. The other pvmds would eventually discover the missing oneby timing out trying to communicate with it, but the shutdown message speeds upthe process. 4.2.3 Host Table and Machine Con�gurationA host table describes the con�guration of a virtual machine. It lists the name,address and communication state for each host. Figure 5 shows how a host table isbuilt from struct htab and struct hostd structures.Host tables are issued by the master pvmd, and kept synchronized across the vir-tual machine. The delete operation is simple: On receiving a DM HTDELmessage fromthe master, a pvmd calls hostfailentry() for each host listed in the message, asthough the deleted pvmds crashed. Each pvmd can autonomously delete hosts fromits own table on �nding them unreachable (by timing out during communication).The add operation is done with a three-phase commit, in order to guarantee globalavailability of new hosts synchronously with completion of the add-host request.This is described in x4.2.8.Each host descriptor has a refcount so it can be shared by multiple host tables.26

struct
htab

0 1 2

serial,
len,
master,
...

nref
tid
name
arch
...

txq

opq

rxq

rxm

nref
tid
name
arch
...

txq

opq

rxq

rxm

nref
tid
name
arch
...

txq

opq

rxq

rxm

p
vm

d
’

m
a

st
e

r

sl
a

ve

struct
hostd

Frags
to Send

Message
Reassembly

Frags sent,
not yet Acked

Frags
Received
Out of Order

hosts

hosts

Figure 5: Host TableAs the con�guration of the machine changes, the host descriptors (except thoseadded and deleted of course) propagate from one host table to the next. This isnecessary because they hold various state information.Host tables also serve other uses: They allow the pvmd to manipulate host sets,for example when picking candidate hosts on which to spawn a task. Also, theadvisory host �le supplied to the master pvmd is parsed and stored in a host table,filehosts. If some hosts in the �le are to be started automatically, the mastersends a DM ADD message to itself. The slave hosts are started just as though theyhad been added dynamically (x4.2.8).4.2.4 Task ManagementEach pvmd maintains a list of all tasks under its management (�gure 6). Everytask, regardless of state, is a member of a threaded list, sorted by task ID. Most tasks27

are also in a second list, sorted by process ID. The head of both lists is locltasks.
link

plink

txq

rxp

rxm

link

plink

txq

rxp

rxm

link

plink

txq

rxp

rxm

tid
ptid
...

link

plink

txq

rxp

rxm

0
0
...

401
0
...

405
401
...

Packet
Reassembly

Message
Reassembly

locltasks

Packets
to Send

Figure 6: Task Table4.2.5 Wait ContextsThe pvmd uses a wait context (waitc) to hold state when a thread of operationmust be interrupted. The pvmd is not truly multi-threaded, but performs operationsconcurrently. For example, when a pvmd gets a syscall from a task and must interactwith another pvmd, it doesn't block while waiting for the other pvmd to respond.It saves state in a waitc and returns immediately to the work() loop. When thereply arrives, the pvmd uses the information stashed in the waitc to complete thesyscall and reply to the task. Waitcs are serial numbered, and the number is sentin the message header along with the request and returned with the reply.For many operations, the TIDs and kind of wait are the only information saved.The struct waitc includes a few extra �elds to handle most of the remainingcases, and a pointer, wa spec, to a block of extra data for special cases { the spawn28

and host startup operations, which need to save struct waitc spawn and structwaitc add.Sometimes more than one phase of waiting is necessary { in series, parallel,or nested. In the parallel case, a separate waitc is created for each foreign host.The waitcs are peered (linked in a list) together to indicate they pertain to thesame operation. If a waitc has no peers, its peer links point to itself. Usually,peered waitcs share data, for example wa spec. All existing parallel operations areconjunctions; a peer group is �nished when every waitc in the group is �nished. Asreplies arrive, �nished waitcs are collapsed out of the list and deleted. When the�nished waitc is the only one left, the operation is complete. Figure 7 shows singleand peered waitcs stored in waitlist (the list of all active waitcs).
wid
kind
...

link

peer

spec

wid
kind
...

link

peer

spec

wid
kind
...

link

peer

spec

link

peer

spec

0

waitlist

shared
data

struct waitc

Figure 7: Host TableWhen a host fails or a task exits, the pvmd searches waitlist for any blockedon this TID and terminates those operations. Waitcs from the dead host or taskblocked on something else are not deleted, instead their wa tid �elds are zeroed.This is done to prevent the wait IDs from being recycled while replies are stillpending. Once the defunct waitcs are satis�ed, they are silently discarded.29

4.2.6 Fault Detection and RecoveryFault detection originates in the pvmd-pvmd protocol (x4.4.2). When the pvmdtimes out while communicating with another, it calls hostfailentry(), which scanswaitlist and terminates any operations waiting on the down host.A pvmd can recover from the loss of any foreign pvmd except the master. Ifa slave loses the master, the slave shuts itself down. This algorithm ensures thatthe virtual machine doesn't become partitioned and run as two partial machines.This decreases fault tolerance of the virtual machine because the master must nevercrash. There is currently no way for the master to hand o� its status to anotherpvmd, so it always remains part of the con�guration. This is still better than version2, in which the failure of any pvmd would shut down the entire system.4.2.7 Pvmd'The shadow pvmd (pvmd') runs on the master host and is used by the masterto start new slave pvmds. Any of several steps in the startup process (for examplestarting a shell on the remote machine) can block for seconds or minutes (or hang),and the master pvmd must be able to respond to other messages during this time.It's messy to save all the state involved, so a completely separate process is used.The pvmd' has host number 0 and communicates with the master through thenormal pvmd-pvmd interface, though it never talks to tasks or other pvmds. Thenormal host failure detection mechanism is used to recover in the event the pvmd'fails. The startup operation has a wait context in the master pvmd. If the pvmd'breaks, the master catches a SIGCHLD from it and calls hostfailentry(), whichcleans up. 30

4.2.8 Starting Slave PvmdsGetting a slave pvmd started is a messy task with no good solution. The goalis to get a process running on the new host, with enough identity to let it be fullycon�gured and added as a peer.Ideally, the mechanism used should be widely available, secure and fast, whileleaving the system easy to install. We'd like to avoid having to type passwords allthe time, but don't want to put them in a �le from where they can be stolen. No onesystem meets all of these criteria. Using inetd or connecting to an already-runningpvmd or pvmd server at a reserved port would allow fast, reliable startup, but wouldrequire that a system administrator install PVM on each host. Starting the pvmdvia rlogin or telnet with a chat script would allow access even to IP-connectedhosts behind �rewall machines, and would require no special privilege to install. Themain drawbacks are speed and the e�ort needed to get the chat program workingreliably.Two widely available systems are rsh and rexec(); both are used to cover thecases where a password does and does not need to be typed. A manual startup optionallows the user to take the place of a chat program, starting the pvmd by hand andtyping in the con�guration. rsh is a privileged program which can be used to runcommands on another host without a password, provided the destination host canbe made to trust the source host. This can be done either by making it equivalent(requires a system administrator) 1 or by creating a .rhosts �le on the destinationhost (this isn't a great idea). The alternative, rexec(), is a function compiled intothe pvmd. Unlike rsh, which doesn't take a password, rexec() requires the user tosupply one at run time, either by typing it in or placing it in a .netrc �le (this isa really bad idea).1Except on SunOS, which is still shipped with a \+" in /etc/hosts.equiv.31

Figure 8 shows a host being added to the machine. A task calls pvm addhosts(),to send a request to the its pvmd, which in turn sends a DM ADD message to themaster (possibly itself). The master pvmd creates a new host table entry for eachhost requested, looks up the IP addresses and sets the options from host �le entriesor defaults. The host descriptors are kept in a waitc add structure (attached to await context), and not yet added to the host table. The master forks the pvmd' todo the dirty work, passing it a list of hosts and commands to execute (an SM STHOSTmessage). The pvmd' uses rsh, rexec() or manual startup to start each pvmd, passit parameters and get a line of con�guration data back. The con�guration dialogbetween pvmd' and a new slave is as follows:pvmd'! slave: (exec) $PVM ROOT/lib/pvmd -s -d8 -nhonk 1 80a9ca95:0f5a4096 3 80a95c43:0000slave ! pvmd': ddpro<2312> arch<ALPHA> ip<80a95c43:0b3f> mtu<4096>pvmd'! slave: EOFThe addresses of the master and slave pvmds are passed on the commandline. The slave writes its con�guration on standard output, then waits for anEOF from the pvmd' and disconnects. It runs in probationary status (runstate= PVMDSTARTUP) until it receives the rest of its con�guration from the master pvmd.If it isn't con�gured within �ve minutes (parameter DDBAILTIME), it assumes thereis some problem with the master and quits. The protocol revision (DDPROTOCOL)of the slave pvmd must match that of the master. This number is incrementedwhenever a change in the protocol makes it incompatible with the previous version.When several hosts are added at once, startup is done in parallel. The pvmd' sendsthe data (or errors) in a DM STARTACK message to the master pvmd, which completesthe host descriptors held in the wait context.If a special task called a hoster is registered with the master pvmd when itreceives the DM ADD message, the pvmd' is not used. Instead, the SM STHOST mes-sage is sent to the hoster, which starts the remote processes as described above32

pvm_addhosts()

tm_addhost()

start_slaves()

slave_config()

dm_startack()

dm_htupd()
dm_htupd()

dm_htupdack()

dm_htcommit()
dm_htcommit()

3

6

7,8

8

Blocked

Pvmd 2 Pvmd 1 (master) Pvmd 3 (new)

dm_add()

dm_addack()

Pvmd’

tim
e

dm_slconf()

Task (on 2)

dm_htupdack()Figure 8: Timeline of Addhost Operation
33

using any mechanism it wants, then sends a SM STHOSTACK message (same format asDM STARTACK) back to the master pvmd. Thus, the method of starting slave pvmdsis dynamically replaceable, but the hoster does not have to understand the con�g-uration protocol. If the hoster task fails during an add operation, the pvmd usesthe wait context to recover. It assumes none of the slaves were started and sends aDM ADDACK message indicating a system error.After the slaves are started, the master sends each a DM SLCONF message to setparameters not included in the startup protocol. It then broadcasts a DM HTUPDmes-sage to all new and existing slaves. Upon receiving this message, each slave knowsthe con�guration of the new virtual machine. The master waits for an acknowledg-ing DM HTUPDACK message from every slave, then broadcasts an HT COMMIT message,shifting all to the new host table. Two phases are needed so that new hosts arenot advertized (e.g. by pvm config()) until all pvmds know the new con�guration.Finally, the master sends a DM ADDACK reply to the original request, giving the newhost IDs.Experience suggests it would be cleaner to manage the pvmd' through the taskinterface instead of the host interface. This would allow multiple starters to run atonce (parallel startup is implemented explicitly in a single pvmd' process).4.3 Libpvm Library4.3.1 Language SupportLibpvm is written in C and directly supports C and C++ applications. TheFortran library, libfpvm3.a, (also written in C) is a set of wrapper functions thatconform to the Fortran calling conventions. The Fortran/C linking requirementsare portably met by preprocessing the C source code for the Fortran library withm4 before compilation. 34

4.3.2 Connecting to the PvmdOn the �rst call to a libpvm function, pvm beatask() is called to initialize thelibrary state and connect the task to its pvmd. Connecting (for anonymous tasks)is slightly di�erent from reconnecting (for spawned tasks).The pvmd publishes the address of the socket on which it listens in /tmp/pvmd.uid,where uid is the numeric user ID under which the pvmd runs. This �le contains aline of the form: 7f000001:06f7This is the IP address and port number (in hexadecimal) of the socket. As a shortcut,spawned tasks inherit environment variable PVMSOCK, containing the same line.To reconnect, a spawned task also needs its expected process ID. When a task isspawned by the pvmd, a task descriptor is created for it during the exec phase. Thedescriptor must exist so it can stash any messages that arrive for the task before itreconnects and can receive them. During reconnection, the task identi�es itself tothe pvmd by its PID. If the task is always the child of the pvmd, (i.e. the exactprocess exec'd by it) then it could use the value returned by getpid(). To allowfor intervening processes, such as debuggers, the pvmd passes the expected PID inenvironment variable PVMEPID, and the task uses that value in preference to its realPID. The task also passes its real PID so it can be controlled normally by the pvmd.pvm beatask() creates a TCP socket and does a proper connection dance withthe pvmd. Each must prove its identity to the other, to prevent a di�erent userfrom spoo�ng the system. It does this by creating a �le in /tmp writable only bythe owner, and challenging the other to write in the �le. If successful, the identityof the other is proven. Note this authentication is only as strong as the �lesystem,and the authority of root on each machine.A protocol serial number (TDPROTOCOL) is compared whenever a task connectsto a pvmd or another task. This number is incremented whenever a change in the35

protocol makes it incompatible with the previous version.Disconnecting is much simpler. It can be done forcibly by a close from eitherend, for example by exiting the task process. The function pvm exit() performs aclean shutdown, such that the process can be connected again later (it would get adi�erent TID). 4.4 ProtocolsPVM communication is based on TCP and UDP. While other, more appropriate,protocols exist, they aren't as generally available. As originally speci�ed, TCP can'ttake full advantage of the performance of modern high-speed, high-latency networksdue to a window size limit of 64kB. Extensions have been de�ned to alleviate thisproblem and are becoming available [JBB92].VMTP [Che88a] is one example of a protocol built for this purpose. Althoughintended for RPC-style interaction (request-response), it could support PVM mes-sages. It is packet-oriented, and e�ciently sends short blocks of data (such as mostpvmd-pvmd management messages), but also handles streaming (necessary for task-task communication). It supports multicasting and priority data (something PVMdoesn't need yet). Connections don't need to be established before use; the �rstcommunication initializes the protocol drivers at each end. VMTP was rejectedbecause it is not widely available (using it requires modifying the kernel).This section explains how TCP and UDP are employed and describes the PVMprotocols built on them. There are three connections to consider: Between pvmds,between pvmd and task, and between tasks.4.4.1 MessagesThe pvmd and libpvm use the same message header, shown in �gure 9. Codecontains an integer tag (message type). Libpvm uses Encoding to pass the encoding36

style of the message, as it can pack in di�erent formats. The pvmd always setsEncoding (and expects it to be set) to 1 (foo), Pvmds use the Wait Context �eldto pass the wait ID (if any, zero if none) of the waitc associated with the message.Certain tasks (resource manager, tasker, hoster) also use wait IDs. The Checksum�eld is reserved for future use. Messages are sent in one or more fragments, each withits own fragment header (described below). The message header is at the beginningof the �rst fragment.
0

4

8

12

Byte 0 1 2 3

Wait Context ID

Code

Encoding

(reserved for checksum)Figure 9: Message Header4.4.2 Pvmd-PvmdPVM daemons communicate with one another through UDP sockets. UDP isan unreliable delivery service which can lose, duplicate or reorder packets, so anacknowledgement and retry mechanism is used. UDP also limits packet length, soPVM fragments long messages.I considered TCP, but three factors make it inappropriate. First is scalability.In a virtual machine of N hosts, each pvmd must have connections to the otherN � 1. Each open TCP connection consumes a �le descriptor in the pvmd, andsome operating systems limit the number of open �les to as few as 32, whereasa single UDP socket can communicate with any number of remote UDP sockets.Second is overhead. N pvmds need N(N � 1)=2 TCP connections, which would beexpensive to set up. The PVM/UDP protocol is initialized with no communication.Third is fault tolerance. The communication system detects when foreign pvmds37

have crashed or the network has gone down, so timeouts need to be set in theprotocol layer. The TCP keepalive option might work, but it's not always possibleto get adequate control over the parameters.The packet header is shown in �gure 10. Multi-byte values are sent in (Internet)network byte order, (most signi�cant byte �rst).
0

4

8

12

Byte 0 1 2 3

Destination TID

Source TID

Sequence Number Ack Number

SO
M

E
O

M

D
A

T

FI
N

A
C

K unusedFigure 10: Pvmd-pvmd Packet HeaderThe source and destination �elds hold the TIDs of the true source and �nal desti-nation of the packet, regardless of the route it takes. Sequence and acknowledgementnumbers start at 1 and increment to 65535, then wrap to zero.SOM (EOM) { Set for the �rst (last) fragment of a message. Intervening frag-ments have both bits cleared. They are used by tasks and pvmds to delimit messageboundaries.DAT { If set, data is contained in the packet and the sequence number is valid.The packet, even if zero-length, must be delivered.ACK { If set, the acknowledgement number �eld is valid. This bit may becombined with the DAT bit to piggyback an acknowledgement on a data packet 2.FIN { The pvmd is closing down the connection. A packet with FIN bit set(and DAT cleared) begins an orderly shutdown. When an acknowledgement arrives(ACK bit set and ack number matching the sequence number from the FIN packet),a �nal packet is sent with both FIN and ACK set. If the pvmd panics, (for exampleon a trapped segment violation) it tries to send a packet with FIN and ACK set to2Currently, the pvmd generates an acknowledgement packet for each data packet38

every peer before it exits.The state of a connection to another pvmd is kept in its host table entry. Theprotocol driver uses the following �elds of struct hostd:Field Meaninghd hostpart TID of pvmdhd mtu Max UDP packet length to hosthd sad IP address and UDP port numberhd rxseq Expected next packet number from hosthd txseq Next packet number to send to hosthd txq Queue of packets to sendhd opq Queue of packets sent, awaiting ackhd nop Number of packets in hd opqhd rxq List of out-of-order received packetshd rxm Bu�er for message reassemblyhd rtt Estimated smoothed round-trip timeFigure 11 shows the host send and outstanding-packet queues. Packets waitingto be sent to a host are queued in FIFO hd txq. Packets are appended to thisqueue by the routing code (x4.5.1). No receive queues are used; incoming packetsare passed immediately through to other send queues or reassembled into messages(or discarded). Incoming messages are delivered to a pvmd entry point (x4.1.4).The protocol allows multiple outstanding packets to improve performance overhigh-latency networks, so two more queues are required. hd opq holds a per-hostlist of unacknowledged packets and and global opq lists all unacknowledged packets,ordered by time-to-retransmit. hd rxq holds packets received out of sequence untilthey can be accepted.The di�erence in time between sending a packet and getting the acknowledge-ment is used to estimate the round-trip time to the foreign host. Each update is�ltered into the estimate according to formula:hd rttn = 0:75 � hd rttn�1 + 0:25 ��t39

databuf

struct
hostd

struct
pkt

nref
tid
name
arch
...

txq

opq

rxq

rxm

nref
tid
name
arch
...

txq

opq

rxq

rxm

Global
Retry
queue

opq
link

tlink

0

0

link

tlink

buf

dat

...

...

Figure 11: Host Descriptors with Send Queues
40

. When the acknowledgement for a packet arrives, the packet is removed fromhd opq and opq and discarded. Each packet has a retry timer and count, and isresent until acknowledged by the foreign pvmd. The timer starts at 3 � hd rtt, anddoubles for each retry up to 18 seconds. hd rtt is limited to nine seconds and backo�is bounded in order to allow at least 10 packets to be sent to a host before givingup. After three minutes of resending with no acknowledgement, a packet expires.If a packet expires due to timeout, the foreign pvmd is assumed to be down orunreachable, and the local pvmd gives up on it, calling hostfailentry()4.4.3 Pvmd-Task and Task-TaskA task talks to its pvmd and other tasks through TCP sockets. TCP is usedbecause it delivers data reliably; UDP can lose packets even within a host. Unreliabledelivery requires retry (with timers) at both ends, and tasks can't be interruptedwhile computing to perform I/O, so we can't use UDP.Implementing a packet service over TCP is simple due to reliable delivery. Thepacket header is shown in �gure 12. No sequence numbers are needed, and only agsSOM and EOM (these have the same meaning as in x4.4.2). Since TCP providesno record marks to distinguish back-to-back packets from one another, the lengthis sent in the header. Each side maintains a FIFO of packets to send, and switchesbetween reading the socket when data is available and writing when there is space.The main drawback to TCP (as opposed to UDP) is that more system calls areneeded to transfer each packet. With UDP, a single sendto() and single recvfrom()are required. With TCP, a packet can be sent by a single write() call, but mustbe received by two read() calls, the �rst to get the header and the second to getthe data.When tra�c on the connection is heavy, a simple optimization reduces the av-erage number of reads back to about one per packet. If, when reading the packet41

0

4

8

12

Byte 0 1 2 3

Destination TID

Source TID

SO
M

E
O

M unused

Packet LengthFigure 12: Pvmd-Task Packet Headerbody, the requested length is increased by the size of a packet header, the read maysucceed in getting both the packet body and header of the next packet at once. Wehave the header for the next packet for free and can repeat this process. 34.5 Message Routing4.5.1 PvmdPacket Bu�ersPacket descriptors (struct pkt) track message fragments through the pvmd. Fieldspk buf, pk max, pk dat and pk len are used in the same ways as similarly named�elds of a frag, described in x4.1.1. Besides data, pkts contain state to operate thepvmd-pvmd protocol.Message RoutingMessages are sent by calling sendmessage(), which routes by destination address.Messages for other pvmds or tasks are linked to packet descriptors and attachedto a send queue. If the pvmd addresses a message to itself, sendmessage() passesthe whole message descriptor to netentry(), avoiding the packet layer entirely.3This was once implemented, but removed while updating the code and hasn't been reintroduced.42

This loopback interface is used often by the pvmd. During a complex operation,netentry() may be reentered several times as the pvmd sends itself messages.Messages to the pvmd are reassembled from packets in message reassemblybu�ers, one for each local task and remote pvmd. Completed messages are passedto entry points (x4.1.4).Packet RoutingA graph of packet and message routing inside the pvmd is shown in �gure 13. Packetsare received from the network by netinput() directly into bu�ers long enough tohold the largest packet the pvmd will receive (its MTU in the host table). Packetsfrom local tasks are read by loclinput(), which creates a bu�er large enough foreach packet after it reads the header. To route a packet, the pvmd chains it ontothe queue for its destination. If a packet is multicast (x4.5.4), the descriptor isreplicated, counting extra references on the underlying databuf. One copy is placedin each send queue. After the last copy of the packet is sent, the databuf is freed.
work()

netinput()

loclinput() loclinpkt()

netentry()

loclentry()

schentry()

sendmessage()

mesg_to_task()

pkt_to_host()

netoutput()

locloutput()

t_txq

hd_txq

hd_txq

t_txq
Function call

Packet
Message

pkt_to_task()

netinpkt()

Figure 13: Packet and Message Routing in pvmd43

RefragmentationMessages are generally built with fragment length equal to the MTU of the host'spvmd, allowing them to be forwarded without refragmentation. In some cases, thepvmd can receive a packet (from a task) too long to be sent to another pvmd.The pvmd refragments the packet by replicating its descriptor as many times asnecessary. A single databuf is shared between the descriptors. The pk dat andpk len �elds of the descriptors cover successive chunks of the original packet, eachchunk small enough to send. The SOM and EOM ags are adjusted (if the originalpacket is the start or end of a message). At send time, netoutput() saves the dataunder where it writes the packet header, sends the packet, then restores the data.4.5.2 Pvmd and Foreign TasksPvmds usually don't communicate with foreign tasks (those on other hosts).The pvmd has message reassembly bu�ers for each foreign pvmd and each task itmanages. What it doesn't want is to have reassembly bu�ers for foreign tasks. Tofree up the reassembly bu�er for a foreign task (if the task dies), the pvmd wouldhave to request noti�cation from the task's pvmd, causing extra communication.For the sake of simplicity the pvmd local to the sending task serves as a messagerepeater. The message is reassembled by the task's local pvmd as if it were thereceiver, then forwarded all at once to the destination pvmd, which reassembles themessage again. The source address is preserved, so the sender can be identi�ed.Libpvm maintains dynamic reassembly bu�ers, so messages from pvmd to taskdo not cause a problem.
44

4.5.3 LibpvmFour functions handle all packet tra�c into and out of libpvm. mroute() iscalled by higher-level functions such as pvm send() and pvm recv() to copy mes-sages into and out of the task. It establishes any necessary routes before callingmxfer(). mxfer() polls for messages, optionally blocking until one is received oruntil a speci�ed timeout. It calls mxinput() to copy fragments into the task andreassemble messages. In the generic version of PVM, mxfer() uses select() to pollall routes (sockets) in order to �nd those ready for input or output. pvmmctl() iscalled by mxinput() when a control message is received (x4.1.5).Direct Message RoutingDirect routing allows one task to send messages to another via TCP, avoiding theoverhead of forwarding through the pvmds. It is implemented entirely in libpvm,using the notify and control message facilities. By default, a task routes messages toits pvmd, which forwards them on. If direct routing is enabled (PvmRouteDirect)when a message (addressed to a task) is passed to mroute(), it attempts to createa direct route if one doesn't already exist. The route may be granted or refused bythe destination task, or fail (if the task doesn't exist). The message is then passedto mxfer().Libpvm maintains a protocol control block (struct ttpcb) for each active ordenied connection, in list ttlist. The state diagram for a ttpcb is shown in �gure14. To request a connection, mroute() makes a ttpcb and socket, then sends aTC CONREQ control message to the destination via the default route. At the sametime, it sends a TM NOTIFY message to the pvmd, to be noti�ed if the destinationtask exits, with closure (message tag) TC TASKEXIT. Then it puts the ttpcb in stateTTCONWAIT, and calls mxfer() in blocking mode repeatedly until the state changes.When the destination task enters mxfer() (for example to receive a message),45

OPEN

DEAD

CONWAIT GRNWAIT

DENY

(no PCB)

Want connection
Receive CONREQ

Socket connects

accept()

Receive
TASKEXIT

Receive
TASKEXIT

Receive
CONACK(NACK)

mroute()
cleans up

connect()

Receive
CONACK(ACK)
or CONREQ

Make ttpcb, socket
send CONREQ
post TaskExit notify

Make ttpcb, socket
send CONGRN
listen()

Have requested
expect ack or
crossed request

Have granted
must accept() when other
connects

Link is upConnection denied;
do not try again

Waiting to free
PCB structure

Read EOF on sock,
or bad write

closeFigure 14: Task-Task Connection State Diagramit receives the TC CONREQ message. The request is granted if its routing policy(pvmrouteopt != PvmDontRoute) and implementation allow a direct connection,it has resources available, and the protocol version (TDPROTOCOL) in the requestmatches its own. It makes a ttpcb with state TTGRNWAIT, creates and listens ona socket, then replies with a TC CONACK message. If the destination denies theconnection, it nacks, also with a TC CONACK message. The originator receives theTC CONACK message, and either opens the connection (state = TTOPEN) or marksthe route denied (state = TTDENY). Then, mroute() passes the original message tomxfer(), which sends it. Denied connections are cached in order to prevent repeatednegotiation.If the destination doesn't exist, the TC CONACK message never arrives becausethe TC CONREQ message is silently dropped. However, the TC TASKEXIT messagegenerated by the notify system arrives in its place, and the ttpcb state is set toTTDENY. 46

This connect scheme also works if both ends try to establish a connection atthe same time. They both enter TTCONWAIT, and when they receive each others'TC CONREQ messages, they go directly to the TTOPEN state.4.5.4 MulticastingLibpvm function pvm mcast(), sends a message to multiple destinations simul-taneously. The current implementation only routes multicast messages through thepvmds. It uses a 1:N fanout to ensure that failure of a host doesn't cause the loss ofany messages (other than ones to that host). The packet routing layer of the pvmdcooperates with the libpvm to multicast a message.To form a multicast address TID (GID), the G bit is set (refer to �gure 1). TheL �eld is assigned by a counter that is incremented for each multicast, so a newmulticast address is used for each message, then recycled.To initiate a multicast, the task sends a TM MCA message to its pvmd, containinga list of recipient TIDs. The pvmd creates a multicast descriptor (struct mca) andGID. It sorts the addresses, removes bogus ones and duplicates and caches them inthe mca. To each destination pvmd (ones with destination tasks), it sends a DM MCAmessage with the GID and destinations on that host. The GID is sent back to thetask in the TM MCA reply message.The task sends the multicast message to the pvmd, addressed to the GID. As eachpacket arrives, the routing layer copies it to each local task and foreign pvmd. Whena multicast packet arrives at a destination pvmd, it is copied to each destinationtask. Packet order is preserved, so the multicast address and data packets arrive inorder at each destination. As it forwards multicast packets, each pvmd eavesdropson the header ags. When it sees a packet with EOM ag set, the ushes the mca.47

4.6 Task Environment4.6.1 Environment VariablesExperience indicates that inherited environment (UNIX environ) is useful toan application. For example, environment variables can be used to distinguish agroup of related tasks or set debugging parameters. PVM makes increasing use ofenvironment, and may eventually support it even on machines where the concept isnot native. For now, it allows a task to export any part of environ to tasks spawnedby it. Setting variable PVM EXPORT to the names of other variables causes them tobe exported through spawn. For example, setting:PVM EXPORT = DISPLAY:SHELLexports the variables DISPLAY and SHELL to children tasks (and PVM EXPORT too).The following environment variables are used by PVM:Variable UseThe user may set these:PVM ROOT Root installation directoryPVM EXPORT Names of environment variables to inherit through spawnPVM DEBUGGER Path of debugger script used by spawnThese are set by PVM and should not be modi�ed:PVM ARCH PVM architecture namePVMSOCK Address of the pvmd local socket (x4.3.2)PVMEPID Expected PID of a spawned taskPVMTMASK Libpvm Trace mask4.6.2 Standard Input and OutputEach task spawned through PVM has /dev/null opened for stdin. It inheritsfrom its parent a stdout sink, which is a (TID, code) pair. Output on stdout or48

stderr is read by the pvmd through a pipe, packed into PVM messages and sent tothe TID, with message tag equal to the code. If the output TID is set to zero (thedefault for a task with no parent), the messages go to the master pvmd, where theyare written on its error log. Four types of messages are sent to a stdout sink. Themessage body formats for each type are:Class Message Body(code) f int tid, Task IDSpawn: int -1, Signals spawnint ptid TID of parentg(code) f int tid, Task IDBegin: int -2, Signals task creationint ptid TID of parentg(code) f int tid, Task IDOutput: int count, Length of output fragmentchar data[count] Output fragmentg(code) fEnd: int tid, Task IDint 0 Signals EOFgThe �rst two items in the message body are always the task ID and outputcount, which allow the receiver to distinguish between di�erent tasks and the fourmessage types. For each task, one message each of types Spawn, Begin and End issent, along with zero or more messages of class Output (count > 0). Classes Begin,Output and End will be received in order, as they originate from the same source49

(the pvmd of the target task). Class Spawn originates at the (possibly di�erent)pvmd of the parent task, so it can be received in any order relative to the others.The output sink is expected to understand the di�erent types of messages and usethem to know when to stop listening for output from a task (EOF) or group of tasks(global EOF).The messages are designed so as to prevent race conditions when a task spawnsanother task, then immediately exits. The output sink might get the End messagefrom the parent task and decide the group is �nished, only to receive more outputlater from the child task. According to these rules, the Spawnmessage for the secondtask must arrive before the End message from the �rst task. The Begin messageitself is necessary because the Spawn message for a task may arrive after the Endmessage for the same task. The state transitions of a task as observed by the receiverof output messages are shown in �gure 15.
Unstarted

Exited

Spawn

Spawn

Spawn

Output

Output

Begin

Begin

End

End

Figure 15: Output States of a TaskLibpvm function pvm catchout() uses output collection to put the output fromchildren of a task into a �le (for example its own stdout). It sets output TID toits own task ID, and the output code to control message TC OUTPUT. Output fromchildren and grandchildren tasks is collected by the pvmds and sent to the task,where it is received by pvmmctl() and printed by pvmclaimo().50

4.6.3 TracingLibpvm has a tracing system which can record the parameters and results of allcalls to interface functions. Trace data is sent as messages to a trace sink task justas output is sent to a stdout sink (x4.6.2). If the trace output TID is set to zero(the default), tracing is disabled.Besides the trace sink, tasks inherit a trace mask, used to enable tracing per-function. The mask is passed as a (printable) string in environment variable PVMTMASK.A task can manipulate its own trace mask or the one to be inherited from it. A task'strace mask can also be set asynchronously with a TC SETTMASK control message.Trace data from a task is collected in a manner similar to the output redirectiondiscussed above. Like the type Spawn, Begin and End messages which bracketoutput from a task, TEV SPNTASK, TEV NEWTASK and TEV ENDTASK trace messagesare generated by the pvmds to bracket trace messages.The tracing system is very new at this time, and may evolve further. Details ofthe trace messages are not documented here.4.6.4 DebuggingPVM provides a simple but extensible debugging facility. Tasks started by handcould just as easily be run under a debugger, but this is cumbersome for thosespawned by an application, since it requires the user to comment out the calls topvm spawn() and start tasks manually. If PvmTaskDebug is added to the ags passedto pvm spawn(), the task is started through a debugger script (a normal shell script),$PVM ROOT/lib/debugger.The pvmd passes the name and parameters of the task to the debugger script,which is free to start any sort of debugger. The script provided is very simple. In anxterm window, it runs the correct debugger according to the architecture type of thehost. The script can be customized or replaced by the user. The pvmd can be made51

to execute a di�erent debugger via the bx= host �le option or the PVM DEBUGGERenvironment variable. 4.7 Console ProgramThe PVM console program is like a command shell with a small set of built-incommands. It can be used to con�gure the virtual machine, start, kill and checkstatus of processes. It can collect output or trace data from spawned tasks, usingthe redirection mechanisms described in x4.6.2 and x4.6.3, and write them to thescreen or a �le. It uses the begin and end messages from child tasks to maintaingroups of tasks (jobs), related by common ancestors. Using host notify events (x3.8),it informs the user when the virtual machine is recon�gured. The console can beconnected to any pvmd in the system, and any number of consoles can be connectedat the same time. If no pvmd is running when the console is started, it attempts tostart one automatically, then connect to it.The console connects to PVM as a normal task, requiring no special privileges.Implementing it this way avoids creating a separate \management" interface to thepvmd (it uses the existing libpvm protocol), and ensures that the libpvm interfaceis powerful enough to manage the system.4.8 Resource LimitationsResource limits imposed by the operating system and available hardware arepassed on to PVM applications. Whenever possible, PVM avoids setting explicitlimits, instead it returns an error when resources are exhausted. Competition be-tween users on the same host or network a�ects some limits dynamically.52

4.8.1 In the PVM DaemonHowmany tasks each pvmd can manage is limited by two factors: The number ofprocesses allowed a user by the operating system, and the number of �le descriptorsavailable to the pvmd. The limit on processes is generally not an issue. Each taskconsumes one �le descriptor in the pvmd, for the pvmd-task TCP stream. Eachspawned task consumes a second descriptor, for the pipe to read its output (closingstdout and stderr in the task would reclaim this slot). A few more are always inuse by the pvmd for the local and network sockets and error log �le. With a limitof (for example) 64 open �les, a user should be able to have up to 30 tasks runningper host.The pvmd uses dynamically allocated memory to store message packets en routebetween tasks. Until the receiving task accepts the packets, they accumulate in thepvmd in a FIFO. No ow control is imposed by the pvmd { it will happily storeall the packets given to it, until it can't get any more memory. If an applicationis designed so that tasks can keep sending even when the receiving end is o� doingsomething else and not receiving, the system will eventually run out of memory.4.8.2 In the TaskAs with the pvmd, a task may have a limit on the number of others it can connectto directly. Each direct route to a task has a separate TCP connection (which isbidirectional), and so consumes a �le descriptor. Thus with a limit of 64 open �les,a task can establish direct routes to about 60 other tasks. Note this limit is only ine�ect when using task-task direct routing. Messages routed via the pvmds only usethe default pvmd-task connection.The maximum size of a PVM message is limited by the amount of memoryavailable to the task. Because messages are generally packed using data existingelsewhere in memory, and they must be reside in memory between being packed and53

sent, the largest possible message a task can send should be somewhat less than halfthe available memory. Note that as a message is sent, memory for packet bu�ersis allocated by the pvmd, aggravating the situation. Inplace message encodingalleviates this problem somewhat, because the data is not copied into message bu�ersin the sender. However, on the receiving end, the entire message is downloaded intothe task before the receive call accepts it, possibly leaving no room to unpack it.In a similar vein, if many tasks send to a single destination all at once, the des-tination task or pvmd may be overloaded as it tries to store the messages. Keepingmessages from being freed when new ones are received by using pvm setrbuf() alsouses up memory.These problems can sometimes be avoided by rearranging the application code,for example to use smaller messages, eliminate bottlenecks, and process messages inthe order in which they are generated.4.9 Debugging the System4.9.1 Sane HeapPVM uses dynamically allocated memory for things such as host tables andmessage bu�ers. To help catch bugs in the system code, the pvmd and libpvmuse a sanity-checking library called imalloc. imalloc functions are wrappers for theregular libc functions malloc(), realloc() and free(). Upon detecting an error,the imalloc functions abort the program so the fault can be traced.The following checks and functions are performed by imalloc:1. The length argument to i malloc() and i realloc() is checked for insanevalues.2. All allocated blocks are tracked in a hash table to detect when a block is freedmore than once or i free() is called with a block not obtained by i malloc().54

3. i malloc() and i realloc() �ll pads around each block with a pseudo-random pattern. The pattern is checked by i free() to detect writing pastthe end of a block.4. i free() zeros each block before it frees it so further references may fail andmake themselves known.5. Each block has a serial number and is tagged to indicate its use. The heapspace can be dumped or sanity-checked by calling i dump(). This helps �ndmemory leaks.Since the overhead of this checking is quite severe, it is disabled at compile timeby default. De�ning USE PVM ALLOC in the source Make�le(s) switches it on.4.9.2 Runtime Debug MasksThe pvmd and libpvm each have a debugging mask that can be set to enablelogging of various information. Logging information is divided up into classes, eachof which is enabled separately by a bit in the debug mask. The pvmd command lineoption -d sets the debug mask of the pvmd to the (hexadecimal) value speci�ed; thedefault is zero. Slave pvmds inherit the debug mask of the master at the time theyare started. The debug mask of a pvmd can be set at any time using the consoletickle command on that host. The debug mask in libpvm can be set in the taskwith pvm setopt().Note: The debug mask is not intended for debugging application programs.The pvmd debug mask bits are de�ned in ddpro.h, and the libpvm bits in lpvm.c.The meanings of the bits are not well de�ned and are subject to change, as they'reintended to be used when �xing or modifying the pvmd or libpvm. Presently, thebits in the debug mask correspond to: 55

Name Bit Debug messages aboutpkt 1 Packet routingmsg 2 Message routingtsk 4 Task managementslv 8 Slave pvmd startuphst 10 Host table updatessel 20 Select loop (below packet routing layer)net 40 Network twiddlingmpp 80 MPP port speci�csch 100 Resource manager interface4.9.3 StatisticsThe pvmd includes registers and counters to sample certain events, for examplethe number of packets refragmented. These values can be computed from a debuglog, but the counters have less adverse impact on the performance of the pvmd thanwould generating a huge log �le. The counters can be dumped or reset using thepvm tickle() function or the console tickle command. The code to gather statisticsis normally switched out at compile-time. To enable it, edit the make�le and add-DSTATISTICS to the compile options.
56

CHAPTER 5WATER TESTPVM version 3.3 was used in all tests. I used the compiler shipped with eachmachine, and enabled optimization with \-O". The Sparc IPX machines used formost of the tests were running SunOS 4.1.3 and had 16MB main memory. Theywere up and running normally.5.1 Performance MeasurementsI ran experiments to determine the message-passing performance of PVM, rel-ative to raw sockets. I measured message latency and throughput and calculatedthe overhead due to PVM. Ethernet is a 10Mbit/S broadcast medium. The networkused for these tests is a moderately busy and messy wire (the Computer Sciencedepartment backbone). All machines were connected to the same segment, possiblythrough a bridge; packets were routed from host to host in a single hop and notthrough any gateways or routers.5.1.1 Message LatencyCommunication latency (delay) between tasks is important to �ne-grain parallelalgorithms. Tasks synchronize by sending small messages back and forth, so withlarger latency more time is spent idle, waiting for a reply.Transfer time for a message is at best D+L=W , where D is the network latency,L the length of the message and W the bandwidth of the network. Latencies weremeasured for small messages because as length increases, delay becomes a smaller57

part of the transfer time. For example, if the latency is 1mS and throughput is1MB/S, messages longer than 1kB will be bound more by throughput, and thoseshorter than 1kB bound more by latency. Latencies were measured for messagelengths up to 8kB. Both UDP and TCP sockets were tested.To avoid having to synchronize the clocks of two hosts or approximate the o�set,messages are sent round-trip, and the total time di�erence (measured on a singlehost) is divided in half. Messages should take roughly the same amount of time togo in each direction.Figure 16 shows latencies over raw UDP sockets for several UNIX systems, be-tween two processes on the same machine and over a local Ethernet. They allperform more or less the same. On-host latency is determined by CPU speed andnetwork code in the kernel, while o�-host latency is determined mainly by networkcode and the physical network. The latency that should be attainable over Ethernetis also plotted. No UNIX machine comes anywhere near this line, especially at thelow end (500�S real vs. 70�S theoretical).
0 2000 4000 6000 8000

Message Length (bytes)

0

5000

10000

M
in

im
um

 L
at

en
cy

 /
10

 t
ri

al
s

(u
S)

(2)RS/6000
(2)Sparc IPX
(2)HP 9000/XXX
Theo./Ether
RS/6000-550
RS/6000-530
Sparc IPX
HP 9000/XXX
Alpha 3000/500Figure 16: Typical On-host and Inter-host Latencies58

5.1.2 Message ThroughputTests of throughput were run with message lengths varying from 10 bytes to10M bytes. Very large messages show where and how the system begins to lose.When messages are megabytes long, problems show up that aren't evident withsmall sizes. Behavior of memory-allocation systems becomes important, becausemessage bu�ers are dynamically allocated. E�ects of operating system paging andscheduling, and protocol implementation show up. Sparse samples can hide chaoticperformance (for example when message length is close to a power of two) { an orderof magnitude is way too much.PVM message throughput is compared to a TCP connection. Both fair andforwarding message speeds were measured between tasks. Fair speed is measured asthe time needed to pack a message, send it to another task, and unpack it; this is howlong it would take to get real data from one task to another. Packing and unpackingis done to a static 10k byte array. Forwarding speed is the speed with which a taskcan receive a message and send it again. Comparison of the two against raw socketsshows where overhead comes from in PVM. Messages were passed between tasks onthe same physical host and on di�erent hosts, using both default and direct routing.As with latency measurements, messages were sent round-trip to simplify timing.5.2 Analyzing the Performance5.2.1 LatencyFigure 17 shows latencies between two processes (or tasks) running on the samephysical host when communicating through UDP or TCP sockets (or PVM mes-sages).Raw sockets are of course faster than PVM messages, but are also more con-sistent. The variance with PVM messages is much larger than the average value.59

0 2000 4000 6000 8000

Message Length (bytes)

0

50000

100000

150000

L
at

en
cy

 /
10

 t
ri

al
s

(u
S) PVM/default(max)

PVM/default(min)
PVM/direct(max)
PVM/direct(min)
TCP(max)
TCP(min)
UDP(max)
UDP(min)

Figure 17: Minimum, Maximum On-host Latency, Sparc IPXThis is likely due to process scheduling (the machines were running other jobs atthe time). In each case, one or two of ten data points were far higher than therest. Maximum values for default routing are approximately twice as large as fordirect routing, because the message travels through two processes and is more likelyto be delayed by scheduling. The �rst data point on the PVM direct route curvecorresponds to the �rst message sent, which is when the direct route is established,causing a large delay.Median latencies, shown in �gure 18, are close to minimum values. Latencyis highest when the default message route is used, because the message is routedthrough a pvmd instead of directly from task to task, resulting in an extra copy,and an extra context switch to wake up the pvmd. Enabling direct routing improvesthe performance almost by 50%. Still, some time is lost in the PVM message bu�ermanagement code. The default PVM fragment size is 4k bytes, so we see a bumpin latency at multiples of 4kB, when an additional fragment becomes necessary.Dashed lines show predicted latencies of PVM messages, as calculated from the60

0 2000 4000 6000 8000

Message Length (bytes)

0

5000

10000

15000

M
ed

ia
n

L
at

en
cy

 /
10

 t
ri

al
s

(u
S)

PVM/Default
TCP+TCP/frag
PVM/Direct
TCP/frag
TCP
UDP

Figure 18: Median On-host Latency, Sparc IPXmeasured socket latencies. Direct route is compared to a single TCP connection,with overhead (another call to write()) added in at multiples of 4kB. Default routeis compared to two TCP connections, from each task to the pvmd. PVM bu�ermanagement overhead is approximately 900�S. It increases with message lengthbecause data must be copied to the message bu�er.Figure 19 shows the previous experiment repeated with processes (tasks) runningon two di�erent physical hosts, connected by Ethernet. Median latency is used, to�lter out e�ects of process scheduling and network tra�c.It's interesting to note that TCP is slightly slower than UDP for messages aroundzero length, and slightly faster for messages around 8kB long, even though all mes-sages �t into a single datagram. Perhaps this is because the UDP datagrams mustbe fragmented by the IP layer (Ethernet MTU is 1500 bytes) while TCP generatescorrect-length segments (slightly less than 1500 bytes).Performance of PVM is again predicted by composing the measured performanceof raw sockets. Direct route is compared to a single TCP connection, while default61

0 2000 4000 6000 8000

Message Length (bytes)

0

5000

10000

15000

20000

25000

M
ed

ia
n

L
at

en
cy

 /
10

 t
ri

al
s

(u
S)

PVM/Default
TCP+UDP+TCP/frag
PVM/Direct
TCP/frag
UDP
TCP
Ether/Theo.

Figure 19: Median Inter-host Latency, Sparc IPXroute is compared to two (local) TCP connections in series with a UDP connection.Between hosts, default route latency is much worse than for direct route for tworeasons: First, another pvmd is in the message path. Second, the pvmd-pvmdprotocol uses stop-and-wait (a single outstanding packet), so the bump at 4kB ismore noticeable. 5.2.2 ThroughputFigure 20 compares PVM throughput over Ethernet to a raw TCP socket.Throughput over UDP was not tested (though the pvmds use it) because it cannothandle long messages. 1Perfect performance on Ethernet is calculated by modeling PVM messages, IPand Ethernet protocols, assuming no contention for the network or CPUs. UNIX1A message service built on UDP can achieve better performance than some implementations ofTCP. 62

10 100 1000 10000 100000 1000000 10000000

Message Length (bytes)

0

500000

1000000

1500000

M
ed

ia
n

T
ra

ns
fe

r
R

at
e

/ 1
0

tr
ia

ls
 (

by
te

/S
)

Ether/Perfect
TCP/Predicted
TCP
Direct/Forw
Direct/Fair
Default/Predicted
Default/Forw
Default/Fair

Figure 20: Median Inter-host Throughput, Sparc IPXmachines perform poorly for small messages, due to latency in the kernel. Thepredicted curve for direct routing (and TCP) was calculated by adding the measuredTCP latency of one byte to the total message time from the ideal model. Thepredicted curve for default routing was calculated by assuming the UDP connectionto be the limiting factor. Twice the measured UDP latency of one byte was addedto the ideal model for each PVM fragment sent.Performance drops o� sharply for messages around 5MB, because the kernel ispaging fragments of the message bu�ers. The workstations used had 16MB core,and the kernel and other programs running used about 6MB. The test programis written such that two message bu�ers exist in memory at the same time (onefrom the previous message), so paging begins with messages longer than 5MB. TheTCP curve shows no rollo� because data sent through the socket wasn't writtenanywhere. Throughput is summarized in the following table:63

Mode ThroughputMB/S nS/BTCP 1.09 917Direct, Forward 1.06 943Direct, Fair 0.88 1140Default, Forward 0.51 1960Default, Fair 0.47 2130Figure 21 shows the same tests repeated, with both tasks running on the samehost. On a single machine, performance is only limited by memory-memory copyspeed. Throughput is summarized in the following table:Mode ThroughputMB/S nS/BTCP 1.88 532Direct, Forward 1.50 667Direct, Fair 1.15 870Default, Forward 0.75 1330Default, Fair 0.66 1520The di�erence between fair and forwarding speeds shows the cost of packing andunpacking a message to be approximately 200nS/B, (100nS/B each). On the samemachine, bcopy() costs 80nS/B. Using PVM messages with direct routing is onlyslightly more expensive than raw TCP (no packing/unpacking was done in the TCPtest), but the cost of default routing can be prohibitive (more than 100% overhead).As shown in the previous experiment, performance drops sharply when messagebu�ers must be paged. This happens at half the previous size (2.5 MB), becauseboth tasks are running on the same workstation, competing for memory.The drop in throughput around message length 100kB is due to another pro-cess stealing cycles from the two tasks. The drop occurs at the point where thetime needed to transfer a message is equal to the kernel's scheduler time quan-tum, which on these machines is 100mS. The dashed line shows the points where64

10 100 1000 10000 100000 1000000 10000000

Message Length (bytes)

0

500000

1000000

1500000

2000000

M
ed

ia
n

T
ra

ns
fe

r
R

at
e

/ 1
0

tr
ia

ls
 (

by
te

/S
)

L/BW=100mS
TCP
Direct/Forw
Direct/Fair
Default/Forw
Default/Fair

Figure 21: Median On-host Throughput, Sparc IPXmessage length=bandwidth = 100mS. Short messages can be sent from one task toanother completely in a single time slot. The system calls to read and write the un-derlying socket serve to synchronize the tasks with the scheduler. Longer messagesare transferred during several time slots, with the tasks scheduled in a round-robinfashion. The external process gets one slot in every three, or one third of the CPU,so one third of the throughput is lost. This e�ect isn't seen as dramatically whensending messages between hosts (though it can be observed). The network movesdata in the background and is somewhat slower than the processor, so the taskshave time to catch up when they are scheduled back in.
65

CHAPTER 6CONCLUSIONS6.1 ResultsPVM is a message-passing system that can be ported to di�erent machine en-vironments, and used to combine them into a single meta-computer. It provides astandardized programming interface, callable from a normal sequential language (C,C++ and Fortran interfaces are provided). Fault-tolerant applications can be writ-ten by exploiting the ability of the system to detect and recover from hardware andsoftware failures. It is easy to use, yet expressive enough to allow real applicationsto be built. 6.1.1 Fault ToleranceThe �rst goal of Version 3 is fault tolerance. The PVM system itself can with-stand the loss of any host in the virtual machine, except for the master, and anytask. The master host is currently not replaceable and must always remain in thecon�guration. PVM saves enough information for its own purposes so that if a hostfails, the system can reschedule, or at least terminate, any operations pending on it.This means that even a naive application will not hang waiting for an operationinvolving a down host to complete. More enlightened applications can receive anotify message from the PVM system and take their own measures to recover. Ad-mittedly, writing code to take advantage of this facility is a messy task. It usuallyneeds to be embedded into the application, because the actions needed to recoverare very speci�c to each program. Hopefully, libraries can be built to make this66

somewhat easier. A queue manager system was written to work with PVM Version2 [Sep93], which simpli�es the job of writing bag-of-tasks applications by managingdata dependencies and task creation. This system could possibly be extended torun with Version 3 and include automatic fault tolerance. For programmers whodon't want to bite o� the complexity of using notify events, the time-limited receivefunction, pvm trecv(), provides a simple way out. Generally, when an applica-tion component fails, the rest of the application will hang waiting on results from it.Programs can instead time out and poll to make sure the component is still running.6.1.2 PortabilityAnother important goal was for PVM to be portable to a variety of di�erentarchitectures and operating systems. Thus far, it has been ported to more than30 popular versions of UNIX, and several distributed and shared memory machines.Ports were done to VMS by Dan Clark at the Oregon Graduate Institute and to OS/2by Jan Ftacnik at Brookhaven National Laboratory. To reduce maintenance work,the source code is intended to be sharable as much as possible between the di�erentports. The \generic" release UNIX ports di�er by about a hundred lines of code(out of about 25000), conditionally compiled in by architecture type. About 2000lines are replaced in the distributed memory ports (CM-5, iPSC/860 and Paragon),with about 1000 of those shared between the three ports. Results aren't in yet ona recently completed System-5 shared-memory port. PVM can run over any typeof network, Ethernet, FDDI, HiPPI, ATM, even slip (really), as long as TCP andUDP are available. 6.1.3 PerformanceThe communication performance of PVM leaves a little to be desired. It isa�ected by three main factors. First, protocol drivers run in user space (in the pvmd67

and tasks). The pvmd-pvmd protocol su�ers most, because it manages timers andresend queues. It's expensive to read timers from user space because it must bedone via system calls (one pro�ling of the pvmd showed 10% of its time spent ingettimeofday()). Performance might improve if UDP could be replaced with aprotocol with reliable delivery, eliminating the need to resend packets. The time-of-day clock could be mapped to memory, to eliminate the system call [Jep94]. Thepvmd-task (also task-task) protocol is based on TCP and so doesn't require anytimers. Also, both pvmd and task maintain a number of connections. A largefraction of time is spent in select(), multiplexing di�erent inputs.Second, the pvmd-pvmd protocol allows multiple outstanding (unacknowledged)packets on a connection, but the pvmd only sends them one-by-one. The numberof outstanding packets can be set manually, but a control system is needed to setit dynamically. On a high-bandwidth, high-latency network, a single packet is notenough to keep the pipe full. Pvmd-pvmd communication speed is therefore limitedby network latency and bandwidth, instead of just bandwidth. Performance onworkstations over Ethernet is reasonable, because the network latency is low.Third, message data is copied a number of times. Default message routing(through the pvmd) incurs �ve copies: the data must be packed, routed throughfour processes (three more copies), and �nally unpacked. Direct routing improvesover that (three copies total), since the message is sent directly between tasks,but the cost to establish a route is high because the request and acknowledgementmessages travel via the default route. Inplace encoding eliminates one more copy byleaving data in place until send time. It would be nice to have some sort of inplacereceive, but it's not clear how to de�ne it.6.1.4 ScalabilityVirtual machines haven't yet been run at the sizes (hundreds of hosts) we weretrying to achieve; the largest reported so far have included approximately 100 hosts.68

Networks with higher performance than Ethernet aren't very common yet, neitherare multiprocessors with more than a few hundred PEs. We haven't found manyalgorithms inherently parallel enough to make use of 100 relatively fast processorsconnected by a slow network, except for ray-tracing and cracking passwords. A fewfeatures of PVM will need redesign to scale better: Slave pvmd startup takes a longtime (average one second per host) though is still much improved over Version 2,because several hosts are processed in parallel. Some scatter/gather operations, suchas spawning tasks and multicasting, don't scale well because the communication usesa direct 1:N fanout. Acknowledgements tend to come back all at once, swampingthe central host and causing it to drop packets, which then have to be retransmitted.6.1.5 HeterogeneityPVM supports clusters of mixed machine architectures. Data is converted au-tomatically, provided that the PvmDataDefault message encoding is used. For sim-plicity, each library can only decode its native format and XDR. This results in someunnecessary conversions; it would be nice to use a format determined by majorityrule or receiver-makes-right conversion. However, that would require the library tohave several sets of decoders, resulting in additional maintenance work and largerexecutables. 6.1.6 How Real is It?PVM is not a distributed operating system. One feature it lacks is a �lesystem,making due with whatever is provided by machines on which it runs. The �lesystemwas left out not only because of the complexity of making a portable I/O library,but because programmers would have to use custom functions to access PVM �les.This is less of a problem in languages like C, where I/O functions are like any others,than in Fortran, where I/O is built into the language in some non-portable fashion.69

File I/O has been retro�tted onto PVM. The pvmfs [Phi93] system works for Cprograms by intercepting system calls like open() and read(), and generating itsown �le handles. It does normal I/O for local �les, otherwise it uses PVM messagesto communicate with a �le server task. Since it replaces the system calls, librariessuch as stdio can now work with PVM �les or normal �les. Programs run with onlyrelinking. The main drawback to pvmfs is that is uses syscall() to do its dirtywork, so it's not very portable. Getting it to a new machine can be fairly messy,and OS revisions can break it later on.PVM lets several disjoint applications run on the same virtual machine, but it'smore like a single-user system. No protection is provided between applications: anytask can send a message to any other task or swamp the machine by ooding itwith messages. 1 It's cumbersome to use in an everyday fashion { to start editorsand compilers on machines around the house. If a host goes down, it must bemanually added back to the machine when it comes up. Normal UNIX processesaren't managed as PVM tasks very well, as they live in a probationary status untilthey use libpvm functions to enroll.6.2 Recommendations6.2.1 Richer Programming InterfaceIn retrospect, the PVM programming interface should have been made richer.For simplicity and portability, features such as asynchronous message transfer wereleft out. These may not be supportable on all machines, but when available fromthe underlying system, they are critical to good performance.1Di�erent PVM users are protected from each other, though.70

6.2.2 Losing the Master PvmdOne key limitation to fault tolerance in PVM is the master pvmd. It mustnever crash and cannot be con�gured out of the system. It seems necessary to atleast devise a way for master to hand o� to another pvmd. This would allow anapplication to migrate if it knows in advance that the master host must go down.Even better would be to designate one or more backup masters to which slaveswould automatically defer if the master crashed.An interesting point made by the authors of the V kernel [Che88b] is that intheir �rst design they used object identi�ers with a logical host �eld, much like the H�eld in a PVM TID. They realized that this inhibits process migration (except if allprocesses on a host migrate together), and suggest that identi�ers not be designedthis way, even though it seems like a performance win. In a similar vein, TIDs areassigned arbitrarily by pvmds and can't be requested, making it di�cult to restarta checkpointed task. These problems have been rediscovered in a few e�orts to addcheckpointing to PVM [Beg94, Pla94].6.2.3 After-Market OptionsPVM attempts to be \virtual hardware" and as such should include as little pol-icy as possible (such as where to place tasks and how to manage hosts). Toward thisend, parts of the system have recently been made replaceable. Tasks can be enrolledto take over some functions of the pvmd. Work with the Condor [LLM88] group ledto the interface speci�cation for a replaceable resource manager, a task that �ltersrequests from libpvm functions such as pvm spawn() and pvm addhosts(). Thesame project de�ned a replaceable slave pvmd starter (or hoster) task that can takeover for the built-in rsh/rexec() mechanism. In cooperation with the Paradyn[HMC94] group, the tasker interface was speci�ed, which allows a task to manage(be the parent process of) other tasks. This is helpful when writing distributed71

debuggers and similar systems.6.2.4 Distributed DebuggersHow to debug distributed applications is area of active research. Adding printstatements to one's code still quali�es as a state-of-the-art technique with PVM(among others). The built-in ability to start tasks under a debugger works well forsmall applications, especially those without much distributed state to chase down.But with one debugger window open per task, it quickly loses beyond that. Tracingis helpful in some circumstances, but the level of tracing adequate to search for somebugs can make an application run so slow as to be unusable.There is a need for a debugger that can manage a large number of processes,spread over many separate hosts, and deal with heteregeneous architectures. Onesuch system is TotalView. 2 To be really useful, the debugger needs to understandconcepts used in a message-passing program. For example, it should be able totrigger breakpoints when certain messages are received. Control of the debuggermust be distributed to avoid a bottleneck at a central server.A related topic is program replay. Parallel programs often have non-deterministicbehavior internally, even though the output produced is the same for the sameinput. Serial programs can behave non-deterministically too, for example by basingdecisions on a time-of-day clock. In message-passing systems such as PVM, one causeof non-determinacy is race conditions between messages. For example, in a programwhere a master task assigns jobs to some number of workers, the assignments mayvary from run to run. Workers may take slightly di�erent times on di�erent runs,and as a result get di�erent assignments. Under these conditions, it can be di�cultto reproduce an error on demand, and so be able to debug the program. Programreplay allows a run to be reproduced, so it can be studied. The program is run2TotalView is trademark of Bolt Beranek and Newman, Inc.72

once, and a log is made of all events that can cause non-determinism (receivingmessages). The program is then rerun, and the data in the log �le is used to resolverace conditions: Messages are held back by the system until they can be received inthe proper order. An experimental version of PVM (based on Version 3) has beeninstrumented with message replay [Mac93] and can replay PVM programs.6.3 Availability of the CodeThis paper describes the most current version of PVM (3.3, nearing release atthis time). The source code and Users' guide are published electronically on theInternet via Netlib (e-mail), Xnetlib (a whizzy interactive �le grabber), and ftp:Netlib: echo "send index from pvm3" | mail netlib@ORNL.GOVXnetlib: host: netlib.ORNL.GOVpackage: pvm3ftp: host: netlib2.CS.UTK.EDUdirectory: /pvm3
73

BIBLIOGRAPHY

BIBLIOGRAPHY[ABB+86] M. J. Accetta, R. V. Baron, W. Bolosky, D. B. Golub, R. F. Rashid,A. Tevanian, and M. W. Young. Mach: A new kernel foundation forUNIX development. In Proceedings of Summer Usenix, July 1986.[BDG+91] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam.A users' guide to PVM (parallel virtual machine). Technical ReportORNL/TM-11826, Oak Ridge National Laboratory, Oak Ridge, TN,July 1991.[BDG+93] Adam Beguelin, Jack Dongarra, Al Geist, Robert Manchek, KeithMoore, and Vaidy Sunderam. Tools for heterogeneous network com-puting. In Proceedings of The Sixth SIAM Conference on ParallelProcessing, pages 854{861. SIAM, March 1993.[Beg94] Adam Beguelin, 1994. Personal communication.[BL92] R. Butler and E. Lusk. User's guide to the p4 programming system.Technical Report ANL{92/17, Argonne National Laboratory, Argonne,IL, 1992.[BLA+94] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and J. Sandberg.A virtual memory mapped network interface for the Shrimp multicom-puter. In Proceedings of The 21st Annual International Symposium onComputer Architecture, April 1994.[BM89] Kenneth Birman and Keith Marzullo. ISIS and the meta project.SunTechnology, Summer 1989.[BN91] A. Beguelin and G. Nutt. Examples in Phred. In Proceedings of FifthSIAM Conference on Parallel Processing, Philadelphia, 1991. SIAM.75

[Bur89] Gregory D. Burns. A local area multicomputer. In Proceedings ofFourth Conference on Hypercubes, Concurrent Computers, and Appli-cations, 1989.[BZS93] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Sawdon. TheMidway distributed shared memory system. Technical Report CMU-CS 93-119, Carnegie Mellon University, Pittsburgh, PA, 1993.[CG89] Nicholas Carriero and David Gelernter. LINDA in context. Commu-nications of the ACM, 32(4):444{458, April 1989.[Che88a] David Cheriton. VMTP: Versatile Message Transaction Protocol. RFC1045, Stanford University, February 1988.[Che88b] David R. Cheriton. The V distributed system. Communications of theACM, 31(3):314{333, March 1988.[CHI91] CHIMP concepts. Technical Report EPCC-KTP-CHIMP-CONC 1.2,Edinburgh Parallel Computing Centre, University of Edinburgh, June1991.[CS92] Clemens H. Cap and Volker Strumpen. The PARFORM { a high per-formance platform for parallel computing in a distributed workstationenvironment. Technical Report 92.07, University of Zurich InformationInstitute, June 1992.[DS86] J. J. Dongarra and D. Sorensen. SCHEDULE: Tools for developing andanalyzing parallel fortran programs. Technical Report ANL/MCS-TM-86, Argonne National Laboratory, Argonne, IL, November 1986.[FKB91] J. Flower, A. Kolawa, and S. Bharadwaj. The Express way to dis-tributed processing. Supercomputing Review, pages 54{55, May 1991.76

[For93] MPI Forum. MPI: A message passing interface. In Proceedings ofSupercomputing '93, pages 878{885, Los Alamitos, CA, 1993. IEEEComputer Society Press.[GHPW91] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A users'guide to PICL: A portable instrumented communication library. Tech-nical Report ORNL/TM-11616, Oak Ridge National Laboratory, OakRidge, TN, January 1991.[GS92] G. A. Geist and V. S. Sunderam. Network based concurrent computingon the PVM system. Concurrency: Practice and Experience, 4(4):293{311, June 1992.[Har91] R. J. Harrison. Portable tools and applications for parallel computers.Intern. J. Quantum Chem., 40:847{863, 1991.[Har92] Douglas Hartman. Unclogging distributed computing. IEEE Spectrum,pages 36{39, May 1992.[Hea90] M. T. Heath. Visual animation of parallel algorithms for matrix com-putations. In Proc. Fifth Distributed Memory Comput. Conf., pages1213{1222, Los Alamitos, CA, 1990. IEEE Computer Soc. Press.[HMC94] J. Hollingsworth, B. Miller, and J. Cargille. Dynamic program instru-mentation for scalable performace tools. In Proceedings of 1994 ScalableHigh Performance Computing Conference, Knoxville, TN, May 1994.to appear.[Hoa74] C. A. R. Hoare. Monitors: An operating system structuring concept.Communications of the ACM, pages 549{557, October 1974.[HS93] C. Hartley and V. S. Sunderam. Concurrent programming with sharedobjects in networked environments. In Proceedings of 7th Intl. ParallelProcessing Symposium, pages 471{478, Los Angeles, April 1993.77

[JBB92] V. Jacobson, R. Braden, and D. Borman. TCP extensions for highperformance. RFC 1323, LBL, ISI and Cray Research, May 1992.[Jep94] Chris M. Jepeway. The design, implementation, and evaluation ofRCalc. Master's thesis, The University Of Tennessee, Knoxville, 1994.[KLS+94] Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, GuyK. Steel Jr., and Mary E. Zosel. The High Performance Fortran Hand-book. MIT Press, Cambridge, MA, 1994.[Lel90] Wm Leler. Linda meets Unix. IEEE Computer, pages 43{54, February1990.[LLM88] M. Litzkow, M. Livny, and M. Mutka. Condor | A hunder of idleworkstations. In Proceedings of the Eighth Conference on DistributedComputing Systems, San Jose, California, June 1988.[LMKQ89] S. Le�er, M. McKusick, M. Karels, and J. Quarterman. The Designand Implementation of the 4.3BSD UNIX Operating System. Addison-Wesley, Reading, MA, 1989.[LO83] Ewing A. Lusk and Ross A. Overbeek. Implementation of monitorswith macros: A programming aid for the HEP and other parallel pro-cessors. Technical Report ANL{83{97, Argonne National Laboratory,Argonne, IL, December 1983.[LW89] J. Levesque and J. Williamson. A Guidebook to Fortran on Supercom-puters. Academic Press, San Diego, CA, 1989.[Mac93] Milon Mackey. Program replay in PVM, Presented at the First PVMuser group meeting, May 1993.[Mul93] Sape Mullender, editor. Distributed Systems. ACM Press, New York,1993. 78

[MvRT+90] Sape Mullender, Guido van Rossum, Andrew Tanenbaum, Robbert vanRenesse, and Hans van Staveren. Amoeba: A distributed operatingsystem for the 1990s. IEEE Computer, 23(5):44{53, May 1990.[OCD+88] John K. Ousterhout, Andrew R. Cherenson, Frederick Douglis, Michael N.Nelson, and Brent B. Welch. The Sprite network operating system.IEEE Computer, 21(2):23{36, February 1988.[Phi93] Christopher Phillips, 1993. Personal communication.[Pla94] Jim Plank, 1994. Personal communication.[Pos81a] J. Postel. Transmission control protocol. RFC 793, Information Sci-ences Institute, September 1981.[Pos81b] J. Postel. User datagram protocol. RFC 768, Information SciencesInstitute, September 1981.[QCB93] Angela Quealy, Gary L. Cole, and Richard A. Blech. Portable program-ming on parallel/networked computers using the Application PortableParallel Library (APPL). Technical Report NASA/TM-106238, NASALewis Research Center, Cleveland, OH, July 1993.[RSL92] Martin C. Rinard, Daniel J. Scales, and Monica S. Lam. Heterogeneousparallel programming in Jade. In Proceedings of Supercomputing 92,November 1992.[RSW90] Matthew Rosing, Robert B. Schnabel, and Robert P. Weaver. TheDINO parallel programming language. Technical Report CU-CS-457-90, University of Colorado, Boulder, CO, April 1990.[Sch91] G. Schoinas. Issues of the implementation of PrOgramming SYstemfor distriButed appLications, 1991. Draft Paper.79

[Sep93] Douglas J. Sept. The design, implementation and performance of aqueue manager for PVM. Master's thesis, The University Of Tennessee,Knoxville, 1993.[Sun87] Sun Microsystems, Inc. XDR: External Data Representation Standard.RFC 1014, Sun Microsystems, Inc., June 1987.[Sun88] Sun Microsystems, Inc. RPC: Remote Procedure Call. RFC 1057, SunMicrosystems, Inc., June 1988.[Sun89] Sun Microsystems, Inc. NFS: Network File System protocol speci�ca-tion. RFC 1094, Sun Microsystems, Inc., March 1989.[Sun90] V. S. Sunderam. PVM : A framework for parallel distributed comput-ing. Concurrency: Practice and Experience, 2(4):315{339, December1990.[vECGS92] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, andKlaus Erik Schauser. Active Messages: a mechanism for integratedcommunication and computation. In Proceedings of The 19st AnnualInternational Symposium on Computer Architecture, May 1992.
80

VITARobert Manchek was born in Cleveland, Ohio on October 17, 1964. He livedthere and other places, like Detroit, before �nally settling on Ann Arbor, Michigan,where he graduated from high school in June 1981. He immediately got a job at alocal terminal manufacturer, gluing magnets to CRTs, and ended up building neatgraphics hardware. Not wanting to stop with being happy and well fed, he bailedvia Kalamazoo to Boulder, Colorado to �nd out what was there. In June 1988 hegraduated with a B.S. in Electrical Engineering from the University of Colorado.He is presently employed as a Research Associate at the University of Tennessee,Knoxville and wondering what to do about that.

81

