
Algorithmic Bombardment for theIterative Solution of Linear Systems:A Poly-Iterative Approach�Richard Barretty, Michael Berryz, Jack Dongarrazx,Victor Eijkhoutz, and Charles Rominex.July 27, 1994AbstractMany algorithms employing short recurrences have been developed for iteratively solvinglinear systems. Yet when the matrix is nonsymmetric or inde�nite, or both, it is di�cult topredict which method will perform best, or indeed, converge at all. Attempts have been made toclassify the matrix properties for which a particular method will yield a satisfactory solution, but\luck" still plays large role. This report describes the implementation of a poly-iterative solver.Here we apply three algorithms simultaneously to the system, in the hope that at least one willconverge to the solution. While this approach has merit in a sequential computing environment,it is even more valuable in a parallel environment. By combining global communications, thecost of three methods can be reduced to that of a single method.1 IntroductionMany iterative methods for solving real nonsymmetric linear systemsAx = b (1)have been proposed. A popular choice is GMRES [20], which in the absence of rounding error,guarantees convergence in n steps for an order n matrix, but its memory requirements often rule outsolving large systems 1. Variations for reducing the length of the recurrences have been proposed(using restarting or truncation), but this compromises the convergence theory. Also, in a distributedmemory environment, the communication requirements of the increasing number of inner productsthat must be performed can severely slow the time to solution 2.Recent developments have made less memory and communication intensive algorithms moreviable. Each o�ers theoretical justi�cation for its convergence properties, and if the user has certain�This work was supported in part by the Applied Mathematical Sciences subprogram of the O�ce of EnergyResearch, U.S. Department of Energy, under Contract DE-AC05-84OR21400, by the Defense Advanced ResearchProjects Agency under contract DAAL03-91-C-0047, administered by the Army Research O�ce, and by the NationalScience Foundation Science and Technology Center Cooperative Agreement No. CCR-8809615.yDistributed Computing Group, Los Alamos National Laboratory, Los Alamos, NM 87544zDept. of Computer Science, University of Tennessee, Knoxville, TN 37996xMathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831-80831Indeed, there are examples in which the convergence of GMRES with any length recurrence less than n willstagnate.2It is possible to combine the communication of these inner products (using the unmodi�ed Gram-Schmidt), butthis is often unstable. 1



1 INTRODUCTION 2information concerning the spectrum of the matrix, it is possible to select a method which shouldwork well. However, when this is not the case, time (and expense) may be wasted when an algorithmterminates without convergence. For example, this is often true with nonlinear problems, wheremany linear systems are generated, and the properties of the matrix change. Also, an algorithmmay stall, diverge, or break down even when the matrix properties indicate the method shouldconverge.Moreover, these properties may be so a�ected by rounding error that we lose the ability to predicttheir behavior. In fact, machines using di�erent methods for performing the arithmetic may yielddi�erent results. For example, the IBM RS6000 performs the multiply and add before truncating, asopposed to say a Sun SPARCstation ipx which uses IEEE arithmetic, truncating after the multiplyand again after the add. While the RS6000 is designed to be more accurate, it is still �nite arithmetic,and with these iterative solvers, any inaccuracy may alter the behavior of the algorithm.In response to this problem, we propose applying several iteration schemes, in parallel usingthe same data set, in the hope that at least one will yield an acceptable approximation to the truesolution. Although the number of operations per iterative step equals the sum of the operations of theindividual methods, we believe that when knowledge of matrix properties is lacking or incomplete,the extra oating point computation and memory requirements are outweighed by three factors:1. An increased probability of �nding the solution.2. An e�cient parallel implementation. By iterating in lock-step, i.e. the algorithms are alwayson the same iteration count, we gain time savings by combining overlapping communication(inner products, matrix{vector products, preconditioner solves).3. Increased oating point performance. Depending upon the structure of the matrix, an e�cientmatrix-vector product may be constructed so as to make use of data locality. This may alsobe true for preconditioning.The high cost of communication is the weak link in distributed memory architectures, so bycombining the distribution of global data, we can improve upon the performance of the poly-iterativeapproach. For example, since each method is operating on the same matrix, and each matrix{vectormultiplication requires communication to update the product vector, we may be able to minimizeexecutation time by combining the k product vectors, where k is the number of methods whosematrix-vector product operands can be combined into one bu�er for communication. Additionally,when the structure of a matrix allows it, we can multiply an n{dimensional matrix by a n�k matrix,rather than a single vector, thereby improving the oating point e�ciency of the computation [6].Moreover, we can combine other communication, such as that required for the computation anddistribution of inner products and residual norms. This is discussed in more detail in section 3.3.The other mathematical operations (vector updates, certain preconditioners, scalar operations,etc.) are computed in parallel, requiring no communication. The overall e�ect of the extra work isa function of the sparsity of the original coe�cient matrix.For our implementation, we have selected three iterative algorithms for the solution 3 of (1):� Quasi-Minimal Residual (QMR),� Conjugate Gradient Squared (CGS), and� Biconjugate Gradient Stabilized (BiCGSTAB).3Although all are based on the idea of biconjugate gradients, and therefore theoretically converge or divergetogether, experiments have shown that one may converge much faster than the others, may break down, or fail toconverge.



2 THE ALGORITHMS 32 The AlgorithmsIn this section we give a brief description of the methods that make up our implementation of thealgorithmic bombardment algorithm.When the coe�cient matrix of the linear system is a symmetric positive de�nite matrix, thetraditional iterative algorithm of choice is the Conjugate Gradient (CG) method [18]. However,when the coe�cient matrix is nonsymmetric, CG typically fails to �nd the solution. The BiconjugateGradient method [12], [19], rather than relying on a single sequence of residuals (as does CG), createsanother sequence f~rgnj=0 using AT , which is orthogonal to frgnj=0, as follows:~rj = ~rj�1 � �jAT ~pj;where ~pj = ~rj�1 + �j�1~pj�1:The biorthogonality requirements between rj with ~rj and pj with ~pj (with respect to the A innerproduct) are enforced by choosing�j = ~rTj�1rj�1~pTj A~pj ; and �j = ~rTj rj~rTj�1rj�1 :2.1 Quasi-Minimal Residual (QMR)BiCG can be erratic in practice, increasing in residual norm for several iterations. QMR is designedto smooth out this problem, and make progress or at worst stall when BiCG temporarily diverges.This algorithmwas initially developed for complex symmetric linear systems [13], then later adaptedto nonsymmetric systems [14].Whereas GMRES constructs and solves an upper Hessenberg matrix consisting of an orthogonalKrylov subspace, the biorthogonality property of BiCG yields a tridiagonal matrix. Solving itin a least squares sense provides a quasi-minimization of the residual, which can overcome theinstability that often occurs in BiCG, allowing for smoother convergence, while maintaining threeterm recurrences.Further research into this algorithm has resulted in a number of improvements. A two termrecurrence version has been developed [15]. Furthermore, van der Vorst has developed a relativelyinexpensive recurrence relation for the computation of the residual vector, as well as a reduction inthe number of preconditioning steps (from three to two) [2].Note that as we have implemented it, QMR may break down4.2.2 Conjugate Gradient Squared (CGS)The goal of QMR is to further reduce the residual when the BiCG iteration stalls. In the caseof convergence for BiCG, both krjk and k~rjk converge to zero, yet only the convergence of rj isexploited. Sonneveld showed [21] that by concentrating the e�ort on the rj, the speed of BiCGconvergence could be doubled.If we write rj = Pj(A)r0 and ~rj = Pj(AT )~r0, we see that(rj; ~ri) = (Pj(A)r0; Pi(AT )~r0 = (Pi(A)Pj(A)r0; ~r0) = 04A version of QMR that includes a \look-ahead" algorithm can avoid these problems, but for simplicity we do notuse it.



3 THE ALGORITHMIC BOMBARDMENT ALGORITHM 4for i < j. This implies that we could construct ~rj = P 2(A)r0. This is the basis for the ConjugateGradient Squared Method (CGS). Note that the savings is not only that the ~r's are not formed, butwe also do not require the transpose of matrix A. The result is that the Krylov subspace is built uptwice as fast as BiCG, theoretically doubling the speed of convergence. Because of the \squaring"of the polynomial, when the BiCG iterate makes progress towards the solution, CGS doubles thatprogress. However, when the BiCG iterate turns away from the solution, that error is also doubled.This explains the erratic behavior of the residual norm.2.3 Biconjugate Gradient Stabilized (BiCGSTAB)Van der Vorst proposed [22] that instead of building the basis vectors for the i � th dimensionalKrylov subspace Ki(~r0; AT ) using the same polynomial, i.e. Pi(A), as does CGS, the residual couldbe smoothed using a di�erent polynomial. He ruled out using Chebyshev polynomials since theoptimalparameters were not easily obtainable. Instead, he selected a polynomial of the formQi(A) =(1�!1A)(1�!2A) � � � (1�!iA), which gives an easy recurrence relation for generating the Qi sequenceby updates. The choice of ! would be such that rn = Qi(A)Pi(A) is minimized. Experiments showthat this often smoothes the peaks common to the residual norm in CGS, while maintaining thespeed of convergence. Note that �nite termination is maintained by the orthogonality property(Pj(A)r0; Qi(AT )~r0) = 0, for i < j.3 The Algorithmic Bombardment AlgorithmAs indicated earlier, none of the algorithms above are guaranteed to �nd the solution. They candiverge, stall out, or break down. Thus, we are led to the idea of using all algorithms simultaneously,on the same problem. As soon as one method has converged we stop the overall iteration; if a methodbreaks down we drop it from the iterative scheme. The resulting poly-iterative algorithm takes moretime to converge than the best method, but it has an improved chance of �nding the solution.3.1 Parallel implementationThe poly-iteration requires the sum of the oating point operations of the included algorithms, butin a context of message-passing parallel computers, we can increase the e�ciency of the approach.The algorithms we consider are all based on some form of the conjugate gradient method, andthereby they have a very similar structure: they begin by computing an inner product, followed byvector updates, then a preconditioner solve, etc. The inner products, matrix-vector products, andpreconditioner solves all require a communication stage. We make the poly-iterative method moree�cient by aligning these methods at these operations and combining the communication stages.Figure 1 illustrates the poly-iterative idea. The operations listed in the circles take advantage ofcombined communication. A listing of the other operations each algorithm performs in parallel (leftto right: CGS, BiCGSTAB, QMR) is also provided.3.2 Structure of the iterationThe global structure of an iteration of the poly-iterative method is as follows:� In each parallel region, that is, a part of the algorithm where there is no communication, leteach processor perform in sequence the operations of the individual methods on its part of thedata.



3 THE ALGORITHMIC BOMBARDMENT ALGORITHM 5
Product
Inner

Solve

Norm

MatVec

Product
Inner

MatVec

3 SAXPY 1 Solve

1 Solve

1 SAXPY2 SAXPY

1 SAXPY

2 SAXPY

2 SAXPY

1 Norm
2 SAXPY

2 Inner Pr
2 SAXPY 1 SAXPY

1 Solve

1 Norm
4 SAXPY

Solve

CGS BiCGSTAB QMR

Figure 1: Sequence of OperationsThis �gure illustrates the sequence of mathematical operations as performed by our implementationof algorithmic bombardment. The operations in the circles combine the communication required ofall three methods into one message. The operations in the rectangles have all processors working inparallel (left to right: CGS, BiCGSTAB, and QMR).



3 THE ALGORITHMIC BOMBARDMENT ALGORITHM 6� At the start of a communication stage, pack the data of all methods that is to be transmittedin one bu�er5, then send this bu�er in total.Combining the communications amortizes the communication overhead over the methods. In thecase of inner products where just a single oating point number per method is sent, this e�ectivelydivides the communication cost by the number of methods.3.3 Cost ModelObviously this approach requires the combined oating point operations and workspace of eachmethod6. This limits the size of the linear system that may be solved, although the actual impact is afunction of the sparsity of the matrix. Table 1 lists the the number of vector-sized operations and theamount of vector storage for each method, as well as for bombardment (excluding preconditioning).We ignore scalar storage and operations.Table 1: Summary of operations and workspace requirementsSummary of Operations for Iteration i. \1/1" means iteration requires both a matrix times vectorand matrix transpose times vector operation. The operations counts for algorithmic bombardmentreect the combining of communication. For example, when we are able to combine the computationof inner products, we count this as one inner product.Method Amount of Work/Iteration Storage� xTy y  �x+ y y  Ax x M�1y RequirementsCGS 3 6 2 2 matrix+ 8nBi-CGSTAB 6 6 2 2 matrix+ 8nQMR 4 5 1/1 1/1 2 �matrix + 14nBombardment 3 17 2 2 2 �matrix + 28nThe scalar cost of an iteration of the poly-iterative method equals the sum of the costs of theindividualmethods. In the case where one method is more expensive than the others and this methodis not the �rst to converge, we incur a relatively high cost. On the other hand, poly-iteration is morepractical, and possibly much cheaper, than trying di�erent methods in sequence, since this requiresa decision when a method is to be abandoned as not likely to converge.In addition to the storage of matrix A, bombardment requires 26 workspace vectors of length n.GMRES with restart parameter m uses (m + 5)n = 5n+mn, so the amount of workspace is equalwhen the restart parameter is 21. The problem is that restarting voids the guaranteed convergenceproperty of GMRES.Another consideration is the amount of work per iteration. GMRES performs one matrix-vectorproduct and one preconditioner solve per iteration compared to two each for each algorithm inbombardment. However, the number of inner products per iteration for GMRES grows linearly withthe restart parameter, whereas bombardment requires three (in terms of communication). While itis true that it is possible to compute the GMRES inner products independently, this is known tocause a loss of stability [5].Parallel architectures require global communication, and this remains the over-riding factor inthe performance of these algorithms. For example, the computation of an inner product is an ordern operation, but each processor requires the global result. This requires the communication of asingle scalar. Each processor computes and sends its local result to all other processors, and receives5In certain communication schemes such as PVM [16] this bu�ering is provided, in other schemes such as PICL [17]and the BLACS [7] it has to be implemented as part of the poly-iterative algorithm.6less 2n since the right-hand-side vector b need only be stored once.



4 SOME NUMERICAL RESULTS 7the partial sums from all other processor. Our method computes three inner products locally, thenpacks them into one message for the same communication requirement as the single case. Ourimplementation performs three combined inner products per iteration (one is a Euclidean norm).Also, the two consecutive inner products in BiCGSTAB take advantage of combined communication,as they could be in an individual implementation.To perform the matrix-vector product Ax, we �rst collect the global multiplier vector x on eachprocessor7, then the resulting local product stays on that processor. This means that we combinethe communication here by packing the three multiplier vectors x1; x2, and x3 into one bu�er xwhich is broadcast to all participating processors. When the transpose of the matrix is explicitlystored, this is the same procedure for performing ATx.When the transpose is not stored, we can still combine communication as follows. First performthe local matrix-vector product xTA. This results in a partial sum of the global product. Eachprocessor needs the partial sums of the rows it is responsible for from each processor, so this ispacked in the above bu�er for collecting the global multiplier.That is,1. xTA is performed in parallel,2. the bu�er is packed and broadcast, then3. the local matrix-vector products Ax are performed.By combining these operations where possible, the bombardment scheme requires eight communi-cations per iteration, compared with �ve for CGS, seven for BiCGSTAB, and six for QMR (ignoringpreconditioning). The savings involved in the preconditioning step is a function of the structureof the preconditioner. For example, if we apply diagonal scaling or, more general, a block Jacobimethod, no global communication is required, so there is no savings. However, if an incompletefactorization is used, a relative savings will occur, depending on the requirements of the solve.4 Some Numerical ResultsIn this section we present some examples as justi�cation for the bombardment approach. For com-parison purposes, we de�ne the best algorithm as the one that computes the solution in the leastamount of elapsed time.4.1 Implementation Details� Software{ All codes were written in ANSI standard Fortran 77.{ The Distributed Iterative Linear System Solvers [10] research software was adapted to thebombardment algorithm.{ Also, we have adapted the PIM package [4]. In addition to writing the bombardmentalgorithm, we changed the communication interface to the BLACS [7]. This allows forportability of the code among the various platforms, while giving optimized communica-tion patterns (especially useful for the global sums required by the inner products), at anegligible cost due to the added programming layer [8].� Hardware7Actually, the structure of the matrix determines how much of the global multiplier vector is needed. For example,if the matrix is block tridiagonal, such as arises in �ve-point discretizationmethods, only nearest-neighbor informationmay be needed.



4 SOME NUMERICAL RESULTS 8{ Executed on an Intel iPSC860 Gamma Hypercube [9] at Oak Ridge National Laboratory(ORNL).{ Virtual parallel machines were formed using Sun SPARCstation IPX workstations usingPVM [16] over ethernet.For stopping criteria we use a tolerance TOL < krkk=kbk. Since we use the initial guess x0 = 0,this is equivalent to TOL < krkk=kr0k, i.e. we require that the initial residual is su�ciently reduced.We note that this is not necessarily the optimal stopping criteria since the actual accuracy of thereported solution is dependent upon the relationship between the norms of the matrix, the right-hand-side and the true solution. However, for the examples we o�er here, this is a reasonablechoice. For an overview of stopping criteria, see [2]. For the right hand side we use the unit vectoru = [1; : : : ; 1]T .4.2 Distributed Memory Parallel Processing ExperimentsIn a distributed memory parallel processing environment, we can combine the communication of thethree algorithms required for the matrix-vector products, preconditioner solvers, and inner products.The actual time savings depends on the structure of the matrix and preconditioner, and the resultinge�ciency of the matrix-vector multiplier and preconditioner solver, as well as the latencies involvedwith message passing. The following experiments were run on the Intel iPSC860 multiprocessormachine at Oak Ridge National Laboratory [9] and clusters of workstations which communicateover ethernet using PVM. The overhead and latency of other machines, as well as oating pointperformance, will a�ect these results. Note that time, unless otherwise noted, refers to wall clocktime.Example 1: Random sparse matrixOur �rst example involves a matrix with random sparsity so that an e�cient matrix-vector prod-uct cannot be designed. We have run the algorithm for a �xed number of iterations, during whichthere was no convergence of breakdown, and compared the times for each method individually andthe time for the poly-iterative method. The respective times per iteration for CGS, BiCGSTAB, andQMR are 0.0274, 0.0276, and 0.0282 seconds. Bombardment took 0.0298 seconds per iteration, only8:8% longer than CGS, 8:0% longer than BiCGSTAB, and 5:7% longer than QMR. These timings insome sense may be interpreted as the best case for bombardment since each processor must commu-nicate with all the others, and the messages sent during the matrix-vector products are as long asthey would ever be. Subsequent examples involve well-structured matrices so that the matrix-vectorproduct can be optimized in order to minimize communication.Example 2: The Poisson ProblemMathematicians have spent, and are spending, a great deal of time trying to identify the prop-erties for which a particular method is optimal. For example� CGS tends to quickly diverge when the initial guess is close to the exact solution. Therefore,this method should probably be avoided when solving time-dependent problems.� BiCGSTAB tends to break down when the imaginary parts of the eigenvalues are large relativeto the real parts.� QMR is designed to avoid the breakdown situations that may arise with CGS and BiCGSTAB,but we have found that it is prone to stall.



4 SOME NUMERICAL RESULTS 9Yet mysteries still remain, and careful analysis of the coe�cient matrix may or may not provideclues as to which method to use. Additionally, even small perturbations may change these propertiesso that the method that worked well before no longer works at all. And even with this analysis,rounding errors may alter our prediction.We illustrate this problem using the 2-D Poisson problem. In its basic form, the resultingsymmetric positive de�nite matrix is easily solved by all three methods. Yet if we perturb the basicPDE, so that symmetry or de�niteness is altered, a method that previously worked well may breakdown, stall, or diverge. Mathematical reasons could probably be found to explain this behavior,but when a user just wants the solution, the extra time and workspace needed by algorithmicbombardment may be justi�ed. Below are some experiments run on distributed memory parallelmachines as well as networks of work stations. They involve perturbations of the 2-D Poissonequation, solved using central di�erences on square grids. The goal of these experiments is toillustrate two things:1. the di�culty in selecting the best algorithm, and2. the use of the bombardment scheme is not much more expensive than using an individualroutine.We �rst consider the e�ects of the problem size on elapsed time. Suppose we wish to solve8� ��@2u@x2 + @2u@y2�+ cos(�)@u@x + sin(�)@u@y = 0: (2)with � = �1=10; � = ��=6, on square grids ranging from dimension 100 (order 10,000 matrix)to 400 (order 160,000 matrix) on eight processors of the following parallel machines:� The Intel iPSC860 (60 Mop/s per node9) and� SUN SPARCstation IPX workstations using PVM over ethernet.As expected, as the size of the problem increases (and thus the number of oating point operationsincreases), the di�erence between executing the best algorithm (BiCGSTAB) and the bombardmentalgorithm increases (see Figures 2 and 3).Because QMR takes many more iterations to converge than BiCGSTAB (see Table 2), the timeto solution for QMR is greater than the time to �nd the solution using bombardment. This di�erenceis of course more pronounced for the PVM implementation.Again, the best algorithm is the one that gives us an accurate solution in the shortest amount oftime, regardless of the number of iterations performed. This means the best algorithm could changebased on the computing environment. For example, CGS takes more iterations to �nd the solutionfor these examples than does BiCGSTAB, and at �rst glance it appears that these two algorithmsrequire about the same amount of work to perform an iteration. But BiCGSTAB requires anextra global communication step to accomplish the two extra inner products per iteration it mustperform. In the Intel environment, where communication latencies are not high, BiCGSTAB is thefastest algorithm. However when the individual nodes are connected via ethernet, as is the case withthe PVM experiments, the extra communication becomes signi�cant. The gap closes, and in factCGS converges faster for some matrix sizes. Although this result may be attributed to other networktra�c, it is the nature of ethernet message passing. The time spent in communication provides theinsight into why this is happening. Figures 4 and 5 show the proportion of the time to solution spentin message passing as opposed to oating point computation. As expected, the gap is a functionof the interconnection network. As expected, the oating point operation requirements increase asthe problem size increases, although the startup time to send a message remains constant.8This problem was used in Sonneveld's paper presenting CGS [21].9Millions of oating point operations per second.



4 SOME NUMERICAL RESULTS 10
0 2 4 6 8 10 12 14

x 10
4

0

50

100

150

200

250

300

350

Matrix Order

T
im

e 
(s

ec
on

ds
)

No convergence

Bombardment: solid line

CGS: dashed line

BiCGSTAB: dash-dot line

QMR: dotted line

Figure 2: Times to solution on the Intel i860Using 8 processors of the Intel iPSC860, with no preconditioning, we apply the individual algorithmsand the bombardment algorithm to � 110 �@2u@x2 + @2u@y2 �+ cos ���6 � @u@x + sin ���6 � @u@y = 0, discretizedon a square grid.
0 2 4 6 8 10 12 14

x 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

Matrix Order

T
im

e 
(s

ec
on

ds
)

Bombardment: solid line

CGS: dashed line

BiCGSTAB: dash-dot line

QMR: dotted line

Figure 3: Times to solution on Sun SPARCstation IPX workstationsUsing a parallel machine consisting of 8 SPARC IPX workstations connected with ethernet usingPVM, with no preconditioning, we apply the individual algorithms and the bombardment algorithmto � 110 �@2u@x2 + @2u@y2 �+ cos ���6 � @u@x + sin ���6 � @u@y = 0, discretized on a square grid.



4 SOME NUMERICAL RESULTS 11
0 2 4 6 8 10 12 14

x 10
4

10

15

20

25

30

35

40

45

50

Matrix Order

P
er

ce
nt

 T
im

e 
C

om
m

un
ic

at
io

n

Bombarment: solid line

CGS: dashed line

BiCGSTAB: dash-dot line

QMR: dotted line

Figure 4: Percentage communication time on the Intel i860Using 8 processors of the Intel iPSC860, with no preconditioning, we apply the individual algorithmsand the bombardment algorithm to � 110 �@2u@x2 + @2u@y2 �+ cos ���6 � @u@x + sin ���6 � @u@y = 0, discretizedon a square grid.
0 2 4 6 8 10 12 14

x 10
4

40

45

50

55

60

65

70

75

80

85

Matrix Order

P
er

ce
nt

 C
om

m
un

ic
at

io
n 

T
im

e

Bombarment: solid line

CGS: dashed line

BiCGSTAB: dash-dot line

QMR: dotted line

Figure 5: Percentage communication time on SPARC IPX workstationsUsing a parallel machine consisting of 8 SPARC IPX workstations connected with ethernet usingPVM, with no preconditioning we apply the individual algorithms and the bombardment algorithmto � 110 �@2u@x2 + @2u@y2 �+ cos ���6 � @u@x + sin ���6 � @u@y = 0, discretized on a square grid.



4 SOME NUMERICAL RESULTS 12Table 2: Number of Iterations to SolutionThis table lists the number of iterations required to �nd the solution to � 110 �@2u@x2 + @2u@y2� +cos ���6 � @u@x + sin ���6 � @u@y = 0, discretized on a square grids (the order of the resulting matrixis the square of the grid size). The �rst line for a grid size is from 8 processors of the iPSC860 andthe second line is from 8 Sparc IPX workstations connected with ethernet using PVM. \*" denotesa failure to converge. (However, for grid size 295, CGS converges in 970 iterations and for grid size310, it converges after 1081 iterations.)Grid CGS BiCGSTAB QMR100 181 145 296181 156 296150 356 205 459271 220 479200 427 289 581480 269 587250 1034 361 7651157 377 765300 * 532 1164658 423 911350 1529 557 11421589 522 1287We particularly note the di�erence in required iterations on the di�erent machines (see Table 2).This is due to the way the arithmetic is performed by the oating point unit. The SPARCstation IPXuses IEEE arithmetic while the i860 does not. The i860 chip is designed to produce more accuratecomputations, but since these iterative solvers are not self-correcting, any inexact arithmetic altersconvergence patterns, and more accurate does not necessarily correlate with fast convergence. Infact, experiments have shown that an algorithm may converge on one machine yet fails to convergeon another [3]. This is illustrated here. For a grid size of 300, the IPX �nds the solution, while theiPSC does not. (However, the iPSC does converge for grid sizes slightly smaller and slightly largerthan 300.)These experiments involved only 8 processors of the Intel machine so that results could becompared with a network of workstations. It is of interest, however, to see how our implementationperforms on much larger problems, so we performed this experiment using 128 processors of theIntel iPSC860.Again, we will apply bombardment to Equation (2) on square grids, ranging from dimension 400(order 160,000 matrix) to 1500 (order 2,250,000 matrix). The time to solution of the bombardmentalgorithm as well as the individual algorithms are shown in Figure 6.We see that there are no surprises with respect to time to the solution for the winning algorithm(in this case BiCGSTAB) and bombardment. As the problem size increases, BiCGSTAB remainsabout twice as fast as bombardment. Again, the time spent in communication provides the insightinto why this is happening. Figure 7 shows the proportion of the time to solution spent in messagepassing as opposed to oating point operations.Notice the e�ects of the grid size upon convergence of CGS, which fails for these �ner meshes.Looking back at the coarser meshes in the 8 processor experiments, this is not completely unexpected.For comparison purposes, we iterated for 2500, 5000, and 10000 iterations 10 for grid sizes of 500�500; 1000� 1000, and 1500� 1500, respectively.10Actually, we iterated for far more iterations to convince ourselves that convergence would not be achieved.



4 SOME NUMERICAL RESULTS 13
0 0.5 1 1.5 2 2.5

x 10
6

0

500

1000

1500

2000

2500

3000

Matrix Order

T
im

e 
(s

ec
on

ds
)

Bombardment: solid line
CGS: dashed line (no convergence)
BiCGSTAB: dash-dot line
QMR: dotted line

Figure 6: Times to solution on the Intel i860Using 128 processors of the Intel iPSC860, with no preconditioning, we apply the individual al-gorithms and the bombardment algorithm to � 110 �@2u@x2 + @2u@y2� + cos ���6 � @u@x + sin ���6 � @u@y = 0,discretized on square grids ranging from dimension 400 to 1500.
0 0.5 1 1.5 2 2.5

x 10
6

30

40

50

60

70

80

90

Matrix Order

P
er

ce
nt

 T
im

e 
C

om
m

un
ic

at
io

n

Bombarment: solid line

CGS: dashed line (no convergence)

BiCGSTAB: dash-dot line

QMR: dotted line

Figure 7: Percentage communication time on the Intel i860Using 128 processors of the Intel iPSC860, with no preconditioning, we apply the individual al-gorithms and the bombardment algorithm to � 110 �@2u@x2 + @2u@y2� + cos ���6 � @u@x + sin ���6 � @u@y = 0,discretized on square grids ranging from dimension 400 to 1500.



4 SOME NUMERICAL RESULTS 14Next, we present some experiments in which bombardment �nds the solution but one or more ofthe included algorithms fail.Example 3: BiCGSTAB is preferable.Solving Equation (2) on a 200 � 200 grid (40,000 variables) and no preconditioning11, we set� = 1=100 and � = ��=6. BiCGSTAB converges while neither CGS or QMR converge. (See Table3 for timings, and residual norm histories in Figure 8.)Table 3: Performance on Intel iPSC/860Time (in seconds) to solution for solving perturbations of the Poisson equation. * means convergencenot achieved. Example CGS BiCGSTAB QMR Bombardment1 1.37e2 1.38e2 1.41e2 1.49e23 * 4.78e1 * 1.26e24 * * 7.98e0 1.32e15 4.01e2 5.02e2 * 8.96e2
0 50 100 150 200 250 300

10
-5

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

Number of Iterations

R
es

id
ua

l N
or

m

CGS: dashed line

BiCGSTAB: dash-dot line

QMR: dotted line

Figure 8: Parallel example: BiCGSTAB winsExample 6: The residual norm history of each algorithm, using D-ILU preconditioning, applied to� 1100 �@2u@x2 + @2u@y2�+ cos ���6 � @u@x + sin ���6 � @u@y = 0, discretized on a 200 grid. (8 processors of Inteli860 gamma at ORNL.)The next two examples perturb11The result is similar when D-ILU preconditioning is used.



5 SHARING INFORMATION BETWEEN ALGORITHMS 15@2u@x2 + @2u@y2 + �(@u@x + @u@y ) + �u = 1: (3)Example 4: QMR is preferable.On a 100�100 grid (10,000 variables) and using no preconditioning, we perturb � (� = 0). QMRconverges, yet CGS and BiCGSTAB fail to converge. (See Table 3 for timings.)Example 5: CGS is preferable.Solving Equation (3) on a 400� 400 grid (160,000 variables) and using block ILU precondition-ing 12[1], we perturb � (� = 0). BiCGSTAB converges, but CGS converges faster. QMR fails todetermine the solution (even after 5000 iterations). (See Table 3 for timings.)5 Sharing Information Between AlgorithmsSince the individual algorithms are iterating in lock-step, it is tempting to share the informationfrom the methods that appears to be working best with the others. That is, if for example CGS iscloser to the solution that BiCGSTAB and QMR, why not restart them using the current iterateand residual from CGS? This would have the e�ect of projecting the iterate of one algorithm ontothe Krylov subspace of another. Algorithmic Bombardment facilitaties the sharing of informationbetween algorithms. Sample experiments are discussed below13.Example 6A matrix provided by van der Vorst [23], which results from a 5-point discretization, is easilysolved by each method, fastest by BiCGSTAB (Figure 9). After 20 iterations, BiCGSTAB has thebetter solution approximation of the three, so we share its information with CGS and QMR. Also,every 20 iterations thereafter we share information from the algorithm with the best approximation.BiCGSTAB continues to have the best approximation, and therefore converges as before. However,CGS and QMR are irreparably damaged (�gure 10). In fact, immediately after receiving the newinformation, CGS diverges quickly, then attempts to recover, but then is fed new information, in-terfering again. QMR merely stalls. Since CGS attempts to converge after temporarily diverging,we try giving it information only once (after 20 iterations). We see that CGS and QMR are stillirreparably damaged (�gure 11). In fact, this shows that by continuing to give CGS better informa-tion, we hid the fact that it's convergence pattern was destroyed. So information from BiCGSTABis of no value to CGS and QMR. Next we try sharing information from QMR.Example 7The nonsymmetric linear system comes from the discretization (on a 12 � 12 � 12 grid) of thethree-dimensional elliptic partial di�erential equation(exyzux)x+(e�xyzuy)y+(e�xyzuz)z�250(x+y+ z)ux�250[(x+y+ z)u]x� (1+x+y+ z)�1u = Fon the unit cube. (The exact solution is u = exyz sin(�x) sin(�y) sin(�z).) This problem has positivede�nite symmetric part (A +AT )=2 for any mesh size [11].12Block ILU preconditioning requires no communication.13Note that for experimental purposes, we continue until either all algorithms converge or some maximum numberof iterations are performed. Of course, when an algorithm �nds the solution to tolerance, we drop it entirely from thescheme.



5 SHARING INFORMATION BETWEEN ALGORITHMS 16
0 20 40 60 80 100 120

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

Number of Iterations

R
es

id
ua

l N
or

m

CGS: solid line

BiCGSTAB: dotted line

QMR: dashed line

Figure 9: All methods converge.All methods easily �nd the solution even without preconditioning. This example will be used toshow the e�ects of sharing information from algorithm with the current closest approximation.Using block ILU, none of individual algorithms can �nd the solution. Yet with no preconditioning,QMR �nds the solution in 382 iterations, while CGS and BiCGSTAB wander about, making nosigni�cant progress towards the solution. So every 20 iterations we decide to share information.Again, the immediate e�ect is for the residuals of CGS and BiCGSTAB to diverge, then turnand try to converge. But since neither gets below QMR's residual, they are again restarted, and thepattern repeats. So we try restarting only once.The e�ects are similar to the experiment where no information is exchanged, except that theCGS residual never dips below that of QMR as before. Hence information from QMR is of no valueto CGS and BiCGSTAB. Next we try sharing information from CGS.Example 8In the above example, the CGS residual makes a sharp dip below the QMR residual (around 88iteration), temporarily giving it the best approximation. Here we give BiCGSTAB and QMR thisinformation. BiCGSTAB gets more erratic, while QMR stalls. Then as before, the CGS residualjumps above the QMR residual, so that QMR has the best approximation, but as we saw above,this doesn't help CGS or BiCGSTAB. Since QMR stalls, this situation doesn't change.There are two ways to understand these e�ects of sharing information. First, we could examinethe e�ects on the various parameters of the algorithms. The problem is most easily seen in CGSwith the computation of � = �i�1=�i�2 = ~rT ri�1=~rT ri�2. In the step immediately following therestart, � will be smaller than it would have been without a restart. This causes a smaller thanexpected change in p and q, carrying down to a smaller updating of the solution and residual. It isduring the next step where the big problem occurs. Now the denominator in the computation of �is smaller than expected, while the numerator is about the same size as it was during the previousstep, causing � to become too large. This cascades down to the approximation, where the updating



5 SHARING INFORMATION BETWEEN ALGORITHMS 17
0 50 100 150 200 250 300 350 400 450 500

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

Number of Iterations

R
es

id
ua

l N
or

m

CGS: solid line

BiCGSTAB: dotted line

QMR: dashed lineFigure 10: Sharing information from BiCGSTABSince BiCGSTAB is closest to the solution after 20 iterations, we give xBiCGSTAB and rBiCGSTABto CGS and QMR. Then every 20 iterations we continuing sharing information.
0 50 100 150 200 250 300 350 400 450 500

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

Number of Iterations

R
es

id
ua

l N
or

m

CGS: solid line

BiCGSTAB: dotted line

QMR: dash-dot lineFigure 11: Sharing information from BiCGSTAB (once)Since BiCGSTAB is closest to the solution after 20 iterations, we give xBiCGSTAB and rBiCGSTABto CGS and QMR. But we share information only once.



6 CONCLUSIONS 18overshoots the solution. Since the choice of an initial guess doesn't matter, we might expect thealgorithm to settle down and begin converging again. But these algorithms use information fromall previous search directions, so the root cause of the problem is that we have interfered with thatprocess, contaminating all previous work. Each algorithm builds up a di�erent Krylov subspacein an attempt to �nd the solution, and while it is true that each algorithm operates on the samematrix, they do so in di�erent ways.This illustrates two important characteristics of these algorithms:1. The initial guess doesn't matter (except with CGS, which is likely to diverge if x0 is too closethe true solution, and2. each method must build up, and remain in, its own Krylov subspace, based upon the algorithmand the spectrum of the matrix.A more thorough examination of appropriate sharing among the algorithms constitutes futureresearch.6 ConclusionsMany algorithms have been developed for solving large sparse nonsymmetric linear systems whichuse short recurrences, but their convergence is no longer guaranteed, nor predictable in practice.Therefore we have incorporated three of these algorithms into a poly-iterative scheme, so that wemay apply them simultaneously to the same data set. We have shown through various experimentsthat this increases the chance of �nding the solution, and in a parallel environment this does notincrease the time to solution threefold. In fact, even when all three algorithms would have foundthe solution, bombardment may be faster than the slowest of the three.The expected performance of a given application is dependent upon the combination of thestructure of the matrix (sparsity, structure, etc.), the data structure used, the preconditioner, andthese e�ects upon the performance of the matrix-vector product and preconditioner solver. Forexample, if the matrix is well-structured, a matrix-vector product can usually be implemented thatrequires a small amount of communication. Also, if the matrix has a large number of nonzeros, itmay be possible to reduce the e�ects of the indirect addressing of the matrix-vector product.Ultimately, the performance of the computing environment determines the performance. Thenew Cray T3D is expected to have much lower communication overhead and latency than the InteliPSC/860. On the other hand, workstation clusters connected using PVM [16] exhibit high latency,and are dependent upon the tra�c interconnection network, often the Internet. Regardless, theincreased probability of convergence should justify using poly-iteration.7 Future WorkThe experiments presented above are frequently encountered in the scienti�c world, hence we believethe results justify our implementation of the poly-iterative idea, including the choice of algorithms aswell as the scheme for performing the matrix-vector product and preconditioning. However, di�erentapproaches may be more appropriate depending upon the problem being solved. For example, someapplications require solving many linear systems in a sequence of time steps. Since the matrix maynot change signi�cantly from one step to the next, it has been suggested that perhaps bombardmentcould be used during one such solve, then only the winning algorithm would be used for the nextfew solves, then back to bombardment, and so on.Perhaps incorporating more GMRES concepts into the poly-iteration would be valuable in somecases. Since we originally ruled out using this valuable algorithm due to its linearly increasing



REFERENCES 19workspace requirements, we must �nd a way to overcome this limitation while still gaining per-formance. BiCGSTAB is actually the combination of BiCG and GMRES(1). Recent work [23]shows that increasing the e�ects of GMRES can be worthwhile, such as combining GMRES(2) orGMRES(4) with BiCG.Additionally, di�erent preconditioning schemes might prove valuable under some circumstances.Here we use the same preconditioner for each algorithm. Perhaps this is not optimal. For example,the performance of QMR was often degraded by ILU.Further research into di�erent matrix-vector product implementations may yield higher compu-tational performance in some situations. For example, certain matrix structures may allow highere�ciency. One possibility would be to interleave the elements of the multiplier of the algorithms inorder to force less indirect addressing, which slows the oating point performance. Dense matrixcomputations perform O(n3) operations on O(n2) data. But for sparse matrices, this is actuallya vector-vector operation (O(n) operations on O(n) data), with the added degradation of indirectaddressing. And since three such operations must be performed, the e�ect is magni�ed. This can bereduced in the bombardment scheme. Suppose the multipliers are xCGS ; xBiCGSTAB; and xQMR.The obvious way to compute AxCGS ; AxBiCGSTAB; and AxQMR is to perform the operations se-quentially. But the elements can be interleaved asx = [xCGS1 ; xBiCGSTAB1 ; xQMR1 ; : : : ; xCGSn ; xBiCGSTABn ; xQMRn ]T ;reducing the e�ects of indirect addressing threefold. Note that this scheme will cause indirectaddressing of some vector updates, so its overall e�ect is dependent upon the number of nonzeros inthe matrix.References[1] O. Axelsson. Incomplete block matrix factorization preconditioning methods. the ultimateanswer? J. Comp. Appl. Math., 12&13:3{18, 1985.[2] Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June Donato, Jack Dongarra,Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk van der Vorst. Templates for theSolution of Linear Systems: Building Blocks for Iterative Methods. SIAM, 1994.[3] Richard F. Barrett. Algorithmic bombardment for the iterative solution of linear systems: Apoly-iterative approach. Master's thesis, University of Tennessee, 1994.[4] Rudnei Dias da Cunha and Tim Hopkins. Pim 1.1: The parallel iterative methods package forsystems of linear equations user's guide. Technical report, University of Kent at Canterburg,1993.[5] James Demmel, Michael T. Heath, and Henk A. van der Vorst. Parallel linear algebra. ActaNumerica, 2, 1993.[6] J.J. Dongarra, J. DuCroz, I. Du�, and S. Hammerling. A set of level 3 basic linear algebrasubprograms. ACM Trans.on Math. Soft., 16:1{17, 1990.[7] J.J. Dongarra, Robert A. van de Geijn, and R. Clint Whaley. Lapack working note: A users'guide to the blacs. Technical report, Computer Science Department, University of Tennessee,1993.[8] J.J. Dongarra, Robert A. van de Geijn, and R. Clint Whaley. Basic linear algebra communica-tion subprograms: Analysis and implementation across multiple parallel architectures. Technicalreport, Computer Science Department, University of Tennessee, 1994.



REFERENCES 20[9] T. H. Dunigan. Performance of the intel ipsc/860 hypercube. Technical Report ORNL/TM-11491, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1990.[10] Victor Eijkhout. Distributed iterative linear system solvers users' guide (in preparation). Tech-nical report, Computer Science Department, University of Tennessee, 1994.[11] Howard C. Elman. Iterative methods for large, sparse nonsymmetric systems of linear equations.Technical report, Yale University, 1982.[12] R. Fletcher. Conjugate gradient methods for inde�nite systems. In G.A. Watson, editor,Numerical Analysis Dundee 1975, pages 73{89, New York, 1976. Springer Verlag.[13] RolandW. Freund. Conjugate gradient type methods for linear systems with complex symmetriccoe�cient maitrices. Technical Report 89.54, RIACS, 1989.[14] Roland W. Freund and No�el M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian linear systems. to appear.[15] Roland W. Freund and No�el M. Nachtigal. An implementation of the QMR method based oncoupled two- term recurrences. Technical Report 92.15, RIACS, 1992.[16] G. A. Geist, A. L. Beguelin, J. J. Dongarra, R. J. Manchek, and V. S. Sunderam. PVM 3.0user's guide and reference manual. Technical Report ORNL/TM-12187, Oak Ridge NationalLaboratory, Oak Ridge, Tennessee, 1993.[17] G. A. Geist, M. T. Heath, B. W. Peyton, P. H. Worley, and V. S. Sunderam. A users' guideto picl: a portable instrumented communication library. Technical report, Oak Ridge NationalLaboratory, Oak Ridge, Tennessee, 1990.[18] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J.Res. Nat. Bur. Stand., 49:409{436, 1952.[19] C. Lanczos. Solution of systems of linear equations by minimized iterations. Journal of Research,Nat. Bu. Stand., 49:33{53, 1952.[20] Yousef Saad and Martin H. Schultz. GMRes: a generalized minimal residual algorithm forsolving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856{869, 1986.[21] Peter Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J.Sci. Stat. Comput., 10:36{52, 1989.[22] Henk van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for thesolution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13:631{644, 1992.[23] Henk van der Vorst, Dec 1993. private communication.


