
The Computation of Elementary Unitary MatricesR.B. Lehoucq�April 20, 1994AbstractThe construction of elementary unitary matrices that transform a complexvector to a real multiple of e1, the �rst column of the identity matrix, are studied.We survey the two well known forms and present what appears to be relativelyunknown third form implemented by LAPACK subroutine CLARFG.1 IntroductionDe�ne the elementary Hermitian (or unitary) matrixU = I � 2wwH ; (1)where wHw = 1. Easily veri�ed is that U is both Hermitian and unitary and is alsorefered to as a Householder matrix. The matrix U as de�ned by ( 1) is a special caseof the more general class of elementary matrices de�ned byE(u; v; �) = I � �uvH: (2)See [2], [3] and [4] for further details. The latter reference is a comprehensive study ofelementary matrices, their properties and extensions to block implementations.In [3] Wilkinson states that it is not possible, in general, to �nd an elementarymatrix U such that Ux = �e1; (3)for a complex vector x with � a real number. Note that U is unitary implies thatj�j = kxk2 . If the above relation were satis�ed thenxH�e1 = xHUx:The righthand side is a real number since U is Hermitian. But if eT1 x has a non-zeroimaginary part we have a contradiction. The necessary condition is that xHe1 = eT1 x.Equivalently eT1 x = �1 must have zero imaginary part.The purpose of this note is to review and examine the case of constructing ele-mentary unitary matrices that satisfy (3) for a complex vector x. The next section�Department of Computational and Applied Mathematics, Rice University(lehoucq@rice.edu).This work was supported by DARPA under contract TV-ORA4466.011



discusses the approach suggested by Wilkinson. The third section introduces yet an-other approach due to Hammarling and Du Croz. It has been implemented in theNAG Fortran Library subroutine F06HRF, see [1]. A slightly di�erent implementationis the LAPACK subroutine CLARFG. The details of the software implementation forCLARFG are in section four. In fact what led to this study is attempting to under-stand the di�erences between the Wilkinson approach and the alternate formulationimplemented by LAPACK, [6]. Section �ve generalizes the Hammarling{Du Croz formfor transforming a complex vector x into another complex vector y. The last sectioncontains the source code for subroutine CLARFG.2 The Wilkinson ApproachWilkinson suggests the following modi�cation in Chapter 2, section 45 of [3]. IfeT1 x = �1 has non-zero imaginary part thenx = ei�1 [j�1j; e�i�1�2; : : : ; e�i�1�n]T ;= ei�1y;where ei�1 j�1j is the polar form for �1. Since eT1 y is a real number, a Householder matrixP may be constructed satisfying (3). Set U = e�i�1P andUx = e�i�1Px;= e�i�1Pei�1y;= Py;= �e1:The matrix U is not Hermitian but is unitary which is the crucial property. The valueof � is not a�ected; j�j = kUxk2;= je�i�1 j kPxk2;= kxk2:The matrix U constructed is not an elementary matrix. If �1 is real then �1 is arbi-trary and may be chosen equal to zero. The resulting elementary matrix is then alsoHermitian.The Wilkinson approach is used by LINPACK when working with complex data.3 An Alternate ApproachThe �nal form for an elementary unitary matrix studied is due to Hammarling and DuCroz, see [1] (Introduction { F06). We now derive this alternate form. Consider thegeneral form ( 2) for an elementary unitary matrix U = E(u; v;�). The matrix mustbe unitary from which it follows thatI = UHU;= (I � �uvH)H(I � �uvH);= I � ��vuH � �uvH + ���(uHu)vvH;2



and cancelling terms results in���(uHu)vvH = ��vuH + �uvH : (4)Rearranging terms gives (���(uHu)v � �u)vH = ��vuH ;and a row space argument implies that u and v are linearly dependent. Substitutingu = v into (4) results in j�j2kvk22 = � + ��; (5)= 2Re(�);determining the required relationship between � and v. Choosing v = x��e1 we haveUx = (I � �vvH)x;= x� (�vHx)v;= �e1;if ��1 = vHx. This choice of � will satisfy (5) as we now demonstrate. FirstvHx = (xH � �eT1 )x;= xHx� ��1;= �(�� �1);which determines � and kvk22 = vHv;= (xH � �eT1 )(x� �e1);= 2�(�� Re(�1));follows. Finally (vHx)(xHv)(�+ ��) = (vHx)(xHv)( 1vHx + 1xHv );= xHv + vHx;= �(� � �1) + �(�� ��1);= 2�(�� Re(�1));shows � + ��j�j2 = kvk22;as claimed. The form as outlined in this section does not appear to be as widely knownas the Wilkinson one. It has the bene�t of transforming a complex vector x directly toreal multiple of e1. When �1 is purely real then U is Hermitian. Unlike the Wilkinsonvariant the Hammarling{Du Croz approach results in an elementary unitary matrix.3



4 Software Implementation of CLARFGThe actual implementation of the Hammarling{Du Croz variant has some slight mod-i�cations. The resulting code is an excellent example of the art of developing softwarefrom a numerical algorithm. Subroutine CLARFG determines an elementary unitarymatrix U = I � �uuH such that UHx = �e1 where j�j = kxk2 for � a real number.Simplifying the implementation of other algorithms in LAPACK requiring the use ofelementary unitary matrices the normalization uHe1 = 1 is taken. This normalizationis done for storage considerations and is discussed in [5]. From the previous section itfollows that UH = I � 1�(�� ��1)vvH ;= I � (�1 � �)( ��1 � �)�(�� ��1) uuH ;= I � �� �1� uuH ;= I � �uuH ;where u = v�1 � �;= x� �e1�1 � � ;and � = � � �1� :Storage of U for use in further computation only requires storage for the complex �and x may be overwritten with both � and the essential part of u, i.e.x  [�; �2�1 � �; : : : ; �n�1 � � ]T :In order that the value for � and the scaling factor �1 � � have small relative error�  �sign(Re(�1))kxk2;is chosen. This is a standard modi�cation and is mentioned for the sake of completeness.The resulting � satis�es the two properties1 � Re(�) � 2;j� � 1j � 1;when x 6= e1 with  real. If x is a real multiple of e1 then set�  0;U  I:4



The reviewer of CLARFG will notice one �nal point which needs explanation. Thecareful programmer took care not to reciprocate the number kxk2 that may fall belowa certain machine dependent tolerance, SAFMIN. The value SAFMIN, computed bythe LAPACK auxiliary subroutine SLAMCH is a machine dependent lower bound fornumbers that may be safely reciprocated and not cause an overow condition. If kxk2is less than the lower bound then the vector x is scaled by a multiple of the reciprocal ofSAFMIN until k�xk2 is at least as large as SAFMIN. De�ning the integer k to representthe number of scalings required results in� = k 1SAFMIN :The number � may now be safely computed as�  k�xk2 � ��1k�xk2 :In a similar fashion �  �sign(Re(�1))1� (k�xk2);and the essential part of u u  1��1 � �� [��2; : : : ; ��n]T ;are computed.5 GeneralizationsWe conclude with the problem of determining an elementary unitary matrix U thatsatis�es Ux = (I � �vvH)x; (6)= y;where kxk2 = kyk2. The derivation of section three requires little modi�cation. Thevalue of ��1 = vHx and v = x� y;vHx = kxk22 � yHx;may be shown to satisfy (5) and (6).6 AcknowledgementsThe author would like to thank Jermey Du Croz for background information on theHammarling{Du Croz approach and for encouragement. Both Jeremy Du Croz and DanSorensen carefully read preliminary manuscripts and their comments are appreciated.The clever scaling in section four is due to James Demmel.5
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* where alpha and beta are scalars, with beta real, and x is an* (n-1)-element complex vector. H is represented in the form** H = I - tau * ( 1 ) * ( 1 v' ) ,* ( v )** where tau is a complex scalar and v is a complex (n-1)-element* vector. Note that H is not hermitian.** If the elements of x are all zero and alpha is real, then tau = 0* and H is taken to be the unit matrix.** Otherwise 1 <= real(tau) <= 2 and abs(tau-1) <= 1 .** Arguments* =========** N (input) INTEGER* The order of the elementary reflector.** ALPHA (input/output) COMPLEX* On entry, the value alpha.* On exit, it is overwritten with the value beta.** X (input/output) COMPLEX array, dimension* (1+(N-2)*abs(INCX))* On entry, the vector x.* On exit, it is overwritten with the vector v.** INCX (input) INTEGER* The increment between elements of X. INCX <> 0.** TAU (output) COMPLEX* The value tau.** ===================================================================** .. Parameters ..REAL ONE, ZEROPARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )* ..* .. Local Scalars ..INTEGER J, KNTREAL ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM* ..* .. External Functions ..REAL SCNRM2, SLAMCH, SLAPY37



COMPLEX CLADIVEXTERNAL CLADIV, SCNRM2, SLAMCH, SLAPY3* ..* .. Intrinsic Functions ..INTRINSIC ABS, AIMAG, CMPLX, REAL, SIGN* ..* .. External Subroutines ..EXTERNAL CSCAL, CSSCAL* ..* .. Executable Statements ..* IF( N.LE.0 ) THENTAU = ZERORETURNEND IF* XNORM = SCNRM2( N-1, X, INCX )ALPHR = REAL( ALPHA )ALPHI = AIMAG( ALPHA )* IF( XNORM.EQ.ZERO .AND. ALPHI.EQ.ZERO ) THEN** H = I* TAU = ZEROELSE** general case* BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )SAFMIN = SLAMCH( 'S' )RSAFMN = ONE / SAFMIN* IF( ABS( BETA ).LT.SAFMIN ) THEN** XNORM, BETA may be inaccurate; scale X and recompute them* KNT = 010 CONTINUEKNT = KNT + 1CALL CSSCAL( N-1, RSAFMN, X, INCX )BETA = BETA*RSAFMNALPHI = ALPHI*RSAFMNALPHR = ALPHR*RSAFMNIF( ABS( BETA ).LT.SAFMIN )$ GO TO 10* 8



* New BETA is at most 1, at least SAFMIN* XNORM = SCNRM2( N-1, X, INCX )ALPHA = CMPLX( ALPHR, ALPHI )BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )TAU = CMPLX( ( BETA-ALPHR ) / BETA, -ALPHI / BETA )ALPHA = CLADIV( CMPLX( ONE ), ALPHA-BETA )CALL CSCAL( N-1, ALPHA, X, INCX )** If ALPHA is subnormal, it may lose relative accuracy* ALPHA = BETADO 20 J = 1, KNTALPHA = ALPHA*SAFMIN20 CONTINUEELSETAU = CMPLX( ( BETA-ALPHR ) / BETA, -ALPHI / BETA )ALPHA = CLADIV( CMPLX( ONE ), ALPHA-BETA )CALL CSCAL( N-1, ALPHA, X, INCX )ALPHA = BETAEND IFEND IF* RETURN** End of CLARFG* END
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