
LAPACK Working Note 73Basic Linear Algebra Communication Subprograms:Analysis and Implementation Across Multiple ParallelArchitectures. �R. Clint Whaley yJune 10, 1994AbstractThe BLACS (Basic Linear Algebra Communication Subprograms) project is an on-going investigation whose purpose is to create a linear algebra oriented message passinginterface that is implemented e�ciently and uniformly across a large range of distributedmemory platforms.The length of time required to implement e�cient distributed memory algorithmsmakes it impractical to rewrite programs for every new parallel machine. The BLACSexist in order to make linear algebra applications both easier to program and moreportable.It is for this reason that the BLACS are used as the communication layer for theScaLAPACK project, which involves implementing the LAPACK library on distributedmemory MIMD machines.
�This work was supported in part by DARPA and ARO under contract number DAAL03-91-C-0047,and in part by the National Science Foundation Science and Technology Center Cooperative Agreement No.CCR-8809615.yDept. of Computer Sciences, Univ. of TN, Knoxville, TN 37996, rwhaley@cs.utk.edui



Contents1 Introduction 12 Features of the BLACS 22.1 Array-based Communication : : : : : : : : : : : : : : : : : : : : : : : : : : 32.2 Process Grid and Scoped Operations : : : : : : : : : : : : : : : : : : : : : : 32.3 ID-less Communication : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52.4 Support Routines : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53 Point To Point Communication 63.1 Semantics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63.2 Syntax : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83.3 Timings : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 104 Broadcasts 184.1 Semantics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 184.2 Syntax : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 194.3 Topologies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 204.3.1 Broadcast Ring Topologies : : : : : : : : : : : : : : : : : : : : : : : 214.3.2 Broadcast Tree Topologies : : : : : : : : : : : : : : : : : : : : : : : : 254.4 Timings : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 294.4.1 Survey of Topologies : : : : : : : : : : : : : : : : : : : : : : : : : : : 294.4.2 Accuracy of Theoretical Models : : : : : : : : : : : : : : : : : : : : : 324.4.3 Validity of Timings : : : : : : : : : : : : : : : : : : : : : : : : : : : : 375 Combines 415.1 Semantics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 415.2 Syntax : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 415.3 Related Topics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 435.3.1 Additional Bu�ering Demands : : : : : : : : : : : : : : : : : : : : : 435.3.2 Communication and Its E�ect on Fan-in : : : : : : : : : : : : : : : : 445.4 Topologies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 455.4.1 General Tree Gather : : : : : : : : : : : : : : : : : : : : : : : : : : : 455.4.2 Bidirectional Exchange : : : : : : : : : : : : : : : : : : : : : : : : : 475.5 Timings : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 485.5.1 Survey of Topologies : : : : : : : : : : : : : : : : : : : : : : : : : : : 495.5.2 Accuracy of Theoretical Models : : : : : : : : : : : : : : : : : : : : : 495.5.3 Validity of Timings : : : : : : : : : : : : : : : : : : : : : : : : : : : : 556 Implementation and Portability Issues 556.1 Message Identi�ers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 556.1.1 Point To Point Message ID Generation : : : : : : : : : : : : : : : : : 586.1.2 Scoped Message ID Generation : : : : : : : : : : : : : : : : : : : : : 586.2 Bu�ering : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 596.2.1 Bu�ering On the Intel Machines : : : : : : : : : : : : : : : : : : : : 59ii



6.2.2 Bu�ering for the CM-5 and SP1 Platforms : : : : : : : : : : : : : : 597 Future Directions 617.1 Possible Extensions to the BLACS : : : : : : : : : : : : : : : : : : : : : : : 617.1.1 Arbitrary Scopes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 617.1.2 Wildcard Receive : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 627.1.3 Additional Combine Operations : : : : : : : : : : : : : : : : : : : : : 627.1.4 Built-in Debug and Timing Levels : : : : : : : : : : : : : : : : : : : 627.2 Optimizations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 637.2.1 Intel BLACS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 637.2.2 CM-5 BLACS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 647.2.3 SP1 BLACS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 647.2.4 PVM BLACS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 648 Conclusion 65References 66Appendices 69A Example Code: Matrix Vector Multiply 70B Obtaining the BLACS from Netlib 75C Quick Reference To The BLACS 77D Timing Codes 79D.1 Tc Timing Code : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 80D.2 Ts Timing Code : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 85D.3 Broadcast Timing Code : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 90D.4 Combine Timing Code : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 95
iii



List of Tables1 Scopes provided by a 2D process grid : : : : : : : : : : : : : : : : : : : : : : 42 Values and meanings of the communication routines' name positions : : : : 93 Names and abbreviations for timing platforms : : : : : : : : : : : : : : : : 134 System calls used for timings : : : : : : : : : : : : : : : : : : : : : : : : : : 135 Least squares �t for Tc times (in microseconds), N = 0; : : : ; 50000 : : : : : : 136 Least squares �t for Ts times (in microseconds), N = 0; : : : ; 50000 : : : : : : 137 Least squares �t for Tm times (in microseconds), N = 0; : : : ; 50000 : : : : : 228 Least squares �t for point to point times (in microseconds), N = 0; : : : ; 1000 229 Broadcast topology highlights : : : : : : : : : : : : : : : : : : : : : : : : : : 2210 General tree topology entry points : : : : : : : : : : : : : : : : : : : : : : : 2611 Relative errors for predicted times : : : : : : : : : : : : : : : : : : : : : : : 3712 Least squares �t (in microseconds) and relative error of broadcast times forN = 0; : : : ; 50000 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3813 Values and meanings of combine routines' name positions : : : : : : : : : : 4114 Least squares �t of To (in microseconds) for various platforms : : : : : : : : 5415 Relative errors for predicted combine times : : : : : : : : : : : : : : : : : : 5416 Least squares �t (microseconds) and relative error of combine times for N =0; : : : ; 50000 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5517 How to obtain various BLACS versions from netlib : : : : : : : : : : : : : 76

iv



List of Figures1 8 processes mapped to a 2 x 4 process grid. : : : : : : : : : : : : : : : : : : 32 After �rst step of LU factorization : : : : : : : : : : : : : : : : : : : : : : : 43 Pseudo-code that hangs for globally-blocking sends : : : : : : : : : : : : : : 74 Tc for nearest neighbor communication on the Intel i860, reps=15 : : : : : : 145 Ts on the Intel i860, reps=15 : : : : : : : : : : : : : : : : : : : : : : : : : : 146 Tc for nearest neighbor communication on the Paragon, reps=1000 : : : : : 157 Ts on the Paragon, reps=1000 : : : : : : : : : : : : : : : : : : : : : : : : : : 158 Tc for nearest neighbor communication on the CM-5, reps=30 : : : : : : : : 169 Ts on the CM-5, reps=30 : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1610 Tc for nearest neighbor communication on the SP1, reps=30 : : : : : : : : : 1711 Ts on the SP1, reps=30 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1712 Increasing ring broadcast : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2313 Decreasing ring broadcast : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2314 Split ring broadcast : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2415 Multiring broadcast with Nr = 3 : : : : : : : : : : : : : : : : : : : : : : : : 2416 Hypercube broadcast, nearest node �rst. : : : : : : : : : : : : : : : : : : : : 2717 General tree broadcast with Nb = 1 : : : : : : : : : : : : : : : : : : : : : : 2718 General tree broadcast with Nb = 2 : : : : : : : : : : : : : : : : : : : : : : : 2819 General tree broadcast with Nb = 3 : : : : : : : : : : : : : : : : : : : : : : : 2820 Survey of 32 processor i860 broadcast topologies, reps=5 : : : : : : : : : : 3021 Survey of 32 processor Paragon broadcast topologies, reps=30 : : : : : : : 3022 Survey of 32 processor CM-5 broadcast topologies, reps=15 : : : : : : : : : 3123 Survey of 32 processor SP1 broadcast topologies, reps=15 : : : : : : : : : : 3124 Predicted vs. measured time for 32 processor i860 BLACS 3-ring broadcast 3325 Predicted vs. measured time for 32 processor i860 BLACS hypercube broadcast 3326 Predicted vs. measured time for 32 processor Paragon BLACS 3-ring broadcast 3427 Predicted vs. measured time for 32 processor Paragon BLACS 1-tree broadcast 3428 Predicted vs. measured time for 32 processor CM-5 BLACS 3-ring broadcast 3529 Predicted vs. measured time for 32 processor CM-5 BLACS 1-tree broadcast 3530 Predicted vs. measured time for 32 processor SP1 BLACS 3-ring broadcast 3631 Predicted vs. measured time for 32 processor SP1 BLACS hypercube broadcast 3632 Variance between runs on 32 processor i860 broadcasts : : : : : : : : : : : : 3933 Variance between runs on 32 processor Paragon broadcasts : : : : : : : : : 3934 Variance between runs on 32 processor CM-5 broadcasts : : : : : : : : : : : 4035 Variance between runs on 32 processor SP1 broadcasts : : : : : : : : : : : : 4036 Simple 5 to 1 Fan-in : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4437 General tree gather with Nb = 1 : : : : : : : : : : : : : : : : : : : : : : : : 4638 General tree gather with Nb = 4 : : : : : : : : : : : : : : : : : : : : : : : : 4639 Bidirectional exchange : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4840 Survey of 32-processor i860 combines : : : : : : : : : : : : : : : : : : : : : : 5041 Survey of 32-processor Paragon combines : : : : : : : : : : : : : : : : : : : 5042 Survey of 32-processor CM-5 combines : : : : : : : : : : : : : : : : : : : : : 5143 Survey of 32-processor SP1 combines : : : : : : : : : : : : : : : : : : : : : : 51v



44 Predicted vs. measured maximum time for i860 BLACS combine (sum) : : 5245 Predicted vs. measured maximum time for Paragon BLACS combine (sum) 5246 Predicted vs. measured maximum time for CM-5 BLACS combine (sum) : 5347 Predicted vs. measured maximum time for SP1 BLACS combine (sum) : : 5348 Variance between 32-processor i860 combine runs : : : : : : : : : : : : : : 5649 Variance between 32-processor Paragon combine runs : : : : : : : : : : : : 5650 Variance between 32-processor CM-5 combine runs : : : : : : : : : : : : : : 5751 Variance between 32-processor SP1 combine runs : : : : : : : : : : : : : : 5752 Matrix-vector multiply on 2 x 2 processor grid. : : : : : : : : : : : : : : : : 70

vi



1 IntroductionThe BLACS (Basic Linear Algebra Communication Subprograms) project arose as part ofa larger project called ScaLAPACK (Scalable Linear Algebra PACKage) [10]. The goal ofthe ScaLAPACK project is to implement a core set of the linear algebra routines providedin the sequential library LAPACK (Linear Algebra PACKage)[7] on distributed memoryplatforms.LAPACK contains approximately 1000 routines, which are made up of around 650,000lines of Fortran77. Since distributed memory computing is much more complex (and there-fore requires many more lines of code) than sequential or shared-memory computing, theneed for a standard, easy to use message passing interface was quickly identi�ed.ScaLAPACK is intended to run across a large range of parallel machines. Each platformhas its own message passing library, and the number of routines in the ScaLAPACK librarymake supporting a version for each machine impractical. Thus the �rst goal of the BLACSis to present a standard interface that can be e�ciently supported across a wide range ofparallel platforms.LAPACK already isolates much of its computation within a small library of routines,called the BLAS (Basic Linear Algebra Subprograms)[5, 4, 3]. An e�cient port of the BLASon a machine performs most needed optimization for a given platform. It was decided toextend this idea to communication. Then, an e�cient BLAS implementation supplies thecompute engine, and an optimized BLACS code satis�es our communication needs. Thus,the e�cient porting of ScaLAPACK codes becomes largely a matter of porting these two,much smaller libraries.There are various packages designed to provide a message passing interface that remainsunchanged on several platforms, including PICL [14], and more recently, MPI [2]. Thesepackages are not available on all of the platforms that ScaLAPACK targets. More impor-tantly, they are attempts at general libraries, and are thus somewhat harder to use than amore restricted code.The BLACS are written at a level where the manipulation of the matrices involvedin linear algebra computations is both natural and convenient. Since the audience of theBLACS is known, the interface and methods of using the routines can be simpler than forthose of more general message passing layers.Therefore, the goals of the BLACS project include:� Ease of programming: wherever possible, the BLACS will simplify message passing inorder to reduce programming errors.� Ease of use The interface to the BLACS will be at such as level as to be easily usableby linear algebra programmers.� Portability The BLACS must supply an interface which can be supported across alarge range of parallel computers.Jack Dongarra and Robert van de Geijn proposed a BLACS standard in [9]. A prototypeimplementation was required to test the feasibility and programmability of the standard,at which point the author became involved in the project. The initial prototype was imple-mented on the Intel i860. After it was shown to be feasible, it was decided that the BLACS1



should not require the user to supply message identi�ers (see section 6.1 for details), andthe speci�cations were correspondingly changed.Now that the standard had been shown to be both implementable and usable, theBLACS had to be written for several of the more important platforms so that ScaLAPACKwould be portable. The Intel version of the BLACS allowed the ScaLAPACK authorsto begin their work, and the BLACS could be implemented across other platforms whileScaLAPACK development was underway, so that portability was achieved as soon as a codewas developed.There are presently three versions of the BLACS available via netlib or anonymousftp. The available versions are: PVM (Parallel Virtual Machine) [1], Thinking Machine'sCM-5, and the Intel line of supercomputers. The Intel BLACS work on the following Intelmachines: iPSC2, iPSC/860, Touchstone Delta, and Paragon XP/S. In addition, an initialIBM Scalable POWERparallel System 1 implementation has recently been �nished, andwill be released after optimization and further testing have been done.Each of these implementations represent code in excess of 10,000 lines. It is thereforeimpractical to include them in this report, or indeed to cover in detail their development.If the reader wishes to see the software, appendix B provides information for down-loadingthe codes from netlib.The �rst section of this report familiarizes the reader with some of the more importantconcepts and features of the BLACS. Then, we discuss the BLACS' three main categoriesof communication in turn. The �rst category consists of point to point message passing.Next, broadcasts, which take data from one process and send it to many processes, areexamined. Finally, combines are discussed. Combines take data distributed over processes,and combine the data in some way to produce a result (at present, data can be combinedby doing maximization, minimization, or summation).After the BLACS interface and features have been explored, some of the more inter-esting implementation issues are discussed. We will then discuss future directions, possibleoptimizations, and draw some conclusions.2 Features of the BLACSThe following discussion of the features of the BLACS are designed to be brief. Moreinformation can be obtained in the reports [9] [6]. An even better source of this type ofinformation is the BLACS User's Guide, which is available on netlib (see appendix B fordetails).In general, this paper refers to the basic unit of execution as a process. A process isa thread of execution which minimally includes a stack, registers, and memory. Multipleprocesses may share a processor. The term processor refers to the actual hardware.The BLACS do not distinguish between a process and a processor. Each process istreated as if it were a processor: the process must exist for the lifetime of the BLACS run,and its execution should only a�ect other processes' execution through the use of messagepassing calls. With this in mind, we use the term process in all sections of this paper exceptthose dealing with timings. When discussing timings, we specify processors as our unit ofexecution, since speedup will be largely determined by actual hardware resources.2



2.1 Array-based CommunicationMany communication packages can be classi�ed as having operations based on one dimen-sional arrays, which are the machine representation for linear algebra's vector class. Inprogramming linear algebra problems, however, it is more natural to express all operationsin terms of matrices. Vectors and scalars are, of course, simply subclasses of matrices. Oncomputers, a linear algebra matrix is represented by a two dimensional array (2D array),and therefore the BLACS operate on 2D arrays.The BLACS recognize the two most common classes of matrices for dense linear algebra.The �rst of these classes consist of general rectangular matrices, which in machine storageare 2D arrays consisting of M rows and N columns, with a leading dimension, LDA, thatdetermines the distance between successive columns in memory.The second class of matrices recognized by the BLACS are trapezoidal matrices. Trape-zoidal arrays are de�ned by M, N, and LDA, as above, but they also have the parametersUPLO, which indicates whether the matrix is upper or lower trapezoidal, and DIAG, whichdetermines if the diagonal of the matrix need be communicated. Triangular matrices area sub-class of trapezoidal, so these matrices are also handled by the BLACS. If the readerwishes a more detailed knowledge of the shapes which can be generated by trapezoidalmatrices, the BLACS User's Guide, [9], or [6] are good sources.The packing of arrays (if required) so that they may be sent e�ciently is hidden, allowingthe user to concentrate on the logical matrix, rather than how the data is organized in themachine's memory. A detailed discussion on when such bu�ering is necessary is given insection 6.2.2.2 Process Grid and Scoped OperationsThe processes of a parallel machine with Np processes are often presented to the user asa linear array of process IDs, labeled 0; 1; : : : ; Np � 1. For reasons described below, it isoften more convenient to map this 1-D array of Np processes into a logical two dimensionalprocess mesh, or grid. This grid will have P process rows and Q process columns, whereP � Q = Ng � Np. A process can now be referenced by its coordinates within the grid(indicated by the notation fp; qg, where 0 � p < P , and 0 � q < Q), rather than a singlenumber. An example of such a mapping is shown in �gure 1.0 1 2 301 0 1 2 34 5 6 7Figure 1: 8 processes mapped to a 2 x 4 process grid.An operation which involves more than just a sender and a receiver is called a scopedoperation. All processes that participate in a scoped operation are said to be within the3



operation's scope.On a system using a linear array of processes, the only natural scope is all processes.Using a 2D grid, we have 3 natural scopes, as shown in table 1SCOPE MEANINGRow All processes in a process row participate.Column All processes in a process column participate.All All processes in the process grid participate.Table 1: Scopes provided by a 2D process gridThese groupings of processes are of particular interest to the linear algebra programmer,since distributed data decompositions of a 2D array (a linear algebra matrix) tend to followthis process mapping. For instance, all of a distributed matrix row can be found on aprocess row, etc.Viewing the rows/columns of the process grid as essentially autonomous subsystemsprovides the programmer with additional levels of parallelism. Of course, how independentthese rows and columns actually are will depend upon the underlying machine. For instance,if the grid's processors are connected via ethernet, we can see that the only gain will be inease of programming. Speed is unlikely to increase, since if one processor is communicating,no others can. If this is the case, process rows or columns will not be able to performdi�erent distributed tasks at the same time. Fortunately, most modern supercomputerinterconnection networks are at least as rich as a 2D grid, so that these additional levels ofparallelism can be exploited.The LU factorization (used to solve a systems of linear equations) can be used to illus-trate the usefulness of the process grid. Figure 2 shows the basic steps of a right-looking LUfactorization as they a�ect the data matrix. The �rst action in the algorithm is to form thepanel of L as shown. A process column will cooperate to do this. This process column willthen broadcast its portion of L along process rows. A process row will use this informationand cooperate to form U . U is then broadcast within process columns, and all processeswill use the values of L and U to �nd ~A.@@L U~AFigure 2: After �rst step of LU factorizationThis is a very sketchy description of LU, and will likely confuse someone not familiarwith the algorithm. A more complete analysis, which includes an examination of scalability,is given in [8]. 4



A more detailed understanding of the process grid will be obtained as we discuss thevarious BLACS routines later in the paper. Also, in section 7.1.1, the extension of the scopeidea to allow arbitrary groupings will be discussed.2.3 ID-less CommunicationOne of the things that sets the BLACS apart from other message passing layers is that theuser does not need to specify message IDs, (abbreviated msgid). A msgid (also referredto as a message type) is usually an integer which allows a receiving process to distinguishbetween incoming messages. The generation of these IDs can become problematic. Acommon mistake is to use a constant msgid within a loop, so that if one process takeslonger than others to �nish the loop, it may wind up receiving data from the next iterationas this iteration's data. This is just the most obvious way such msgid problems can happen.The same result can occur whenever non-unique IDs are used in any two sections of codenot separated by an explicit barrier. These kinds of programming mistakes can lead tonon-deterministic code which will �nish correctly some of the time, give wrong results someof the time, and at other times simply crash.Many parallel projects are too large for one person/team to write. This means thatmsgids must be coordinated between all routines and all writers of the package. If anotherroutine is added at a later date, care must be taken to ensure that the new routine's IDsdo not conict with any other routine's.Therefore, to add to the programmability of the BLACS, it was decided that the BLACSwould generate the required msgids. These generated IDs had to have certain properties.First, it must never be the case that unrelated messages with the same destination wouldget the same ID. Second, in order to maintain performance, the ID generating algorithm hadto use only local information: o�-processor memory access could not be allowed. Further,it is necessary to allow for BLACS packages to be used alongside other communicationplatforms. An example that occurs regularly is linking a BLACS package with a machinespeci�c package.Therefore, the BLACS must allow the user to specify what range of IDs the BLACS canuse. The user may do this by a call to the support routine SHIFT RANGE (see the BLACSUser's Guide for details).By placing two restrictions on communication, these goals were achieved. First, a re-ceiver must know the coordinates of the sending processor. Second, communication betweentwo processes is strictly ordered. This means that if f0, 0g sends two messages to f0, 1g,then f0, 1g must receive them in the same order that they were sent. Section 6.1 discussesthe BLACS msgid generating algorithms in detail.2.4 Support RoutinesThe core BLACS routines are discussed later, in the speci�c section dealing with the varioustypes of communication. There are a number of routines which do not deal directly withcommunication, however, that are required for programming in a parallel environment. TheBLACS label these routines as support routines.These routines return a process's grid coordinates, place barriers for rough synchroniza-tion, etc. Most of these routines are uninteresting as far as our discussion is concerned, and5



if the reader desires information about these routines, appendix C gives a quick referenceto the BLACS. More detailed information about support routines can be obtained in theBLACS User's Guide.There are two support routines important enough that they require discussion. Theyare the routines GRIDMAP and BLACSINIT, which are both used to create a process grid froma linear array of process IDs.BLACSINIT creates a process grid with the �rst Ng process IDs distributed in the gridusing a row-major natural ordering. Natural ordering implies that the order in which the IDsare dealt out is by increasing value. Row-major means that a row is consigned consecutiveIDs. Column-major would similarly imply that a column is given IDs before going to thenext column. Therefore, a row-major natural mapping results in the type of process gridshown in �gure 1.Most users will never need more exibility than BLACSINIT provides. For users withmore advanced needs, however, the function GRIDMAP exists.GRIDMAP is a more general grid creation routine. It allows for arbitrary mappings ofprocesses to the grid. This can be handy when row-major natural ordering does not supplynearest neighbor communication. If a machine has a hypercube interconnection network,for instance, a graycode mapping will be required to ensure grid neighbors correspond tophysical network neighbors.GRIDMAP does more than free one from row-major natural ordering. It also allows anyof the available processes to be used for the grid, not just the �rst Ng processes. This pavesthe way for an important concept, referred to as multigridding.Multigridding is the idea that within a program which has Np available processes, therecan be several grids performing separate tasks, at the completion of which the processesmay become idle, join with another grid to make a larger grid, etc. None of our users haveyet needed this feature, and it has not been tested. However, there are whole classes ofproblems where this kind of behavior is natural, and GRIDMAP is designed to support it.If further information regarding these routines is desired, the BLACS User's Guideshould be consulted. In addition, Appendix C provides a quick reference of all BLACSroutines.3 Point To Point Communication3.1 SemanticsPoint to point communication requires two complementary operations. The send operationproduces a message, which is then consumed by the receive operation. These operationshave various resources associated with them. The main such resource is the bu�er whichholds the data to be sent or serves as the area where the incoming data is to be received.The level of blocking indicates what correlation the return from a send/receive operationhas with the availability of these resources and with the status of message.Non-blocking The return from the send or receive does not imply that the resources maybe reused, that the message has been sent/received or that the complementary operationhas been called. Return means only that the send/receive has been started, and will be6



completed at some later date. Polling is required to determine when the operation has�nished.In non-blocking message passing, the concept of communication/computation overlap(abbreviated C/C overlap) is important. If a system possesses C/C overlap, independentcomputation can occur at the same time as communication. I.e., a nonblocking operationcan be posted, and unrelated work can be done while the message is sent/received in parallel.If C/C overlap is not present, after returning from the routine call, computation will beinterrupted at some later date when the message is actually sent or received.Locally-blocking Return from the send or receive indicates that the resources may bere-used. However, since this only depends on local information, it is unknown whether thecomplementary operation has been called. There are no locally-blocking receives: the sendmust be completed before the receive bu�er is available for re-use.If a receive has not been posted at the time a locally-blocking send is issued, bu�eringwill be required to avoid losing the message. Bu�ering can be done on the sending process,the receiving process, or not done at all (message will be lost).Globally-blocking Return from a globally-blocking procedure indicates that the oper-ation's resources may be reused, and that the operation's complement has at least beenposted. Since the receive has been posted, there is no bu�ering required for globally-blocking sends: the message is always sent directly into the user's receive bu�er.Almost all machines support non-blocking communication, as well as some other levelof blocking sends. What level of blocking the send possesses varies between platforms.For instance, the Intel machines support locally-blocking sends, with bu�ering done on thereceiving process. The CM-5 and SP1, however, possess globally-blocking sends.This is a very important distinction, because codes written assuming locally-blockingsends will hang on platforms with globally-blocking sends. Figure 3 shows a simple exampleof how this can occur. IAM = MY_PROCESS_ID()IF (IAM .EQ. 0) THENSEND TO PROCESS 1RECV FROM PROCESS 1ELSE IF (IAM .EQ. 1) THENSEND TO PROCESS 0RECV FROM PROCESS 0END IFFigure 3: Pseudo-code that hangs for globally-blocking sendsIf the send is globally-blocking, process 0 enters the send, and waits for process 1 tostart its receive before continuing. In the meantime, process 1 starts to send to 0, and7



therefore waits for 0 to receive before continuing. Both processes are now waiting on eachother, and the program will therefore never continue.The solution for this case is obvious. One of the processes simply reverses the order ofits communication calls and the hang is avoided. However, when the communication is notjust between two processes, but rather involves a hierarchy of processes, determining howto avoid this kind of di�culty can become problematic.For this reason, it was decided the BLACS would support locally-blocking sends. On sys-tems natively supporting globally-blocking sends, non-blocking sends coupled with bu�eringis used to simulate locally-blocking sends. Section 6.2 discusses this in detail. The BLACSsupport globally-blocking receives.In addition, the BLACS specify that point to point messages between two given processeswill be strictly ordered. Therefore, if process 0 sends three messages (label them A, B, andC) to process 1, process 1 must receive A before it can receive B, and message C can bereceived only after both A and B. The main reason for this restriction is that it allows forthe computation of message identi�ers, which is discussed in section 6.1.It should be noted, however, that messages from di�erent processes are not ordered.Therefore, if processes 0; : : : ; 3 send messages A; : : : ; D to process 4, process 4 may receivethese messages in any order that is convenient.3.2 SyntaxThe names of the communication routines follow the template vXXYY2D, where the letter inthe v position indicates the data type being sent, XX is replaced to indicate the shape of thematrix, and the YY positions are used to indicate the type of communication to perform.This is shown in table 2.The calling sequences for these routines are:vGESD2D( M, N, A, LDA, RDEST, CDEST )vGERV2D( M, N, A, LDA, RSRC, CSRC )vTRSD2D(UPLO, DIAG, M, N, A, LDA, RDEST, CDEST )vTRRV2D(UPLO, DIAG, M, N, A, LDA, RSRC, CSRC )The function of the parameters depends largely on whether the routine sends data (vXXSD2D)or receives (vXXRV2D) data. Output parameters are underlined. All other parameters areinput, and thus not modi�ed by the call.Parameters:UPLO Speci�es if matrix is stored as Lower or Upper trapezoidal matrix.See section 2.1 for details on trapezoidal matrices.DIAG Speci�es if the matrix is unit diagonal. See section 2.1 for details ontrapezoidal matrices.M Row dimension of matrix.N Column dimension of matrix.A Two dimensional array of data to be sent/received into. vXXSD2D:Array of data to be sent. vXXRV2D: Array where data is to be received.8



vXXYY2Dv MEANINGI Integer data is to be communicated.S Single precision real data is to be communicated.D Double precision real data is to be communicated.C Single precision complex data is to be communicated.Z Double precision complex data is to be communicated.XX MEANINGGE The data to be communicated is stored in a generalrectangular matrix.TR The data to be communicated is stored in atrapezoidal matrix.YY MEANINGSD Send. One process sends to another.RV Receive. One process receives from another.BS Broadcast/send. A process begins the broadcast ofdata within a scope.BR Broadcast/recv. A process receives and participatesin the broadcast of data within a scope.Table 2: Values and meanings of the communication routines' name positions
9



LDA Leading dimension of the array A.RDEST vXXSD2D: Row index of destination process.CDEST vXXSD2D: Column index of destination process.RSRC vXXRV2D: Row index of source process.CSRC vXXRV2D: Column index of source process.As a simple example, the pseudo code given in �gure 3 is rewritten in terms of theBLACS. It is further speci�ed that the data being exchanged is the double precision vectorX, which is 5 elements long.CALL GRIDINFO(NPROW, NPCOL, MYPROW, MYPCOL)IF (MYPROW.EQ.0 .AND. MYPCOL.EQ.0) THENCALL DGESD2D(5, 1, X, 5, 1, 0)CALL DGERV2D(5, 1, X, 5, 1, 0)ELSE IF (MYPROW.EQ.1 .AND. MYPCOL.EQ.0) THENCALL DGESD2D(5, 1, X, 5, 0, 0)CALL DGERV2D(5, 1, X, 5, 0, 0)END IF3.3 TimingsOne of the main reasons we present times in this report is for comparison with the systemcommunication routines. In order to make these comparisons, we con�ne ourselves tousing only a subset of the BLACS. For instance, most platforms support communication ofcontiguous data (vectors), so the timings are presented using general rectangular matriceswith only one column. Broadcast and global timings are also restricted, and this is coveredin their respective sections.We present timings for four of the machines on which the BLACS run. Because thecorrect names of these platforms are rather long, table 3 gives a list of the four platformsand the abbreviations that refer to them. Table 4 gives a list of the system calls andthe message passing layers used in the timings of not only the point to point, but alsocombines and broadcasts (abbreviated bcast in the table). Also listed is the routine used tosynchronize processors (abbreviated sync in the table). Finally, appendix D contains thecode used to obtain the times given throughout this report.All of the tests given in this paper are repeated inside a timing loop in order to insurethat the time being measured is above clock resolution. The number of times a given testwas repeated (X) is indicated in each �gure by the notation reps=X .There are two times associated with point to point communication. These times areTc (time for a complete communication) and Ts (time to post a send). A third quantity,Tm, the time to perform a malloc and memory-to-memory copy, will be of interest on thoseplatforms where bu�ering is done in order to perform locally-blocking sends.We de�ne Tc as the time lapse between a sender process initiating a send, and thewaiting receiver returning from the blocking receive. To �nd this value, an \echo" test is10



performed. In this test, one processor is the sender. All other processors will only echoback what is sent. The sender sends a wake-up message to a waiting echo processor. Thistells the echo processor to start its receive. The sending processor now starts its timer, andloops over a send followed by a receive. The echo processor loops over a receive followedby a send. When they have done this the required number of times, the sender stops histimer, and divides the time by the number of repititions to get the time for one Tc. Thistest was originally proposed in [13], and that paper provides further details.It should be noted that this measurement favors platforms with globally-blocking sends.The strength of globally-blocking sends is that no bu�ering is required. Its weakness is thatif the receiver posts the receive after the corresponding send is posted, the sending processormust wait. In the echo test, the receive will always be posted at about the same time as thesend. This means that the delays inherent in using globally-blocking sends will not showup in this test. Locally-blocking sends will still have to pay the cost for their bu�ering, butthe ability for the sender to return before the receive is posted is not utilized.Therefore, on systems where the native send is globally-blocking, the BLACS times(which use the BLACS locally-blocking sends) will appear to be much worse than thesystem's times. On such systems, the BLACS use bu�ering to create locally-blocking sends.This requires the BLACS to allocate a bu�er (if the BLACS don't have one of the correctsize available), and copy the entire message on each send (see section 6.2.2 for details).Therefore, on the CM-5 and SP1 (the systems with globally-blocking sends), we measureTm as well.The �nal time of interest is the time it takes post a send, Ts, i.e., the time from whenthe send routine is called, until it returns. This value may be less than Tc, especially ifnon-blocking or locally-blocking sends are used. If Ts < Tc, this is of obvious interest tooptimizing codes. Ts becomes even more important when we discuss the times in broadcastsand combine operations.The times presented throughout this paper were taken while no other users were presenton the machines. When this is not the case, communication times can vary, with the degreeof variance determined by the platform, and what the other users' processes are doing.On each platform our sample range is from 0 : : :50; 000double precision elements (0 : : :400; 000bytes), with a data point taken every 1000 double precision elements. This is our primaryrange of interest, a range which we believe most communication falls within. For this pri-mary range, we check the reproducibility of our codes by re-running every �fth data pointten additional times. The distribution of these repeated data points gives us an idea of howaccurate/reproducible our timings are. A least squares �t is then done on all of these datapoints to arrive at � and �.We now have repeated data points at 11 di�erent values of N within our range. If welabel the ith (i � 11) set of repeated data points as Dr(i), then the relative error is given byRE = max1�i�11(max(Dr(i))�min(Dr(i))average(Dr(i)) ) � 100:0. After all of the timings had been taken, itwas discovered that we had failed to set the value of reps high enough to measure the N = 0data point on many systems. Therefore the RE calculations do not include the N = 0 datapoint.We will perform a least squares �t on all of these times, so that we express each asa linear model. Therefore, each time will be written as T = � + �N , where N is thenumber of double precision elements being communicated. If these models were completely11



accurate across the entire range, � would be latency, or startup cost, and � would be thecost/element of the operation. However, the cost/element does not remain constant acrossthe range. This is especially true of data copying, where pipelining occurs. Indeed, we �ndthat doing a least squares �t on the copy times yields a negative �, due to this pipelining.This results in those locally-blocking sends which use the memory copy also having negative�'s on this range.Therefore, we �nd a second range of interest. Thus the range N = 0; : : : ; 1000 is alsotimed, but since it is not our primary range, the relative error calculations are not done forit. When modelling Tc, we �nd that � is constant between two given processors, but mayvary depending on the distance between the processors. The Tc timings shown here are allfor nearest neighbor communication. Detailed study of each individual machine is beyondthe scope of this paper, and so non-nearest neighbor times are not investigated.For all platforms Tc and Ts are given for the machine's communication primitives andfor the machine's BLACS.Figures 4, 5, 6, 7, 8, 9, 10, and 11, show the timings for Tc and Ts for each platform.Viewing these graphs should give the user an intuitive handle on the relevance of the quan-tities RE, � and �, which we will also specify. In the interest of conserving space, only thenumbers are given for Tm.Tables 5, 6, and 7 show the alpha and beta for the least squares �t of the Tc, Ts and Tmdata on our primary range of N = 0; : : : ; 50; 000. These tables also give the relative errorof the data (not of the least squares �t).Table 6 summarizes the Ts timings. We see that little is lost on the i860, Paragon, orSP1 platforms. The CM-5 loses some performance.On the CM-5, both Tc for locally-blocking sends and Tm show a negative �. This isbecause packing displays pipelining: the operation is much more e�cient for long vectorsthan for short. Therefore, we see that our approximation is inaccurate at the beginning ofour curve. For our purposes in this paper, the linear model of the large range is what wewant: we wish to see values over this whole range, and are not as concerned about the �rstfew data points. However, since the reader may be interested the smaller range, we alsopresent some numbers obtained in timings over the range 0; : : : ; 1000. Since this is not ourtarget range, we did not re-run the measurements to get a relative error.The most important quantity, Tc, is summarized in table 5. On the i860, only the latencyis a�ected, which is as expected. On those machines natively possessing locally-blockingsends, the BLACS just add a few routine calls, a message ID computation, etc., to the costof the send/receive. Since none of these things depend on N , only � should be a�ected onthose platforms. Notice that on the Paragon, � also seems to be changed. It is unsure ifthis is true, or if this is just a timing artifact, as timings on the Paragon tend to be chaotic.Notice that the number of repetitions is set to 1000 for this platform. Even with such a highnumber of repetitions, anomalous behavior is sometimes observed. At fewer repetitions, theBLACS routinely seemed faster than the system (a patent impossibility). At any rate, thecurves indicate that the times are quite comparable.On the SP1 and CM-5, we see that the e�ective bandwidth changes, as does the latency.This is due to the data copying mentioned previously. We see that the CM-5 shows thee�ect far more than the SP1. The CM-5 has weak processors (spark-2's), and a fairly decent12



SYSTEM Abbr.Intel iPSC/860 i860Intel Paragon XP/S ParagonThinking Machine's CM-5 CM-5IBM Scalable POWERparallel System 1 SP1Table 3: Names and abbreviations for timing platformsi860 PGON CM-5 SP1Mssg. Pass- NX 3.3.2 OSF/1 CMMD 3.1 MPL (AIX 3.2.4 PEing Layer v 1.2� software 1.1/PTF 1)send csend csend CMMD send block mpc bsendCMMD send noblockreceive crecv crecv CMMD receive block mpc brecvbcast/send csend csend CMMD bc to nodes mpc bcastbcast/recv crecv crecv CMMD receive bc from node mpc bcastcombine gdsum gdsum CMMD scan v mpc combinesync gsync gsync CMMD sync with nodes mpc syncsend(BLACS) csend csend CMMD send async mpc sendrecv(BLACS) crecv crecv CMMD receive block mpc brecvTable 4: System calls used for timingsSYSTEM BLOCK SYSTEM TIMES BLACS TIMES� � Rel Err � � Rel Erri860 Local 200 2.8576 0.06% 211 2.8576 5.93%Paragon Local 212 0.2049 10.76% 209 0.2098 6.76 (32.26)%CM-5 Global 169 0.9118 1.90% N/A N/A N/ACM-5 Local -159 1.4787 3.09% -72 1.6246 280%SP1 Global 772 1.1400 12.35% 712 1.2463 6.62(40.45)%Table 5: Least squares �t for Tc times (in microseconds), N = 0; : : : ; 50000SYSTEM BLOCK SYSTEM TIMES BLACS TIMES� � Rel Err � � Rel Erri860 Local 48 2.8573 6.73% 47 2.8573 5.29%Paragon Local 109 0.1957 4.88% 129 0.2001 1.50%CM-5 Global 150 0.9164 7.01% N/A N/A N/ACM-5 Local 173 1.4787 17.37% 337 1.5997 4.48%SP1 Global 524 1.1165 23.56% 42 1.2316 10.99%Table 6: Least squares �t for Ts times (in microseconds), N = 0; : : : ; 5000013



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of double precision elements sent

T
im

e
 i
n
 s

e
c
o
n
d
s

System vs. BLACS Tc times

o : System point to point

+ : BLACS point to point

solid line : Least squares fit of system data

dashed line : Least squares fit of BLACS data

Figure 4: Tc for nearest neighbor communication on the Intel i860, reps=15
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of double precision elements sent

T
im

e
 i
n
 s

e
c
o
n
d
s

System vs. BLACS Ts times

o : System point to point

+ : BLACS point to point

solid line : Least squares fit of system data

dashed line : Least squares fit of BLACS data

Figure 5: Ts on the Intel i860, reps=1514



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.002

0.004

0.006

0.008

0.01

0.012

Number of double precision elements sent

T
im

e
 i
n
 s

e
c
o
n
d
s

System vs. BLACS Tc times

o : System point to point
+ : BLACS point to point
solid line : Least squares fit of system data
dashed line : Least squares fit of BLACS data

Figure 6: Tc for nearest neighbor communication on the Paragon, reps=1000
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.002

0.004

0.006

0.008

0.01

0.012

Number of double precision elements sent

T
im

e
 i
n
 s

e
c
o
n
d
s

System vs. BLACS Tc times

o : System point to point
+ : BLACS point to point
solid line : Least squares fit of system data
dashed line : Least squares fit of BLACS data

Figure 7: Ts on the Paragon, reps=100015



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Number of double precision elements sent

T
im

e
 i
n
 s

e
c
o
n
d
s

System vs. BLACS Tc times

o : Locally-blocking system point to point

x : Globally-blocking system point to point

+ : BLACS point to point

solid line : Least squares fit of system data

dashed line : Least squares fit of BLACS data

Figure 8: Tc for nearest neighbor communication on the CM-5, reps=30
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Number of double precision elements sent

T
im

e
 i
n
 s

e
c
o
n
d
s

System vs. BLACS Ts times

o : Locally-blocking system point to point

x : Globally-blocking system point to point

+ : BLACS point to point

solid line : Least squares fit of system data

dashed line : Least squares fit of BLACS data

Figure 9: Ts on the CM-5, reps=3016



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T
im

e
 i
n
 s

e
c
o
n
d
s

System vs. BLACS Tc times

Number of double precision elements sent

o : System point to point
+ : BLACS point to point
solid line : Least squares fit of system data
dashed line : Least squares fit of BLACS data

Figure 10: Tc for nearest neighbor communication on the SP1, reps=30
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Number of double precision elements sent

T
im

e
 i
n
 s

e
c
o
n
d
s

System vs. BLACS Ts times

o : System point to point
+ : BLACS point to point
solid line : Least squares fit of system data
dashed line : Least squares fit of BLACS data

Figure 11: Ts on the SP1, reps=3017



network. This means that the data copy costs us much more than on the SP1. The SP1possesses RS6000's as its processors, and has a very high latency communication network.This means we lose less by doing the data copy. It should be noted that the CM-5, unlikethe SP1, does o�er a locally-blocking send. When the BLACS were �rst implemented onthe platform our timings seemed to indicate that the locally-blocking system send was lesse�cient than the BLACS' locally-blocking send. Since that time, the BLACS have changedversions, and so has the CM-5's message passing library. We see that the CM-5's locallyblocking send is now superior to that used in the BLACS, and so the next version of theBLACS will probably use the system's locally-blocking send.These numbers are worst case for the BLACS. First, as previously mentioned, the natureof the Tc test favors globally-blocking sends. Secondly, if the user is sending a non-contiguous2D array or a trapezoidal array, this extra bu�ering has to be done even for a globallyblocking send, and the times are then una�ected.A �nal note is in order here. We will later use these linear models to predict the speedof the various scoped operations presented later. We have seen that, especially on the CM-5, point to point messages have become slower due to the bu�ering required to supportlocally-blocking sends. However, we do not use these point to point times when we predictthe speed of the BLACS scoped operations. The data copy is only done once, so we willuse one Tm, and then use the system's Tc and Ts to predict scoped times. This correspondsto what is done in the code: the starting process does the bu�ering, and all other processessend/receive/operate on the already packed data.Table 8 shows Tc and Ts for the N = 0; : : : ; 1000 range. Note that the SP1 and Paragontimes should not be considered reliable. If the graph of these two machines on this range isviewed, it is apparent that the least squares �t is not very accurate.All of these tables and graphs boil down to the result that the BLACS are extremelycompetitive on all platforms except where they must support locally-blocking sends. TheSP1 does not see too large a slowdown, leaving the CM-5 as the only platform where truelosses occur. We believe the added programmability of locally-blocking sends makes theloss worthwhile. Also, it appears we can do quite a bit better by simply using the CM-5'snative locally-blocking send, so the next version of the BLACS should be more competitive.4 Broadcasts4.1 SemanticsA broadcast sends data possessed by one process to all processes within a scope. Broadcast,much like point to point communication, has two complementary operations. The processthat owns the data to be broadcast issues a broadcast/send. All processes within the samescope must then issue the complementary broadcast/receive.The BLACS de�ne that both broadcast/send and broadcast/receive are globally-blocking.Broadcasts/receives cannot be locally-blocking since they must post a receive (remem-ber that receives cannot be locally-blocking). When a given process can leave a broad-cast/receive operation is topology dependent, so, in order to avoid a hang as topology isvaried, the broadcast/receive must be treated as if no process can leave until all processeshave called the operation. 18



Broadcast/sends could be de�ned to be locally-blocking. Since no information is beingreceived, as long as we use locally-blocking point to point sends, the broadcast/send will belocally blocking. However, de�ning one process within a scope to be locally-blocking whileall other processes are globally-blocking adds little to the programmability of the code. Onthe other hand, leaving the option open to have globally-blocking broadcast/sends mayallow for optimization on some platforms.The fact that broadcasts are de�ned as globally-blocking has several important implica-tions. The �rst is that scoped operations (broadcasts or combines) must be strictly ordered,i.e., all processes within a scope must agree on the order of calls to separate scoped opera-tions. This constraint falls in line with that already in place for the computation of messageIDs, and is present in point to point communication as well.A less obvious result is that scoped operations with SCOPE = `ALL' must be orderedwith respect to any other scoped operation. This means that if there are two broadcasts tobe done, one along a column, and one involving the entire process grid, all processes withinthe process column issuing the column broadcast must agree on which broadcast will beperformed �rst.4.2 SyntaxThe calling sequence for these routines is:vGEBS2D( SCOPE, TOP, M, N, A, LDA )vGEBR2D( SCOPE, TOP, M, N, A, LDA, RSRC, CSRC )vTRBS2D( SCOPE, TOP, UPLO, DIAG, M, N, A, LDA )vTRBR2D( SCOPE, TOP, UPLO, DIAG, M, N, A, LDA, RSRC, CSRC )The function of the parameters depends largely on whether the routine sends data(vXXBS2D) or receives (vXXBR2D) data. Output parameters are underlined. All other pa-rameters are input, and thus not changed inside the routines.Parameters:SCOPE Scope of processes to participate in operation. Limited to 'ROW','COLUMN', or 'ALL'. See section 2.2 for additional details.TOP Network topology to be emulated during communication. Topologiespresently supported are discussed in section 4.3UPLO Speci�es if matrix is stored as Lower or Upper trapezoidal matrix.See section 2.1 for details on trapezoidal matrices.DIAG Speci�es if the matrix is unit diagonal. See section 2.1 for details ontrapezoidal matrices.M Row dimension of matrix.N Column dimension of matrix.A Two dimensional array of data to be sent/received into. vXXBS2D:Array of data to be sent. vXXBR2D: Array where data is to be received.LDA Leading dimension of the array A. 19



RDEST vXXBS2D: Row index of destination process.CDEST vXXBS2D: Column index of destination process.RSRC vXXBR2D: Row index of source process.CSRC vXXBR2D: Column index of source process.As described above, the parameters M, N, and LDA dictate the shape of the array beingcommunicated. All processes participating in a given send operation or its receive comple-ment must have the same amount of array space available (i.e. M * N must be the same).However, it is not necessary that they all receive the data in the same way (this holds truefor point to point communication, as well). An example should help illustrate this principle:Process f0,2g has a double precision matrix B, with a total size of 500 x 200. All theother processes in its process column require �ve rows and seven columns of this matrixstarting at the matrix position (9,4). Process f0,2g would make the following call to theBLACS:DGEBS2D('COLUMN', 'HYPERCUBE', 5, 7, B(9,4), 500)Since process f0,2g has initiated a broadcast, the processes fi; 2g; i= 1; 2; : : : ;P�1mustcall DGEBR2D. However, their receive calls need not be exactly the same. For instance,process f1,2gmight want to receive the information into a work vector, WORK. It would makethe following call:DGEBR2D('COLUMN, 'HYPERCUBE', 5, 7, WORK, 5, 0, 2)The other processes in the process column could receive the message into their copy ofB with the following command:DGEBR2D('COLUMN', 'HYPERCUBE', 5, 7, B(9,4), 500, 0, 2)NOTE: all versions of the BLACS except PVM allow the user to vary M and N, as longas M * N is the same across all processes. However, in PVM the data must be unpacked inthe same manner that it is packed. Therefore, the shape of the matrix being communicatedshould be changed only by varying LDA.4.3 TopologiesThe topology parameter determines how the messages involved in a distributed operationare sent. The use of the topology idea allows the user to exploit the following fact: even ifthe time to perform a distributed operation cannot be reduced, which processors bear thebrunt of the cost of the operation can be varied.Many factors go into deciding which topology is optimal. First, the user must decide ifany processor is more important than others. For instance, if the source processor's timeis more important than other processors', a ring topology is often optimal. On the otherhand, if everyone needs the information quickly, some type of tree is often best.Some topologies tie up the sending processor for large amounts of time, and di�erent pro-cessors get the information at di�erent times depending on topology. Also, some topologiesare \noisy", i.e. many communications are issued simultaneously, while others are \quiet".Noisy algorithms will cause problems on systems where network conicts are problematic.Quiet algorithms are likely to force some processors to wait much longer than they wouldif a \noisy" topology had been used, since less communication is going on in parallel.20



Some topologies are "pipelining", i.e., the �rst such operation synchronizes the proces-sors so that subsequent operations will be cheap.In the discussion of the presently supported topologies is given below, we use the fol-lowing symbols: Np, the number of processors involved in the operation, Ts, the time tosend a message, and Tc, the time for a complete communication (send and receive).All �gures displaying communication patterns are shown with Np = 8, because this sizeis adequate to show o� the features of the topologies, and is still small enough to �t into areasonable amount of space. Further, the processors are numbered from 0; : : : ; (Np�1). Wedo not specify grid coordinates because these broadcasts can operate on rows or columns,or the entire grid. If we instantiate such a picture as a row broadcast, for instance, thesevalues are column indexes. For ease of reference, we will still refer to a given index as\processor I", but this should be taken to mean the processor at the I'th position in a row,a column, or in the grid. Please note as well that the term processor has now replacedprocess. We present timing analysis in this section, and they will not be accurate if morethan one process is spawned to a given processor.To be consistent, processor 0 is always shown as the source/dest of the broadcast/combine.Finally, a label S = I to the left of a �gure indicates that the algorithm is in the I'th step.For the time analysis discussed in the text, it is assumed the BLACS are operating in anenvironment where an arbitrary number of processors may be communicating simultane-ously. This assumption will a�ect the accuracy of our prediction if the number of actuallinks is less than those assumed by the algorithm.At the present time there are two classes of broadcast topology. The �rst class involvestopologies based on rings. The second classi�cation consists of topologies based on trees.Within these classes, there are several di�erent algorithms, which di�er slightly from eachother. For ring topologies, the main di�erences involve which direction within the ringmessages ow (increasing/decreasing), and the number of rings the scope is separated into(Nr). For tree topologies, the main variables involve the number of branches (Nb) at eachnode of the tree, and which branch is sent to �rst.These classes are explained in detail below, and table 9 provides a quick summation ofsome of the more important properties. This table speci�es the number of steps until thealgorithm completes (STEPS), the number of messages sent during step i (SENDS, S = i),the number of processors who are �nished with the routine after step i is complete (PROCSDONE, S = i), the time the source processor spends in the algorithm (SRC TIME), and�nally the maximum time spent by any processor in the operation (MAX TIME). Theanalyses shown in table 9 have been simpli�ed by assuming that Nr is an even multiple ofNp, and Nb = 1, with Np an integer multiple of 2. The speci�c topology section should beexamined for full details.4.3.1 Broadcast Ring TopologiesThe various ring topologies are discussed below. All of these topologies can experiencepipelining of various degrees. Our timing models assume that processors are roughly syn-chronized when entering the broadcast. However, when a ring broadcast is performed, itforces an obvious ordering onto the processors; i.e, the �rst processor in the ring will leavethe operation before the processor which follows it in the ring. This means that once the21



SYSTEM Tm� � Rel ErrCM-5 -152 0.7248 1.54%SP1 -58 0.1072 0.40%Table 7: Least squares �t for Tm times (in microseconds), N = 0; : : : ; 50000Tc TsLIBRARY BLOCK � � � �Gamma System Loc 2.92 162 2.845 81Gamma BLACS Loc 2.92 173 2.844 82Paragon System Loc 0.22 121 0.27 49Paragon BLACS Loc 0.22 140 0.28 52CM-5 System Glob 0.92 75 0.91 62CM-5 System Loc 1.32 87 1.32 123CM-5 BLACS Loc 1.49 150 1.45 183SP1 System Glob 1.26 448 0.97 449SP1 BLACS Loc 1.36 494 ?1.12? 484Table 8: Least squares �t for point to point times (in microseconds), N = 0; : : : ; 1000Nr{RING 1{TREESteps Np=Nr log2(Np)SENDS, S = i Nr (2)iPROCS DONE, S = i 1 +Nr � i 0SRC TIME Nr � Ts 2 log2(Np) � TsMAX TIME ((Np�1)=Nr) � Tc + (Nr � 1) � Ts log2(Np) � TcPIPELINING? YES NOTable 9: Broadcast topology highlights22



cost of the �rst broadcast is payed, the processors are optimally ordered to perform anotherring broadcast. The time each processor pays for the second broadcast will be roughly Tc(Tc + Tm if the BLACS are supporting locally-blocking sends via bu�ering), rather thanthat given in the text. Therefore, whenever a given processor is to issue several consecutivebroadcasts, use of a ring topology should be considered. It will result in minimization ofthe sender's time as usual, but since the ordering cost is payed only once, it may result infaster overall transfer rates as well.Pipelines can be maintained if the algorithm ows across processors in an orderly way.I.e., if the sender of row broadcasts starts out as the �rst process column, and then is thesecond, etc, an increasing ring pipeline will be maintained. If the ow is in the oppositedirection, it may be possible to set up a decreasing ring pipeline. The a�ects of pipeliningon broadcast times will be discussed in greater detail after all ring-based topologies havebeen explained.Unidirectional Ring Unidirectional ring topologies require the source processor to issueone broadcast, and each processor then receives and forwards the message. The two unidi-rectional ring topologies are increasing ring (TOP = 'I'), and decreasing ring, (TOP = 'D').These algorithms have the advantage that the originating processor must spend only Ts timein the broadcast. However, the last processor in the ring will spend (Np � 1) � Tc time inalgorithm. Figures 12 and 13 respectively show increasing and decreasing ring broadcast.Unidirectional rings are the \quietest" algorithms possible: only one processor is sendingat a time.��������������������������������- - - - - - -0 1 2 3 4 5 6 7Figure 12: Increasing ring broadcast��������������������������������� � � � � ��� ��0 1 2 3 4 5 6 7Figure 13: Decreasing ring broadcastSplit Ring The split ring attempts to alleviate the long waiting time inherent in unidi-rectional rings, without tying up the originating node. Examining �gure 14 should convincethe reader that the longest time spent in the algorithm is roughly bP=2c � Tc, and that thesource spends (2 � Ts) time in broadcast. The split ring topology is called by TOP = 'S'.Although it is unlikely to be important in all but the most critical of optimizations, the usershould know that the split ring sends in the increasing direction �rst. This is a relatively\quiet" algorithm as only two processors will be sending at any one time.23



��������������������������������- - - - � ��� ��0 1 2 3 4 5 6 7Figure 14: Split ring broadcastMultiring The multiring algorithm (also referred to as multipath) provides a scalablering algorithm. By de�nition, the graphs created by a multiring topology is not a ring atall, but is instead a special kind of tree. We call it a ring topology despite this, becauseit behaves like the true ring topologies: pipelining may occur, and maximum time in thealgorithm scales linearly with the number of processors involved.In this algorithm, the user provides the number of rings (Nr) the broadcast is to pro-ceed on. The processors participating in the broadcast are then split up into Nr separateincreasing rings. Figure 15 shows a multiring with Nr = 3. Note that the source sends tothe closest ring �rst, and the farthest ring last. This may seem counter-productive, in thesense that if we would like to minimize link contention, sending the to far ring �rst makesmore sense. However, ring topologies are most useful in pipelined codes, where, since theow of the algorithm proceeds in one direction across the processors, the time spent by thenearer processors is more important than that of the far processors.��������������������������������- - - - -� �� �? ?0 1 2 3 4 5 6 7Figure 15: Multiring broadcast with Nr = 3This algorithm requires dNp=Nre steps, and at each step Nr sends will be initiated.The source processor is �nished after the �rst step, and Nr processors �nish each stepthereafter. The source processor must send to all rings, and so its time in the algorithmshould be Nr �Ts. If Nr does not evenly divide Np, some rings must be longer than others.This topology speci�es that if Nlr = (Np�1) mod Nr, then the �rst Nlr (number of longrings) rings will get an extra processor. With this in mind, it is easily seen that the processorwho must wait the longest for this algorithm is either the ending processor in the last longring, or, if all rings are of the same length, the last processor in the last ring. Therefore, ifall rings are of equal length, the longest wait time will be ((Np�1)=Nr) �Tc+ (Nr� 1) �Ts.Otherwise, it will be d(Np�1)=Nre � Tc + ([(Np�1) mod Nr]� 1) � Ts. Note: it is possiblethat if Nr is large, enough Ts's could build up to make it so that the last ring waits longerthan the last long ring. This is a detail, and should make no real di�erence.Most instantiations of the multiring topology will be relatively \quiet", since at worstNr processors will be sending at the same time.Calling the multiring algorithm is more complicated than the less general algorithmsdescribed above. Not only must a topology be selected, but a number of rings must bepassed to the BLACS. Therefore, there is an support routine, SETBRANCHES, which allows24



the user to set an internal variable in the BLACS describing the number of rings to use.Multiring is called by setting TOP = 'm'. Here is an example of the recommended way tocall the multiring topology:call setbranches(3)call dgebs2d('Row', 'm', m, n, A, lda)...call dgebs2d('Column', 'm', 3, 2, work, 5)Notice that SETBRANCHES need only be called when changing Nr, therefore, in the exam-ple above, both the row and column broadcasts will split their processors into 3 increasingrings.Pipelining All ring-based topologies can display pipelining. However, as the number ofrings (Nr) increases, the pipeline advantage tends to decrease. After a ring broadcast, eachseparate ring is correctly pipelined with respect to the processors within its ring, but notwith the source processor. As the source processor sends more and more messages, this lackof synchronization becomes worse. An example illustrates this principle. Assume we havejust �nished a Nr-ring broadcast. At this point the maximum cost payed is that given inthe topology description above (call this time T 1). We then repeat this broadcast k times.If we have a 1-ring, all processors are synchronized so that the total cost is just T 1+ k �Tc.If Nr > 1, however, for each iteration beyond the �rst we pay the Tc cost, plus the costof the other sends the source has had to issue before sending to our ring again. Thus, ingeneral, the cost is T 1 + k � (Tc + (Nr � 1)Ts) (or T 1 + k � [Tm + Tc + (Nr � 1)Ts], if theBLACS are bu�ering to support locally-blocking sends).4.3.2 Broadcast Tree TopologiesHypercube The �rst tree-based topology is called hypercube. This algorithm is a spe-cialized broadcast which matches the Intel i860's hypercube network. It uses bit leveloperations to achieve low overhead in computing source and destination of messages. Itwas originally coded by Robert van de Geijn[11, 12], and only slightly modi�ed for inclu-sion in the BLACS. This topology requires that Np be an integer power of 2. If it is not,the general tree algorithm described below is called instead. A �nal detail is that at eachnode in the tree, messages are sent to the nearest node �rst. This broadcast strategy isshown in �gure 16.Hypercube broadcasts are most useful when getting the information out to all processorsis more important than saving origin node time. It requires the origin node to spendTs�log2(Np) time in the broadcast. However, the longest any node need wait is Tc�log2(Np).Hypercube broadcasts are relatively \noisy", since the number of processors sending at onetime grows with Np. In the last step of the broadcast, Np=2 processors will be sendingsimultaneously. 25



General Tree The �nal topology that is supported is the general tree broadcast. It allowsthe user to choose the number of branches (Nb) at each step in the broadcast tree. Figures17, 18 and 19 show general tree broadcasts with Nb = 1; 2; 3. Note that general tree withNb = 1 is a hypercube broadcast where at each node in the tree, the node furthest from thepresent node is sent to �rst. This tends to minimize link contentions, if the assumption ismade that processors far away from each other tend not to share the same link.With this algorithm, Np does not have to be an integer power of Nb. Since Nb varies,more terminology is required to discuss this algorithm. The height of the tree requiredto �nish the broadcast will be Ht = dlogNb+1(Np)e. The number of initial sends (sendsdone by origin node in S = 0) is given by Nis = dNp=(Nb + 1)(Ht�1)e � 1. With thesequantities de�ned, it can be shown that the time the origin node spends in the broadcastis [Nb(Ht � 1) + Nis] � Ts. The longest time any processor spends in the algorithm is:[(Ht� 1)(Nb� 1)+ (Nis� 1)] �Ts+Ht �Tc. General tree broadcasts are obviously \noisy",and the greater Nb and Np are, the more \noisy" the algorithm becomes. This topologymay be called in several ways. If the user sets TOP = 't', the routine setbranches shouldbe used in the same way as discussed for multiring. An example should clarify this:call setbranches(2)call dgebs2d('Row', 't', m, n, A, lda)This would call the general tree algorithm with Nb = 2. Table 10 summarizes the waysto call the general tree broadcast.TOP Explanation'1' tree with Nb = 1.'2' tree with Nb = 2.'3' tree with Nb = 3.'4' tree with Nb = 4.'5' tree with Nb = 5.'6' tree with Nb = 6.'7' tree with Nb = 7.'8' tree with Nb = 8.'9' tree with Nb = 9.'t' tree with Nb = I,where Iis set by CALL SETBRANCHES(I).'f ' perform fully-connected broadcast: source sends to allparticipating processesTable 10: General tree topology entry points26



������������������������������������������������������������
S = 0S = 1S = 2S = 3 00

00
11
1

22 33 4 5 6 7
JJJJĴZZZZZZZ~ZZZZZZZ~PPPPPPPPPPPPPPPPqPPPPPPPPPPPPPPPPqPPPPPPPPPPPPPPPPqPPPPPPPPPPPPPPPPqFigure 16: Hypercube broadcast, nearest node �rst.�������� �������� ���� ���� ������������������������������������

S = 0S = 1S = 2S = 3 00
00

1 22 3 44
4

5 66 7
PPPPPPPPPPPPPPPPqZZZZZZZ~ ZZZZZZZ~JJJJĴ JJJJĴ JJJJĴ JJJJĴFigure 17: General tree broadcast with Nb = 127



�������� ���� ������������������������������������
S = 0S = 1S = 2 00

0
1 2 33 4 5 66 7

XXXXXXXXXXXXXXXXXXXXXXXXzHHHHHHHHHHHjZZZZZZZ~ ZZZZZZZ~JJJJĴ JJJJĴ JJJJĴFigure 18: General tree broadcast with Nb = 2
�������� ������������������������������������

S = 0S = 1S = 2 00
0

1 2 3 44 5 6 7
PPPPPPPPPPPPPPPPqZZZZZZZ~ ZZZZZZZ~HHHHHHHHHHHj HHHHHHHHHHHjJJJJĴ JJJJĴFigure 19: General tree broadcast with Nb = 328



4.4 TimingsHere we present the broadcast times for each machine. Two times are presented for eachbroadcast. The �rst is the time the source processor spends in the broadcast, and thesecond is the maximum time spent by any processor in the broadcast. As with the pointto point timings, we concentrate on those timings that allow us to compare against systembroadcasts. This means that we once again send 1-D arrays, and that we primarily concernourselves with the topology that minimizes the maximal time in the broadcast.As mentioned before, there are many ways to de�ne the \best" broadcast topology. Ifpipelining can occur, rings are often best. If a particular processor's time is more importantthat others, again a ring may be the best choice. However, the most widely-used standardfor \best" is the algorithm that, starting from synchronized processors, gets the answer toall participating processors in the least amount of time. Even here, it is impossible to sayone topology is best, because it may depend on the size of the message being sent. Wechoose the topology that performs best over the entire curve, even if it is not as good ina speci�c region. In the following sections, we will concentrate our e�orts on the topologythat meets these quali�cations.In analyzing these times, it is important to understand how they were obtained. First,all processors are roughly synchronized by a call to the system's barrier or synchronizationroutine. Like the timings for Tc, the broadcast is repeated several times within a loopto insure the timings are above clock resolution. However, this can lead to results whichare biased either for or against the topology. Ring topologies, for instance, will gain apositive bias, since the �rst broadcast will synchronize the processors so that any additionalbroadcasts will cost roughly Tc (i.e., pipelining occurs). On the other hand, it could be thecase that messages sent in the last stage of a previous iteration interfere with the messagesbeing sent in the initial stage of the present iteration, and the results are therefore negativelyinuenced. This issue is addressed in section 4.4.3.The broadcast timings are split into three sections. Section 4.4.1 shows the results of asingle run of several interesting topologies. The next section uses these timings to see howclosely the theoretical models proposed in the topology section match with observed data.Finally we further analyze the BLACS \best" topology and the system broadcast to seehow reproducible our timings are, and we give a least squares �t for both.4.4.1 Survey of TopologiesThe �rst test run on each platform is a survey of topologies with a range ofN = 0; : : : ; 50; 000where a a data point is taken every 1000 double precision elements.For each platform, �gures 20, 21, 22, and 23, show four broadcast strategies that we�nd interesting. One curve is always the system broadcast, represented by a solid line.The curve represented by a dashed line is the \best" BLACS topology. By \best", we meanthe topology that, starting from roughly synchronized processors, gets the message to allprocessors most rapidly. As was mentioned in the topology section, this does not imply thetopology is best for all broadcasts. The other two curves show timings of other topologiesof interest, such as rings, where the e�ects of pipelining make them interesting.The only real surprise here is on the CM-5. On all other platforms, the BLACS arequite competitive, but, as expected, not quite as good as the system. On the CM-5, how-29



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2 dotted   : 3-ring   

dash-dot : Increasing ring

dashed   : Hypercube

solid    : System

Number of double precision elements being broadcast

T
im

e
 i
n

 s
e

c
o

n
d

s

Source Time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

dotted   : 3-ring   

dash-dot : Increasing ring

dashed   : Hypercube

solid    : System

Number of double precision elements being broadcast
T

im
e

 i
n

 s
e

c
o

n
d

s

Maximum Time

Figure 20: Survey of 32 processor i860 broadcast topologies, reps=5
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

dotted   : 3-ring (reps=10)

dash-dot : Hypercube

dashed   : 1-tree

solid    : System

Number of double precision elements being broadcast

T
im

e
 i
n

 s
e

c
o

n
d

s

Source Time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

dotted   : 3-ring (reps=10)

dash-dot : Hypercube

dashed   : 1-tree

solid    : System

Number of double precision elements being broadcast

T
im

e
 i
n

 s
e

c
o

n
d

s

Maximum Time

Figure 21: Survey of 32 processor Paragon broadcast topologies, reps=3030



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

dotted   : 3-ring

dash-dot : Increasing ring

dashed   : 1-tree

solid    : System

Number of double precision elements being broadcast

T
im

e
 i
n

 s
e

c
o

n
d

s

Source Time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

dotted   : 3-ring

dash-dot : Increasing ring

dashed   : 1-tree

solid    : System

Number of double precision elements being broadcast
T

im
e

 i
n

 s
e

c
o

n
d

s

Maximum Time

Figure 22: Survey of 32 processor CM-5 broadcast topologies, reps=15
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

dotted   : 3-ring

dash-dot : Increasing ring

dashed   : 1-tree

solid    : System

Number of double precision elements being broadcast

T
im

e
 i
n

 s
e

c
o

n
d

s

Source Time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

dotted   : 3-ring

dash-dot : Increasing ring

dashed   : 1-tree

solid    : System

Number of double precision elements being broadcast

T
im

e
 i
n

 s
e

c
o

n
d

s

Maximum Time

Figure 23: Survey of 32 processor SP1 broadcast topologies, reps=1531



ever, the BLACS are considerably faster than the system. These system broadcast timeswere con�rmed by Thinking Machines. The BLACS broadcast times are con�rmed by thetheoretical predictions, and are shown to be repeatable. Thinking Machines has stated thatthe next version of CMMD features faster broadcast and combine operations. Also, theynoted that the system broadcast provides a better synchronization point than the tree-basedtopology used by the BLACS.4.4.2 Accuracy of Theoretical ModelsIn this section we demonstrate how closely the topology models presented in section 4.3match our experimental results. On the graphs 24 through 31, each observed data point isrepresented by `o' (these points are obtained by repeating the broadcast within the timingloop), and the prediction given by the theoretical model is represented by a solid line.For each platform, we choose to look at two topologies, one a ring, and one a tree. The�rst topology will be 3-ring, which as we see displays pipelining. In order to highlight thevalue of pipelining, two values are shown. Data points indicated by +'s were obtained bycalling the broadcast only one time, so there is no pipelining. The predicted time for the non-pipelined broadcast is shown as a dotted line. We do not bother to plot the non-pipelinedsource time, since source time does not experience pipelining. The second topology shownis the BLACS \best" topology for each platform.It should be noted that the single repetition times may not be individually meaningful,i.e., the length of time being measured is small enough that relatively large errors may occur.However, looking at all the data points provides a good indicator of whether the repeatingof the test is noticeably e�ecting the times. Since these data points are not reliable, we donot calculate a relative error for the single repetition runs.An example of how the predicted times are derived may be of interest. We will illustratehow the prediction for the CM-5's 3-ring broadcast was made. First we note that presentversion of the CM-5 BLACS are designed to have locally-blocking broadcast/sends (whichwill change for the next release), so we must �gure the cost of the memory copy (Tm) inwith the cost of the communication. The cost for one broadcast should be Nr � Ts for thesource processor, and taking into account that Ts is almost the same size as Tc, the maximaltime in the algorithm is ((Np�1)=Nr) � Tc + (Nr � 1) � Ts (this comes from the analysispresented in the topology section). Now we instantiate these predictions using the followingfacts:1. Number of processors, Np = 322. Number of rings, Nr = 33. The Tm cost must be paid4. After paying the Tm costs, the system Ts and Tc values will be used5. These numbers predict single iteration runs: we have pipeliningSource time does not display pipelining, so predicted source time for all repetitions isTm + 3 � Ts. The maximal time in the algorithm does display pipelining, so we have two32



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of double precision elements being broadcast

T
im

e
 i
n

 s
e

c
o

n
d

s

Source Time

o : observed time

line : predicted time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of double precision elements being broadcast
T

im
e

 i
n

 s
e

c
o

n
d

s

Max Time

+ : reps = 1 (no pipelining) run

o : reps = 5 (pipelining) run

dotted line : reps = 1 predicted time

solid line  : reps = 5 predicted time

Figure 24: Predicted vs. measured time for 32 processor i860 BLACS 3-ring broadcast
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e
 i
n

 s
e

c
o

n
d

s

Source Time

o: observed time

line: predicted time

Number of double precision elements being broadcast
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of double precision elements being broadcast

T
im

e
 i
n

 s
e

c
o

n
d

s

Max Time

o: observed time

line: predicted time

Figure 25: Predicted vs. measured time for 32 processor i860 BLACS hypercube broadcast33



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Source Time

o : observed time

line : predicted time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Max Time

+ : reps = 1 (no pipelining) run

o : reps = 10 (pipelining) run

dotted line : reps = 1 predicted time

solid line  : reps = 10 predicted time

Figure 26: Predicted vs. measured time for 32 processor Paragon BLACS 3-ring broadcast
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06
Source Time

o : observed 1-tree times (reps=30)

line : predicted 1-tree times

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06
Max Time

o : observed 1-tree times (reps=30)

line : predicted 1-tree times

Figure 27: Predicted vs. measured time for 32 processor Paragon BLACS 1-tree broadcast34



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

Source Time

o : observed time

line : predicted time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

Max Time

+ : reps = 1 (no pipelining) run

o : reps = 15 (pipelining) run

dotted line : reps = 1 predicted time

solid line  : reps = 15 predicted time

Figure 28: Predicted vs. measured time for 32 processor CM-5 BLACS 3-ring broadcast
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

Source Time

o : observed 1-tree times (reps=15)

line : predicted 1-tree times

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3
Max Time

o : observed 1-tree times (reps=15)

line : predicted 1-tree times

Figure 29: Predicted vs. measured time for 32 processor CM-5 BLACS 1-tree broadcast35



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

Source Time

o : observed time

line : predicted time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

Max Time

+ : reps = 1 (no pipelining) run

o : reps = 15 (pipelining) run

dotted line : reps = 1 predicted time

solid line  : reps = 15 predicted time

Figure 30: Predicted vs. measured time for 32 processor SP1 BLACS 3-ring broadcast
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

Source Time

o : observed time

line : predicted time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Max Time

o : observed time

line : predicted time

Figure 31: Predicted vs. measured time for 32 processor SP1 BLACS hypercube broadcast36



predictions. For the reps=1 run, the time is Tm + 10 � Tc + 2 � Ts. The reps=15 broadcastwill bene�t from pipelining. The �rst broadcast's cost is the reps=1 time given above. Eachadditional broadcast, however, will only add Tm + Tc + 2 � Ts to the cost of the algorithm.We now use our linear models of Ts, Tc, and Tm to arrive at our prediction.Examining �gures 24, 26, 28, and 30 should convince the reader that, when it can beemployed, pipelining is a very e�ective optimizer of broadcasts. Further, it can be seen thatthe timing models are quite accurate on all platforms for the multiple repetition runs of thering topologies.Figures 25, 27, 29, and 31 show the predicted times for the tree broadcasts. We see thatas messages grow larger, our prediction is not precise for the CM-5. Remember that wemade the assumption that all our communication was nearest neighbor, and that we had atleast the number of links required by the algorithm. Neither of these assumptions are truefor tree broadcasts on the CM-5, and this causes our tree predictions to be inaccurate.The SP1 shows a more consistent underestimation of maximal time in the tree broad-cast. According to the system speci�cations, the network should behave as if it were fully-connected: all processors are the same distance away, and link conicts do not occur. Aswe will see in the next section, it appears that repeating the broadcast multiple times doesnegatively a�ect communication time, however. This may be due to the way the BLACSare coded, and more experimentation will be required to isolate this problem. Since thetheoretical models work for other platforms, it unlikely they are wrong. The fact that thecombine models also underestimate the time required by the SP1 indicates that it is indeeda system-dependent error. In both cases, however, the error is not that much greater thanthe variance separate timing runs display.Table 11 shows the relative errors of prediction versus actual times. If T o(i) is theobserved time at the ith data point, and T p(i) is the predicted time, then we de�ne therelative error of the prediction as RE = max1�i�11(jT o(i) � T p(i)j=jT o(i)j). As with thepoint to point timings, we �nd that at the �rst data point (N = 0) the time is not largeenough to give reliable results at the number of repetitions chosen, and thus it is ignoredin our computation of RE. The SP1 has a large relative error, but this is at least partiallydue to inaccurate timings, as the error is high in only the �rst few data points.SYSTEM 3-RING \BEST"Source Maximum Source Maximumi860 2.95 % 3.16 % 4.18 % 3.56 %Paragon 10.40% 4.60% 10.00% 6.84%CM-5 1.71 % 2.07% 2.45 % 5.61 %SP1 26.55% 44.41% 26.76% 42.64%Table 11: Relative errors for predicted times4.4.3 Validity of TimingsFinally, we would like assurance that our times are meaningful, in the sense that theyrepresent reproducible behavior for the machine. Also, we need to show that the tree37



topologies are relatively una�ected by the fact that we have repeated the broadcast multipletimes (we account for this e�ect on ring-based topologies { for rings it is pipelining).To accomplish this, we concentrate on our twomost important times, the maximum timein the system broadcast, and the maximum time in the BLACS' \best" topology. For thesequantities, every �fth data point is run an additional ten times. If we get a large spread ofvalues, we know our timings are unreliable. These data points, together with those donein the survey, are shown as o's in �gures 32, 33, 34, and 35. To show that repeating thebroadcast within the timing loop has little e�ect on broadcast time, we run the larger datapoints with repetitions set to 1; these points are shown on the graph as +'s (Note that theParagon graph has no reps=1 points: the times were not even vaguely repeatable). Finally,the least squares �t of all of these points is shown on the graph by the solid line.On the i860, we see that the reps=1 times are well in line with the reps=5 runs, and weconclude that the timings done with multiple repetitions are accurate for reps=1 as well.All of the CM-5's reps=1 times, on the other hand, are noticeably (but not grossly) greaterthose of the multiple repetitions runs. This may be a timing artifact, but since all of thereps=1 runs are above the reps=15 runs, this seems unlikely. We recall that Tm is relativelyexpensive on the CM-5. Since we are using non-blocking sends in the BLACS, we maybe able to hide some of this Tm time. The way this would work is that a process wouldperform the �rst pack (Tm), and start the non-blocking send. It returns before the messageis actually sent, and does at least part of the next iteration's pack before being interruptedto actually send the message. If this is occurring, it could easily explain the di�erence wesee between the multiple repetition and single repetition times.Finally, we see that the SP1's single repetition runs are slightly below those of themultiple repetition runs. Again, this di�erence could easily be a timing artifact, but thefact that so many of the reps=1 data points agree argue against it. More to the point,the reps=1 data points fall more in line with the predicted time for the algorithm. Asmentioned in the previous section, it will take a more detailed analysis to determine what,if anything, is occurring here.Table 12 gives the relative error of the system and BLACS broadcasts. This table alsogives the least squares �t of the multiple repetition data points, so that the reader can geta numerical value to associate with the graphs. The BLACS are quite competitive acrossall platforms. It should be noted that we have not chosen the topology to optimize thesmall size broadcasts. Using a di�erent topology could cut the latency, at the expense ofbandwidth. SYSTEM SYSTEM TIMES BLACS TIMES� � Rel Err � � Rel Erri860 557 14.2976 3.69% 1086 14.3598 3.78%Paragon 403 0.9444 4.82% 1028 1.0437 1.69%CM-5 -755 9.3167 0.78% -523 5.6090 4.96%SP1 2764 5.7323 25.88% 9150 6.0549 24.78%Table 12: Least squares �t (in microseconds) and relative error of broadcast times forN = 0; : : : ; 50000 38



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of double precision elements broadcast

T
im

e
 i
n

 s
e

c
o

n
d

s

System broadcast

+ : observed time with reps=1
o : observed time with reps=5
line : least squares fit of reps=5 times

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of double precision elements broadcast
T

im
e

 i
n

 s
e

c
o

n
d

s

BLACS hypercube broadcast

+ : observed time with reps=1
o : observed time with reps=5
line : least squares fit of reps=5 times

Figure 32: Variance between runs on 32 processor i860 broadcasts
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

T
im

e
 i
n

 s
e

c
o

n
d

s

System broadcast

o : observed time with reps=30

line : least squares fit of reps=30 times

Number of double precision elements broadcast
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

T
im

e
 i
n

 s
e

c
o

n
d

s

BLACS 1-tree broadcast

o : observed time with reps=30

line : least squares fit of reps=30 times

Number of double precision elements broadcastFigure 33: Variance between runs on 32 processor Paragon broadcasts39



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of double precision elements broadcast

T
im

e
 i
n

 s
e

c
o

n
d

s

System broadcast

+ : observed time with reps=1

o : observed time with reps=15

line : least squares fit of reps=15 times

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of double precision elements broadcast
T

im
e

 i
n

 s
e

c
o

n
d

s

BLACS 1-tree broadcast

+ : observed time with reps=1

o : observed time with reps=15

line : least squares fit of reps=15 times

Figure 34: Variance between runs on 32 processor CM-5 broadcasts
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

Number of double precision elements broadcast

T
im

e
 i
n

 s
e

c
o

n
d

s

System broadcast

+ : observed time with reps=1

o : observed time with reps=15

line : least squares fit of reps=15 times

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

Number of double precision elements broadcast

T
im

e
 i
n

 s
e

c
o

n
d

s

BLACS hypercube broadcast

+ : observed time with reps=1

o : observed time with reps=15

line : least squares fit of reps=15 times

Figure 35: Variance between runs on 32 processor SP1 broadcasts40



5 Combines5.1 SemanticsIn a combine operation, each participating process contributes data which is combined withall other processes' data to produce a result. This result can be left on a particular process(called the destination process), or on all participating processes. If the result is left ononly one process, we refer to the operation as a leave-on-one combine, and if the result isgiven to all participating processes we reference it as a leave-on-all combine.At present, three kinds of combines are supported. They are element-wise summation,maximization, and minimization of general rectangular arrays. Note that a combine op-eration combines data between processors. By de�nition, then, a combine done across ascope of only one processor does not change the input data. This is why we specify that theoperations (max/min/sum) are element-wise. Element-wise indicates that each element ofthe input array will be combined with the corresponding element from all other processes'arrays to produce the result. Thus, a 4 � 2 array of inputs produces a 4� 2 answer array.The example given in the next section should help if further clari�cation is required.If a processor is to receive the result, then obviously it cannot leave the routine until allprocesses have contributed their data to the combine operation. Therefore, the combine isglobally-blocking (i.e., no process returns from the routine until all participating processescall it) for at least one process. If the answer is left on all processes, then the combineis globally-blocking for all processes. Finally, it may be possible to perform superior opti-mizations on certain platforms it it is allowed to create even a leave-on-one combine whichis globally-blocking. The BLACS standard therefore states that while it may not alwaysbe the case, all combines should be programmed as if they were globally-blocking for allparticipating processes.5.2 SyntaxThe general form of the names for combines is vGZZZ2D, where v is the same as shownin table 2. The position ZZZ indicates what type of operation should be performed whensending the data. The operations presently supported are shown on table 13.vGZZZ2DZZZ MEANINGMAX Entries of result matrix will have the value of the greatestabsolute value found in that position.MIN Entries of result matrix will have the value of the smallestabsolute value found in that position.SUM Entries of result matrix will have the summation of that position.Table 13: Values and meanings of combine routines' name positionsThe calling sequences for these routines are:vGSUM2D( SCOPE, TOP, M, N, A, LDA, RDEST, CDEST )41



vGMAX2D( SCOPE, TOP, M, N, A, LDA, RA, CA, LDIA, RDEST , CDEST )vGMIN2D( SCOPE, TOP, M, N, A, LDA, RA, CA, LDIA, RDEST , CDEST )Parameters:As before, output parameters are underlined.SCOPE Scope of processes to participate in operation. Limited to `ROW',`COLUMN', or `ALL'. See section 2.2 for details.TOP Network topology to be emulated during communication. Topologiespresently supported are discussed in section 5.4.M Row dimension of matrix being compared/summed.N Column dimension of matrix being compared/summed.A Input: Two dimensional array of values being compared/summed(element-wise). Output: 2D array of results. If a process calls theroutine but is not indicated to receive the �nal result, his array maybe overwritten with intermediate results.LDA Leading dimension of the 2D array A.RA Integer array (of size at least M x N) indicating the row index of theprocess that provided the maximum/minimum. If a process calls theroutine but is not indicated to receive the �nal result, his array maybe overwritten with intermediate results.CA Integer array (of size at least M x N) indicating the column index ofthe process that provided the maximum/minimum. If a process callsthe routine but is not indicated to receive the �nal result, his arraymay be overwritten with intermediate results.LDIA Leading dimension of the integer arrays RA and CA.RDEST Row index of process on which result is to be accumulated. On allother processes A, RA, and CA may be overwritten with intermediateresults. RDEST = -1 indicates the result is to be left on all partici-pating processes.CDEST Column index of process on which result is to be accumulated. On allother processes A, RA, and CA may be overwritten with intermediateresults. NOTE: if RDEST = -1, CDEST is not referenced.For an operation to proceed, all processes indicated by the SCOPE command must callthe given routine. Once again, an example should demonstrate how these routines are used.Assume we have a 2 x 4 process mesh (as shown in �gure 1). Process f1,3g needs themaximum of the matrix B (of size 4 x 4) over all processes. All processes would make thefollowing call:DGMAX2D('ALL', '1-TREE', 4, 4, B, 4, RA, CA, 4, 1, 3)Upon completion, process f1,3g would have three matrices that contain information on themaximize function. The matrix B is still of size 4 x 4. Element (1,2) of B would containthe element with the largest absolute value found on any process at matrix location (1,2).RA(1,2) would indicate what process row that maximum was found on, while CA(1,2) wouldtell which process column it was found on. 42



5.3 Related Topics5.3.1 Additional Bu�ering DemandsIn a broadcast or a send, only one bu�er is required (assuming the send is not being usedto simulate a send with a di�erent level of blocking { see section 6.2 for details). Data canbe sent from, received into, or in a broadcast/receive operation, both sent and received intothis one bu�er. Combine operations require at least two bu�er spaces. One space is neededto receive other processes' data, and the second bu�er stores the answer (so far) that theoperation has produced. A simple example would be in the DGSUM2D operation. One bu�eris received into, and then its' contents are added into another bu�er.This leads to two types of bu�ers. The �rst is a receive bu�er, which is used to receiveother process's contribution to the combine. The second bu�er is the result bu�er, whichstores the result of the operation. The receive bu�er must be contiguous, since it is receivingcontiguous messages. It is highly desirable that the result bu�er be contiguous as well.The Intel BLACS were originally written on the Intel i860, and our machine had only8MB of memory per node. The Touchstone Delta was a little better, with 16MB. However,on both machines, insu�cient memory was a constant problem. Therefore, in order toconserve memory space, the Intel BLACS never get more than one bu�er. For combines,this BLACS' allocated bu�er is used as the receive bu�er. The user's matrix A is then usedas the result bu�er. This saves memory, but it has several drawbacks. First, the user'sbu�er may not be contiguous in memory. This means that it requires two loops to performthe operation, and if the columns of A are short, there may be numerous cache misses.Further, messages cannot be directly sent from the result bu�er if it is not contiguous inmemory. If a message is to be sent from the result bu�er, it must be packed into the receivebu�er, and sent from there. This will require data copying.Unfortunately, it is almost always the case that we wish to send from the result bu�er.The usual way an operation proceeds is: receive into receive bu�er, combine this informationwith that already stored in the result bu�er, and then send this result on to another process.With this in mind, we see that a contiguous result bu�er will save many unneeded datacopies, since we could send directly from the result bu�er.On the SP1 and CM-5, the BLACS get two bu�ers, and therefore this situation ishandled more e�ciently (these platforms require at least two bu�ers anyway: one to performnon-blocking sends out of, and one to receive into { see section 6.2 for full details).As mentioned earlier, PVM does its own bu�ering. Since there is already the cost ofpacking and unpacking into the PVM bu�ers, it does not seem worthwhile for the BLACSto add yet another layer of bu�ering. Therefore, the user's matrix is used as the operationbu�er, and the PVM bu�er serves, mostly, as the communication bu�er. PVM allows onlypack/unpack access on its bu�ers, so we cannot perform the operation directly using thePVM bu�ers. The BLACS therefore allocate a bu�er equal to the column length, which isM (see section 2.1 for details). A column of data is then unpacked, operated on (leavingthe result in A), and then the M -length bu�er is overwritten with the next column. ForDGMAX2D and DGMIN2D these bu�ers are slightly longer. For the sum routines, the length isM � sizeof(type), where type is the data type being operated on. For max/min operations,the bu�er is of size M � (sizeof(type) + sizeof(short)). The extra M � sizeof(short) space isrequired to hold values indicating which process the max/min came from.43



5.3.2 Communication and Its E�ect on Fan-inFigure 36 shows a simple 5 to 1 fan-in. An understanding of the fan-in operation is neces-sary for an informed analysis of the combine topologies. The behavior of fan-in is systemdependent. ������������������������




� �������= ������������ ����������������)0 1 2 3 40S = 0S = 1 Figure 36: Simple 5 to 1 Fan-inIf the sending processes are not synchronized, it is very important that no orderingbe imposed by the receiver. The BLACS avoid this ordering by using the ID generatingalgorithm discussed in section 6.1.To analyze the cost of this operation, it is necessary to understand how the underlyingmessage passing platform works. An example should highlight the e�ect of di�erent schemeson performance.Assume that process 0 above is the last to enter the operation. On the Intel machines,this means that when 0 does begin the code, no Tc costs will be levied. This is becausethe Intel system bu�ers messages on the receiving process. Therefore, when 0 enters theroutine, the messages from all four processors are waiting to be accessed, and the cost,instead of Tc, will be that of a memory to memory copy (Tm). The cost of this operation isthen 4 � (Tm + To). An additional note is that processors 1; : : :4 can leave as soon as theirsend is completed.On the other hand, when using a blocking send such as available on the CM-5 or SP1,process 1; : : : ; 4 will enter the routine, and then wait. When 0 arrives, the receives areposted, the operations done, and the cost is 4 � (Tc + To). Further, process 1; : : :4 musteither wait until process 0 arrives, or issue non-blocking sends so that they may leaveimmediately.This sequence of execution is not necessary to obtain speedup on the Intel systems.Assume 0 enters the operation �rst. It then waits until the �rst processor arrives and sendsits message. At that point, it pays the Tc + To cost of receiving and operating on thedata. After that period of time, however, it is likely that at least one of the other processeswill have entered the code, and already have begun its send. If the processors are poorlysynchronized, this kind of savings can become appreciable.The SP1 or CM-5 will have to pay the full Tc cost regardless of order. Since there isno communication/computation overlap on these machines, not even the intelligent use of44



non-blocking message passing can prevent this.5.4 TopologiesAt the present time, only two topologies are supported for combines. All of the notationused in the discussion of broadcast topologies is required in this discussion. In addition, thetime To, de�ned to be the time required to perform the given operation (max, min, or sum)and TD, the time the destination processor spends in the algorithm, are also needed. Torigorously de�ne the To as used in the discussion below, To should include all time duringthe operation where the process is not communicating, and as such, its true value wouldbe To + �. Then, � would indicate the time to set up the loops, perform the function callsrequired by the algorithm, etc. Note that this � was ignored in our discussion of broadcasttopology, and we do the same here - it should be small enough to be overwhelmed by To.5.4.1 General Tree GatherThe �rst combine topology is the general tree gather, or fan-in, which is basically the samealgorithm as the general tree broadcast (or fan-out) described in the 4.3.2, except thatcommunication ows in the opposite direction. Figures 37 and 38 show the communicationpatterns of this algorithm with Nb = 1 and Nb = 4 (as before, Nb refers to the number ofbranches at each node of the tree).If all processors in the scope of the operation need the information, it is rebroadcastusing broadcast's general tree algorithm. This topology can be called in the exact sameway as broadcast's general tree algorithm, i.e. through the use of SETBRANCHES and settingTOP = 't', or by setting TOP ='1' : : :'9'.Assuming that only one processor needs the answer (the case when all processors requirethe answer will be dealt with later) this topology has many desirable features. First, ateach step of the algorithm only 1Nb of the processors left in the operation go on to the nextstep.It is di�cult to write a general tree timing analysis because much of the behavior ofthese trees depends on how the machine handles communication (i.e., is there computa-tion/communication overlap, where are messages bu�ered, etc.). However, careful analysiscan demonstrate that Nb = 1 will usually be the best choice to minimize TD on the systemspresently supported. It will be shown below that Nb � 2 will, in general, be slower thanNb = 1, assuming a processor can receive only one message at a time (this is the true forall present platforms).We may break the analysis of this algorithm into two distinct cases. The �rst is when To(time to perform sum/max/min) is greater than Tc (time to communicate). As we increaseNb, the height of the tree will decrease, with a corresponding increase in the number of To'sthat a receiving processor must perform at each step.Since To � Tc, only the �rst send in each step is costly. The rest of the Tc's can be accom-plished in the time where the previous To is operating (assuming computation/communicationoverlap). However, for the case where To � Tc, it is obviously not useful to subtract a Tc atthe price of adding a To.The other case, where To < Tc might then seem like an opportunity for high degreetrees to shine. A close analysis reveals this is not true. Again, as Nb increases, each re-45



������������������������������������ ���� ���� �������� ��������
S = 0S = 1S = 2S = 3

0000
1 22 3 444

5 66 7�����/ �����/ �����/ �����/��������+ ��������+����������������) Figure 37: General tree gather with Nb = 1������������������������������������ ��������
S = 0S = 1S = 2

000
1 2 3 4 55 6 7�����/ �����/��������+ ��������+������������ ����������������) ��������������������9 Figure 38: General tree gather with Nb = 446



ceiver performs the operation more and more times. However, since To < Tc, even assumingcomputation/communication overlap, the cost of the communication cannot be hidden en-tirely by To. The time each receiver spends will then be (again assuming a processor canreceive only one message at a time) Tc +Nb � To + (Nb � 1)(Tc � To) = Nb � Tc + To, thusTD � dlogNb+1(Np)e(Nb �Tc+To) (the � is here because the last step of the algorithm maynot have the full Nb senders).If we di�erentiate TD with respect to Nb, we get T 0D = ln(Np)[(Nb+1)ln(Nb+1)�Nb]�Tc�To(Nb+1) ln2(Nb+1) .If To < Tc, this function is strictly positive for all Nb � 2. This implies that TD is strictlyincreasing, which tells us that the destination processor's time increases with Nb. Therefore,once again, Nb = 1 is the best choice.Therefore, Nb > 1 will only be of use in special situations. If a processor can overlapreceives, Nb > 1 would be useful. If processors will be poorly synchronized when entering theoperation, larger Nb's may be useful. In this case, the large Nb would increase the likelihoodof a receiving processor having something to do while it waits for the next processor to enterthe operation. Nb > 1 also allows more processors to leave at each step. On a platform whereunreceived sends are bu�ered on the receiver (at the moment, only the Intel machines), ifsending processors arrives before receivers, all communication is essentially free, leavingonly To costs. Note that the number of receivers decreases as Nb increases, so this can beuseful.With these caveats, we can say that Nb = 1 is the interesting choice, and then, TD =dlog2(Np)e(Tc + To). If all processors require the answer, it is found as above, and thenbroadcast to all processors via the general tree algorithm described in section 4.3.2. Thelongest time any processor would then spend in the algorithm would be dlog2(Np)e(2�Tc+To)5.4.2 Bidirectional ExchangeThis topology is specialized for the case where all processors require the information (i.e.RDEST = -1, as described in section 5), and if RDEST does not equal -1, the general treealgorithm with Nb = 1 is called instead. It is based on an algorithm presented in [11]. Thistopology involves having pairs of processors exchange information, and thus it performs bestwhen Np is an integer power of 2. The communication pattern inherent in this algorithmis shown in �gure 39. As the user can see, this an extremely \noisy" algorithm: everyprocessor is sending and receiving at every step in the algorithm. It is called by settingTOP = 'h'.Unless the platform supports the overlap of sends and receives, this topology is inferiorto fan-in/fan-out. If sends and receives cannot occur simultaneously, the best speed thisalgorithm can achieve is TD = log2(Np) � (2 � Tc + To). This TD is for all processors. Fan-in/fan-out with Nb = 1 has the same maximal cost, but half of the processors �nish earlier.Therefore, this topology should only be used on platforms where sends and receives can beoverlapped.Assuming simultaneous send and receive, we have two interesting cases. If Np is aninteger power of two, all processors will spend roughly TD = log2(Np) � (Tc + To) in thealgorithm. If Np is not an integer power of two, the �rst step of the algorithm requiresprocessors beyond the power of two to send their values to processors within an integerpower of two, the normal bidirectional exchange takes place, and then the answers are sent47



������������������������������������������������������������������������������������������������S = 0S = 1S = 2 00
0

11
1

22
2

33
3

44
4

55
5

66
6

77
7�Qs �Qs �Qs �QsQk� Qk� Qk� Qk���� ���QQQs QQQsQQQk QQQk��� ��� ��� ���QQQs QQQsQQQk QQQk��� ����������� �������� �������� ��������HHHHHHHHjHHHHHHHHjHHHHHHHHjHHHHHHHHjHHHHHHHHY HHHHHHHHY HHHHHHHHY HHHHHHHHY��������������������������������Figure 39: Bidirectional exchangeback out to the non-power of two processors.This means that processors within an integer power of two will spend TD = Tc + To +Ts+ blog2(Np)c � (Tc+To) in the algorithm, and those processors beyond the integer powerof two will spend TD = 2 � Tc + To + blog2(Np)c � (Tc + To).In the best case, this algorithm will give all processors the answer in the same amount oftime that it takes to get the answer to one processor using the fan-in algorithm. However, itwill rarely be the case that this speed is realized. Not only must simultaneous send/receivebe allowed, but a twice the bandwidth is required, and a network of at least the richnessof a hypercube is required to avoid link conicts. Therefore, fan-in/fan-out should be usedin the general case, and this topology should be utilized only when timings show that it issuperior.5.5 TimingsHere we present timings for the sum combine operation, where the result is left on allparticipating processors. All platforms except the CM-5 possess only leave-on-all combines.The CM-5 possesses only leave-on-one combines. The BLACS possess both. Since themajority of the platforms have only leave-on-all combines, our comparisons are made withleave-on-all. On the CM-5, a leave-on-all combine is constructed by performing a leave-on-one, followed by a broadcast (analogous to the leave-on-all 1-tree of the BLACS).None of the machines natively possessed a maximization/minimization combine oper-ation which returned the processor which supplied the max/min. Therefore, max/min48



operations are not suitable for a system/BLACS comparison. Further, max/min are onlyrarely used on anything but scalars, so their performance throughout our 0; : : : ; 50; 000range is relatively uninteresting. Therefore, timings for maximization and minimization arenot presented. The user should be aware, however, that for large problems, the BLACSwill be considerably slower on max/min operations, since the extra information inherent insupplying the source of the max/min must be communicated along with the max/min data.5.5.1 Survey of TopologiesOur �rst action for global timings was to run a range of topologies and see which ones arebest. It was discovered that the 2 and higher level trees were quite bad for large N , justas our analysis had predicted. For extremely small N (i.e. in the range of N < 30), higherlevel trees were faster than 1-tree's. This was because synchronization became an issuefor such small messages (as mentioned in 5.4). For larger sizes, these trees inevitably didpoorly. Therefore, the survey graphs (�gures 40, 41, 42, and 43) feature 3 topologies, 1-tree(dashed line), bidirectional exchange (dotted line), and the system's sum (solid line).Since the CM-5 did not possess a leave-on-all combine, it was necessary to use a broad-cast to create a leave-on-all. However, since the BLACS have already been shown to possessa superior broadcast, this may seem prejudicial. Therefore, our CM-5 survey includes a sys-tem and BLACS leave-on-one combine.One look at the Paragon timings (�gure 41) should be enough to alert the reader thatsomething is wrong. When these timings were taken, a new (� release) version of theoperating system had just been installed on the Paragon, and it seems that there is anerror in the system's sum combine. It has been reported to Intel, and they are looking intoit. The BLACS are also noticeably superior to the CM-5's system combine. As with thebroadcast times, the next version of CMMD is supposed to feature faster combines.5.5.2 Accuracy of Theoretical ModelsThe time To is required to apply the theoretical models. To was obtained by looping overcalls to the BLACS summation routine. We then did a least squares �t over the 0; : : : ; 50; 000data range, as with other times. No particular insight is gained by the graphs, and so forspace purposes we just report the results. Table 14 gives the least squares �t of the timesfor the BLACS summation operation on the various platforms. Notice that the Paragonis slower than the i860 for To. This is rather surprising since the Paragon possesses afaster version of the same chip (a 50MHz i860, as opposed to a 40MHz). However, theParagon is running a full-blown unix operating system, including virtual memory, etc. It isassumed that the many background processes present in a full unix implementation causethis slowdown.Figures 44, 45, 46, and 47 show the predicted time (solid line) and the observed timefor bidirectional exchange (o's) and 1-tree (+'s).For the i860, we see that the prediction of 1-tree is accurate, but that for large N ,the bidirectional exchange prediction is considerably low. The Intel BLACS do not makeoptimally use the Intel's primitives in bidirectional exchange, with the result that some linkconicts occur between iterations of bidirectional exchange, and thus we see this gap.49



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of double precision elements

T
im

e
 i
n
 S

e
c
o
n
d
s

dotted : bidirectional exchange (reps=5)

solid : system (reps=5)

dashed : 1-tree (reps=5)

Figure 40: Survey of 32-processor i860 combines
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of double precision elements

T
im

e
 i
n
 S

e
c
o
n
d
s

Maximum time

dotted line : bidirectional exchange (reps=30)

solid line  : system (reps=30)

dashed line : 1-tree (reps=30)

Figure 41: Survey of 32-processor Paragon combines50



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

1.5

2

2.5

Number of double precision elements

T
im

e
 i
n
 S

e
c
o
n
d
s

Maximum time

dotted line : bidirectional exchange (leave-on-all, reps=10)

solid  line : system (leave-on-all, reps=10)

dashed line : 1-tree (leave-on-all, reps=10)

o : system (leave-on-one, reps=10)

+ : 1-tree (leave-on-one, reps=10)

Figure 42: Survey of 32-processor CM-5 combines
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of double precision elements

T
im

e
 i
n
 S

e
c
o
n
d
s

Maximum time

dotted line : bidirectional exchange (reps=10)

solid  line : system (reps=40)

dashed line : 1-tree (reps=40)

Figure 43: Survey of 32-processor SP1 combines51



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of double precision elements

T
im

e
 i
n
 S

e
c
o
n
d
s

Maximum time

o : bidirectional exchange (reps=5)

+ : 1-tree (reps=5)

line : Predicted BLACS time

Figure 44: Predicted vs. measured maximum time for i860 BLACS combine (sum)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T
im

e
 i
n
 S

e
c
o
n
d
s

Maximum time

o : bidirectional exchange (reps = 30 & 1)

+ : 1-tree (reps=30)

line : Predicted BLACS time

Number of double precision elementsFigure 45: Predicted vs. measured maximum time for Paragon BLACS combine (sum)52



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of double precision elements

T
im

e
 i
n
 S

e
c
o
n
d
s

Maximum time

o : bidirectional exchange (reps=10)

+ : 1-tree (reps=10)

line : Predicted BLACS time

Figure 46: Predicted vs. measured maximum time for CM-5 BLACS combine (sum)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of double precision elements

T
im

e
 i
n
 S

e
c
o
n
d
s

Maximum time

o : bidirectional exchange (reps=10)

+ : 1-tree (reps=40)

line :  Predicted time

Figure 47: Predicted vs. measured maximum time for SP1 BLACS combine (sum)53



SYSTEM To� �i860 -14 0.4145Paragon -45 0.4506CM-5 -392 1.0706SP1 -24 0.1052Table 14: Least squares �t of To (in microseconds) for various platformsThe Paragon prediction is low for both bidirectional exchange and 1-tree. Partly thisis because neither of the topologies will result in nearest neighbor communication on theParagon. The main cause of this gap, however, is link contention. Both strategies call formore links than the Paragon, which is a 2D grid, possesses. We see that these factors, plusthe non-optimal coding of bidirectional exchange mentioned above, cause the prediction tobe extremely poor for bidirectional exchange. The reader should notice that the bidirectionalexchange algorithm curve contains reps = 30 and reps = 1 runs. This is because for largeproblem sizes the extreme link contention involved in performing multiple repetitions ofbidirectional exchange would e�ectively cause a hang on the Paragon. We therefore ransome of the larger sizes by doing only a single repetition. We may therefore conclude thatbidirectional exchange (at least in its present form) should never be used on the Paragon.On the CM-5, we see that our prediction is slightly low for both algorithms. This smallerror in the prediction is probably due to the fact that the CM-5 does not possess enoughlinks to stop link contention, and that this communication pattern will not be nearestneighbor.The SP1's combine times, like those of it's broadcast, are slower than predicted. Again,further investigation will be required to determine the cause. At any rate, while the under-estimation is noticeable, it is not gross.Table 15 shows the relative errors of prediction versus actual times. If T o(i) is theobserved time at the ith data point, and T p(i) is the predicted time, then we de�ne therelative error of the prediction as RE = max1�i�11(jT o(i)� T p(i)j=jT p(i)j). Note that thepredicted time is in the denominator, unlike the relative error used for broadcasts. Wechoose this relative error because, for the systems supported here, bidirectional exchangeand 1-tree have the same predicted time. Therefore, by using the predicted time in thedenominator, the relative error will tell us which algorithm is closest to the predicted time.SYSTEM Bidirectional Exchange 1-treei860 10.72% 3.05%Paragon 78.16% 19.99%CM-5 7.04% 7.98%SP1 55.08% 45.13%Table 15: Relative errors for predicted combine timesAs with the point to point timings, we �nd that at the �rst data point (N = 0) the time54



is not large enough to give reliable results at the number of repetitions chosen, and thus itis ignored in our computation of RE. The SP1 once again has a large relative error. Aswith the broadcast predictions, only in the �rst few points have this large error.5.5.3 Validity of TimingsAs in the broadcast section, the system and the best BLACS topology are further analyzedto determine validity. Every �fth point is ran 10 additional times to observe the variance.Normal data points are indicated by o's, and those data points with reps=1 are indicatedby +'s (due to time constraints, we were unable to obtain any reps=1 times on the SP1).The least squares �t is the solid line.Examining �gures 48, 49, 50, and 51 should convince the reader that the use of multiplerepetitions has no real e�ect on our timings on the i860, Paragon, or CM-5. We cannotmake this assertion for the SP1, since we have no reps=1 times.Table 16 gives the relative errors and least squares �t of the data points. These leastsquares �ts should demonstrate to the reader that not only are the BLACS quite competitiveacross all platforms, but indeed are slightly better on some. Again, the CM-5 is the onlyplatform where the di�erence is large enough to be alarming, and we are told that the nextversion of CMMD provides for faster combines. As far as validity of the data is concerned,we see that, as usual, the Paragon and SP1 have the most suspicious data. However, witha maximal RE of around 10%, even these times are fairly reliable. Notice that the we donot present the Paragon's system data, since there appears to be an error in the presentversion. SYSTEM SYSTEM TIMES BLACS TIMES� � Rel Err � � Rel Erri860 -214 33.1828 3.60% 2828 30.9618 0.66%Paragon N/A N/A N/A 3502 4.8024 7.47%CM-5 -3529 40.7289 0.29% 1883 15.8834 1.12%SP1 8968 12.4721 9.88% 23675 12.1638 10.07%Table 16: Least squares �t (microseconds) and relative error of combine times for N =0; : : : ; 500006 Implementation and Portability Issues6.1 Message Identi�ersBecause it may be of interest to other researchers, a sketch of the BLACS' ID generationalgorithms follows. There are two di�erent algorithms, one for point to point ID generation,and one for when the operation involves a scope.After the user has accepted the default, or has speci�ed a legal range of msgid valuesfor the BLACS to use (via the support routine SHIFT RANGE), this range is split in two.The �rst range is reserved for point to point IDs, and the second is reserved for the scopedroutines. 55



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

+ : observed time with reps=1

o : observed time with reps=5

line : least squares fit of reps=5 times

System combine (sum)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

+ : observed time with reps=1

o : observed time with reps=5

line : least squares fit of reps=5 times

BLACS 1-tree combine (sum)

Figure 48: Variance between 32-processor i860 combine runs
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

+ : observed time with reps=1

o : observed time with reps=10
line : least squares fit of reps=10 times

BLACS 1-tree combine (sum)

Figure 49: Variance between 32-processor Paragon combine runs56



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

1.5

2

2.5

+ : observed time with reps=1

o : observed time with reps=10

line : least squares fit of reps=10 times

System combine (sum)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

1.5

2

2.5

+ : observed time with reps=1

o : observed time with reps=10

line : least squares fit of reps=10 times

BLACS bidirectional exchange combine (sum)

Figure 50: Variance between 32-processor CM-5 combine runs
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

o : observed time with reps=40

line : least squares fit of reps=40 times

System combine (sum)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

o : observed time with reps=40

line : least squares fit of reps=40 times

BLACS 1-tree combine (sum)

Figure 51: Variance between 32-processor SP1 combine runs57



Before the details of the algorithm are described, the cost of this algorithm should bementioned. In terms of memory, each process requires: 3 integer vectors of size Ng, 1 integervector of size P , and 1 integer vector of size Q. The need for these vectors is explainedbelow. The computation of a msgid requires roughly �ve integer operations.6.1.1 Point To Point Message ID GenerationLet Ng = P � Q, the number of processes in the grid. Each process keeps two vectors(sndcount and rcvcount), each of length Ng, which contain a history of its point to pointcommunication within the grid. These vectors are indexed by a virtual process ID (Vpid).The actual process ID cannot be used since, if the grid was set up by calling GRIDMAP,process IDs do not have any �xed relation to grid coordinates.To obtain the virtual process ID of process fp, qg, the formula is Vpid = p � Q + q.Therefore, rcvcount[i] contains the number of times the process has received from theprocess with Vpid = i. Similarly, sndcount[i] indicates how many times the process hassent to Vpid = i.We split the point to point range of IDs into Ng subranges. Subrange i will be reservedfor messages who's source has a Vpid of i. Messages from source i will have a msgid thatstarts in its subrange, plus the count of the number of sends it has made to the receivingprocess.The receiver calculates the ID similarly. It knows the source's Vpid from the inputparameters RSRC and CSRC. It then uses the same calculation as the source process did,except where the source uses the number of times it has sent to the receiver, the receiveruses its count of the number of times it has received from the sender.6.1.2 Scoped Message ID GenerationAt present, all of our scoped operations are implemented as a series of point to pointcommunications. We could therefore use point to point msgids for scoped operations. Thereare several reasons this is unsatisfactory.The most important reason is that if we are fanning information into a process, such asoccurs in the combine operations (see section 5.4), one process may be receiving informationfrom several other processes. If we use the above scheme of message generation, we mustknow who is sending the message before we can receive. In a fan-in operation, however,all the messages may be identical in the sense that the order in which they are received isunimportant. Then, for optimization reasons, it is not a good idea to force an order ontothe receives (in the worst-case scenario, forcing an arti�cial ordering can almost double thetime for the fan-in).A second reason to avoid using the point to point ID generating routines is that a scopedoperation may involve several steps, and at each one a new ID would have to be generated.Furthermore, the only information we have is the process that is the source (for broadcast)or destination (for combines) { for point to point msgids, we need to know who is doing theactual sending. The process presently sending is topology dependent, and the special casecode could wind up being too costly.We therefore implement a slightly di�erent ID generator for scoped operations. Thescoped ID subrange is subdivided in three, one for each scope. For each scope, two counters58



are kept. One is a scalar that counts the number of broadcast/sends the process hasinitiated. The other is a vector, which keeps track of the number of times the processhas participated in a broadcast/receive initiated from other processes in the scope, and istherefore of the same length as the number processes in the scope. This means that thecount for scope = `ROW' is of size Q, for scope = `COLUMN' it's of size P , and for scope= `ALL', it's of size Ng.The algorithm is now the same as for point to point, each subrange is further dividedto provide a range for each sender, etc. Note that we now need only a scaler to countthe number of sends, because the destination for each scope is always the same: the entirescope.6.2 Bu�eringAt the moment, bu�ering is done di�erently on all platforms except the CM-5 and theSP1. On PVM, the PVM system does the bu�ering of messages, and the only bu�er spacethe BLACS ever need is for combine operations, where a workspace corresponding to theparameter M is required (see section 5.4 for details).6.2.1 Bu�ering On the Intel MachinesThe Intel platforms feature locally-blocking sends, so if the user's data is already contigu-ous, the message is sent/received directly from/into the user's space. A BLACS bu�er isrequired only when the user communicates non-contiguous data. There are two ways forthe BLACS to be given non-contiguous data to send/receive. The �rst is to use one ofthe general rectangular routines, and specify the parameters N > 1 and M 6= LDA (see sec-tion 2.1 for explanation of matrices and these parameters). The other option leading tonon-contiguous data is the sending/receiving of trapezoidal matrices. Since only a sectionof the whole matrix is to be sent/received, it must be packed into contiguous storage forthe communication.The bu�ering strategy on the Intel systems is therefore fairly straightforward. Thesystem starts out with no bu�ers allocated. If the user issues a request to communicatenon-contiguous data, a bu�er of the correct size (M * N) is allocated. Allocating memory isnot free, so we do not release the bu�er once the send/receive is complete. If we now receivefurther calls which require a bu�er space less than or equal to what we already have, wedon't have to pay the cost of another memory allocation.The BLACS bu�er will be released on only three occasions. The �rst is at a call tothe support routine BLACSEXIT, which indicates all use of the BLACS is over. The supportroutine FREEBBUFF exists so that if the user needs the space for his own code, he canexplicitly free the BLACS bu�er. Finally, if a non-contiguous message requires more bu�erspace than is currently available, the present bu�er will be released and a new bu�er of thecorrect size will be allocated.6.2.2 Bu�ering for the CM-5 and SP1 PlatformsSince the CM-5 and SP1's native sends are globally-blocking, the BLACS must simulate alocally-blocking send using non-blocking sends coupled with bu�ering.59



Bu�ering the data is a straightforward way to simulate locally-blocking sends. Eachsend request results in the BLACS copying the data to an internal bu�er, starting an non-blocking send, and then returning control to the user. The BLACS must not touch thebu�er until the non-blocking operation is complete, but the user does not need to knowabout that { it is handled behind the scenes.To fully simulate locally-blocking sends requires dynamic bu�ering, which allows asmany unreceived sends to be issued as available memory will support. However, the over-head in managing dynamic bu�ers can be large, and the sender's time must be optimized.This is due to the fact that when performing a send, the time required to initiate the sendis added not only to the sender's time, but to the time of all processors waiting to receivefrom the sender as well. For instance, if a processor is sending to four other processors, anydelay experienced by the sender also delays the receivers, assuming they have called thereceive routine.It is obvious that bu�ering causes a slight delay in each send, but we feel it is worththe cost of a memory copy to avoid the kinds of hanging problems previously discussed. Ifdata being communicated is contiguous, we can still receive directly into the user's space.In the �rst release of the CM-5 BLACS (the one presently available on netlib), due toits high overhead, dynamic bu�ering was not supported. Instead, two bu�ers at most wereallocated. When those bu�ers �lled up, if further unreceived send requests were posted,a hang would occur. This solution would make it so the code fragment given in section 3would run, but if that code were changed so that each process sent twice to the other beforeposting the corresponding receives, a hang would occur.This was a workable temporary solution, simply because it is rare to �nd codes thatrequire more to prevent a hang. This state of a�airs continued until a more general methodwas discovered.The key concept for performing less expensive dynamic bu�ering is that all of the over-head associated with dynamic bu�ering should be performed after the non-blocking sendis initiated, but before the function returns. The present bu�ering strategy is explainedbelow.There are three states a bu�er can be in. The �rst state is active. Active bu�ers arebu�ers from which non-blocking operations are being performed. Usually there is only oneoperation per bu�er, but during broadcasts, the BLACS may send up to Ng � 1 messagesfrom the same bu�er.The second state is ready. A ready bu�er is a bu�er that is available for use. Only oneready bu�er is kept by the BLACS.The last state is transitory. When the non-blocking operations of an active bu�er are�nished, the bu�er becomes inactive. When the BLACS poll and discover the bu�er isinactive, the inactive bu�er is compared with the present ready bu�er (if a ready bu�erexists). If the inactive bu�er is larger than the ready bu�er, the ready bu�er is released,and the inactive bu�er becomes the ready bu�er. If the ready bu�er is bigger than theinactive bu�er, the inactive bu�er is released.In general then, the way this system works is that when a sending routine is called, itimmediately uses the ready bu�er for its packing. If the ready bu�er does not exist, one ofthe needed size is allocated. If the ready bu�er exists, but is too small, the present readybu�er is released, and a new bu�er of the correct size is allocated. After the send is begun,60



the ready bu�er is moved onto the active bu�er queue. Then, before control is returned tothe user, the active queue is checked for bu�ers that have become inactive. Inactive bu�ersbecome the ready bu�er so that the next send operation won't have to allocate its own.Whenever any of the main BLACS routines are called, the status of the bu�ers is checked.If there are any active bu�ers, they are polled to determine if they have become inactive.If they have, they are treated as described above.This algorithm results in a system where at most one unused bu�er is in memory. Itmay occur, however, that enough outstanding sends are issued that the BLACS are unableto allocate further memory. If this occurs, the BLACS call an emergency routine whichwaits for a user de�nable amount of time for active bu�ers to become inactive. If timeexpires before a bu�er becomes available, it is assumed a hang has occurred (i.e. the userhas issued many sends, but has not issued the corresponding receives), and the BLACS exitwith an error message.The most important thing to note about this algorithm is that the handling of thequeues, the polling for non-blocking operation completion, etc., is done after the send isbegun. This means that the sender will have to pay these costs, but those processors waitingto receive from him will not.7 Future DirectionsThis section presents some proposed future directions for the BLACS. Some are more likelyto be pursued than others. These directions are roughly separated into two categories. The�rst category involves extensions of the BLACS standards; optimizations to the presentcode make up the second.7.1 Possible Extensions to the BLACS7.1.1 Arbitrary ScopesThe 2D process grid allows for three natural scopes, as has been previously discussed. Thismay seem unnecessarily restrictive. It is a relatively simple matter to modify the scopedroutines to allow for arbitrary scopes, where the scope is de�ned, for instance, by a lineararray of processes passed in as a vector. However, there are certain drawbacks to this. First,all message IDs will have to be generated using the point to point algorithm presented insection 6.1, since the scoped ID generation algorithm depends on having static scopes.There is also an increased opportunity for user error, since it would be up to the user toensure that everyone calling the operation had the correct scope vector.Using arbitrary scopes would obviate the idea of a 2D process grid, and the entireinterface would have to be re-designed. Therefore, if arbitrary scopes are later seen tobe required for certain types of algorithms, a new interface using the same BLACS coreroutines will have to be written, and this version will not be the 2D BLACS, since the gridwould no longer possess any special relevance.61



7.1.2 Wildcard ReceiveAt present, the user must specify which process is the source of the incoming message inorder to post a receive. This can result in operations that are ine�cient because of unneededordering of receives. The most obvious example of this is the simple fan-in with functionallyequivalent messages (i.e., a group of processors send data to a receiving processor, whichdoes not care about the order in which it receives the messages). This kind of fan-inoccurs regularly in combine operations, but by using the ID generating scheme presentedin section 6.1, the BLACS avoid the unneeded ordering. If the fan-in is written using theBLACS' point to point communication, however, the user cannot avoid the ordering.It is therefore proposed to extend the point to point receive by allowing the user topass in RSRC = -1, which indicates that any message will be received. The address ofthe process that actually sent the message will be returned in RSRC and CSRC. This ispotentially dangerous: the BLACS cannot compute a message ID until the sender is known,and therefore any outstanding message directed to the receiving process will be accepted.It will be the user's responsibility to ensure that no unwanted messages are outstandingwhen this wildcard receive is issued.7.1.3 Additional Combine OperationsThe BLACS presently provide three combine operations, which allow maximization, min-imization, or summation on rectangular matrices. Several algorithms require trapezoidalsummation, and there have been requests for exclusive OR, sum of squares, and other com-bines. It is clearly impractical for one package to support all conceivable operations. Apromising idea, however, is to provide a combine called, for example, vTUOP2D, which is atrapezoidal user-de�ned operation. If UPLO = `G', the matrix will be assumed to have ageneral rectangular shape, rather than a trapezoidal.In addition to the usual parameters, the user will pass in three function pointers. The�rst will be an initialization routine, the second points to the function which performs theuser's operation (exclusive OR, for instance), and the �nal will be a routine which performsany needed post-operation computation. In this way, the BLACS combines may supportalmost any associative and commutative operation.7.1.4 Built-in Debug and Timing LevelsTo avoid unnecessary overhead, the BLACS presently perform almost no error checking andtake no timings at all. However, when an error occurs in a code, it is often di�cult to trackthe error down. Therefore, we propose to add the pre-processor variable BlacsDebugLvl.So that certain statistics useful in code optimization can be determined, the pre-processorBlacsTimingLvl will also be added. These variables will be used to selectively compiledi�erent portions of code. If both are set to 0, the code will be the same as today: notiming or debug information available.At the present, roughly three debug levels seem practical. Level 1 would perform mainlyparameter checking, and its e�ect on speed should be negligible.Level two would be more active, and would involve using non-blocking receives cou-pled with polling to detect hangs. When such a hang occurred, messages explaining what62



operation was being performed, etc., should be helpful in �nding the cause. This level ofdebugging would include everything short of o�-process access of data in its attempt todiscover errors. Its heavy use of polling would cause it to be noticeably slower than level 0or 1.Level three would be extremely intrusive. It could involve anything, including send-ing/receiving extra messages to ensure things are working correctly.Since these levels are determined at compile time, no speed is lost if the user needs nodebugging help. If required, however, the BLACS could be compiled with a higher level ofdebugging, and the user could link to the debug version until the code was fully developed.Then, for production runs, the code would be linked to the optimized version (debug level0). The timing level would work similarly, with several levels of increasingly intrusive tim-ings. A survey of users is required before these levels may be �nalized, but a few statisticsare of obvious use. These include time spent in each BLACS routine, time spent waitingfor/sending messages, number of messages sent, maximum, minimum, and average messagelength, etc. These kinds of data will allow the developer to get an idea of where the majorityof time is spent, and thus where optimization is required.7.2 OptimizationsThere are many optimizations that are available for exploration. In this section we discusssome of the more interesting ideas.7.2.1 Intel BLACSThe �rst implementation of the BLACS was on the Intel machines, and since we learn fromexperience (we hope), it is not surprising that this platform contains the most easily seenareas for improvement. The greatest opportunity for optimization should come from theuse of non-blocking messages. At present, the Intel BLACS use no non-blocking messagesat all. Those times when the BLACS copy data to a bu�er anyway (when the message isnot contiguous in memory), it certainly makes sense to exploit non-blocking sends. Evenwhen the message is sent from the user's bu�er, non-blocking sends may help speed upbroadcasts, where the sender sends the same message to more than one processor.A second area for improvement is in the combine's bu�ering. When enough memory isavailable, two bu�ers can be allocated, so that cache usage is maximized, and the resultbu�er can be used to send data directly.The use of forced type messages needs to be investigated. Forced type messages arelocally-blocking sends with no bu�ering. As previously mentioned, regular messages arebu�ered on the receiving process. To accomplish this, an Intel send �rst sends a request forbu�er space to the receiver, and when an acknowledgment is returned, the actual messageis sent. A forced type message avoids this bu�er request, resulting in faster communication.Forced type messages are also the only practical way to allow a processor to simultaneouslysend and receive messages. Because this implementation does not use forced types for thebidirectional exchange algorithm, we have seen that it does poorly on the Intel. Intelligentuse of forced type messages should noticeably decrease the time required for bidirectionalexchange. Other uses of forced types should also be explored.63



Finally, with the introduction of the Paragon, Intel added new routines to their com-munication library. Use of these new routines needs to be investigated, to see if it is worthhaving a Paragon-speci�c version of the BLACS.7.2.2 CM-5 BLACSIt should �rst be noted that the primary problem on the CM-5 at this time is an inability toaccess the vector units of the machine. Because of the way the machine is set up, fortran 77or C message passing codes basically see the machine as a collection of Spark-2 processors. Inthis con�guration, codes are far more likely to be computation bound than communicationbound. Therefore, unless faster processor speeds are achieved, optimizations to the BLACSare unlikely to have a real e�ect on the speed of most codes.With this in mind, we briey survey a few optimizations for the CM-5. We have seenthe the CM-5's locally-blocking send is better, at least in regards to the echo test, than thatpresently used in the BLACS. We need to investigate where in the BLACS this primitivecan be e�ciently utilized. It seems likely that we can use the CM-5's locally-blocking sendto support the BLACS point to point communication, and thus improve the BLACS pointto point performance.When the CM-5 BLACS were written, it had not been de�ned that the broadcast andcombine operations were globally-blocking. We therefore did a data copy to make them(when possible) locally-blocking. Since they are now de�ned to be globally-blocking, wecan save the cost of the data copy. This will result in even more e�cient scoped operations,which are already faster than those provided by the system.The CM-5 possesses a message passing layer beneath the CMMD layer presently used inthe BLACS. This layer (called CMAML) can be used to build a very rich message passingsystem. For instance, a routine allowing a processor to execute a remote procedure call,i.e., call a routine on another processor, is available. This capability could be exploited inorder to cause the receiver to do bu�ering, for instance.There are numerous other optimizations that CMAML would allow. The present CM-5 BLACS implementation does not use CMAML because it is not guaranteed to remainconstant as software is updated. Still, if the speed win is great enough, it may be worthhaving to update the code when CMAML is changed.7.2.3 SP1 BLACSAs with the CM-5, now that the broadcast and combine operations are de�ned as globallyblocking, we can speed up these operations by avoiding the memory copy.We have seen that the SP1's combine and broadcast are faster than the BLACS. If this isstill the case after optimization for the platform is �nished, we can add the SP1's broadcastand combine as topologies for the BLACS. Unlike the other platforms, the SP1's primitivesallow groupings which can be used to support the BLACS scoped operations.7.2.4 PVM BLACSBy its very nature, little can be said about the underlying architecture of a PVM machine.One area where PVM often di�ers from other supported platforms, however, is that PVM64



is often implemented on systems where there is only one communication link for the entiresystem (ethernet, token ring, etc). In this case, most topologies are useless. Since only oneprocess may be sending at a time in such a system, using trees or multiple rings for thebroadcast changes nothing.However, there is a topology that can be added that, at least theoretically, should providespeedup for combines. Broadcast topologies cannot be improved, because the entire timein the algorithm consists of message passing. Combines, as discussed earlier, have two timecomponents. While one section of processors are communicating, another section can beperforming the local operation (max/min/sum).It is therefore proposed to add a multiring combine topology. The amount of speedupthat can be obtained will depend on the ratio of To to Tc. If To � Tc, then we may useTo=Tc rings to achieve a speedup of of roughly To=Tc. True speedup will be less than this,due to link contention and improper synchronization.If To � Tc, the speedup obtained by using multiple rings will probably not be worth theadded link contention. Unfortunately, for most systems using standard ethernet, this maybe the case. However, we are increasingly seeing systems that, while they have only onelink, that link is very fast. In this case, we should see some speedup. Therefore, a multiringscoped operator should be interesting. Codes that are strongly pipelined might conceivablybene�t from this topology as well.8 ConclusionWhile there are many avenues of investigation still to be pursued, we believe we have metthe basic goals of the project. Codes written using the BLACS can run unchanged onthe iPSC2, i860, Touchstone Delta, Paragon, CM-5, SP1, and PVM. Support for scopedoperations, message ID computation, sending of matrices, and locally-blocking sends greatlyenhance the programmability and ease of use of the library.We have shown that the only real loss of performance comes in point to point commu-nication, where supporting locally-blocking sends causes the CM-5 BLACS, and to a lesserextent the SP1 BLACS, to compare unfavorably to the system code. We feel the addedprogrammability of locally-blocking sends makes this sacri�ce worthwhile.In broadcasts and combines, the BLACS are quite competitive, and sometimes even beatthe system primitives in minimizing maximal time in the algorithm. However, by varyingthe topology parameter, the BLACS allow for a much greater variety of broadcast/combinebehavior, resulting in code that is more easily made to �t the user's speci�c needs.
65



REFERENCES

66



References[1] G. A. Geist, A. L. Beguelin, J. J. Dongarra, W. Jiang, R. J. Manchek, andV. S. Sunderam., PVM 3 User's Guide and Reference Manual, Technical ReportORNL/TM-12187, Oak Ridge National Laboratory, Oak Ridge, Tennessee, May, 1993[2] MPI Forum, MPI: A Message Passing Interface, Proceedings of Supercomputing '93,pgs 878-885 IEEE Computer Society Press, 1993.[3] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff, A set of level 3 basiclinear algebra subprograms, ACM Trans. Math. Soft., 16 (1990), pp. 1{17.[4] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, An extendedset of FORTRAN basic linear algebra subprograms, ACM Trans. Math. Soft., 14 (1988),pp. 1{17.[5] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, Basic linearalgebra subprograms for Fortran usage, ACM Trans. Math. Soft., 5 (1979), pp. 308{323.[6] Jack J. Dongarra, Robert A. van de Geijn, and R. Clint Whaley TwoDimensional Basic Linear Algebra Communication Subprograms. Environments andTools for Parallel Scienti�c Computing, Elsevier Science Publishers B.V., 1993.[7] E. Anderson, Z. Bai, C. Bischof, J.W. Demmel, J. J. Dongarra, J. Du Croz,A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK:A portable linear algebra library for high-performance computers, Computer ScienceDept. Technical Report CS-90-105, University of Tennessee, Knoxville, 1990. (LAPACKWorking Note 20).[8] J. Dongarra, R. van de Geijn and D. Walker, A Look at Scalable Dense LinearAlgebra Libraries, LAPACK Working Note 43, technical report, University of Ten-nessee, 1992.[9] J. Dongarra and R. van de Geijn, Two Dimensional Basic Linear Algebra Com-munication Subprograms, LAPACK Working Note 37, technical report, University ofTennessee, 1991.[10] J. Choi, J. Dongarra R.Pozo and D. Walker, ScaLAPACK: A Scalable LinearAlgebra Library for Distributed Memory Concurrent Computers, LAPACK WorkingNote 55, technical report, University of Tennessee, 1992.[11] M. Barnett, R. Littlefield, D. Payne, and R. van de Geijn, \Global Combineon Mesh Architectures with Wormhole Routing, to appear in the proceedings of the 7thInternational Parallel Processing Symposium, Newport Beach, CA, April 13-16, 1993[12] Ching-Tien Ho and S. Lennart Johnsson, Distributed Routing Algorithms forBroadcasting and Personalized Communication in Hypercubes, Proceedings of the 1986International Conference on Parallel Processing, IEEE, 1986.67



[13] T. H. Dunigan, Performance of the INTEL iPSC/860 Hypercube Technical ReportORNL/TM-11491, Oak Ridge National Laboratory, Oak Ridge, Tennessee, May, 1990.[14] G. A. Geist and M. T. Heath and B. W. Peyton and P. H. Worley, A users'guide to PICL: a portable instrumented communication library, Oak Ridge NationalLaboratory, September 1990.

68



APPENDICES

69



A Example Code: Matrix Vector MultiplyThe following program performs a distributed matrix-vector multiply, and �gures in�nitynorms of distributed vectors and matrices using the BLACS. This example uses point-to-point communication, global operations, and broadcasts. Notice in the code that we maymake BLACS calls with only the �rst letter of scope and topology as parameters, or wemay write out the full words. Figure 52 shows how the data would be distributed on a2 x 2 processor grid. LM and LN refer to Local matrix rows and Local matrix columns,respectively. DATA STRUCTURE PROCESSOR GRIDALM LNA11 A12A21 A22 �x bLN LMx1x2 b1b2= 0 101 A11 x1 b1A21 x1 b2 A22 x2 b2A12 x2 b1Figure 52: Matrix-vector multiply on 2 x 2 processor grid.
70



PROGRAM MVMULT** .. External Functions ..INTEGER IDAMAXDOUBLE PRECISION DRAND, DINFNRMEXTERNAL IDAMAX, DRAND, DINFNRM** .. External Subroutines ..EXTERNAL AUXSETUP, BLACSINIT, GRIDINFO, DGMAX2D, DGSUM2D, DGEMV* ..* .. Intrinsic Functions ..INTRINSIC INT, REAL, SQRT** .. Scalars ..INTEGER LDA, LM, LNPARAMETER (LDA = 50)PARAMETER (LM = LDA)PARAMETER (LN = LDA)INTEGER IAM, NNODES, NPROW, NPCOL, MYROW, MYCOLINTEGER I, J, ITMP1, ITMP2DOUBLE PRECISION NORMA, NORMB, NORMX, NORMTST** .. Arrays ..DOUBLE PRECISION A(LM,LN), X(LN), B(LM)** Find out how many processors have been allocated for use* CALL INITPINFO(IAM, NNODES)** For PVM only: if virtual machine not set up, allocate* it with 8 processes* IF (NNODES .LT. 1) THENNNODES = 8CALL AUXSETUP(IAM, NNODES)END IF** Figure processor grid I want to use* NPROW = INT(SQRT(REAL(NNODES)))NPCOL = NNODES / NPROW** Define the processor grid, and get grid information* 71



CALL BLACSINIT(NPROW, NPCOL)CALL GRIDINFO(NPROW, NPCOL, MYROW, MYCOL)** If I'm not in new processor grid, goto end of program* IF (MYCOL .GE. NPCOL .OR. MYROW .GE. NPROW) GOTO 100** Generate distributed matrix A* A(1,1) = DRAND(MYROW*NPCOL+MYCOL)DO 10 J = 1, LNDO 10 I = 1, LMA(I,J) = DRAND(0)10 CONTINUE** Figure the infinity norm of A* NORMA = DINFNRM(LM, LN, A, LDA, B)* IF (MYROW .EQ. 0) THEN** Generate vector X, distributed over processor row 0.* X(1) = DRAND(MYCOL)DO 20 J = 1, LNX(J) = DRAND(0)20 CONTINUE** All processor rows need a copy of X, so broadcast within columns* CALL DGEBS2D('COLUMN', 'HYPERCUBE', LN, 1, X, LN)* ELSE** Receive my piece of X from processor row 0.* CALL DGEBR2D('COLUMN', 'HYPERCUBE', LN, 1, X, LN, 0, MYCOL)* END IF** Figure the infinity norm of X* NORMX = X(IDAMAX(LN, X, 1))CALL DGMAX2D('R', 'H', 1, 1, NORMX, 1, ITMP1, ITMP2, 1, -1, 0)72



** Do b = A*x, where b is distributed over a processor column* NOTE: all processor columns have a copy of b** perform local A*x* CALL DGEMV('N', LM, LN, 1.0D0, A, LDA, X, 1, 0.0D0, B, 1)** Add in pieces of A*x done on other processors* CALL DGSUM2D('ROW', 'HYPERCUBE', LM, 1, B, LM, -1, 0)** Figure the infinity norm of B* NORMB = B(IDAMAX(LM, B, 1))CALL DGMAX2D('C', 'H', 1, 1, NORMB, 1, ITMP1, ITMP2, 1, -1, 0)** Print out norms* IF (MYROW.EQ.0 .AND. MYCOL.EQ.0) THENWRITE (*, 1000), 'A', NORMAWRITE (*, 1000), 'x', NORMXWRITE (*, 1000), 'b', NORMBEND IF** Mainly in order to show an example of using point-to-point* communication, the following test is done: is processor {0,0}'s* NORMB the same as processor {nprow-1, npcol-1}'s.* IF (MYROW .EQ. NPROW-1 .AND. MYCOL .EQ. NPCOL-1) THENCALL DGESD2D(1, 1, NORMB, 1, 0, 0)ELSE IF (MYROW .EQ. 0 .AND. MYCOL .EQ. 0) THENCALL DGERV2D(1, 1, NORMTST, 1, NPROW-1, NPCOL-1)IF (NORMTST .NE. NORMB) WRITE(*, 2000) NORMB, NORMTSTEND IF*100 STOP*1000 FORMAT ('||',A,'|| = ',G20.15)2000 FORMAT ('ERROR: ||B||''s do not match. Values are: ',$ G20.15,G20.15)** End program MVMULT* END 73



DOUBLE PRECISION FUNCTION DINFNRM(LM, LN, A, LDA, WORK)** -- BLACS example routine --** .. Scalar Arguments ..INTEGER LM, LN, LDA** .. Array Arguments ..DOUBLE PRECISION A(LDA, *), WORK(*)** PURPOSE:* ========** Compute the infinity norm of a distributed matrix, where* the matrix is spread across a 2D processor grid.** Arguments* =========** LM (input) INTEGER* Number of rows of the global matrix owned by this processor.** LN (input) INTEGER* Number of columns of the global matrix owned by this processor.** A (input) DOUBLE PRECISION, dimension (LDA,N)* The matrix who's norm you wish to compute.** LDA (input) INTEGER* Leading Dimension of A.** WORK (temporary) DOUBLE PRECISION array, dimension (LM)* Temporary work space used for summing rows.** .. External Subroutines ..EXTERNAL DGSUM2D, DGMAX2D, GRIDINFO** .. External Functions ..INTEGER IDAMAXDOUBLE PRECISION DASUM** .. Local Scalars ..INTEGER NPROW, NPCOL, MYROW, MYCOL, I, JDOUBLE PRECISION MAX* 74



* .. Executable Statements ..*** Get processor grid information* CALL GRIDINFO(NPROW, NPCOL, MYROW, MYCOL)** Add all local rows together* DO 20 I = 1, LMWORK(I) = DASUM(LN, A(I,1), LDA)20 CONTINUE** Find sum of global matrix rows and store on column 0 of processor grid* CALL DGSUM2D('r', '1', LM, 1, WORK, LM, MYROW, 0)** Find maximum sum of rows for supnorm* IF (MYCOL .EQ. 0) THENMAX = WORK(IDAMAX(LM,WORK,1))IF (LM .LT. 1) MAX = 0.0D0CALL DGMAX2D('c', 'h', 1, 1, MAX, 1, I, J, 1, -1, 0)END IF** Processor column 0 has answer: send answer to all nodes* IF (MYCOL.EQ.0) THENCALL DGEBS2D('r', 'h', 1, 1, MAX, 1)ELSECALL DGEBR2D('r', 'h', 1, 1, MAX, 1, 0, 0)END IF* DINFNRM = MAX* RETURN** End of DINFNRM* ENDB Obtaining the BLACS from NetlibNetlib is an automated system which allows users to obtain software, papers, etc., via e-mail. The BLACS are in the ScaLAPACK directory on netlib. To obtain a list of of the75



presently available ScaLAPACK codes, mail to netlib@ornl.gov and in the body of themessage type send index from scalapack. This index will also explain other options fordownloading software, such as Xnetlib or anonymous rcp.To obtain the BLACS User's Guide from netlib, mail to netlib@ornl.gov and in thebody of the message type send blacs ug.ps from scalapack. the various versions of theBLACS can be obtained by mailing to netlib@ornl.gov, and typing the message indicatedin table 17 in the body of the message.VERSION MESSAGEIntel send intelblacs.uue from scalapackCM-5 send cm5blacs.uue from scalapackPVM send pvmblacs.uue from scalapackTable 17: How to obtain various BLACS versions from netlib

76



CQuickRefere
nceToTheBLA

CS
Fortran InterfaceInitializationINITPINFO( MYPNUM, NPROCS )AUXSETUP( MYPNUM, NPROCS )SETPVMTIDS( NTASKS, TIDS )BLACSINIT( NPROW, NPCOL )GRIDMAP( USERMAP, LDUMAP, NPROW, NPCOL )IDRANGES( MINSND, MAXSND, MINBS, MAXBS )SHIFT_RANGE( MINSND, MAXSND, MINBS, MAXBS )Sending2GESD2D( M, N, A, LDA, RDEST, CDEST )2GEBS2D( SCOPE, TOP, M, N, A, LDA )2TRSD2D( UPLO, DIAG, M, N, A, LDA, RDEST, CDEST )2TRBS2D( SCOPE, TOP, UPLO, DIAG, M, N, A, LDA )Receiving2GERV2D( M, N, A, LDA, RSRC, CSRC )2GEBR2D( SCOPE, TOP, M, N, A, LDA, RSRC, CSRC )2TRRV2D( UPLO, DIAG, M, N, A, LDA, RSRC, CSRC )2TRBR2D( SCOPE, TOP, UPLO, DIAG, M, N, A, LDA, RSRC, CSRC )Global Maximum, Minimum, Sum2GMAX2D( SCOPE, TOP, M, N, A, LDA, RA, CA, LDIA, RDEST, CDEST )2GMIN2D( SCOPE, TOP, M, N, A, LDA, RA, CA, LDIA, RDEST, CDEST )2GSUM2D( SCOPE, TOP, M, N, A, LDA, RDEST, CDEST )Auxiliary RoutinesBARRIER( SCOPE )GRIDINFO( NPROW, NPCOL, PROW, PCOL )IDRANGES( MINSND, MAXSND, MINBS, MAXBS )KBRID( SCOPE, RSRC, CSRC )KBSID( SCOPE )KPNUM( PROW, PCOL )KRECVID( RSRC, CSRC )KSENDID( RSRC, CSRC, RDEST, CDEST )PCOORD( PNUM, PROW, PCOL )SETBRANCHES( NBRANCHES )FREEBUFFBLACSEXIT( CONTINUE )Note that all routines preceded by a 2 have the following pre�xes: S, D, C, Z, I.

DeclarationsINTEGER CDEST, CONTINUE, CSRC, LDA, LDIAINTEGER M, MAXBS, MAXSND, MINBS, MINSNDINTEGER N, NBRANCHES, NPCOL, NPROWINTEGER PCOL, PNUM, PROW, RDEST, RSRCINTEGER CA( LDIA, * ), RA( LDIA, * )CHARACTER DIAG, SCOPE, TOP, UPLOREAL/DOUBLE A( LDA, * )orCOMPLEX/COMPLEX*16 A( LDA, * )orINTEGER A( LDA, * )Meaning of pre�xesS - REALD - DOUBLE PRECISIONC - COMPLEXZ - COMPLEX*16I - INTEGERK - INTEGER FunctionGE - GENERALTR - TRAPEZOIDALSD - SENDRV - RECEIVEBS - BROADCAST SENDBR - BROADCAST RECEIVEGMAX - GLOBAL element-wise MAXIMUMGMIN - GLOBAL element-wise MINIMUMGSUM - GLOBAL element-wise SUMMATIONOptionsUPLO = 'Upper triangular', 'Lower triangular';DIAG = 'Non-unit triangular', 'Unit triangular';SCOPE = 'All', 'row', 'column';TOP = (SEE DESCRIPTION BELOW).

77



Broadcast TopologiesTOP = 'I' increasing ring;= 'D' decreasing ring;= 'H' hypercube (minimum spanning tree);= 'S' split-ring;= 'F' fully connected;(calls multipath with NPATHS = NNODES-1)= 'M' : nodes divided into I increasingrings, where I is set with callto SETBRANCHES= '1' : tree broadcast with NBRANCHES = 1= '2' : tree broadcast with NBRANCHES = 2= '3' : tree broadcast with NBRANCHES = 3= '4' : tree broadcast with NBRANCHES = 4= '5' : tree broadcast with NBRANCHES = 5= '6' : tree broadcast with NBRANCHES = 6= '7' : tree broadcast with NBRANCHES = 7= '8' : tree broadcast with NBRANCHES = 8= '9' : tree broadcast with NBRANCHES = 9= 'T' : tree broadcast with NBRANCHES = I,where I is set with call toSETBRANCHESGlobal TopologiesTOP = '1' : tree gather with NBRANCHES = 1= '2' : tree gather with NBRANCHES = 2= '3' : tree gather with NBRANCHES = 3= '4' : tree gather with NBRANCHES = 4= '5' : tree gather with NBRANCHES = 5= '6' : tree gather with NBRANCHES = 6= '7' : tree gather with NBRANCHES = 7= '8' : tree gather with NBRANCHES = 8= '9' : tree gather with NBRANCHES = 9= 'T' : tree gather with NBRANCHES = I,where I is set with call toSETBRANCHES= 'F' : Fully connected -- calls tree gatherwith NBRANCHES = NNODES - 1= 'H' : if IRDEST = -1, a specialized"leave on all" hypercube topologycalled bidirectional exchange is used.Otherwise, TOP = '1' is substituted.
InitializationAn initial call to BLACSINIT or GRIDMAP must occurat the beginning of your program before calling any non-initialization BLACS routine. BLACSINIT or GRIDMAPmay be called repetitively in order to change the processorgrid.A call to BLACSINIT or GRIDMAP must be made afterSHIFT RANGE in order to have the range shift take a�ect.NotationAny subroutine parameter argument that is underlined isan output argument. If a subroutine is underlined it is afunction that returns a value. Speci�cally, if it is pre�xedby K-, it returns an integer value. The pre�x P- stands forprocessor. For example, integer function KPNUM returnsthe processor number for the speci�ed grid coordinates.Topology HintsTopologies allow the user to optimize communication pat-terns for a particular operation. For the Intel BLACS, gooddefaults are broadcast and global TOP = 'HYPERCUBE'.For the PVM BLACS, good default values are broadcastTOP = 'I' and global TOP = '1'. For more details readthe paper referenced below.ReferencesJ. J. Dongarra, LAPACK Working Note 34, Workshop onthe BLACS, Computer Science Dept. Technical ReportCS-91-134, University of Tennessee, Knoxville, May, 1991.To receive a postscript copy, send email to netlib@ornl.govand in the mail message type: send lawn34.ps fromlapack/lawns. For a more up-to-date report, send yourrequest for the BLACS users' guide to blacs@cs.utk.edu.Obtaining the BLACSIn order to get instructions for downloading the BLACS,send email to netlib@ornl.gov and in the body of the mes-sage type send index from scalapack.Send comments and questions to blacs@cs.utk.edu.

BasicLinearAlgebraCommunicationSubprogramsQuick Reference GuideRelease 1.0BETAApril 22, 1994
University of Tennessee

78



D Timing CodesThis appendix contains the actual code used to perform the timings given in this paper. Itis impossible to construct a 100% correct test for some of the quantities measured here. Wetherefore present the timers that were used, so the biases, if any, can be examined by thereader.

79



D.1 Tc Timing Code#include <stdio.h>#define BLACS 1#define INTEL 2#define SP1 3#define CM5 4#define BLOCK 0#define INTR 1 /* are interrupts off (0) or on? */#define dwalltime00_ dcputime00_#define SYS BLACS#if (SYS == BLACS)#define PLAT "Intel BLACS"#define Tsend(msgid, dest, length, buff)\sgesd2d_(&(length), &one, (buff), &(length), &zero, &(dest));#define Trecv(msgid, src, length, buff)\sgerv2d_(&(length), &one, (buff), &(length), &zero, &(src));#elif (SYS == INTEL)#define PLAT "Intel"#define dwalltime00_ dclock#define Tsend(msgid, dest, length, buff)\csend((msgid), (buff), (length), (dest), 0);#define Trecv(msgid, src, length, buff)\crecv((msgid), (buff), (length));#elif (SYS == CM5)#include </usr/include/cm/cmmd.h>#define PLAT "CM5"#define dwalltime00_ dcputime00_#if (BLOCK)#define Tsend(msgid, dest, length, buff)\CMMD_send_block((dest), (msgid), (buff), (length));#else#define Tsend(msgid, dest, length, buff)\CMMD_send_noblock((dest), (msgid), (buff), (length));#endif#define Trecv(msgid, src, length, buff)\CMMD_receive_block((src), (msgid), (buff), (length));#elif (SYS == SP1)#define PLAT "SP1"#define Tsend(msgid, dest, length, buff)\80



mpc_bsend((buff), (length), (dest), (msgid));#define Trecv(msgid, src, length, buff)\mpc_brecv((buff), (length), &(src), &(msgid), &(itmp));#endifmain(nargs, args)int nargs;char *args[];/** Measures time for point to point communication. Usage:* Tc <len1> <lenN> <inclen> <repititions> <sending node> <1st recving node>* <last recving node> <recv increment> [<outfile>]* if <recv increment> greater than <last recv node>, then increment is by* power of 2.*/{ double dwalltime00_();char *outfile;FILE *fp=stdout;int len, len1, lenN, inclen, reps, sender, recv1, recvN, recvinc;int iam, nnodes, msgid, dest, length, i, j, itmp;int *ibuff=NULL;int one=1, zero=0;double time1, *time;/** Get my node number and the number of nodes in system*/#if (SYS == BLACS)initpinfo_(&iam, &nnodes);#elif (SYS == INTEL)iam = mynode();nnodes = numnodes();#elif (SYS == CM5)iam = CMMD_self_address();nnodes = CMMD_partition_size();CMMD_node_timer_clear(63);CMMD_node_timer_start(63);CMMD_fset_io_mode(stdout, CMMD_independent);CMMD_fset_io_mode(stderr, CMMD_independent);#if (INTR)CMMD_enable_interrupts();#elseCMMD_disable_interrupts();#endif#elif (SYS == SP1)mpc_environ(&nnodes, &iam);#endif/* 81



* Read in params from command line, or use defaults*/if (nargs >= 9){ len1 = atoi(args[1]);lenN = atoi(args[2]);inclen = atoi(args[3]);reps = atoi(args[4]);sender = atoi(args[5]);recv1 = atoi(args[6]);recvN = atoi(args[7]);nnodes = recvN + 1;recvinc = atoi(args[8]);if (nargs > 9) fp = fopen(args[9], "w");}else{ if (iam == sender)fprintf(stderr,"Incorrect number of parameters. Should be 7. Using defaults.\n");len = 1024;reps = 10;sender = 0;recv1 = 1;if (nnodes > 0) recvN = nnodes - 1;else recvN = nnodes = 4;recvinc = 1;}#if (SYS == BLACS)auxsetup_(&iam, &nnodes);blacsinit_(&one, &nnodes);#endiftime = (double *) malloc(nnodes * sizeof(*time));for(dest=recv1, i=0; dest <= recvN; i++){ if (recvinc < 0) dest = (dest << 1) + 1;else dest += recvinc;}for (len=len1, j=0; len <= lenN; j++){ if (inclen < lenN) len += inclen;else len *= len;}if (iam == sender)fprintf(fp,"Start of %d node '%s' run: sender=%d, nlengths=%d, nrecvs=%d, reps=%d.\n",nnodes, (PLAT), sender, j, i, reps);82



len = len1;while (len <= lenN){#if (SYS == BLACS)length = len/4;#else length = len;#endifif (ibuff) free(ibuff);ibuff = (int *) malloc(len);if (iam == sender)fprintf(fp," Message Len=%d, reps=%d, sender=%d, recv1=%d, recvN=%d, recvinc=%d.\n",len, reps, sender, recv1, recvN, recvinc);for(dest=recv1, i=0; dest <= recvN; i++){ for (j=0; j < len/4; ibuff[j++]=0); /* page in ibuff if needed */msgid = dest;if (iam == sender){/** Send out wake-up message, get back ready acknowledgement*/ Tsend(msgid, dest, zero, ibuff);Trecv(msgid, dest, zero, ibuff);time1 = dwalltime00_();for (j=0; j < reps; j++){ Tsend(msgid, dest, length, ibuff);Trecv(msgid, dest, length, ibuff);}time[i] = dwalltime00_() - time1;}else if (iam == dest){/** Wait for wake-up call, then tell sender I'm ready*/ Trecv(msgid, sender, zero, ibuff);Tsend(msgid, sender, zero, ibuff);for (i=0; i < reps; i++){ Trecv(msgid, sender, length, ibuff);Tsend(msgid, sender, length, ibuff);}}if (recvinc < 0) dest = (dest << 1) + 1;else dest += recvinc;} 83



if (iam == sender){ for(dest=recv1, i=0; dest <= recvN; i++){ fprintf(fp," Node %d send to %d: length=%d, Tc = %8.2lf (us), ThruPut = %lf (KB/s).\n",sender, dest, len, (0.5e6*time[i])/reps,(len*reps)/(1000.0*time[i]));if (recvinc < 0) dest = (dest << 1) + 1;else dest += recvinc;}fprintf(fp, " End of tests, length=%d.\n", len);}if (inclen < lenN) len += inclen;else len *= len;}if (iam == sender) fprintf(fp, "End of Run.\n");if (fp != stdout) fclose(fp);}

84



D.2 Ts Timing Code#include <stdio.h>#define BLACS 1#define INTEL 2#define SP1 3#define CM5 4#define INTR 1 /* are interrupts off (0) or on? */#define BLOCK 1 /* use blocking send? */#define SYS BLACS#define dwalltime00_ dcputime00_#if (SYS == BLACS)#define PLAT "CM5 BLACS"#define Tsend(msgid, dest, length, buff)\sgesd2d_(&(length), &one, (buff), &(length), &zero, &(dest));#define Trecv(msgid, src, length, buff)\sgerv2d_(&(length), &one, (buff), &(length), &zero, &(src));#elif (SYS == INTEL)#define PLAT "Intel"#define dwalltime00_ dclock#define Tsend(msgid, dest, length, buff)\csend((msgid), (buff), (length), (dest), 0);#define Trecv(msgid, src, length, buff)\crecv((msgid), (buff), (length));#elif (SYS == CM5)#include </usr/include/cm/cmmd.h>#define PLAT "CM5"#define dwalltime00_ dcputime00_#if (BLOCK)#define Tsend(msgid, dest, length, buff)\CMMD_send_block((dest), (msgid), (buff), (length));#else#define Tsend(msgid, dest, length, buff)\CMMD_send_noblock((dest), (msgid), (buff), (length));#endif#define Trecv(msgid, src, length, buff)\CMMD_receive_block((src), (msgid), (buff), (length));#elif (SYS == SP1)#define PLAT "SP1"#define Tsend(msgid, dest, length, buff)\85



mpc_bsend((buff), (length), (dest), (msgid));#define Trecv(msgid, src, length, buff)\mpc_brecv((buff), (length), &(src), &(msgid), &(itmp));#endifmain(nargs, args)int nargs;char *args[];/** Measures time for point to point communication. Usage:* Ts <outfile> <# reps> <len1> <lenN> <inclen> <sending node>* <recv1> .. <recvN>*/{ double dwalltime00_();char *outfile;FILE *fp=stdout;int len, len1, lenN, inclen, reps, sender, nrecvers;int iam, nnodes, msgid, dest, length, i, j, itmp;int *ibuff=NULL, *recvers=NULL;int one=1, zero=0;double time1, time;/** Get my node number and the number of nodes in system*/#if (SYS == BLACS)initpinfo_(&iam, &nnodes);#elif (SYS == INTEL)iam = mynode();nnodes = numnodes();#elif (SYS == CM5)iam = CMMD_self_address();nnodes = CMMD_partition_size();CMMD_node_timer_clear(63);CMMD_node_timer_start(63);CMMD_fset_io_mode(stdout, CMMD_independent);CMMD_fset_io_mode(stderr, CMMD_independent);#if (INTR)CMMD_enable_interrupts();#elseCMMD_disable_interrupts();#endif#elif (SYS == SP1)mpc_environ(&nnodes, &iam);#endif/** Read in params from command line, or use defaults86



*/if (nargs >= 8){ if ( !strcmp(args[1], "stdout") ) fp = stdout;else if ( !strcmp(args[1], "stderr") ) fp = stderr;else fp = fopen(args[1], "w");reps = atoi(args[2]);len1 = atoi(args[3]);lenN = atoi(args[4]);inclen = atoi(args[5]);sender = atoi(args[6]);nrecvers = nargs - 7;recvers = (int *) malloc( nrecvers * sizeof(*recvers) );nnodes = 1;for (i=0; i < nrecvers; i++){ recvers[i] = atoi(args[7+i]);if (recvers[i] >= nnodes) nnodes = recvers[i] + 1;}}else{ if (iam == 0) fprintf(stderr,"Incorrect number of parameters. Should be >= 8. Using defaults.\n");fp = stdout;reps = 1;len1 = 0; lenN = 100; inclen = 10;sender = 0;nrecvers = 1;recvers = (int *) malloc( nrecvers * sizeof(*recvers) );for (i=0; i < nrecvers; i++) recvers[i] = i+1;nnodes = nrecvers + 1;}#if (SYS == BLACS)auxsetup_(&iam, &nnodes);blacsinit_(&one, &nnodes);#endiffor (len=len1, j=0; len <= lenN; j++){ if (inclen < lenN) len += inclen;else len *= 2;}if (iam == sender){ fprintf(fp,"Start of %d node '%s' run: sender=%d, nlengths=%d, nrecvs=%d, reps=%d.\n",nnodes, (PLAT), sender, j, nrecvers, reps);87



fprintf(fp, "Receivers:");for (i=0; i < nrecvers; i++) fprintf(fp, " %d",recvers[i]);fprintf(fp, "\n");}/** Quit if I am not sender or recver*/else{ for(i=0; i < nrecvers; i++) if (recvers[i] == iam) break;if (i == nrecvers) exit(0);}if (ibuff) free(ibuff);ibuff = (int *) malloc(lenN);len = len1;while (len <= lenN){#if (SYS == BLACS)length = len/4;#else length = len;#endifif (iam == sender)fprintf(fp, " Message Len=%d.\n", len);for (j=0; j < len/4; ibuff[j++]=0); /* page in ibuff if needed */msgid = 0;if (iam == sender){/** Send out wake-up message, get back ready acknowledgement*/ for(i=0; i < nrecvers; i++){ j = zero;Tsend(msgid, recvers[i], j, ibuff);Trecv(msgid, recvers[i], j, ibuff);}time1 = dwalltime00_();for (j=0; j < reps; j++)Tsend(msgid, recvers[j%nrecvers], length, ibuff);time = dwalltime00_() - time1;}else{/** Wait for wake-up call, then tell sender I'm ready*/ 88



j = zero;Trecv(msgid, sender, j, ibuff);Tsend(msgid, sender, j, ibuff);for (i=0; i < reps; i++)if (iam == recvers[i%nrecvers]) Trecv(msgid, sender, length, ibuff);}if (iam == sender){ fprintf(fp, " %d: length=%d, Ts = %8.2f (us).\n",sender, len, (1.0e6*time)/reps);fprintf(fp, " End of tests, length=%d.\n", len);}if (inclen < lenN) len += inclen;else len *= 2;}if (iam == sender) fprintf(fp, "End of Run.\n");if (fp != stdout && fp != stderr) fclose(fp);}

89



D.3 Broadcast Timing Code#include <stdio.h>#include <stdlib.h>#include <assert.h>#define BLACS 1#define INTEL 2#define SP1 3#define CM5 4#define SYS CM5#if (SYS == INTEL)#define PLAT "Intel"#define dwalltime00_ dclock#define Tsync() gsync()#elif (SYS == CM5)#define PLAT "CM5"#define dwalltime00_ dcputime00_#define Tsync() CMMD_sync_with_nodes()#elif (SYS == SP1)#define PLAT "SP1"#define Tsync() mpc_sync(allgrp)#endifmain(int nargs, char *args[])/** Measures time for point to point communication. Usage:* Tbs <top> <len1> <lenN> <inclen> <repititions> <src node> [<outfile>]* if <recv increment> less than 1, then increment is by power of 2.*/{ double dwalltime00_();FILE *fp=stdout;char *outfile, *systyp;char top;int len, len1, lenN, inclen, nlens, reps, src, rsrc;int iam, nnodes, msgid, length, i, j, itmp, allgrp;int one=1, zero=0;int *rA=NULL;double *dbuff=NULL;double time1, time, srcT, maxT, minT, avgT;90



/** Get my node number and the number of nodes in system*/initpinfo_(&iam, &nnodes);/** Read in params from command line*/if (nargs >= 7){ top = *args[1];len1 = atoi(args[2]);lenN = atoi(args[3]);inclen = atoi(args[4]);reps = atoi(args[5]);src = atoi(args[6]);}else{ fprintf(stderr, "\nIncorrect usage\n");exit(1);}auxsetup_(&iam, &nnodes);blacsinit_(&one, &nnodes);if ( (iam == 0) && (nargs > 7) ) fp = fopen(args[7], "w");#if (SYS == SP1)rA = (int *) malloc(sizeof(int)*4);mpc_task_query(rA, 4, 3);allgrp = rA[3];free(rA);#endifdbuff = (double *) malloc(lenN*sizeof(double));assert (dbuff != NULL);/** If we're on a system that requires buffering even for contiguous messages,* get the buffer of largest size by performing broadcast*/#if ( (SYS == SP1) || (SYS == CM5) )if (top != 'p'){ if (iam == 0) dgebs2d_("a", &top, &lenN, &one, dbuff, &lenN);else dgebr2d_("a", &top, &lenN, &one, dbuff, &lenN, &zero, &zero);}#endiffor (nlens=0, len=len1; len < lenN; nlens++)91



{ if (inclen > 0) len += inclen;else len *= len;}if (top == 'p') systyp = "primitive";else systyp = "BLACS";if (iam == 0){ fprintf(fp,"\n======================================================================\n");fprintf(fp,"Time in milliseconds for double precision '%s %s' bcast, top='%c',\n",PLAT, systyp, top);fprintf(fp, "nnodes=%d, reps=%d, src=%d, ntests=%d.\n",nnodes, reps, src, nlens);fprintf(fp,"======================================================================\n\n");fprintf(fp," ELEMENTS SRC TIME MIN TIME MAX TIME AVG TIME\n");fprintf(fp," -------- ---------- ---------- ---------- ----------\n\n");}len = len1;while (len <= lenN){ for (j=0; j < len; j++) dbuff[j] = 1.0; /* init buffer */if (iam == src){ if (top == 'p') /* use system primitive */{ Tsync();time1 = dwalltime00_();for (j=0; j < reps; j++){#if (SYS == INTEL)msgid = (reps)*nlens + j;csend(msgid, dbuff, len*sizeof(double), -1, 0);#elif (SYS == SP1)mpc_bcast(dbuff, len*sizeof(double), iam, allgrp);#elif (SYS == CM5)CMMD_bc_to_nodes(dbuff, len*sizeof(double));#endif }time = dwalltime00_() - time1;}else /* call the BLACS */{ 92



Tsync();time1 = dwalltime00_();for (j=0; j < reps; j++)dgebs2d_("a", &top, &len, &one, dbuff, &len);time = dwalltime00_() - time1;}srcT = time;if (src != 0) /* send source time to node 0 */dgesd2d_(&one, &one, &srcT, &one, &zero, &zero);}/** If I am receiving and participating in broadcast*/ else{ if (top == 'p'){ Tsync();time1 = dwalltime00_();for (j=0; j < reps; j++){#if (SYS == INTEL)msgid = (reps)*nlens + j;crecv(msgid, dbuff, len*sizeof(double));#elif (SYS == SP1)mpc_bcast(dbuff, len*sizeof(double), src, allgrp);#elif (SYS == CM5)CMMD_receive_bc_from_node(dbuff, len*sizeof(double));#endif }time = dwalltime00_() - time1;}else{ Tsync();time1 = dwalltime00_();for (j=0; j < reps; j++)dgebr2d_("a", &top, &len, &one, dbuff, &len, &zero, &src);time = dwalltime00_() - time1;}if (iam == 0) dgerv2d_(&one, &one, &srcT, &one, &zero, &src);}time = (time * 1000.0) / reps; /* get time in msecs */srcT = (srcT * 1000.0) / reps; /* get time in msecs */minT = maxT = avgT = time;dgmin2d_("a", "1", &one, &one, &minT, &one, dbuff, &dbuff[1],&one, &zero, &zero);dgmax2d_("a", "1", &one, &one, &maxT, &one, dbuff, &dbuff[1],&one, &zero, &zero);dgsum2d_("a", "1", &one, &one, &avgT, &one, &zero, &zero);93



avgT /= nnodes;if (iam == 0)fprintf(fp, "%11d %13.3lf %13.3lf %13.3lf %13.3lf\n",len, srcT, minT, maxT, avgT);if (inclen > 0) len += inclen;else len *= len;}if (iam == 0){ fprintf(fp,"\n======================================================================\n");fprintf(fp, "End of Run.\n");if (fp != stdout) fclose(fp);}}

94



D.4 Combine Timing Code#include <stdio.h>#include <stdlib.h>#include <assert.h>#define BLACS 1#define INTEL 2#define SP1 3#define CM5 4#define SYS CM5#if (SYS == INTEL)#define PLAT "Intel"#define dwalltime00_ dclock#define Tsync() gsync()#elif (SYS == CM5)#define PLAT "CM5"#define dwalltime00_ dcputime00_#define Tsync() CMMD_sync_with_nodes()#include </usr/include/cm/cmmd.h>#elif (SYS == SP1)#define PLAT "SP1"#define Tsync() mpc_sync(allgrp)#endifmain(int nargs, char *args[])/** Measures time for point to point communication. Usage:* Tg <op> <top> <len1> <lenN> <inclen> <repititions> <dest node> [<outfile>]* if <recv increment> greater than <last recv node>, then increment is by* power of 2.*/{ double dwalltime00_();#if (SYS == SP1)extern void d_vadd();#endifFILE *fp=stdout;char *outfile, *systyp;char op, top;int len, len1, lenN, inclen, reps, dest, rdest;int iam, nnodes, msgid, length, i, j, itmp, allgrp;95



int one=1, zero=0;int *rA=NULL, *cA=NULL;double *dbuff=NULL, *dbuff2=NULL;double time1, time, maxT, minT, avgT;/** Get my node number and the number of nodes in system*/initpinfo_(&iam, &nnodes);/** Read in params from command line*/if (nargs >= 8){ op = *args[1];top = *args[2];len1 = atoi(args[3]);lenN = atoi(args[4]);inclen = atoi(args[5]);reps = atoi(args[6]);dest = atoi(args[7]);if (dest < 0) rdest = -1;else rdest = 0;}else{ fprintf(stderr, "\n Incorrect usage.\n");exit(1);}auxsetup_(&iam, &nnodes);blacsinit_(&one, &nnodes);if ( (iam == 0) && (nargs > 8) ) fp = fopen(args[8], "w");#if (SYS == SP1)rA = (int *) malloc(sizeof(int)*4);mpc_task_query(rA, 4, 3);allgrp = rA[3];free(rA);#endifdbuff = (double *) malloc(lenN*sizeof(double));assert (dbuff != NULL);/** If using platform dependant routine, get work buffer*/if (top == 'p') /* platform dependant routine */{ dbuff2 = (double *) malloc(lenN*sizeof(double));96



assert (dbuff2 != NULL);systyp = "primitive";}/** If using BLACS, get buffer by doing an operation*/else{ systyp = "BLACS";if (op == '+'){ for (j=0; j < lenN; j++) dbuff[j] = 0.0; /* init buffer */dgsum2d_("a", &top, &lenN, &one, dbuff, &lenN, &rdest, &dest);}else{ rA = (int *) malloc(lenN*sizeof(int));cA = (int *) malloc(lenN*sizeof(int));assert (rA != NULL);assert (cA != NULL);for (j=0; j < lenN; j++) dbuff[j]=0.0; /* init buffer */dgmax2d_("a", &top, &lenN, &one, dbuff, &lenN, rA, cA, &len,&rdest, &dest);}}if (iam == 0){ for (i=0, len=len1; len <= lenN; i++){ if (inclen > 0) len += inclen;else len *= 2;}fprintf(fp,"\n======================================================================\n");fprintf(fp,"Time in milliseconds for double precision '%s %s' op='%c', top='%c',\n",PLAT, systyp, op, top);fprintf(fp, "nnodes=%d, reps=%d, dest=%d, ntests=%d.\n",nnodes, reps, dest, i);fprintf(fp,"======================================================================\n\n");fprintf(fp," ELEMENTS MIN TIME MAX TIME AVG TIME\n");fprintf(fp," -------- ---------- ---------- ----------\n\n");}len = len1;while (len <= lenN){ 97



srand(len);for (j=0; j < len; j++) dbuff[j] = rand(); /* init buffer */if (op == '+'){ if (top == 'p'){ Tsync();time1 = dwalltime00_();for (j=0; j < reps; j++){#if (SYS == INTEL)gdsum(dbuff, len, dbuff2);#elif (SYS == SP1)mpc_combine(dbuff, dbuff2, len*sizeof(double), d_vadd, allgrp);#elif (SYS == CM5)CMMD_scan_v(dbuff2, dbuff, CMMD_combiner_dadd, CMMD_downward,CMMD_none, 0, CMMD_inclusive, sizeof(double), len);if (rdest == -1){ if (iam == 0) CMMD_bc_to_nodes(dbuff2, len*sizeof(double));else CMMD_receive_bc_from_node(dbuff2, len*sizeof(double));}#endif }time = dwalltime00_() - time1;}else{ Tsync();time1 = dwalltime00_();for (j=0; j < reps; j++){ dgsum2d_("a", &top, &len, &one, dbuff, &len, &rdest, &dest);}time = dwalltime00_() - time1;}}else if (op == '>'){ if (top == 'p'){ Tsync();time1 = dwalltime00_();for (j=0; j < reps; j++){#if (SYS == INTEL)gdhigh(dbuff, len, dbuff2);#elif (SYS == SP1)mpc_combine(dbuff, dbuff2, len*sizeof(double), d_vmax, allgrp);#elif (SYS == CM5) 98



CMMD_scan_v(dbuff2, dbuff, CMMD_combiner_dmax, CMMD_downward,CMMD_none, 0, CMMD_inclusive, sizeof(double), len);if (rdest == -1){ if (iam == 0) CMMD_bc_to_nodes(dbuff2, len*sizeof(double));else CMMD_receive_bc_from_node(dbuff2, len*sizeof(double));}#endif }time = dwalltime00_() - time1;}else{ Tsync();time1 = dwalltime00_();for (j=0; j < reps; j++){ dgmax2d_("a", &top, &len, &one, dbuff, &len,rA, cA, &len, &rdest, &dest);}time = dwalltime00_() - time1;}}else if (op == '<'){ if (top == 'p'){ Tsync();time1 = dwalltime00_();for (j=0; j < reps; j++){#if (SYS == INTEL)gdlow(dbuff, len, dbuff2);#elif (SYS == SP1)mpc_combine(dbuff, dbuff2, len, d_vmin, allgrp);#elif (SYS == CM5)CMMD_scan_v(dbuff2, dbuff, CMMD_combiner_min, CMMD_upward,CMMD_none, 0, CMMD_inclusive, sizeof(double), len);#endif }time = dwalltime00_() - time1;}else{ Tsync();time1 = dwalltime00_();for (j=0; j < reps; j++){ dgmin2d_("a", &top, &len, &one, dbuff, &len,rA, cA, &len, &rdest, &dest);} 99



time = dwalltime00_() - time1;}}time = (time * 1000.0) / reps; /* get time in msecs */minT = maxT = avgT = time;dgmin2d_("a", "1", &one, &one, &minT, &one, dbuff, &dbuff[1],&one, &zero, &zero);dgmax2d_("a", "1", &one, &one, &maxT, &one, dbuff, &dbuff[1],&one, &zero, &zero);dgsum2d_("a", "1", &one, &one, &avgT, &one, &zero, &zero);avgT /= nnodes;if (iam == 0)fprintf(fp, "%11d %13.3lf %13.3lf %13.3lf\n",len, minT, maxT, avgT);if (inclen < lenN) len += inclen;else len *= 2;}if (iam == 0){ fprintf(fp,"\n======================================================================\n");fprintf(fp, "End of Run.\n");if (fp != stdout) fclose(fp);}}

100


