
A Failure Correction Technique for Parallel

Storage Devices with Minimal Device Overhead

James S. Plank

Department of Computer Science

Univeristy of Tennessee

Knoxville, TN 37996

plank@cs.utk.edu

Joel Friedman

Department of Mathematics

Univeristy of British Columbia

Vancouver, BC V6T 172 Canada

jf@math.ubc.edu

Kai Li

Department of Computer Science

Princeton University

Princeton, NJ 08544

li@cs.princeton.edu

August 5, 1994

Technical Report CS-94-243

Department of Computer Science

University of Tennessee

Knoxville, TN 37996

i



A Failure Correction Technique for Parallel Storage Devices

with Minimal Device Overhead

James S. Plank

�

Joel Friedman

y

Kai Li

z

Abstract

A common technique for providing reliability in par-

allel storage designs, network �le systems, and disk-

less checkpointing systems is the N + 1-Parity ap-

proach. This approach is simple in coding, but re-

quires an excess number of additional \checksum"

storage devices to recover more than one arbitrary

device failure.

This paper presents a general method to recover

from the failure of m arbitrary storage devices with

the addition of exactly m checksum devices. The

method is an application of Reed-Solomon codes,

and can be viewed as a generalization of N + 1-

Parity.

This paper has two goals concerning this algo-

rithm. First, it provides a complete speci�cation of

how to code this problem with this algorithm. To

the authors' knowledge, this is the �rst such speci-

�cation. Second, we have implemented the coding

and recovery algorithm in software and shown that

the method is e�cient, general, and practical.

1 Introduction

Error-correcting codes have been around for

decades [Ber68, PW72, MS77]. However, the tech-

nique of distributing data among multiple storage

devices to achieve high-bandwidth input and out-

put, and using one or more error-correcting de-

vices for failure recovery is relatively new. It came

to the fore with \Redundant Arrays of Inexpen-

sive Disks (RAID)," where batteries of small, in-

expensive disks were used to combine high storage
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capacity, bandwidth, and reliability all at a low

cost [PGK88, Gib92]. Since then, the technique

has been used to design multicomputer and net-

work �le systems with high reliability and band-

width [CLVW93, HO93], and to design fast check-

pointing systems where extra processors provide re-

liability instead of disks [PL94].

The most common technique for this is called

\N + 1-Parity." With N + 1-Parity, one can e�-

ciently and reliably store Nk bytes of data in par-

allel on N + 1 data storage devices, each of which

holds k bytes. The �rst N devices store the bytes

themselves, and the last device stores a parity code

of the others: Its k bytes of storage are calculated

as the bitwise exclusive or (XOR) of the others, and

thus if any one of the N + 1 devices fails, it can

be reconstructed as the XOR of the remaining N de-

vices. The main advantage of this approach is its

simplicity. It requires one extra storage device, and

one extra write operation per write to any sin-

gle device. Its main disadvantage is that it cannot

recover from more than one simultaneous failure.

Several methods have been proposed to extend

the N + 1-Parity method to recover multiple failed

devices. Gibson et al [GHK

+

89] describe several

ways of using extra storage devices to store the

parity of di�erent subsets of data storage devices.

Their simplest method is to partition the N data

storage devices into disjoint groups and to use one

parity device per group. This method can recover

exactly one failure in each group. To allow recovery

from two-device failures in each group, they arrange

the groups in a two dimensional grid, and allot a

parity device for every row and column. This is

called \2d-parity", and requires a minimumof 2 N

parity devices. Figure 1 shows an example of this

method for N = 9. It can recover from any two de-

vice failures but cannot recover from arbitrary three

device failures (such as devices A, C1, and C4).

The extension of this approach to allow recov-

ery from m-device failures in each group requires

1
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Figure 1: Providing 2-site Fault Tolerance with 2d-

parity

mN

m�1

m

extra parity devices and is called \m-

dimensional parity." Each extra device stores the

the parity of

m

N data devices. In the best case,

the system can recover mN

m�1

m

device failures (for

example, if each parity device fails); however, in

the worst case, the system can recover only m fail-

ures. Although N+1-Parity based methods require

minimal overhead in coding, they require far more

than m devices to ensure the recovery from arbi-

trary m device failures. The authors state that m-

dimensional parity is unreasonable for values of m

greater than three [GHK

+

89].

Recently, Blaum, Brady, Bruck and Menon have

described an algorithm called evenodd, which uses

parity operations to allow recovery from two-device

failures with the addition of exactly two checksum

devices [BBBM94]. This is the most e�cient algo-

rithm known to tolerate two-device failures. They

are currently extending this algorithm to tolerate

three and four-device failures as well.

This paper describes a general algorithm for tol-

erating the failure of anym storage devices with the

addition of exactly m extra devices. We achieve

the minimal number of extra devices by applying

Reed-Solomon codes. Reed-Solomon codes are well-

known in error-correcting coding theory, and have

seen use in correcting errors on noisy communi-

cation lines [MS77, vL82, Wig88]. They are also

known to be the default mechanism to provide m-

device reliability with the addition of exactly m

checksum devices [Gib92, BM93, BBBM94].

However, as this is not the \conventional" use of

Reed-Solomon codes, their use in this regard is not

well-documented: To the authors' knowledge, there

is no complete speci�cation of how to use Reed-

Solomon coding for reliability from multiple device

failures. The primary goal of this paper is to pro-

vide such a speci�cation. A systems programmer

should need no other references besides this paper

to implement Reed-Solomon coding for reliability

from multiple device failures.

Second, we analyze the trade-o�s of this algo-

rithm and show that the cost of computing check-

sums is small. The computation overhead of a

checksum in this method requires two table lookups,

two additions, two conditionals and a parity oper-

ation per data word. We have implemented both

coding and recovery and experimented on a DEC

Alpha workstation. The results show that this

algorithm, while not as e�cient as parity-based

schemes, is indeed practical for many system ap-

plications. Moreover, for recovery from m-device

failures with m checksum devices where m 4, this

is still the only general algorithm known.

Problem S eci cation and

eneral Strateg

Let there be N storage devices,

1

;

2

; . . . ; ,

each of which holds k bytes. We call these the \Data

Devices." To these we add m more storage devices

1

;

2

; . . . ;

m

, each of which also holds k bytes.

We call these the \Checksum Devices." The con-

tents of each checksum device are calculated from

the contents of the data devices. Our goal is to de-

�ne the calculation of each

i

such that if any m of

1

;

2

; . . . ; ;

1

;

2

; . . . ;

m

fail, then the con-

tents of the failed devices can be reconstructed from

the non-failed devices.

Formally, the failure model of our system is that

of an eras re. When a device fails, it shuts down,

and the system recognizes this shutting down. This

is as opposed to an error, in which a device fail-

ure is manifested by storing and retrieving incor-

rect values, which are cannot by recognized by

the system without some sort of embedded cod-

ing [PW72, Wig88].
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The calculation of the contents of each check-

sum device

i

requires a separate function

i

. Fig-

ure 2 shows an example con�guration using our al-

gorithm (which we henceforth call ) for N = 9

and m = 2, the same as in Figure 1. The coding

on the checksum devices

1

and

2

is computed by

using functions

1

and

2

respectively. It is clear

that this con�guration requires more complicated

coding than parity and far fewer checksum devices

than the 2d-parity method in Figure 1.

A B C

D E F

G H I

C1

C2

= F1 (A, B, C, D, E, F, G, H, I)

= F2 (A, B, C, D, E, F, G, H, I)

Figure 2: Providing 2-site Fault Tolerance with the

RS Algorithm

All coding methods considered in this paper

break up each storage device into or s. The size

of each word is bits, being chosen by the cod-

ing algorithm. The coding functions

i

operate on

a word-by-word basis, as in Figure 3, and thus we

can view our problem as consisting of N data words

d

1

; . . . ; d and m checksum words c

1

; . . . ; c

m

which

are computed from the data words in such a way

that the loss of any m words can be tolerated.

To compute a checksum word c

i

for the check-

sum device

i

, we apply function

i

to to the cor-

responding data words on all data devices:

c

i

=

i

(d

1

; d

2

; . . . ; d ):

If a data word on device is updated from d to

d

0

, then each checksumword c

i

must be recomputed

by using a function

i;

such that:

c

0

i

=

i;

(d ; d

0

; c

i

):

an

a3

a2

a1

bn

b3

b2

b1

F1 (an, bn)

F1 (a3, b3)

F1 (a2, b2)

F1 (a1, b1)

F2 (an, bn)

F2 (a3, b3)

F2 (a2, b2)

F2 (a1, b1)

A B C1 C2

. .
 .

. .
 .

. .
 .

. .
 .

k bytes,
n words

Figure 3: Breaking the Storage Devices into Words

When up to m devices fail, we reconstruct the

system as follows. First, for each failed data de-

vice , we construct a function to restore the

words d from the words for the non-failed devices.

When that is completed, we recompute any failed

checksum devices

i

with

i

.

For example, suppose m = 1. Then we can de-

scribe N + 1-Parity in the above terms. There is

one checksum device

1

, and words consist of one

bit (i.e. = 1). To compute each checksum word

c

1

, we take the parity (XOR) of the data words:

c

1

=

1

(d

1

; . . . ; d ) = d

1

d

2

. . . d :

If a word of data device changes from d to d

0

,

then c

1

is recalculated from the parity of its old

value and the two data words:

c

0

1

=

1;

(d ; d

0

; c

1

) = c

1

d d

0

:

If a device d fails, then it may be restored as the

parity of the remaining devices:

d

i

= d

1

. . . d

�1

d

+1

. . . d c

1

:

In such a way, the system is resilient to any one

device failure.

To restate, our problem is de�ned as follows.

We are given N data words d

1

; d

2

; . . . ; d all of

size . We will de�ne functions and which we

use to calculate and maintain the checksum words

c

1

; c

2

; . . . ; c

m

. We will then describe how to recon-

struct the words of any lost data device when up

to m devices fail. Once the data words are recon-

structed, the checksum words can be recomputed

from the data words and . Thus, the entire sys-

tem is reconstructed.
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Overview of the S Algo

rithm

There are three main aspects of the RS algorithm:

The use of the Vandermonde matrix to calculate

and maintain checksum words, the use of Gaussian

Elimination to recover from failures, and the use of

Galois Fields to perform arithmetic. Each is de-

tailed below:

-

We will de�ne each function

i

as a linear combi-

nation of the data words:

c

i

=

i

(d

1

; d

2

; . . . ; d ) =

1

d

i;

In other words, if we represent the data and check-

sum words as the vectors and , and the func-

tions

i

as rows of the matrix , then the state of

the system adheres to the following equation:

= :

We de�ne to be the m N Vandermonde matrix:

i;

=

i�1

, and thus the above equation becomes:

When one of the data words d changes to d

0

, then

each of the checksum words must be changed as

well. This can be e�ected by subtracting out the

portion of the checksum word that corresponds to

d , and adding the required amount for d

0

. Thus,

i;

is de�ned as follows:

c

0

i

=

i;

(d ; d

0

; c

i

) = c

i

+

i;

(d

0

d ):

Thus, the calculation and maintenance of checksum

words can be done by simple arithmetic (however, it

is a special kind of arithmetic, as explained below).

To explain recovery from errors, we de�ne the ma-

trix and the vector as follows: = [ ], and

= [ ]. Then we have the following equation

( = ):

We can view each device in the system as having

a corresponding row of the matrix and of the

vector . When a device fails, we can re ect it by

deleting its row from and from . What results

a new matrix

0

and a new vector

0

that adhere

to the equation:

0

=

0

:

Suppose exactly m devices fail. Then

0

is a N

N matrix. Because matrix is de�ned to be a

Vandermonde matrix, every subset of N rows of

matrix is guaranteed to be linearly independent.

Thus, the matrix

0

is non-singular, and the the

values of may be calulated from

0

=

0

using

Gaussian Elimination. Hence all data devices can

be recovered.

Once the values of are obtained, the values of

any failed

i

may be recomputed from . It should

be obvious that if fewer than m devices fail, the sys-

temmay be recovered in the same manner, choosing

any N rows of

0

to perform the Gaussian Elimina-

tion. Thus, the system can tolerate any number of

device failures up to m.

A major concern of the RS algorithm is that the

domain and range of our computation are binary

words of a �xed length . Although the above

algebra is guaranteed to be correct when all the

elements are in�nite precision real numbers, we

must make sure that it is correct for these �xed-

size words. A common error in dealing with these

4



codes is to perform all arithmetic over the inte-

gers modulo 2 . This oes ot or , as division

is not de�ned for all pairs of elements (for example,

(3 2) is unde�ned modulo 4), rendering the Gaus-

sian Elimimation unsolvable in many cases. In-

stead, we must perform addition and multiplication

over a el with more than N+m elements [PW72].

Fields with 2 elements are called alo s el s

(denoted (2 )), and are a fundamental topic in

algebra (e.g. [Her75, MS77, vL82]). The key of this

section is to de�ne how to perform addition, sub-

traction, multiplication, and division e�ciently over

a Galois Field. We will give such a description

without fully explaining Galois Fields in general.

Appendix A contains a more detailed description

of Galois Fields, and provides justi�cation for the

arithmetic algorithms in this section.

The elements of (2 ) are the integers from

zero to 2 1. Thus, they may be represented by

all binary words of length . As detailed in Ap-

pendix A, arithmetic of elements in a Galois Field is

analagous to polynomial arithmetic modulo a prim-

itive polynomial of degree over (2). However,

we can describe this arithmetic without going into

the details of such polynomials.

Addition and subtraction of elements of (2 )

are simple. They are simply a bitwise exclusive-or.

For example, in (16):

11 + 7 = 1011 0111 = 1100 = 12:

11 7 = 1011 0111 = 1100 = 12:

Multiplication and division are more complex.

They require two mapping tables, each of length

2 , which are analagous to logarithm tables for real

numbers:

flo : A table that maps an integer to

its logarithm in the Galois Field. ( = 2 .)

filo : An inverse table table that

maps an integer to its inverse logarithm in the

Galois Field.

With these two tables, we can multiply two ele-

ments of (2 ) by adding their logs and then

taking the inverse log, which yields the product.

To divide two numbers, we instead subtract the

logs. Figure 4 shows an implementation in C: This

implementation makes use of the fact that the in-

verse log of an integer is equal to the inverse log

of mod (2 1). (This fact is explained in Ap-

pendix A).

int mult(int a, int b)
{
  int sum_log;

  if (a == 0 || b == 0) return 0;
  sum_log = gflog[a] + gflog[b];
  if (sum_log >= NW-1) sum_log -= NW-1;
  return gfilog[sum_log];
}

int div(int a, int b)
{
  int diff_log;

  if (a == 0) return 0;
  if (b == 0) return -1; /*Can’t divide by 0*/
  diff_log = gflog[a] - gflog[b];
  if (diff_log < 0) diff_log += NW-1;
  return gfilog[diff_log];
}

Figure 4: C Code for Multiplication and Division

over (2 )

As with regular logarithms, we must treat zero

as a special case, as the logarithm of zero is .

Unlike regular logarithms, the log of any non-zero

element of a Galois Field is an integer, allowing for

exact multiplication of Galois Field elements using

these logarithm tables.

An important step, therefore, once is chosed, is

generating the logarithm tables for (2 ). The al-

gorithm to generate the logarithm and inverse loga-

rithm tables for any can be found in Appendix A.

As an example, we include the tables for (16) in

Table 1:

i
1 2

� 1 2 1

1 2 12 11

i
1 11 12 1 1 1

1 1 11 12

1 1 1 1 1

Table 1: Logarithm tables for (16)

For example, in (16):

3 7 = filo = filo = 9

13 10 = filo = filo = 11

5



13 10 = filo = filo = 3

3 7 = filo = filo = 14

Therefore, a multiplication or division requires

simply one conditional, three table lookups (two

logarithm table lookups and one inverse table

lookup), an addition or subtraction, and a modulo

operation. For e�ciency in the C code above, we

implement the modulo operation as a conditional

and a subtraction or addition.

The Algorithm Summari ed

Given N data devices and m checksum devices, the

RS algorithm for making them fault-tolerant to up

to m failures is as follows.

1. Choose a value of such that 2 N +m. It

is easiest to choose = 8 or = 16, as words

then fall directly on byte boundaries. Note that

with = 16, N +m can be as large as 65; 536.

2. Set up the tables flo and filo as de-

scribed in Appendix A.

3. Set up the matrix to be the m N Vander-

monde matrix:

i;

=

i�1

(for 1 m; 1

N ) where multiplication is performed over

(2 ).

4. Use the matrix to calculate and maintain

each word of the checksum devices from the

words of the data devices. Again, all addition

and multiplication is performed over (2 ).

5. If any number of devices up to m fail, then

they can be restored in the following man-

ner. Choose any N of the remaining devices,

and construct the matrix

0

and vector

0

as de�ned previously. Then solve for in

0

=

0

. This enables the data devices to be

restored. Once the data devices are restored,

the failed checksum devices may be recalcu-

lated using the matrix .

An am le

As an example, suppose we have three data devices

and three checksum devices, each of which holds one

megabyte. Then N = 3, and m = 3. We choose

to be four, since 2 N + m, and since we

can use the logarithm tables in Table 1 to illustrate

multiplication.

Next, we set up flo and filo to be as in

Table 1. We construct to be a 3 3 Vandermonde

matrix, de�ned over (16):

=

1 2 3

1

1

2

1

3

2

1

2

2

2

3

2

=

1 1 1

1 2 3

1 4 5

Now, we can calculate each word of each checksum

device using = . For example, suppose the

�rst word of

1

is 3, the �rst word of

2

is 13, and

the �rst word of is 9. Then we use to calculate

the �rst words of

1

;

2

, and :

1

= (1)(3) (1)(13) (1)(9)

= 3 13 9

= 0011 1101 1001 = 0111 = 7

2

= (1)(3) (2)(13) (3)(9)

= 3 9 8

= 0011 1001 1000 = 0010 = 2

= (1)(3) (4)(13) (5)(9)

= 3 1 11

= 0011 0001 1011 = 1001 = 9

Suppose we change

2

to be 1. Then

2

sends

the value (1 13) = (0001 1101) = 12 to each

checksum device, which uses this value to recom-

pute its checksum:

1

= 7 (1)(12) = 0111 1100 = 11

2

= 2 (2)(12) = 2 11 = 0010 1011 = 9

= 9 (4)(12) = 9 5 = 1001 0101 = 12

Suppose now that devices

2

, , and are

lost. Then we delete the rows of and corre-

sponding to

1

,

2

, and to get

0

= :

1 0 0

1 1 1

1 2 3

=

3

11

9

By applying Gaussian elimination, we can invert

0

to yield the following equation: = (

0

)

�1 0

, or:

=

1 0 0

2 3 1

3 2 1

3

11

9

:

6



From this, we get:

2

= (2)(3) (3)(11) (1)(9) = 6 14 9 = 1

= (3)(3) (2)(11) (1)(9) = 5 5 9 = 9

And then:

= (1)(3) (4)(1) (5)(9) = 3 4 11 = 12

Thus, the system is recovered.

Anal sis

In this section, we analyze the cost of computing

and maintaining checksums and the cost of recov-

ery. We also detail our implementations and report

experimental results.

The cost of computing a checksum is usually mea-

sured by a metric called the ate e alt of the RS

algorithm. Update penalty is the extra cost of main-

taining the coding for fault-tolerance per data de-

vice update. The optimal update penalty for a sys-

tem tolerating m faults is m updates to checksum

devices. All the algorithms presented by Gibson et

al have this optimal update penalty [GHK

+

89], as

does the algorithm presented in this paper. The al-

gorithms di�er, however, in the complexity of each

checksum device update.

In the parity-based algorithms, when a word of

a data device is changed from d to d

0

, the di�erence

of the two is calculated (d d

0

), and sent to the m

checksum devices, which XOR this di�erence with

their copy. Thus, an update to a data word con-

sists of one parity operation performed at the data

device, followed by one parity operation performed

in parallel by each of m checksum devices.

In the RS algorithm, things proceed similarly.

When a data device changes a word from d to d

0

,

the di�erence is again calculated (d d

0

), and sent

to the m checksum devices. Each checksum device

however, now multiplies this di�erence by a con-

stant (

i;

), and then adds it to its device with a

parity operation. Thus, an update to a data word

consists of one parity operation performed at the

data device, followed by one multiplication and one

parity operation performed in parallel by each of m

checksum devices. As such, the cost of coding is

only slightly more complex than parity.

To assess exactly how much of a penalty is in-

curred by this extra multiplication, we implemented

the RS algorithm for coding checksum devices. The

code emulatesN data devices with random contents

and calculates the contents of m checksum devices.

Each device holds one megabyte. For the RS algo-

rithm, we used a value of = 16, because that is

the largest value of for which the logarithm tables

are a reasonable size (128K each).

40

0 10 20 30

5
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m = 4
m = 6
m = 8

N (# of Data Disks)

A
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ge

 C
od

in
g 

Sp
ee

d 
(M

by
te

s/
Se

co
nd

)

Figure 5: Average Speed of Coding Checksum De-

vices on the DEC Alpha

The graph in Figure 5 shows the average speed of

coding for many values ofN andm on a DEC Alpha

workstation. Each point on the graph represents the

speed of coding N megabytes of data on each of m

check devices, using the RS algorithmover (2

1

).

All points are the average of ten runs. The �rst

result to notice is the line for m = 1. When m =

1, the RS algorithm is equivalent to N + 1-Parity.

Thus, this line represents the speed of coding using

straight XOR. As the Alpha can perform XOR on 64

bits in parallel, the speed of coding is extremely

7



fast.

For the other lines on the graph, the average

speed of coding depends on both N and m. This is

for the following reason: Whenever a checksum de-

vice

i

needs to update its checksum for a data

device , and

i;

= 1, then no multiplication

need be performed to update the checksum. In-

stead, only an XOR need be executed. Thus, the

speed of coding gets slower when N and m get big-

ger because the associated Vandermondematrix has

proportionally fewer elements with values of one.

In the worst case, the speed of coding is just

above four megabytes per second. This is roughly

ten times slower than coding with straight XOR,

which is to be expected, since a Galois Field multi-

plication has to perform two conditionals, two addi-

tions and two table lookups for each 16-bit quantity

(since we code a megabyte at a time, we only need

two table lookups per word, as flo

i;

can be

looked up in advance). This speed of coding should

be su�cient for disk controllers and checkpointing

systems. Currently, few disks and operate at greater

speeds.

One possible way to increase the speed of coding

is to provide separate multiplication procedures for

each value of

i;

. As stated above, when

i;

is one,

no multiplication is necessary. When

i;

is two, any

value less than 2

1

can be multiplied by a simple bit

shift, and values greater than 2

1

can be multiplied

by a bit shift followed by an XOR. There are similar

optimizations for other values of

i;

.

Another obvious optimization for coding is to un-

roll the coding loop for each

i;

. This optimiza-

tion is reasonable for designing systems that have

�xed N and m, and �xed block sizes. Such an op-

timization can eliminate the loops.

Finally, it should be noted that multiplication

over Galois Fields can be implemented in hardware

in a rather simple fashion [PW72]. Were a processor

to provide such an operation in hardware, the speed

of coding would be much closer to the speed of a

parity operation.

1

e should note that implementin division or lo arithm

functions in hard are is a much harder problem C 94 .

o ever, a hard are multiplier for 2 ould si nif-

icantly speed up codin , hile still allo in us to use the

table-based division for recovery.

In the RS algorithm, recovery consists of perform-

ing Gaussian Elimination of an equation

0

=

0

so that (

0

)

�1

is determined. Then, the contents

of all the failed data devices may be calculated as

a linear combination of the devices in

0

. Thus,

recovery has two parts: the Gaussian Elimination,

and the recalculation. Since at least N m rows

of

0

are identity rows, the Gaussian Elimination

takes (m

2

N ) steps. The recalculation of the data

devices takes N multiplications and N XOR's per

word in the device. Since the number of words per

device is most likely to be much larger than m

2

,

the recalculation should be the dominant part of

recovery.
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Figure 6: Average Time of Failed Device Recovery

The data in Figure 6 corroborates these claims.

Here, each data point represents the average time

to recover a failed device in a system with N data

devices and m checksum devices, and m failures.

As before, each device holds one megabyte. Each

recovery point in the graph includes a full Gaus-

sian Elimination; however, no Gaussian Elimination

in the graph took longer than eight milliseconds.

Thus, as stated above, the dominant cost of recov-

ery is recalculating the contents of the data devices,

which takes N XOR's and N multiplications (or just

N XOR's in the case m = 1) for each word in the

8



restored device.

In comparison to the parity-based algorithms of

Gibson et al, the recovery of the RS algorithm is

indeed more complex. The reason is twofold: First,

the recalculation of data devices involves the con-

tents of N storage devices in the RS algorithm, as

opposed to

m

N for m-dimensional parity. Second,

the recalculation itself involves both multiplication

and parity, as opposed to just parity operations.

However, as recovery is by far the least frequent

operation in a system, the extra complexity added

by the RS algorithm should not contribute to de-

graded system performance. It is indeed in recovery

where we can a�ord to absorb some extra complex-

ity in order to minimize the number of extra check

devices.

Conclusion

We have presented an algorithm to recover from the

failure of m arbitrary storage devices with the ad-

dition of a minimum number of checksum devices,

exactly m. This is a substantial improvement over

the m-dimensional parity method which requires

mN

m�1

m

checksum devices.

The tradeo� of our method is to do a bit more

computing to produce a checksum than the straight

parity-based methods. In our method, comput-

ing a checksum requires three table lookups, an

addition or subtraction, a modulo operation and

an XOR operation for each data word, whereas the

parity-based methods require only an XOR oper-

ation. Our software implementation and experi-

ments show that the coding overhead is small and

that this method is practical.

This algorithm is useful for large parallel stor-

age system designs where recovering multiple de-

vice failures is necessary and individual devices are

expensive. The application domain includes large

scale disk arrays, striped network and multicom-

puter �le systems, and diskless checkpointing sys-

tems.
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A endi A alois Fields as

A lied to this Algorithm

Galois Fields are a fundamental topic of algebra,

and are given a full treatment in a number of

texts [Her75, MS77, vL82]). This Appendix does

not attempt to rigorously de�ne and prove all the

properties of Galois Fields necessary for this algo-

rithm. Instead, our goal is to give enough informa-

tion about Galois Fields so that anyone desiring to

implement this algorithm will have a good intuition

concerning the underlying theory.

A el ( ) is a set of elements closed un-

der addition and multiplication, for which every el-

ement has an additive and multiplicative inverse

(except for the 0 element which has no multiplica-

tive inverse). For example, the �eld (2) can be

represented as the set 0; 1 , where addition and

multiplication are both performed modulo 2 (i.e.

addition is XOR, and multiplication is the bit opera-

tor ). Similarly, if is a prime number, then

we can represent the �eld ( ) to be the set

0; 1; . . . ; 1 where addition and multiplication

are both performed modulo .

However, suppose 1 is not a prime. Then

the set 0; 1; . . . ; 1 where addition and mul-

tiplication are both performed modulo is ot a

el . For example, let be four. Then the set

0; 1; 2;3 is indeed closed under addition and mul-

tiplication modulo 4, however, the element 2 has

no multiplicative inverse (there is no 0; 1; 2;3

such that 2 1 (mod 4)). Thus, we a ot per-

form our coding with binary words of size 1

using addition and multiplication modulo 2 . In-

stead, we need to use Galois Fields.

To explain Galois Fields, we work with polyno-

mials of whose coe�cients are in (2). This

means, for example, that if ( ) = + 1, and

( ) = , then ( ) + ( ) = 1. This is because

+ = (1 + 1) = 0 = 0:

Moreover, we will be taking such polynomials mod-

ulo other polynomials, using the following identity:

If ( ) mod ( ) = ( ), then ( ) is a

polynomial with a degree less than ( ),

and ( ) = ( ) ( ) + ( ), where ( ) is

any polynomial of .

10



Thus, for example, if ( ) =

2

+ , and ( ) =

2

+ 1, then ( ) mod ( ) = + 1.

Let ( ) be a r t e polynomial of degree

whose coe�cients are in (2). This means that

( ) cannot be factored, and that the polynomial

can be considered a e erator of (2 ). To see

how generates (2 ), we start with the elements

0, 1, and , and then continue to enumerate the

elements by multiplying the last element by and

taking the result modulo ( ) if it has a degree .

This enumeration will end at 2 elements the last

element multiplied by mod ( ) will equal 1.

For example, suppose = 2, and ( ) =

2

+

+1. To enumerate (4) we start with the three

elements 0, 1, and , then then continue with

2

mod ( ) = + 1. Thus we have four elements:

0; 1; ; +1 . If we continue, we see that ( + 1)

mod ( ) =

2

+ mod ( ) = 1, thus ending the

enumeration.

The �eld (2 ) is constructed by �nding a

primitive polynomial ( ) of degree over (2),

and then enumerating the elements (which are poly-

nomials) with the generator . Addition in this �eld

is performed using polynomial addition, and multi-

plication is perfomed using polynomial multiplica-

tion and taking the result modulo ( ). Such a �eld

is typically written (2 ) = (2)[ ] ( ).

Now, to use (2 ) in the RS algorithm, we

need to map the elements of (2 ) to binary

words of size . Let ( ) be a polynomial in

(2 ). Then we can map ( ) to a binary word

of size by setting the th bit of to the co-

e�cient of

i

in ( ). For example, in (4) =

(2)[ ]

2

+ + 1, we get the following table:

1 1 1

1 2

+ 1 11

Addition of binary elements of (2 ) can be per-

formed by bitwise exclusive or. Multiplication is a

little more di�cult. One must convert the binary

numbers to their polynomial elements, multiply the

polynomials modulo ( ), and then convert the an-

swer back to binary. This can be implemented, in

a simple fashion, by using the two logarithm ta-

bles described in Section 3: one that maps from a

binary element to power such that is equiva-

lent to (this is the flo table, and is referred to

in the literature as a \discrete logarithm"), and one

that maps from a power to its binary element .

Each table will have 2 1 elements (there is no

such that = 0). Multiplication then consists of

converting each binary element to its discrete log-

arithm, then adding the logarithms modulo 2 1

(this is equivalent to multiplying the polynomials

modulo ( )) and converting the result back to a

binary element. Division is performed in the same

manner, except the logarithms are subtracted in-

stead of added. Obviously, elements where = 0

must be treated as special cases. Therefore, multi-

plication and division of two binary elements takes

three table lookups and a modular addition.

Thus, to implement multiplication over (2 ),

we must �rst set up the tables flo and filo .

To do this, we �rst need a primitive polynomial ( )

of degree over (2 ). Such polynomials can

be found in texts on error correcting codes [Ber68,

PW72]. We list examples for powers of two up to

64 below:

= 4 : + + 1

= 8 : + + +

2

+ 1

= 16 :

1

+

12

+ + + 1

= 32 :

2

+

22

+

2

+ + 1

= 64 : + + + + 1

We then start with the element = 1, and enu-

merate all non-zero polynomials over (2 ) by

multiplying the last element by , and taking the

result modulo ( ). This is done in Table 2 below

for (4), where ( ) = + + 1.

It should be clear how this enumeration can be

used to generate the flo and filo arrays in

Table 1. The C code in Figure 7 shows how to

generate these arrays for = 16:
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1 1 1

1 2

1

1

+ 1 11

+ 11

+ 11 12

+ + 1 1 11 11

+ 1 1 1

+ 1 1 1

+ + 1 111

+ + 111 1

+ + + 1 1111 1

+ + 1 11 1 1

+ 1 1 1

1 1 1

Table 2: Enumeration of the elements of (16)

unsigned int q_x = 0210013;
unsigned int x_to_16 = 0200000;
unsigned short gflog[0200000];
unsigned short gfilog[0200000];

setup_tables()
{
  unsigned int binary_el, log;

  binary_el = 1;
  for (log = 0; log < 0177777; log++) {
    gflog[binary_el] = (short) log;
    gfilog[log] = (short) binary_el;
    b = b << 1;
    if (b & x_to_16) b = b ^ q_x;
  }
}

Figure 7: C Code for Generating the logarithm ta-

bles of (2

1

)
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