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Abstract

The construction of elementary unitary matrices that transform a complex
vector to a real multiple of ey, the first column of the identity matrix, are studied.

We survey the two well known forms and present what appears to be relatively
unknown third form implemented by LAPACK subroutine CLARFG.

1 Introduction
Define the elementary Hermitian (or unitary) matrix

U = I-2ww?, (1)
where wfw = 1. Easily verified is that U is both Hermitian and unitary and is also
refered to as a Householder matrix. The matrix U as defined by ( 1) is a special case
of the more general class of elementary matrices defined by

E(u,v;0) = I—ouv™. (2)

See [2], [3] and [4] for further details. The latter reference is a comprehensive study of
elementary matrices, their properties and extensions to block implementations.

In [3] Wilkinson states that it is not possible, in general, to find an elementary
matrix U such that

Uz = a«e, (3)
for a complex vector  with a a real number. Note that U is unitary implies that
|a| = ||z]|2 . If the above relation were satisfied then

xHael = 2HUx.

The righthand side is a real number since U is Hermitian. But if el 2 has a non-zero
imaginary part we have a contradiction. The necessary condition is that e, = el z.
Equivalently el 2 = £, must have zero imaginary part.

The purpose of this note is to review and examine the case of constructing ele-

mentary unitary matrices that satisfy (3) for a complex vector z. The next section
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discusses the approach suggested by Wilkinson. The third section introduces yet an-
other approach due to Hammarling and Du Croz. It has been implemented in the
NAG Fortran Library subroutine FO6HRF, see [1]. A slightly different implementation
is the LAPACK subroutine CLARFG. The details of the software implementation for
CLARFG are in section four. In fact what led to this study is attempting to under-
stand the differences between the Wilkinson approach and the alternate formulation
implemented by LAPACK, [6]. Section five generalizes the Hammarling—Du Croz form
for transforming a complex vector x into another complex vector y. The last section
contains the source code for subroutine CLARFG.

2 The Wilkinson Approach

Wilkinson suggests the following modification in Chapter 2, section 45 of [3]. If
el'x = € has non-zero imaginary part then

L= 6i€1[|£1|76_i€1£27' . '7€_i€1£n]T7
= Ny,
where €/%1|¢; ]| is the polar form for &;. Since el is a real number, a Householder matrix
P may be constructed satisfying (3). Set U = e~ P and
Uz = e pyg,
— e—i€1 Peié’l v,
Py,
= «eq.
The matrix U is not Hermitian but is unitary which is the crucial property. The value
of a is not affected;
lal = [[Uz]l2,
e | P2,

= llzfle-

The matrix U constructed is not an elementary matrix. If & is real then 6y is arbi-
trary and may be chosen equal to zero. The resulting elementary matrix is then also
Hermitian.

The Wilkinson approach is used by LINPACK when working with complex data.

3 An Alternate Approach

The final form for an elementary unitary matrix studied is due to Hammarling and Du
Croz, see [1] (Introduction — F06). We now derive this alternate form. Consider the
general form ( 2) for an elementary unitary matrix U = E(u,v;0). The matrix must
be unitary from which it follows that

I = Uvfy,
= (I —ouwH(I - guv!),
= I -avul! — ouv™ + oa(uu)voll,



and cancelling terms results in

oo(uw)ov!? = Goul?’ + ouvll. (4)

Rearranging terms gives
H — o H

(ca(uu)y — cup™ = Foul,

and a row space argument implies that u and v are linearly dependent. Substituting
w = v into (4) results in

o+o0, (5)
= 2Re(0),

o lol]3

determining the required relationship between ¢ and v. Choosing v = 2 — ae; we have

Uz = (I-ovo)z,
= z— (ovfla)w,

= @€y,

if 071 = v 2. This choice of o will satisfy (5) as we now demonstrate. First

oo = (@M —ael)e,
= 22— ag,
= ala— 51)7
which determines o and
o3 = oo,

(acH - ae{)(w — ey ),
= 2a(a —Re(&)),

follows. Finally

()4 0) = M)t ),

= va—l—vHx,

ala— &) +ala—§&),
= 2a(a — Re(&)),

shows

2
— T~
|O'|2 H H27
as claimed. The form as outlined in this section does not appear to be as widely known
as the Wilkinson one. It has the benefit of transforming a complex vector & directly to
real multiple of e;. When & is purely real then U is Hermitian. Unlike the Wilkinson
variant the Hammarling—Du Croz approach results in an elementary unitary matrix.



4 Software Implementation of CLARFG

The actual implementation of the Hammarling—Du Croz variant has some slight mod-
ifications. The resulting code is an excellent example of the art of developing software
from a numerical algorithm. Subroutine CLARFG determines an elementary unitary
matrix U = I — 7uu® such that U¥z = ae; where |a| = ||z]|; for a a real number.
Simplifying the implementation of other algorithms in LAPACK requiring the use of
elementary unitary matrices the normalization ueq = 1 is taken. This normalization
is done for storage considerations and is discussed in [5]. From the previous section it
follows that

Ui = I—;UUH,
ala — 51)7
_ G- 04)uuH7
ala— &)
- J_ L&uqu
a
= I- TuuH,
where
v
T ,
51 -«
T —ae
B 51 —a’
and
_ a- &1
= —

Storage of U for use in further computation only requires storage for the complex 7
and z may be overwritten with both a and the essential part of u, i.e.

52 fn ]T‘

RS I A SR
In order that the value for 7 and the scaling factor & — o have small relative error
a — —sign(Re(&))[|]l2,

is chosen. This is a standard modification and is mentioned for the sake of completeness.
The resulting 7 satisfies the two properties

r — |a

1 < Re(r) < 2,
|T - 1| < 17
when ¢ # vey with v real. If z is a real multiple of e; then set
T < 0,

U — 1.



The reviewer of CLARFG will notice one final point which needs explanation. The
careful programmer took care not to reciprocate the number ||z||; that may fall below
a certain machine dependent tolerance, SAFMIN. The value SAFMIN, computed by
the LAPACK auxiliary subroutine SLAMCH is a machine dependent lower bound for
numbers that may be safely reciprocated and not cause an overflow condition. If ||z||2
is less than the lower bound then the vector x is scaled by a multiple of the reciprocal of
SAFMIN until ||fz||; is at least as large as SAFMIN. Defining the integer k to represent
the number of scalings required results in

1

g = k————.
SAFMIN

The number 7 may now be safely computed as

|02 — 66
[10]]2

In a similar fashion

o~ —sian(Re())4(1162]12).

and the essential part of u

1

u e mw&,...,ogn]T,

are computed.

5 Generalizations

We conclude with the problem of determining an elementary unitary matrix U that
satisfies

Ur = (I-ovof)z, (6)
= v
where ||z||2 = [|y||2. The derivation of section three requires little modification. The
value of 071 = vz and
vo= z—y,
o = lz)3 -y,

may be shown to satisfy (5) and (6).
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LAPACK Subroutine CLARFG
SUBROUTINE CLARFG( N, ALPHA, X, INCX, TAU )
-- LAPACK auxiliary routine (version 1.1) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992
. Scalar Arguments ..
INTEGER INCX, N
COMPLEX ALPHA, TAU
. Array Arguments ..
COMPLEX XC* )
Purpose
CLARFG generates a complex elementary reflector H of order n, such
that
H’> * ( alpha ) = ( beta ), H’ * H = 1.
¢ x > C 0
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where alpha and beta are scalars, with beta real, and x is an
(n-1)-element complex vector. H is represented in the form

H=TI-taux (1) *x(1v ),
(v)

where tau is a complex scalar and v is a complex (n-1)-element
vector. Note that H is not hermitian.

If the elements of x are all zero and alpha is real, then tau =
and H is taken to be the unit matrix.
Otherwise 1 <= real(tau) <= 2 and abs(tau-1) <=1
Arguments
N (input) INTEGER
The order of the elementary reflector.
ALPHA  (input/output) COMPLEX
On entry, the value alpha.
On exit, it is overwritten with the value beta.
X (input/output) COMPLEX array, dimension
(1+(N-2)*abs (INCX))
On entry, the vector x.
On exit, it is overwritten with the vector v.
INCX (input) INTEGER
The increment between elements of X. INCX <> 0.
TAU (output) COMPLEX
The value tau.
. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
. Local Scalars
INTEGER J, KNT
REAL ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM

. External Functions ..
REAL SCNRM2, SLAMCH, SLAPY3

0
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COMPLEX CLADIV
EXTERNAL CLADIV, SCNRM2, SLAMCH, SLAPY3

Intrinsic Functions
INTRINSIC ABS, AIMAG, CMPLX, REAL, SIGN

. External Subroutines ..
EXTERNAL CSCAL, CSSCAL

. Executable Statements

IF( N.LE.O ) THEN

TAU = ZERO
RETURN

END IF

XNORM = SCNRM2( N-1, X, INCX )

ALPHR = REAL( ALPHA )

ALPHI = AIMAG( ALPHA )

IF( XNORM.EQ.ZERO .AND. ALPHI.EQ.ZERO ) THEN

H =1
TAU = ZERO
ELSE

general case

BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
SAFMIN = SLAMCH( ’S’ )
RSAFMN = ONE / SAFMIN

IF( ABS( BETA ).LT.SAFMIN ) THEN
XNORM, BETA may be inaccurate; scale X and recompute them

KNT = O
CONTINUE
KNT = KNT + 1
CALL CSSCAL( N-1, RSAFMN, X, INCX )
BETA = BETA*RSAFMN
ALPHI = ALPHI*RSAFMN
ALPHR = ALPHR*RSAFMN
IF( ABS( BETA ).LT.SAFMIN )
GO TO 10
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New BETA is at most 1, at least SAFMIN

XNORM = SCNRM2( N-1, X, INCX )

ALPHA = CMPLX( ALPHR, ALPHI )

BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
TAU = CMPLX( ( BETA-ALPHR ) / BETA, -ALPHI / BETA )
ALPHA = CLADIV( CMPLX( ONE ), ALPHA-BETA )

CALL CSCAL( N-1, ALPHA, X, INCX )

If ALPHA is subnormal, it may lose relative accuracy

ALPHA = BETA
DO 20 J = 1, KNT
ALPHA = ALPHA*SAFMIN

CONTINUE
ELSE
TAU = CMPLX( ( BETA-ALPHR ) / BETA, -ALPHI / BETA )
ALPHA = CLADIV( CMPLX( ONE ), ALPHA-BETA )
CALL CSCAL( N-1, ALPHA, X, INCX )
ALPHA = BETA
END IF
END IF
RETURN

End of CLARFG

END



