
A Sparse Matrix Library in C++ for High PerformanceArchitectures�Jack Dongarraxz, Andrew Lumsdaine�, Xinhiu Niu�Roldan Pozoz, Karin RemingtonxxOak Ridge National Laboratory zUniversity of Tennessee �University of Notre DameMathematical Sciences Section Dept. of Computer Science Dept. of Computer Science & EngineeringAbstractWe describe an object oriented sparse matrix libraryin C++ built upon the Level 3 Sparse BLAS proposal[5] for portability and performance across a wide classof machine architectures. The C++ library includesalgorithms for various iterative methods and supportsthe most common sparse data storage formats usedin practice. Besides simplifying the subroutine inter-face, the object oriented design allows the same driv-ing code to be used for various sparse matrix formats,thus addressing many of the di�culties encounteredwith the typical approach to sparse matrix libraries.We emphasize the fundamental design issues of theC++ sparse matrix classes and illustrate their usagewith the preconditioned conjugate gradient (PCG)method as an example. Performance results illustratethat these codes are competitive with optimized For-tran 77. We discuss the impact of our design on ele-gance, performance, maintainability, portability, androbustness.1 IntroductionSparse matrices are pervasive in application codeswhich use �nite di�erence, �nite element or �nite vol-ume discretizations of PDEs for problems in compu-tational uid dynamics, structural mechanics, semi-conductor simulation and other scienti�c and engi-�This project was supported in part by the Defense Ad-vanced Research Projects Agency under contract DAAL03-91-C-0047, administered by the Army Research O�ce, the Ap-plied Mathematical Sciences subprogram of the O�ce of En-ergy Research, U.S. Department of Energy, under ContractDE-AC05-84OR21400, and by the National Science Founda-tion Science and Technology Center Cooperative AgreementNo. CCR-8809615, and NSF grant No. CCR-9209815.

neering applications. Nevertheless, comprehensive li-braries for sparse matrix computations have not beendeveloped and integrated to the same degree as thosefor dense matrices. Several factors contribute to thedi�culty of designing such a comprehensive library.Di�erent computer architectures, as well as di�erentapplications, call for di�erent sparse matrix data for-mats in order to best exploit registers, data local-ity, pipelining, and parallel processing. Furthermore,code involving sparse matrices tends to be very com-plicated, and not easily portable, because the detailsof the underlying data formats are invariably entan-gled within the application code.To address these di�culties, it is essential to de-velop codes which are as \data format free" as pos-sible, thus providing the greatest exibility for usingthe given algorithm (library routine) in various ar-chitecture/application combinations. In fact, the se-lection of an appropriate data structure can typicallybe deferred until link or run time. We describe anobject oriented C++ library for sparse matrix com-putations which provides a uni�ed interface for var-ious iterative solution techniques across a variety ofsparse data formats.The design of the library is based on the followingprinciples:Clarity: Implementations of numerical algorithmsshould resemble the mathematical algorithms onwhich they are based. This is in contrast to For-tran 77, which can require complicated subrou-tine calls, often with parameter lists that stretchover several lines.Reuse: A particular algorithm should only need tobe coded once, with identical code used for allmatrix representations.1

Portability: Implementations of numerical algo-rithms should be directly portable across ma-chine platforms.High Performance: The object oriented librarycode should perform as well as optimized data-format-speci�c code written in C or Fortran.To achieve these goals the sparse matrix libraryhas to be more than just an unrelated collection ofmatrix objects. Adhering to true object oriented de-sign philosophies, inheritance and polymorphism areused to build a matrix hierarchy in which the samecodes can be used for various dense and sparse linearalgebra computations across sequential and parallelarchitectures.2 Iterative SolversThe library provides algorithms for various iterativemethods as described in Barrett et. al. [1], togetherwith their preconditioned counterparts:� Jacobi SOR (SOR)� Conjugate Gradient (CG)� Conjugate Gradient on Normal Equations(CGNE, CGNR)� Generalized Minimal Residual (GMRES)� Minimum Residual (MINRES)� Quasi-Minimal Residual (QMR)� Chebyshev Iteration (Cheb)� Conjugate Gradient Squared (CGS)� Biconjugate Gradient (BiCG)� Biconjugate Gradient Stabilized (Bi-CGSTAB)Although iterative methods have provided much ofthe motivation for this library, many of the same op-erations and design issues are addressed for directmethods as well. In particular, some of the mostpopular preconditioners, such as Incomplete LU Fac-torization (ILU) [1] have components quite similar todirect methods.One motivation for this work is that the high levelalgorithms found in [1] can be easily implemented inC++. For example, take a preconditioned conjugate

gradient algorithm, used to solve Ax = b, with pre-conditionerM . The comparison between the pseudo-code and the C++ listing appears in �gure 1.Here the operators such as * and += have beenoverloaded to work with matrix and vectors formats.This code fragment works for all of the supportedsparse storage classes and makes use of the Level 3Sparse BLAS in the matrix-vector multiply A*p.3 Sparse Matrix typesWe have concentrated on the most commonly useddata structures which account for a large portion ofapplication codes. The library can be arbitrarily ex-tended to user-speci�c structures and will eventuallygrow. (We hope to incorporate user-contributed ex-tensions in future versions of the software.) Matrixclasses supported in the initial version of the libraryincludeSparse Vector: List of nonzero elements with theirindex locations. It assumes no particular order-ing of elements.COOR Matrix: Coordinate Storage Matrix. List ofnonzero elements with their respective row andcolumn indices. This is the most general sparsematrix format, but it is not very space or com-putationally e�cient. It assumes no ordering ofnonzero matrix values.CRS Matrix : Compressed Row Storage Matrix.Subsequent nonzeros of the matrix rows arestored in contiguous memory locations and anadditional integer arrays speci�es where each rowbegins. It assumes no ordering among nonzerovalues within each row, but rows are stored inconsecutive order.CCS Matrix: Compressed ColumnStorage (also com-monly known as the Harwell-Boeing sparse ma-trix format [4]). This is a variant of CRS storagewhere columns, rather rows, are stored contigu-ously. Note that the CCS ordering of A is thesame as the CRS of AT .CDS Matrix: Compressed Diagonal Storage. De-signed primarily for matrices with relatively con-stant bandwidth, the sub and super-diagonalsare stored in contiguous memory locations.JDS Matrix: Jagged Diagonal Storage. Also know asITPACK storage. More space e�cient than CDS2

Initial r(0) = b�Ax(0)for i = 1; 2; : : :solve Mz(i�1) = r(i�1)�i�1 = r(i�1)T z(i�1)if i = 1p(1) = z(0)else�i�1 = �i�1=�i�2p(i) = z(i�1) + �i�1p(i�1)endifq(i) = Ap(i)�i = �i�1=p(i)T q(i)x(i) = x(i�1) + �ip(i)r(i) = r(i�1) � �iq(i)check convergence;end
r = b - Ax;for (int i=1; i<maxiter; i++)fz = M.solve(r);rho = r * z;if (i==1)p = z;elsefbeta = rho1/ rho0;p = z + p * beta;gq = A*p;alpha = rho1 / (p*q);x += alpha * p;r -= alpha * q;if (norm(r)/normb < tol) break;gFigure 1: Psuedocode and C++ comparison of a preconditioned conjugate gradient method in IML++packagematrices at the cost of a gather/scatter opera-tion.BCRS Matrix: Block Compressed Row Storage. Use-ful when the sparse matrix is comprised of squaredense blocks of nonzeros in some regular pattern.The savings in storage and reduced indirect ad-dressing over CRS can be signi�cant for matriceswith large block sizes.SKS Matrix: Skyline Storage. Also for variable bandor pro�le matrices. Mainly used in direct solvers,but can also be used for handling the diagonalblocks in block matrix factorizations.In addition, symmetric and Hermitian versions ofmost of these sparse formats will also be supported.In such cases only an upper (or lower) triangular por-tion of the matrix is stored. The trade-o� is a morecomplicated algorithmwith a somewhat di�erent pat-tern of data access. Further details of each data stor-age format are given in [1] and [6].Our library contains the common computationalkernels required for solving linear systems by manydirect and iterative methods. The internal data struc-tures of these kernels are compatible with the pro-posed Level 3 Sparse BLAS, thus providing the userwith large software base of Fortran 77 module andapplication libraries. Just as the dense Level 3 BLAS[3] have allowed for higher performance kernels on

hierarchical memory architectures, the Sparse BLASallow vendors to provide optimized routines takingadvantage of indirect addressing hardware, registers,pipelining, caches, memory management, and paral-lelism on their particular architecture. Standardizingthe Sparse BLAS will not only provide e�cient codes,but will also ensure portable computational kernelswith a common interface.There are two types of C++ interfaces to basickernels. The �rst utilizes simple binary operatorsfor multiplication and addition, and the second is afunctional interfaces which can group triad and morecomplex operations. The binary operators provide fora simpler interface, e.g. y = A � x denotes a sparsematrix-vector multiply, but may produce less e�cientcode. The computational kernels include:� sparse matrix products, C � op(A) B + �C.� solution of triangular systems,C �D op(A)�1 B + �C� reordering of a sparse matrix (permutations),A A op(P)� conversion of one data format to another, A0 A,where � and � are scalars, B and C are rectangularmatrices, D is a (block) diagonal matrix, A and A0are sparse matrices, and op(A) is either A or AT .3

4 Sparse Matrix Constructionand I/OIn dealing with issues of I/O, the C++ library ispresently designed to support reading and writing toHarwell-Boeing format sparse matrix �les [4]. These�les are inherently in compressed column storage;however, since sparse matrices in the library can betransformed between various data formats, this is nota severe limitation. File input is embedded as an-other form of a sparse matrix constructor; a �le canbe read and transformed into another format usingconversions and the iostream operators. In the fu-ture, the library will also support other matrix �leformats, such as a MatlabTM compatible format,and IEEE binary formats. Sparse matrices can bealso be initialized from conventional data and indexvectors, thus allowing for a universal interface to im-port data from C or Fortran modules.5 PerformanceTo compare the e�ciency of our C++ class de-signs, we tested the performance our library mod-ules against optimized Fortran sparse matrix pack-ages. Figures 2 and 3 illustrate the performanceof the PCG method with diagonal preconditioningon various common example problems (2D and 3DLaplacian operators) between our C++ library andthe f77 Sparskit [?] package. In all cases we utilizedfull optimization of each compiler.The C++ modules are slightly more e�cient sincethe low-level Sparse BLAS have been �ned tuned foreach platform. This shows that it is possible to havean elegant coding interface (as shown in �gure 1) andstill maintain competitive performance (if not better)with conventional Fortran modules.It should be pointed out that our intent is not tocompare ourselves with a speci�c library. Sparskit isan excellent Fortran library whose focus is more onportability than ultimate performance. Our goal issimply to demonstrate that the C++ codes can alsoachieve good performance, compared to Fortran. Ifboth libraries relied on vendor-supplied Sparse BLAS,then their performance di�erence would be unde-tectable.

Sparse PCG

E
xe

cu
tio

n
tim

e
(s

ec
s)

SPARSKIT (f77)

la2d64 la2d128 la3d16 la3d32

SparseLib++ (C++)

Sun SPARC 10

5

10

15

20

25

Figure 2: Performance comparison of C++ (g++)vs. optimized Fortran codes on a Sun Sparc 10.
Sparse PCG

IBM RS6000 Model 580

E
xe

cu
tio

n
tim

e
(s

ec
s)

SPARSKIT (f77)

1

2

3

4

5

6

7

la2d64 la2d128 la3d16 la3d32

SparseLib++ (C++)Figure 3: Performance comparison of C++ (xlC) vs.optimized Fortran codes (xlf -O) on an IBM RS/6000Model 580,4

6 ConclusionUsing C++ for numerical computation can greatlyenhance clarity, reuse, and portability. In our C++sparse matrix library, SparseLib++, the details of theunderlying sparse matrix data format are completelyhidden at the algorithm level. These results in it-erative algorithm codes which closely resemble theirmathematical denotation. Also, since the library isbuilt upon the Level 3 Sparse BLAS, it provides per-formance comparable to optimized Fortran.References[1] R. Barrett, M. Berry, T. F. Chan, J. Demmel,J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,C. Romine, H. van der Vorst, Templates for theSolution of Linear Systems: Building Blocks forIterative Methods, SIAM Press, 1994.[2] J. Dongarra, R. Pozo, D. Walker, \LAPACK++:A Design Overview of Object-Oriented Exten-sions for High Performance Linear Algebra," Pro-ceedings of Supercomputing '93, IEEE Press,1993, pp. 162-171.[3] J. Dongarra, J. Du Croz, I. S. Du�, S. Ham-marling, \A set of level 3 Basic Linear AlgebraSubprograms," ACM Trans. Math. Soft., Vol. 16,1990, pp. 1-17.[4] I. Du�, R. Grimes, J. Lewis, \Sparse Matrix TestProblems," ACM Trans. Math. Soft., Vol. 15,1989, pp. 1-14.[5] I. Du�, M. Marrone, G. Radicati, A Proposal forUser Level Sparse BLAS, CERFACS TechnicalReport TR/PA/92/85, 1992.[6] M. A. Heroux, A Proposal for a SparseBLAS Toolkit, CERFACS Technical ReportTR/PA/92/90, 1992.[7] Y. Saad, Sparskit: a basic toolkit for sparse matrixcomputations, May, 1990.
5

