
Libckpt: Transparent Checkpointing under Unix

James S. Plank

Micah Beck

Gerry Kingsley

Department of Computer Science

107 Ayres Hall

University of Tennessee

Knoxville, TN 37996

[plank,beck,kingsley]@cs.utk.edu

Kai Li

Department of Computer Science

Princeton University

Princeton, NJ 08544

li@cs.princeton.edu

August 5, 1994

Technical Report CS-94-242

Department of Computer Science

University of Tennessee

Knoxville, TN 37996

Appearing in Usenix Winter '95

i



Libckpt: ransparent heckpointing un er nix

James S. Plank, Micah Beck, Gerry Kingsley

[plank,beck,kingsley]@cs.utk.edu

Department of Computer Science, University of Tennessee, Knoxville, TN 37996

Kai Li

li@princeton.edu

Department of Computer Science, Princeton University, Princeton, NJ 08544

August 29, 1994

Abstract

Checkpointing is a simple technique for rollback recovery: the state of an executing

program is periodically saved to a disk �le from which it can be recovered after a failure.

hile recent research has developed a collection of powerful techniques for minimizing

the overhead of writing checkpoint �les, checkpointing remains unavailable to most

application developers. In this paper we describe libckpt, a portable checkpointing

tool for Unix
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that implements all applicable performance optimizations which are

reported in the literature. hile libckpt can be used in a mode which is almost totally

transparent to the programmer, it also supports the incorporation of user directives

into the creation of checkpoints. This user-directed checkpointing is an innovation

which is unique to our work.

t cti

Consi er a programmer who has evelope an application which will ta e a long time to

execute, say ve ays. Two ays into the computation, the processor on which the application

is running fails. If the programmer has not planne for this event, his only choice is to restart

the program an lose two ays' wor . Upon restarting the program, he still nee s ve ays

of continuous failure-free processor time to complete the jo .

i c is a chec pointing li rary esigne for such a programmer. To use li c , all

he must o is change one line of his source co e an recompile with the li rary libckpt.a.

No other mo i cations nee e ma e. Upon execution, the program will perio ically save

its execution state to is . Upon a processor failure, the programmer nee only restart the

program with the comman line ag =recover, an the program will roll ac to the most

recently chec pointe state. In the example a ove, at most ten minutes of wor will e lost,

an the programmer nee s approximately three more ays of n n-continuous failure-free

processor time to complete the jo .

1
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i c is a tool for transparent chec pointing on uniprocessors running Unix. It im-

plements incremental an copy-on-write chec pointing, two optimi ations well- nown in

the literature 89, NP90, J 92, NP94 . i c is a user-level li rary an uses

only facilities which are commonly availa le un er Unix. i c has een porte to

an teste on a variety of architectures an operating systems with no ernel mo i -

cations. Source co e for li c can e o taine at no cost y anonymous TP from

cs.utk.edu pub plank libckpt.

In this paper, we show the performance gains availa le in li c through transparent in-

cremental an copy-on-write chec pointing. In a ition, we intro uce a new optimi ation

techni ue, implemente in li c , calle - n n . User- irecte chec -

pointing wor s un er the assumption that a little information from the user can yiel large

improvements in the performance of chec pointing. We emonstrate that this assumption

is often vali .

p t ckp i ti

The goal of chec pointing is to esta lish a n in the execution of a program, an

save enough state to restore the program to this recovery point in the event of a failure.

The main use of chec pointing is to provi e a mechanism for performing ,

a general means of fault tolerance. The strength of roll ac recovery is its a ility to provi e

fault tolerance in the presence of unanticipate faults faults which were not envisione in

the esign of the program A 81 .

The most straightforwar mechanism for esta lishing a recovery point un er Unix is to

suspen execution of the application while the entire contents of a process's memory an

registers are written to a le. This is calle n chec pointing ecause is transfers

are not interleave with program execution. Recovery is e ecte y reloa ing the executa le

from its original le, an then reconstructing the memory an register state from the chec -

point le. This is a in to creating a core le, from which a user may recover using the

undu p utility an e ecve .

We say that chec pointing is n n when no changes nee e ma e to the application

program. While transparency is easy to o tain at the ernel level, it is har er to achieve

in a user level chec pointing li rary. All current implementations of chec pointing share

this limitation They operate transparently an correctly so long as the application is -

in a sense we will e ne in Section 4. i c n - n

n - n n n

Chec pointing with li c is not completely transparent. The name of the initial proce ure

in C must e change from ain to ckpt target . This ena les li c to gain control

of the program as it starts, chec the comman line for the =recover ag, rea a le calle

.ckptrc to set chec pointing parameters, an egin chec pointing. In , li c is

ena le y changing the main mo ule to ckpt target . No other

program mo i cations are nee e .
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y efault, once li c gets control of a program, it generates a timer interrupt every ten

minutes, an ta es a se uential chec point at each interrupt. This an other efaults can

e change y placing appropriate lines in the .ckptrc le. In this section, we escri e all

options, where appropriate, as they woul appear in the .ckptrc le.

Placing the line c eckpointing on o in the .ckptrc le turns chec -

pointing on or o . If o , li c will ta e no chec points an will not a ect

the execution of the application. The efault is on.

dir speci es the irectory in which chec point les are create an

foun . The efault is the current irectory.

a ti e n e nes the interval etween chec points. At the eginning

of the program, an after each chec point, li c calls alar n an

ta es a chec point upon catching each signal. Setting the timer interval to

ero turns o all timer- ase chec pointing. The efault value of a ti e is 600

10 minutes .

any optimi ations to simple se uential chec pointing have een escri e in the literature.

i c implements all well- nown optimi ations that are applica le to general-purpose

uniprocessor chec pointing, as well as the new user- irecte optimi ation. In the remain er

of this section, we consi er each of them in turn.

When a chec point is ta en, only the portion of the chec point that has change since the

previous chec point nee e save . The unchange portion can e restore from previous

chec points. c l c c i i 89, W 89, J 92 uses page protection

har ware to i entify the unchange portion of the chec point. Saving only the change

portion re uces the si e of each chec point, an thus the overhea of chec pointing.

incre ental on o turns incremental chec pointing on or o . The efault

is o .

In general, the si e of a non-incremental chec point grows very slowly over time if at all.

oreover, only the most recent chec point le nee e retaine for recovery ol er ones

may e elete . In contrast, ol chec point les cannot e elete when incremental chec -

pointing is employe , ecause the program's ata state is sprea out over many chec point

les. The cumulative si e of incremental chec point les will increase at a stea y rate over

time, since many up ate values may e save for the same memory location. In or er to

place an upper oun on the cumulative si e of incremental chec point les, it is necessary

to coalesce all ol chec point les into one new le, an then iscar the ol les. or

this purpose, li c inclu es a utility program ckpt coa, which coalesces a collection of

incremental chec point les into a single chec point le.
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a iles n sets the maximum num er of incremental chec point les to .

After chec point les have een create , li c calls ckpt coa process to

coalesce them own to one le. If 1, then no incremental chec pointing can

occur. alues of greater than one allow the user to stri e a alance etween

incremental chec pointing an total is storage. The efault is 1.

i c uses page protection to i entify which pages shoul e inclu e in incremental

chec points. Speci cally, after initiali ation an after each chec point, the protect

system call is invo e to set the protetion of all pages in the ata space to - n . When

a write occurs to a memory location in a protecte page, the signal is caught y a

han ler in li c . The faulting page has its access protection set to - , an the

page is mar e as irty. When libckpt ta es the next chec point, only the irty pages are

inclu e .

Incremental chec pointing as escri e in the previous section is still se uential xecution of

the application program is suspen e while the chec point le is written out. An alternative

is to ma e a copy of the program's ata space an to use an asynchronously executing

threa of control to write the chec point le. This is calle main-memory chec pointing

NP94 , an improves chec point overhea if there is enough physical memory to hol the

chec point, as the saving of the chec point to is is overlappe with the execution of the

application.

The Unix ork primitive provi es exactly the mechanism nee e to implement main-

memory chec pointing P 89, S93 . When for e chec pointing is speci e , li c

for s a chil process, which creates an writes the chec point le while the parent process

returns to executing the application. The ork system call provi es the chil with a xe

snapshot of the parent's ata space an a separate threa of control.

ork on o in the .ckptrc le turns main for e chec pointing on or o .

The efault is o .

An important improvement to main-memory chec pointing is copy-on-write chec point-

ing NP90, J 92, NP94 . Here the copy of main memory is ta en using copy-on-

write T C85, R86 . any implementations of ork use a copy-on-write mechanism

to optimi e the copying of the parent's a ress space Ste92 . Thus, for e chec pointing

correspon s to either main-memory chec pointing or copy-on-write chec pointing, epen ing

on the operating system's implementation of ork .

With chec point compression, a stan ar compression algorithm li e W Wel84 is use

to shrin the si e of the chec point 90, P 94 . While this may e successful at re ucing
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chec point si e, it only improves the overhea of chec pointing if the spee of compression

is faster than the spee of is writes, an if the chec point is signi cantly compresse .

or uniprocessor chec pointing, this is not the case, an compression has only een shown

to e e ective in parallel systems with is contention P 94 . or this reason, chec point

compression is not implemente in li c .

i ct ckp i ti

All the optimi ations presente so far maintain the transparency of chec pointing through

techni ues that are not visi le to the application signal han lers, page protection, an

the creation of chil processes. In this section, we consi er a i erent approach that can

improve on the performance of these transparent approaches an can also su stitute for

them when automatic mechanisms are not availa le. We call this approach user- irecte

chec pointing. We consi er two ways in which user-supplie irectives can improve the

performance of chec pointing memory exclusion, an synchronous chec pointing.

There are two situations where the values of memory locations can e exclu e from a

chec point le when the locations are ea an when they are clean. In the case of ea

locations, the values in memory will never e rea or written, an thus o not nee to e

chec pointing. In the case of clean locations, the values in memory exist in a previous chec -

point an have not een change . Thus they nee not e save in the current chec point.

While the i enti cation of exclu a le areas of memory can sometimes e automate as in

incremental chec pointing , li c also allows the programmer to eclare them explicitly.

or example, suppose the user allocates a large temporary array to ma e a calculation.

When the of the ata in array is over, it will never e reference again the next

use of array will overwrite the ol values. If a chec point is ta en outsi e of the lifetime of

array , then it can e safely exclu e from the chec point. Any recovere state from this

point will not nee to use the current values store in array .

The stac is a run-time mechanism that helps the chec pointer to etermine the lifetime of

local varia les. This is one form of memory exclusion only the live portion of the stac is

save . Unfortunately, this oes not wor for heap varia les or for varia les which resi e in

the statically allocate ata segment.

The asis of incremental chec pointing is that clean ata nee not e repeate ly written to

is . In or er to implement automatic incremental chec pointing, li c monitors page

mo i cations using the protect system call an a han ler for the signal. This

approach has a few wea nesses it can only operate at the page granularity system calls can

fail rather than generating a signal when as e to write to a protecte page an on

some systems protect is not relia le.

In those cases where automatic mechanisms cannot infer all possi le memory exclusions, the

performance of chec pointing can su er. or this reason, li c allows the programmer to
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manage memory exclusion explicitly through two proce ure calls.

e clude bytes n n n This proce ure call tells

li c to exclu e the region of memory speci e from su se uent chec points.

It may e calle when the user nows that these ytes are not necessary for the

correct recovery from the program. n is a oolean argument. If non- ero,

then these ytes are exclu e from the next an all su se uent chec points until

include bytes is calle . If n is ero, then these ytes are exclu e

from chec points starting the next chec point. emory locations which

will not e written for some time are not actually clean, ut will ecome clean

after the next chec point is ta en. Thus, y calling e clude bytes with a

ero value for the n argument, the programmer can efer the exclusion

of these memory locations until after they ecome clean.

include bytes n ecause ea pages can ecome live an

clean pages can ecome irty, li c provi es a mechanism for reversing the

e ects of memory exclusion. This proce ure call tells li c to inclu e the

speci e region of memory in the next an su se uent chec points. Thus,

include bytes cancels the e ect of calls to e clude bytes , although calls

to include bytes o not have to match calls to e clude bytes . y efault,

li c inclu es all ytes in a process's active stac an ata segments that have

not een explicitly exclu e .

User- irecte memory exclusion can ramatically re uce the si e of se uential an incre-

mental chec point les, ut it must e use very carefully. If a live region of memory is

mista enly exclu e from a chec point, then a su se uent failure an recovery can cause an

otherwise correct application to fail or to generate incorrect results.

In the previous section we iscuss a mechanism for optimi ing asynchronous chec pointing

y exclu ing certain areas of memory. This allows the chec pointer to ma e use of ata

lifetime information which woul not otherwise e availa le to it. However, the amount of

ata which can e exclu e from the chec point is etermine y the program's state n

n n. If the stac is large, or the si e of exclu e memory is small, then

memory exclusion will have little e ect.

Synchronous chec pointing is a user irective that allows the programmer to specify points

in the program where it is most a vantageous for chec pointing to occur. These are calle

synchronous chec points ecause they are not initiate y timer interrupts. Synchronous

chec points shoul e inserte y the programmer at points where memory exclusion can

have the greatest e ect.

c eckpoint ere is a proce ure call specifying to ta e a synchronous chec -

point.
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Synchronous chec points may e place in program locations that are reache often. Chec -

pointing too often, however, can lea to poor performance, an in or er to avoi this li c

allows a minimum interval etween chec points to e speci e .

inti e n speci es the minimum perio of time that must pass e-

tween chec points. The efault is ero. If inti e secon s have not passe since

the previous chec point, then c eckpoint ere calls are ignore .

Synchronous an asynchronous chec pointing techni ues can complement one another. If

a ti e secon s have passe an no synchronous chec point has een ta en since the last

chec point, then an asynchronous chec point is still ta en. However, the e ect of memory

exclusion is li ely not to e as ene cial as in a synchronous chec point. If oth the inti e

an a ti e parameters are set, then the former speci es the minimum interval etween

synchronous chec points, an the latter speci es an interval after which an asynchronous

chec point will e ta en. Whenever a chec point is ta en, oth the minimum an maximum

interval timers are reset.

If a ti e is ero, then asynchronous chec points are isa le . In this case, the speci cation

of memory exclusion can e optimi e for synchronous chec points, ecause the memory

exclusions speci e nee only e vali at the calls to c eckpoint ere , an nee not

e ept constantly up-to- ate to account for the possi ility of a chec point eing ta en

asynchronously.

There are many times when user- irecte , synchronous chec pointing can yiel large perfor-

mance gains. Consi er the example program in the left si e of igure 1. This is a typical

river program for many in s of programs that repeat calculations over numerous points in

a ata set. The right si e of igure 1 shows how one shoul chec point this program with

synchronous, user- irecte chec pointing in li c

y specifying that the chec point must e ta en at the c eckpoint ere call, we are a le

to omit all of the varia le from the synchronous chec point. This is ecause is initiali e

anew at each iteration of the program. If is large, then user- irecte chec pointing will

e responsi le for a signi cant savings in chec point overhea . Note that this will e a vast

improvement over incremental chec pointing ecause the memory locations in will e irty

at the time of the chec point.

Section 6 shows other successful examples of user- irecte chec pointing.

c ic ckp i ti c

The motivation for chec pointing is to reconstruct the recovery point. We therefore egin

with an overview of the recovery process efore escri ing the etails of chec pointing.
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main() 
{
  struct data_set *D;
  FILE *fi, *fo;

  D = allocate_data_set();
  fi = fopen("input", "r");
  fo = fopen("output", "w");
  while(read_data(fi, D) != -1) {
    perform_calculation(D);
    output_results(fo, D);
  }
}

ckpt_target() 
{
  struct data_set *D;
  FILE *fi, *fo;

  D = allocate_data_set();
  fi = fopen("input", "r");
  fo = fopen("output", "w");
  while(read_data(fi, D) != -1) {
    perform_calculation(D);
    output_results(fo, D);
    exclude_bytes(D, sizeof(struct data_set), 1);
    checkpoint_here();
    include_bytes(D, sizeof(struct data_set));
  }
}

igure 1 A typical scienti c river program

Recovery has four parts process creation, ata state restoration, system state restoration,

an processor state restoration.

1. Process creation is implemente y invo ing the chec pointe program with a special

comman line argument for recovery. This automatically restores the text portion of

the process's state an egins execution. i c parses the comman line, etects

the argument for recovery, an calls the recovery routine.

2. The recovery routine performs the rest of the recovery. Data state restoration means

rea ing the chec point le to recreate the contents of ata memory This consists of

the process's stac an ata segments.

3. System state restoration means restoring as much of the operating system state as

possi le to its state at the time of the chec point. uch of the operating system

state, such as the process ID an parent process ID, is unrestora le. However, most

applications that nee chec pointing are what we call well- ehave , an o not rely

on such state. i c etermines the state of the open le ta le at each chec point,

an saves it as part of each chec point. Upon recovery, li c restores the system

so that the state of open les is the same as it was at the time of the chec point. All

other system state is neither save nor restore y li c .

4. Processor state restoration re uires that processor registers, inclu ing the program

counter an stac pointers e restore to their values when the chec point was ta en.

In li c , we use set p to store the processor state in the memory, an processor

state restoration is implemente using long p . Thus, the recovery routine never

returns, an instea execution continues as an apparent secon return from the

set p of the chec pointing routine.

With this escription of recovery, the mechanics of chec pointing are straightforwar When

ta ing a chec point, li c saves the processor state using set p , an recor s the
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state of the open le ta le. Then the ata state, consisting of the program's stac an ata

segments, is written to is .

p i t

In this section, we present results of chec pointing ve application programs using li c .

The applications are long-running an C programs written y scientists to run

un er Unix. All are typical of programs that can ene t from chec pointing for fault-

tolerance.

pplication
bbreviation anguage unning aximum Checkpoint

Time Checkpoint Interval

mm:ss ize bytes min

atrix ultiplication
T C : .

inear quation olver
: .

Cellular utomata
C C : .

hallow ater odel
T : .

ulticommodity low
C : .

Ta le 1 Description of application instances

The experiments were performe on a e icate Sparcstation 2 running Sun S 4.1.3, an

writing to a Hewlett Pac ar HP6000 is via N S. The speci c instances of the applications

are escri e in Ta le 1. We escri e the applications elow

i l i lic i This is a straightforwar matrix multiplication.

Two 615 615 matrices are rea from is an multiplie , an the pro uct matrix is

written to an output le.

i i l This is a testing program from APACK, a high-

performance pac age of linear-alge ra su routines DS86 . This program generates

a system of 750 e uations with 750 un nowns, uses U ecomposition to solve the

system, an then writes the solution to is . It repeats this process for seven separate

systems of e uations.

ll l This program executes a 2048 2048 gri of cellular

automata for fteen generations.

ll l This is the program from the National

Center for Atmospheric Research. The program is a shallow water mo el ase on the

spectral transform metho HJW93 . The instance use here is onal low over a

ountain from their test suite, mo ele at 15-minute intervals for six hours.
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l ic i l This program solves the multicommo ity net-

wor ow pro lem using the simplex metho Ken79 . The instance use here runs on

a networ of 100 vertices an 50 commo ities.

Note that for the purposes of this experiment, input values have een chosen to give running

times etween thirteen an thirty minutes. Typically, the programs woul e set up to run

for much longer, thus ma ing them i eal can i ates for li c .

We present results pertaining to the three important metrics of chec pointing performance

c i i This is the average uration of a chec point, from start to nish.

c i This is amount of time a e to the running time of the

application as a result of chec pointing. Note that in se uential chec pointing, chec -

point overhea is e ual to the total chec point time. In main-memory an copy-on-

write chec pointing, the chec point overhea is smaller than the total chec point time

ecause the is writes are performe in parallel with the execution of the application.

c i i This is the average si e of the chec point le.

The prime goal of chec point optimi ation is to minimi e all three of these metrics. ini-

mi ing chec point overhea is the most important, ecause users woul rather ta e the ris

of failure than use a chec pointer that increases their applications' performance signi cantly.

Keeping the overhea of chec pointing un er 10 of the program's total running time is a

reasona le goal NP90, P 94 . inimi ing chec point si e is also important, as is space

rarely comes for free. Chec point time is the least important of the three metrics. When

chec pointing for fault-tolerance, the only concern is that the current chec point complete

efore the user esires the next chec point to egin. When chec pointing for jo -swapping,

chec point time is more important as the application cannot e swappe until the chec point

is complete .

t

All of the experimental results are containe in Ta le 2 in the appen ix. All of the graphs

an ata in this section are rawn irectly from Ta le 2.

With no optimi ations, chec point time an overhea shoul e the same, an shoul e

irectly proportional to the chec point si e. igure 2 con rms this pre iction, showing

chec point overhea an time vs. si e for the se uential chec pointing runs escri e in

Ta le 2.
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igure 2 Chec point Time vs. Si e for Se uential Chec pointing

When chec pointing with ork , the application writes its chec points to is asynchro-

nously, meaning that it may run concurrently with the saving of the chec point. This re uces

the overhea of chec pointing ramatically, as shown in igure 3. This gure graphs the

percentage re uction in the overhea of chec pointing y using ork .

ecause Sun S 4.1.3 implements ork with copy-on-write, igure 3 shows that copy-on-

write improves the overhea of chec pointing y over 70 percent in almost all cases.
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igure 3 Percentage Re uction in Chec pointing verhea y Using ork

igure 4 is a graph showing the percentage re uction of chec point si e an chec point

overhea when using incremental chec pointing instea of simple se uential chec pointing.

In three of the applications AT,WAT R, an CN , only a fraction of the applications'

a ress spaces are mo i e etween chec points, resulting in a signi cant re uction in the

average chec point si e. Correspon ingly, the overhea of chec pointing is signi cantly

re uce . In the other two programs, the entire a ress spaces of the programs are mo i e

etween chec points, yiel ing little to no re uction in the si e of chec points. Therefore, in
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S an C , the overhea of chec pointing is n ue to the fact that the cost

of han ling page faults is not o set y a savings in the time to write the chec point to is .
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igure 4 Percentage Re uction in Chec point Si e an verhea Through Incremental

Chec pointing

In the previous three sections, the results corro orate pu lishe research concerning chec -

pointing optimi ations 89, NP90, J 92, NP94 . In this section, we evaluate the the

new techni ue user- irecte chec pointing. In three of the applications, we analy e the

application programs an inserte irectives in the co e. In each case, we were a le to a

un er ten lines of co e, ma ing chec points synchronous, an exclu ing memory from these

chec points. We escri e the etails of each application elow.

A ing irectives to the inear uation Solver was straightforwar . At the en of

each iteration, all of the program's arrays are ea The matrix of e uations will e initiali e

anew for the next iteration, an the solution vector will e recalculate . Therefore at the

en of each iteration, we insert e clude bytes calls for the e uation matrix an solution

vector, then a c eckpoint ere call, an nally include bytes calls to re-inclu e the

matrix an vector in case of an asynchronous chec point.

The results can e seen in igure 5 The calls to e clude bytes an c eckpoint ere

ena le the chec point les to e almost empty, re ucing the chec point si e an overhea

y over 90 percent. This is signi cant, ecause it is an application where incremental chec -

pointing fails to improve the performance of chec pointing.

At the en of each generation of the cellular automaton application, the previous

value of the automaton gri ecomes ea its values are not use for the calculation

of the su se uent generations of the computation. Therefore, we a e user irectives to

chec point at the en of each generation, exclu ing the ea half of the gri from each

chec point. In or er to chec point at roughly the same interval as efore, we also set

inti e to 100, so that every secon generation is chec pointe .

The results are in igure 6 With user irectives, the chec point si e is halve . Accor ingly,

the overhea of chec pointing is also halve when user irectives are employe . Thus, as

12
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igure 5 Results of User-Directe Chec pointing on the S Application

in S , the calls to e clude bytes an c eckpoint ere succee in improving the

overhea of chec pointing in an application where incremental chec pointing fails.
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igure 6 Results of User-Directe Chec pointing on the C Application

In the matrix multiplication, the two input matrices are rea -only ata. oreover,

once a pro uct element is calculate , it too is rea -only. This is the reason why incremental

chec pointing wor s so well. In this application, we inserte e clude bytes calls with

n e ual to 0 after rea ing the input matrices to mar them as rea -only, an also

after calculating a pro uct row to mar that row as rea -only. Thus, once a chec point con-

tains these values, su se uent chec points omit them. The ehavior of the application with

these calls shoul approximate stan ar incremental chec pointing after ata ecomes

rea -only, it is omitte from su se uent chec points.

The results of this experiment are in igure 7. The important ars are the soli ones,

showing that the chec points o taine with the user irectives are approximately the same

si e as those o taine with incremental chec pointing. oreover, they show slightly lower

overhea , ecause they spen no extra time catching page faults.

t k

There has een much computer science research evote to chec pointing. Chec pointing

has een implemente on uniprocessors 90, S92 , multiprocessors NP90, NP94 ,

transputers S S94 , multicomputers P 94 , an an istri ute systems J 92, S93 .

f these, only two Con or S92 an ail-Safe P S93 are pu licly availa le co e

for Unix environments. oth implement se uential chec pointing with for ing, an neither is

esigne for simple uniprocessor chec pointing Con or is a system for atch programming

13
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igure 7 Results of User-Directe Chec pointing on the AT Application

using process migration, an ail-Safe P re uires the programmer to have access to

the P infrastructure. oreover, neither pac age implements any optimi ations eyon

calling ork .

User- irecte chec pointing ears some similarity to chec pointers y i an uchs 90 ,

an Silva S S94 . In the former, they implement n n , which is the

same as our synchronous chec pointing. The goal of their wor is to have the user place

potential c eckpoint ere calls into his program, an have the compiler or runtime

system eci e which of those calls woul e est for chec pointing. They call for no user

assistance in guring out what memory to exclu e they only exclu e the stac an unal-

locate heap memory , an o not show the in of ramatic performance improvements

gaine y user- irecte chec pointing in the S , C , an AT applications.

In the chec pointer of Silva , they implement a chec pointing pac age where the user

speci es exactly what an where to chec point. However, the process state is not inclu e

in chec points, an therefore the user is also responsi le for re uil ing the execution state

e.g. the call stac , although not the ata, on recovery. They justify this approach y using

it to implement a fault-tolerance li rary of gri su routines on a transputer networ . ur

approach i ers ecause the chec pointer is responsi le for the entire process state, an not

just the integrity of the ata.

c i

We have written a general-purpose chec pointing li rary, li c , that provi es fault-

tolerance for long-running programs un er Unix. The strengths of this li rary are its

ease of use an low overhea . i c is currently availa le via anonymous TP to

cs.utk.edu pub plank libckpt.

ur experiments with li c show rst an foremost that it is general-purpose an easy to

use. We were a le to ena le chec pointing in all ve applications y changing one line of the

applications' source co e, an relin ing with li c . nce ena le , these programs coul

save their state to is perio ically for fault-tolerance, using the ork an incremental

chec pointing optimi ations if so esire . or all ve applications, we were a le to ramati-

cally lower the overhea of chec pointing with copy-on-write, as implemente y li c 's

ork optimi ation. oreover, in three of the ve applications, chec point si e an over-
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hea were re uce y over 60 percent y incremental chec pointing. Thus, li c is a le

to ta e e cient chec points using stan ar techni ues from the chec pointing literature.

i c also implements user- irecte chec pointing, a new techni ue for improving the

performance of chec pointing ase on the assumption that a little user input to the chec -

pointer can result in a large performance payo . emory exclusion an synchronous chec -

pointing are the two ways in which a user can irect the chec pointer to chec point more

e ciently. In our experiments, a few irectives were a e to three of the applications,

yiel ing performance improvements in all three cases.

ne avenue of future research is to use compiler analysis to assist in user- irecte chec point-

ing. If the user places the c eckpoint ere calls, the compiler can use ata epen ence

analysis to ma e calls to e clude bytes an include bytes . The ene ts may e

twofol . irst, the compiler may iscover ea varia les to exclu e that the user may omit.

Secon , the compiler can guarantee that its memory exclusion will yiel chec points.

In other wor s, whereas the user might err in exclu ing too much memory from a chec point,

resulting in a faulty recovery state, the compiler can guarantee correctness.

It is the authors' opinion that eventually chec pointing primitives such as those provi e

y li c shoul e implemente in the operating system. This will improve oth the

performance an the generality of chec pointing. Until such a time, users can ma e use of

a tool such as li c to ren er their programs resilient to failure.
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pp i

ppli
User Incre ork unning ver vg Ckpt vg Ckpt um

cation
irec mental Time head ver Time ize of

tives sec sec head sec bytes Ckpts

T
no no no . . . . .

no yes no . . . . .

no no yes . . . . .

no yes yes . . . . .

yes no no . . . . .

yes yes no . . . . .

yes no yes . . . . .

yes yes yes . . . . .

no no no . . . . .

no yes no . . . . .

no no yes . . . . .

no yes yes . . . . .

yes no no . . . . .

yes yes no . . . . .

yes no yes . . . . .

yes yes yes . . . . .

C
no no no . . . . .

no yes no . . . . .

no no yes . . . . .

no yes yes . . . . .

yes no no . . . . .

yes yes no . . . . .

yes no yes . . . . .

yes yes yes . . . . .

T
no no no . . . . .

no yes no . . . . .

no no yes . . . . .

no yes yes . . . . .

C
no no no . . . . .

no yes no . . . . .

no no yes . . . . .

no yes yes . . . . .

Ta le 2 Results of all chec pointing experiments
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