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Abstract

Checkpointing is a simple technique for rollback recovery: the state of an executing
program is periodically saved to a disk file from which it can be recovered after a failure.
While recent research has developed a collection of powerful techniques for minimizing
the overhead of writing checkpoint files, checkpointing remains unavailable to most
application developers. In this paper we describe libckpt, a portable checkpointing
tool for Unix! that implements all applicable performance optimizations which are
reported in the literature. While libekpt can be used in a mode which is almost totally
transparent to the programmer, it also supports the incorporation of user directives
into the creation of checkpoints. This user-directed checkpointing is an innovation
which is unique to our work.

1 Introduction

Consider a programmer who has developed an application which will take a long time to
execute, say five days. Two days into the computation, the processor on which the application
is running fails. If the programmer has not planned for this event, his only choice is to restart
the program and lose two days’ work. Upon restarting the program, he still needs five days
of continuous failure-free processor time to complete the job.

Libckpt is a checkpointing library designed for such a programmer. To use libckpt, all
he must do is change one line of his source code and recompile with the library libckpt.a.
No other modifications need be made. Upon execution, the program will periodically save
its execution state to disk. Upon a processor failure, the programmer need only restart the
program with the command line flag =recover, and the program will roll back to the most
recently checkpointed state. In the example above, at most ten minutes of work will be lost,
and the programmer needs approximately three more days of non-continuous failure-free
processor time to complete the job.

1'Unix is a trademark of UNIX Systems Laboratories, Inc.



Libckpt is a tool for transparent checkpointing on uniprocessors running Unix. It im-
plements incremental and copy-on-write checkpointing, two optimizations well-known in
the literature [FB89, LNP90, EJZ92, LNP94]. Libckpt is a user-level library and uses
only facilities which are commonly available under Unix. Libckpt has been ported to
and tested on a variety of architectures and operating systems with no kernel modifi-
cations. Source code for libckpt can be obtained at no cost by anonymous FTP from
cs.utk.edu:pub/plank/libckpt.

In this paper, we show the performance gains available in libckpt through transparent in-
cremental and copy-on-write checkpointing. In addition, we introduce a new optimization
technique, implemented in libckpt, called user-directed checkpointing. User-directed check-
pointing works under the assumption that a little information from the user can yield large
improvements in the performance of checkpointing. We demonstrate that this assumption
is often valid.

2 Transparent Checkpointing

The goal of checkpointing is to establish a recovery point in the execution of a program, and
save enough state to restore the program to this recovery point in the event of a failure.
The main use of checkpointing is to provide a mechanism for performing rollback recovery,
a general means of fault tolerance. The strength of rollback recovery is its ability to provide
fault tolerance in the presence of unanticipated faults — faults which were not envisioned in
the design of the program [ALS1].

The most straightforward mechanism for establishing a recovery point under Unix is to
suspend execution of the application while the entire contents of a process’s memory and
registers are written to a file. This is called sequential checkpointing because disk transfers
are not interleaved with program execution. Recovery is effected by reloading the executable
from its original file, and then reconstructing the memory and register state from the check-
point file. This is akin to creating a core file, from which a user may recover using the
undump utility and execve().

We say that checkpointing is transparent when no changes need be made to the application
program. While transparency is easy to obtain at the kernel level, it is harder to achieve
in a user level checkpointing library. All current implementations of checkpointing share
this limitation: They operate transparently and correctly so long as the application is well-
behaved in a sense we will define in Section 4. Libckpt and all other user-level checkpointers
can cause a correct but ill-behaved application to fail or to produce incorrect output upon
recovery.

Checkpointing with libckpt is not completely transparent. The name of the initial procedure
in C must be changed from main() to ckpt target (). This enables libckpt to gain control
of the program as it starts, check the command line for the =recover flag, read a file called
.ckptrc to set checkpointing parameters, and begin checkpointing. In FORTRAN, libckpt is
enabled by changing the main PROGRAM module to SUBROUTINE ckpt target(). No other
program modifications are needed.



By default, once libckpt gets control of a program, it generates a timer interrupt every ten
minutes, and takes a sequential checkpoint at each interrupt. This and other defaults can
be changed by placing appropriate lines in the .ckptrc file. In this section, we describe all
options, where appropriate, as they would appear in the .ckptrc file.

Placing the line “checkpointing <on|off>" in the .ckptrc file turns check-
pointing on or off. If off, libckpt will take no checkpoints and will not affect
the execution of the application. The default is on.

dir <directory> specifies the directory in which checkpoint files are created and
found. The default is the current directory.

maxtime <seconds> defines the interval between checkpoints. At the beginning
of the program, and after each checkpoint, libckpt calls alarm(seconds) and
takes a checkpoint upon catching each ALRM signal. Setting the timer interval to
zero turns off all timer-based checkpointing. The default value of maxtime is 600
(10 minutes).

Many optimizations to simple sequential checkpointing have been described in the literature.
Libckpt implements all well-known optimizations that are applicable to general-purpose
uniprocessor checkpointing, as well as the new user-directed optimization. In the remainder
of this section, we consider each of them in turn.

2.1 Incremental Checkpointing

When a checkpoint is taken, only the portion of the checkpoint that has changed since the
previous checkpoint need be saved. The unchanged portion can be restored from previous
checkpoints. Incremental checkpointing [FB89, WM89, EJZ92] uses page protection
hardware to identify the unchanged portion of the checkpoint. Saving only the changed
portion reduces the size of each checkpoint, and thus the overhead of checkpointing.

incremental <omn|off> turns incremental checkpointing on or off. The default
is off.

In general, the size of a non-incremental checkpoint grows very slowly over time if at all.
Moreover, only the most recent checkpoint file need be retained for recovery — older ones
may be deleted. In contrast, old checkpoint files cannot be deleted when incremental check-
pointing is employed, because the program’s data state is spread out over many checkpoint
files. The cumulative size of incremental checkpoint files will increase at a steady rate over
time, since many updated values may be saved for the same memory location. In order to
place an upper bound on the cumulative size of incremental checkpoint files, it is necessary
to coalesce all old checkpoint files into one new file, and then discard the old files. For
this purpose, libckpt includes a utility program ckpt coa, which coalesces a collection of
incremental checkpoint files into a single checkpoint file.



maxfiles <n> sets the maximum number of incremental checkpoint files to n.
After n checkpoint files have been created, libckpt calls ckpt coa process to
coalesce them down to one file. If n = 1, then no incremental checkpointing can
occur. Values of n greater than one allow the user to strike a balance between
incremental checkpointing and total disk storage. The default is n = 1.

Libckpt uses page protection to identify which pages should be included in incremental
checkpoints. Specifically, after initialization and after each checkpoint, the mprotect ()
system call is invoked to set the protetion of all pages in the data space to read-only. When
a write occurs to a memory location in a protected page, the SEGV signal is caught by a
handler in libckpt. The faulting page has its access protection set to read-write, and the
page is marked as dirty. When 1ibckpt takes the next checkpoint, only the dirty pages are
included.

2.2 Forked Checkpointing

Incremental checkpointing as described in the previous section is still sequential: Fxecution of
the application program is suspended while the checkpoint file is written out. An alternative
is to make a copy of the program’s data space and to use an asynchronously executing
thread of control to write the checkpoint file. This is called “main-memory checkpointing”
[LNP94], and improves checkpoint overhead if there is enough physical memory to hold the
checkpoint, as the saving of the checkpoint to disk is overlapped with the execution of the
application.

The Unix fork() primitive provides exactly the mechanism needed to implement main-
memory checkpointing [PL89, LFS93]. When forked checkpointing is specified, libckpt
forks a child process, which creates and writes the checkpoint file while the parent process
returns to executing the application. The fork() system call provides the child with a fixed
snapshot of the parent’s data space and a separate thread of control.

fork <on|off> in the .ckptrc file turns main forked checkpointing on or off.
The default is off.

An important improvement to main-memory checkpointing is copy-on-write checkpoint-
ing [LNP90, EJZ92, LNP94]. Here the copy of main memory is taken using copy-on-
write [TLC85, FR86]. Many implementations of fork() use a copy-on-write mechanism
to optimize the copying of the parent’s address space [Ste92]. Thus, forked checkpointing
corresponds to either main-memory checkpointing or copy-on-write checkpointing, depending
on the operating system’s implementation of fork().

2.3 Checkpoint Compression

With checkpoint compression, a standard compression algorithm like LZW [Wel84] is used
to shrink the size of the checkpoint [LF90, PL94]. While this may be successful at reducing
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checkpoint size, it only improves the overhead of checkpointing if the speed of compression
is faster than the speed of disk writes, and if the checkpoint is significantly compressed.
For uniprocessor checkpointing, this is not the case, and compression has only been shown
to be effective in parallel systems with disk contention [PL194]. For this reason, checkpoint
compression is not implemented in libckpt.

3 User-Directed Checkpointing

All the optimizations presented so far maintain the transparency of checkpointing through
techniques that are not visible to the application: signal handlers, page protection, and
the creation of child processes. In this section, we consider a different approach that can
improve on the performance of these transparent approaches and can also substitute for
them when automatic mechanisms are not available. We call this approach “user-directed
checkpointing.” We consider two ways in which user-supplied directives can improve the
performance of checkpointing: memory exclusion, and synchronous checkpointing.

3.1 Memory Exclusion

There are two situations where the values of memory locations can be excluded from a
checkpoint file: when the locations are dead and when they are clean. In the case of dead
locations, the values in memory will never be read or written, and thus do not need to be
checkpointing. In the case of clean locations, the values in memory exist in a previous check-
point and have not been changed. Thus they need not be saved in the current checkpoint.
While the identification of excludable areas of memory can sometimes be automated (as in
incremental checkpointing), libckpt also allows the programmer to declare them explicitly.

For example, suppose the user allocates a large temporary array T to make a calculation.
When the lifetime of the data in array T is over, it will never be referenced again — the next
use of array T will overwrite the old values. If a checkpoint is taken outside of the lifetime of
array T, then it can be safely excluded from the checkpoint. Any recovered state from this
point will not need to use the current values stored in array T.

The stack is a run-time mechanism that helps the checkpointer to determine the lifetime of
local variables. This is one form of memory exclusion: only the live portion of the stack is
saved. Unfortunately, this does not work for heap variables or for variables which reside in
the statically allocated data segment.

The basis of incremental checkpointing is that clean data need not be repeatedly written to
disk. In order to implement automatic incremental checkpointing, libckpt monitors page
modifications using the mprotect() system call and a handler for the SEGV signal. This
approach has a few weaknesses: it can only operate at the page granularity; system calls can
fail rather than generating a SEGV signal when asked to write to a protected page; and on
some systems mprotect () is not reliable.

In those cases where automatic mechanisms cannot infer all possible memory exclusions, the
performance of checkpointing can suffer. For this reason, libckpt allows the programmer to



manage memory exclusion explicitly through two procedure calls.

exclude bytes(char *addr, int size, int start now): This procedure call tells
libckpt to exclude the region of memory specified from subsequent checkpoints.
It may be called when the user knows that these bytes are not necessary for the
correct recovery from the program. Start now is a boolean argument. If non-zero,
then these bytes are excluded from the next and all subsequent checkpoints until
include bytes() is called. If start now is zero, then these bytes are excluded
from checkpoints starting after the next checkpoint. Memory locations which
will not be written for some time are not actually clean, but will become clean
after the next checkpoint is taken. Thus, by calling exclude bytes() with a
zero value for the start now argument, the programmer can defer the exclusion
of these memory locations until after they become clean.

include bytes(char *addr, int size): Because dead pages can become live and
clean pages can become dirty, libckpt provides a mechanism for reversing the
effects of memory exclusion. This procedure call tells libckpt to include the
specified region of memory in the next and subsequent checkpoints. Thus,
include bytes() cancels the effect of calls to exclude bytes(), although calls
to include bytes() do not have to match calls to exclude bytes(). By default,
libckpt includes all bytes in a process’s active stack and data segments that have
not been explicitly excluded.

User-directed memory exclusion can dramatically reduce the size of sequential and incre-
mental checkpoint files, but it must be used very carefully. If a live region of memory is
mistakenly excluded from a checkpoint, then a subsequent failure and recovery can cause an
otherwise correct application to fail or to generate incorrect results.

3.2 Synchronous Checkpointing

In the previous section we discuss a mechanism for optimizing asynchronous checkpointing
by excluding certain areas of memory. This allows the checkpointer to make use of data
lifetime information which would not otherwise be available to it. However, the amount of
data which can be excluded from the checkpoint is determined by the program’s state when
the checkpoint is taken. If the stack is large, or the size of excluded memory is small, then
memory exclusion will have little effect.

Synchronous checkpointing is a user directive that allows the programmer to specify points
in the program where it is most advantageous for checkpointing to occur. These are called
“synchronous” checkpoints because they are not initiated by timer interrupts. Synchronous
checkpoints should be inserted by the programmer at points where memory exclusion can
have the greatest effect.

checkpoint here() is a procedure call specifying to take a synchronous check-
point.



Synchronous checkpoints may be placed in program locations that are reached often. Check-
pointing too often, however, can lead to poor performance, and in order to avoid this libckpt
allows a minimum interval between checkpoints to be specified.

mintime <seconds> specifies the minimum period of time that must pass be-
tween checkpoints. The default is zero. If mintime seconds have not passed since
the previous checkpoint, then checkpoint here() calls are ignored.

Synchronous and asynchronous checkpointing techniques can complement one another. If
maxtime seconds have passed and no synchronous checkpoint has been taken since the last
checkpoint, then an asynchronous checkpoint is still taken. However, the effect of memory
exclusion is likely not to be as beneficial as in a synchronous checkpoint. If both the mintime
and maxtime parameters are set, then the former specifies the minimum interval between
synchronous checkpoints, and the latter specifies an interval after which an asynchronous
checkpoint will be taken. Whenever a checkpoint is taken, both the minimum and maximum
interval timers are reset.

If maxtime is zero, then asynchronous checkpoints are disabled. In this case, the specification
of memory exclusion can be optimized for synchronous checkpoints, because the memory
exclusions specified need only be valid at the calls to checkpoint here(), and need not
be kept constantly up-to-date to account for the possibility of a checkpoint being taken
asynchronously.

3.3 An Example

There are many times when user-directed, synchronous checkpointing can yield large perfor-
mance gains. Consider the example program in the left side of Figure 1. This is a typical
driver program for many kinds of programs that repeat calculations over numerous points in
a data set. The right side of Figure 1 shows how one should checkpoint this program with
synchronous, user-directed checkpointing in libckpt:

By specifying that the checkpoint must be taken at the checkpoint here() call, we are able
to omit all of the variable D from the synchronous checkpoint. This is because D is initialized
anew at each iteration of the program. If D is large, then user-directed checkpointing will
be responsible for a significant savings in checkpoint overhead. Note that this will be a vast
improvement over incremental checkpointing because the memory locations in D will be dirty
at the time of the checkpoint.

Section 6 shows other successful examples of user-directed checkpointing.

4 The Mechanics of Checkpointing and Recovery

The motivation for checkpointing is to reconstruct the recovery point. We therefore begin
with an overview of the recovery process before describing the details of checkpointing.



mai n() ckpt _target()
{
struct data_set *D struct data_set *D
FILE *fi, *fo; FILE *fi, *fo;
D = allocate_data_set(); D = all ocate_data_set();
fi = fopen("input”, "r"); fi = fopen("input”, "r");
fo = fopen("output”, "w'); fo = fopen("output”, "wW');
whil e(read_data(fi, D) !'=-1) { whil e(read_data(fi, D !=-1) {
performcal cul ati on(D); performcal cul ati on(D);
out put _results(fo, D); output _results(fo, D);
} excl ude_bytes(D, sizeof(struct data_set), 1);
} checkpoi nt _here();
i ncl ude_bytes(D, sizeof(struct data_set));
}
}

Figure 1: A typical scientific driver program

Recovery has four parts: process creation, data state restoration, system state restoration,
and processor state restoration.

1. Process creation is implemented by invoking the checkpointed program with a special
command line argument for recovery. This automatically restores the text portion of
the process’s state and begins execution. Libckpt parses the command line, detects
the argument for recovery, and calls the recovery routine.

2. The recovery routine performs the rest of the recovery. Data state restoration means
reading the checkpoint file to recreate the contents of data memory: This consists of
the process’s stack and data segments.

3. System state restoration means restoring as much of the operating system state as
possible to its state at the time of the checkpoint. Much of the operating system
state, such as the process ID and parent process ID, is unrestorable. However, most
applications that need checkpointing are what we call “well-behaved,” and do not rely
on such state. Libckpt determines the state of the open file table at each checkpoint,
and saves it as part of each checkpoint. Upon recovery, libckpt restores the system
so that the state of open files is the same as it was at the time of the checkpoint. All
other system state is neither saved nor restored by libckpt.

4. Processor state restoration requires that processor registers, including the program
counter and stack pointers be restored to their values when the checkpoint was taken.
In libckpt, we use setjmp () to store the processor state in the memory, and processor
state restoration is implemented using longjmp(). Thus, the recovery routine never
returns, and instead execution continues as an apparent “second return” from the
setjmp () of the checkpointing routine.

With this description of recovery, the mechanics of checkpointing are straightforward: When
taking a checkpoint, libckpt saves the processor state using setjmp(), and records the



state of the open file table. Then the data state, consisting of the program’s stack and data
segments, is written to disk.

5 Experiments

In this section, we present results of checkpointing five application programs using libckpt.
The applications are long-running FORTRAN and C programs written by scientists to run
under Unix. All are typical of programs that can benefit from checkpointing for fault-

tolerance.
Application Abbreviation || Language | Running Maximum Checkpoint
Time Checkpoint Interval
(mm:ss) | Size (Mbytes) (min)
Matrix Multiplication MAT C 15:20 4.6 2
Linear Equation Solver SOLVE FORTRAN 13:42 4.6 2
Cellular Automata CELL C 17:39 8.4 2
Shallow Water Model WATER FORTRAN 25:54 13.1 3
Multicommodity Flow MCNF FORTRAN 18:38 24.3 6

Table 1: Description of application instances

The experiments were performed on a dedicated Sparcstation 2 running SunOS 4.1.3, and
writing to a Hewlett Packard HP6000 disk via NFS. The specific instances of the applications
are described in Table 1. We describe the applications below:

e Matrix Multiplication (MAT): This is a straightforward matrix multiplication.
Two 615 x 615 matrices are read from disk and multiplied, and the product matrix is
written to an output file.

e Linear Equation Solver (SOLVE): This is a testing program from LAPACK, a high-
performance package of linear-algebra subroutines [DS86]. This program generates
a system of 750 equations with 750 unknowns, uses LU decomposition to solve the
system, and then writes the solution to disk. It repeats this process for seven separate
systems of equations.

e Cellular Automata (CELL): This program executes a 2048 x 2048 grid of cellular
automata for fifteen generations.

e Shallow Water Model (WATER): This is the program STSWM from the National
Center for Atmospheric Research. The program is a shallow water model based on the
spectral transform method [HJW93]. The instance used here is “Zonal Flow over a
Mountain” from their test suite, modeled at 15-minute intervals for six hours.



¢ Multicommodity Flow (MCNF): This program solves the multicommodity net-
work flow problem using the simplex method [Ken79]. The instance used here runs on
a network of 100 vertices and 50 commodities.

Note that for the purposes of this experiment, input values have been chosen to give running
times between thirteen and thirty minutes. Typically, the programs would be set up to run
for much longer, thus making them ideal candidates for libckpt.

We present results pertaining to the three important metrics of checkpointing performance:

e Checkpoint time: This is the average duration of a checkpoint, from start to finish.

e Checkpoint overhead: This is amount of time added to the running time of the
application as a result of checkpointing. Note that in sequential checkpointing, check-
point overhead is equal to the total checkpoint time. In main-memory and copy-on-
write checkpointing, the checkpoint overhead is smaller than the total checkpoint time
because the disk writes are performed in parallel with the execution of the application.

e Checkpoint size: This is the average size of the checkpoint file.

The prime goal of checkpoint optimization is to minimize all three of these metrics. Mini-
mizing checkpoint overhead is the most important, because users would rather take the risk
of failure than use a checkpointer that increases their applications’ performance significantly.
Keeping the overhead of checkpointing under 10% of the program’s total running time is a
reasonable goal [LNP90, PL94]. Minimizing checkpoint size is also important, as disk space
rarely comes for free. Checkpoint time is the least important of the three metrics. When
checkpointing for fault-tolerance, the only concern is that the current checkpoint complete
before the user desires the next checkpoint to begin. When checkpointing for job-swapping,
checkpoint time is more important as the application cannot be swapped until the checkpoint
is completed.

6 Results

All of the experimental results are contained in Table 2 in the appendix. All of the graphs
and data in this section are drawn directly from Table 2.

6.1 Results of Sequential Checkpointing

With no optimizations, checkpoint time and overhead should be the same, and should be
directly proportional to the checkpoint size. Figure 2 confirms this prediction, showing
checkpoint overhead and time vs. size for the sequential checkpointing runs described in

Table 2.
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Figure 2: Checkpoint Time vs. Size for Sequential Checkpointing

6.2 Results of Checkpointing with fork()

When checkpointing with fork(), the application writes its checkpoints to disk asynchro-
nously, meaning that it may run concurrently with the saving of the checkpoint. This reduces
the overhead of checkpointing dramatically, as shown in Figure 3. This figure graphs the
percentage reduction in the overhead of checkpointing by using fork ()2

Because SunOS 4.1.3 implements fork() with copy-on-write, Figure 3 shows that copy-on-
write improves the overhead of checkpointing by over 70 percent in almost all cases.
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Figure 3: Percentage Reduction in Checkpointing Overhead by Using fork()

6.3 Results of Incremental Checkpointing

Figure 4 is a graph showing the percentage reduction of checkpoint size and checkpoint
overhead when using incremental checkpointing instead of simple sequential checkpointing.
In three of the applications (MAT, WATER, and MCNF), only a fraction of the applications’
address spaces are modified between checkpoints, resulting in a significant reduction in the
average checkpoint size. Correspondingly, the overhead of checkpointing is significantly
reduced. In the other two programs, the entire address spaces of the programs are modified
between checkpoints, yielding little to no reduction in the size of checkpoints. Therefore, in

?Ninety percent reduction in checkpoint overhead means that the overhead of checkpointing using fork()
is ten percent of the overhead of sequential checkpointing
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SOLVE and CELL, the overhead of checkpointing is increased due to the fact that the cost
of handling page faults is not offset by a savings in the time to write the checkpoint to disk.
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Figure 4: Percentage Reduction in Checkpoint Size and Overhead Through Incremental
Checkpointing

6.4 Results of User-Directed Checkpointing

In the previous three sections, the results corroborate published research concerning check-
pointing optimizations [FB89, LNP90, EJZ92, LNP94]. In this section, we evaluate the the
new technique: user-directed checkpointing. In three of the applications, we analyzed the
application programs and inserted directives in the code. In each case, we were able to add
under ten lines of code, making checkpoints synchronous, and excluding memory from these
checkpoints. We describe the details of each application below.

SOLVE: Adding directives to the Linear Equation Solver was straightforward. At the end of
each iteration, all of the program’s arrays are dead: The matrix of equations will be initialized
anew for the next iteration, and the solution vector will be recalculated. Therefore at the
end of each iteration, we insert exclude bytes() calls for the equation matrix and solution
vector, then a checkpoint here() call, and finally include bytes() calls to re-include the
matrix and vector in case of an asynchronous checkpoint.

The results can be seen in Figure 5: The calls to exclude bytes() and checkpoint here()
enable the checkpoint files to be almost empty, reducing the checkpoint size and overhead
by over 90 percent. This is significant, because it is an application where incremental check-
pointing fails to improve the performance of checkpointing.

CELL: At the end of each generation of the cellular automaton application, the previous
value of the automaton grid becomes dead — its values are not used for the calculation
of the subsequent generations of the computation. Therefore, we added user directives to
checkpoint at the end of each generation, excluding the dead half of the grid from each
checkpoint. In order to checkpoint at roughly the same interval as before, we also set
mintime to 100, so that every second generation is checkpointed.

The results are in Figure 6: With user directives, the checkpoint size is halved. Accordingly,
the overhead of checkpointing is also halved when user directives are employed. Thus, as
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Figure 5: Results of User-Directed Checkpointing on the SOLVE Application

in SOLVE, the calls to exclude bytes() and checkpoint here() succeed in improving the
overhead of checkpointing in an application where incremental checkpointing fails.
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Figure 6: Results of User-Directed Checkpointing on the CELL Application

MAT: In the matrix multiplication, the two input matrices are read-only data. Moreover,
once a product element is calculated, it too is read-only. This is the reason why incremental
checkpointing works so well. In this application, we inserted exclude bytes() calls (with
start_ now equal to 0) after reading the input matrices to mark them as read-only, and also
after calculating a product row to mark that row as read-only. Thus, once a checkpoint con-
tains these values, subsequent checkpoints omit them. The behavior of the application with
these calls should approximate standard incremental checkpointing — after data becomes

read-only, it 1s omitted from subsequent checkpoints.

The results of this experiment are in Figure 7. The important bars are the solid ones,
showing that the checkpoints obtained with the user directives are approximately the same
size as those obtained with incremental checkpointing. Moreover, they show slightly lower
overhead, because they spend no extra time catching page faults.

7 Related Work

There has been much computer science research devoted to checkpointing. Checkpointing
has been implemented on uniprocessors [LF90, 1.S92], multiprocessors [LNP90, LNP94],
transputers [SVS94], multicomputers [PL94], and and distributed systems [EJZ92, LFS93].
Of these, only two (Condor [1.S92] and Fail-Safe PVM [LFS93]) are publicly available code
for Unix environments. Both implement sequential checkpointing with forking, and neither is
designed for simple uniprocessor checkpointing: Condor is a system for batch programming
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Figure 7: Results of User-Directed Checkpointing on the MAT Application

using process migration, and Fail-Safe PVM requires the programmer to have access to
the PVM infrastructure. Moreover, neither package implements any optimizations beyond
calling fork().

User-directed checkpointing bears some similarity to checkpointers by Li and Fuchs [LF90],
and Silva et al [SVS94]. In the former, they implement static checkpointing, which is the
same as our synchronous checkpointing. The goal of their work is to have the user place
potential checkpoint here() calls into his program, and have the compiler or runtime
system decide which of those calls would be best for checkpointing. They call for no user
assistance in figuring out what memory to exclude (they only exclude the stack and unal-
located heap memory), and do not show the kind of dramatic performance improvements

gained by user-directed checkpointing in the SOLVE, CELL, and MAT applications.

In the checkpointer of Silva et al, they implement a checkpointing package where the user
specifies exactly what and where to checkpoint. However, the process state is not included
in checkpoints, and therefore the user is also responsible for rebuilding the execution state
(e.g. the call stack), although not the data, on recovery. They justify this approach by using
it to implement a fault-tolerance library of grid subroutines on a transputer network. Our
approach differs because the checkpointer is responsible for the entire process state, and not
just the integrity of the data.

& Conclusion

We have written a general-purpose checkpointing library, libckpt, that provides fault-
tolerance for long-running programs under Unix. The strengths of this library are its
ease of use and low overhead. Libckpt is currently available via anonymous FTP to
cs.utk.edu:pub/plank/libckpt.

Our experiments with libckpt show first and foremost that it is general-purpose and easy to
use. We were able to enable checkpointing in all five applications by changing one line of the
applications’ source code, and relinking with libckpt. Once enabled, these programs could
save their state to disk periodically for fault-tolerance, using the fork() and incremental
checkpointing optimizations if so desired. For all five applications, we were able to dramati-
cally lower the overhead of checkpointing with copy-on-write, as implemented by libckpt’s
fork() optimization. Moreover, in three of the five applications, checkpoint size and over-
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head were reduced by over 60 percent by incremental checkpointing. Thus, libckpt is able
to take efficient checkpoints using standard techniques from the checkpointing literature.

Libckpt also implements user-directed checkpointing, a new technique for improving the
performance of checkpointing based on the assumption that a little user input to the check-
pointer can result in a large performance payoff. Memory exclusion and synchronous check-
pointing are the two ways in which a user can direct the checkpointer to checkpoint more
efficiently. In our experiments, a few directives were added to three of the applications,
yielding performance improvements in all three cases.

One avenue of future research is to use compiler analysis to assist in user-directed checkpoint-
ing. If the user places the checkpoint here() calls, the compiler can use data dependence
analysis to make calls to exclude bytes() and include bytes(). The benefits may be
twofold. First, the compiler may discover dead variables to exclude that the user may omit.
Second, the compiler can guarantee that its memory exclusion will yield correct checkpoints.
In other words, whereas the user might err in excluding too much memory from a checkpoint,
resulting in a faulty recovery state, the compiler can guarantee correctness.

It is the authors’ opinion that eventually checkpointing primitives such as those provided
by libckpt should be implemented in the operating system. This will improve both the
performance and the generality of checkpointing. Until such a time, users can make use of
a tool such as libckpt to render their programs resilient to failure.
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Appendix

Appli- User | Incre- | Fork || Running | Over- % Avg Ckpt | Avg Ckpt | Num

cation Direc- | mental Time head | Over- Time Size of
tives (sec) (sec) | head (sec) (Mbytes) | Ckpts

MAT no no no 1160.0 | 239.3 | 26.0 4.59 21.2 11

no yes no 961.3 40.7 4.4 0.57 3.6 11

no no yes 969.5 48.8 5.3 4.59 22.4 11

no yes yes 931.0 10.3 1.1 0.57 3.4 11

yes no no 963.5 42.8 4.7 0.59 3.6 11

yes yes no 970.5 49.8 5.4 0.56 3.5 11

yes no yes 930.5 9.8 1.1 0.59 5.0 11

yes yes yes 931.0 10.3 1.1 0.56 3.3 11

SOLVE no no no 966.5 143.8 | 17.5 4.62 19.6 7

no yes no 1000.7 | 178.0 | 21.6 4.55 24.7 7

no no yes 857.6 34.9 4.2 4.62 19.6 7

no yes yes 864.8 42.1 5.1 4.55 24.7 7

yes no no 836.3 13.6 1.7 0.11 1.3 7

yes yes no 833.3 10.6 1.3 0.04 1.0 7

yes no yes 830.0 7.3 0.9 0.11 1.4 7

yes yes yes 829.3 6.6 0.8 0.04 1.1 7

CELL no no no 1389.3 | 3294 | 31.1 8.46 45.4 7

no yes no 1455.4 | 395.5 | 37.3 8.44 53.0 7

no no yes 1130.3 70.4 6.6 8.46 43.7 7

no yes yes 1143.9 84.0 7.9 8.44 50.0 7

yes no no 1202.3 | 1424 | 134 4.26 19.3 7

ves yes no 1210.3 1504 | 14.2 3.63 20.3 7

ves no yes 1101.4 41.5 3.9 4.26 19.3 7

ves ves yes 1111.1 51.2 4.8 3.63 20.4 7

WATER no no no 2170.4 | 616.5 | 39.7 14.17 74.6 8

no yes no 1800.3 | 246.4 | 15.9 5.23 29.9 8

no no yes 1676.1 122.2 7.9 14.17 74.6 8

no yes yes 1612.3 58.4 3.8 5.15 28.5 8

MCNF no no no 1681.8 | 563.6 | 50.4 24.31 159.3 3

no yes no 1216.1 97.9 8.8 1.75 10.7 3

no no yes 1175.2 57.0 5.1 24.31 131.3 3

no yes yes 1125.6 7.4 0.7 1.75 10.3 3

Table 2: Results of all checkpointing experiments
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