
PARALLELIZING THE QR ALGORITHM FOR THE UNSYMMETRICALGEBRAIC EIGENVALUE PROBLEM: MYTHS AND REALITYGREG HENRY� AND ROBERT VAN DE GEIJNyAbstract. Over the last few years, it has been suggested that the popular QR algorithm forthe unsymmetric eigenvalue problem does not parallelize. In this paper, we present both positiveand negative results on this subject: In theory, asymptotically perfect speedup can be obtained.In practice, reasonable speedup can be obtained on a MIMD distributed memory computer, for arelatively small number of processors. However, we also show theoretically that it is impossiblefor the standard QR algorithm to be scalable. Performance of a parallel implementation of theLAPACK DLAHQR routine on the Intel ParagonTM system is reported.1. Introduction. Distributed memory parallel algorithms for the unsymmetric eigenvalueproblem have been allusive. There are several matrix multiply-based methods currently beingstudied. Auslander and Tsao [2] and Lederman, Tsao, and Turnbull [24] have a matrix multiply-based parallel algorithm, which uses a polynomial mapping of the eigenvalues. Bai and Demmel[4] have another parallel algorithm based on bisection with the matrix sign function. Matrixtearing methods for �nding the eigensystem of an unsymmetric Hessenberg matrix have beenproposed by Dongarra and Sidani [9]. These involve doing a rank one change to the Hessenbergmatrix to make two separate submatrices and then �nding the eigenpairs of each submatrix,followed by performing Newton's method on these values to �nd the solution to the originalproblem. None of the above algorithms are particularly competitive in the serial case. Theysu�er from requiring more
oating point operations (
ops) and/or yield a loss of accuracy whencompared to e�cient implementations of the QR algorithm.E�cient sequential (and shared memory parallel) implementations of the QR algorithm usea blocked version of the Francis double implicit shifted algorithm [13] or a variant thereof [20].There have also been attempts at improving data reuse by increasing the number of shifts ei-ther by using a multi-implicited shifted QR algorithm [3] or pipelining several double shiftssimultaneously [31, 32].A number of attempts at parallelizing the QR algorithm have been made (see Boley andMaier [7], Geist, Ward, Davis, and Funderlic [14], and Stewart [27].) Distributing the workevenly amongst the processors has proven di�cult for conventional storage schemes, especiallywhen compared to the parallel solution of dense linear systems [22, 23]. Communication alsobecomes a more signi�cant bottleneck for the parallel QR algorithm. As noted by van de Geijn[29] and van de Geijn and Hudson [30], the use of a block Hankel-wrapped storage scheme canalleviate some of the problems involved in parallelizing the QR algorithm.In this paper, we present a number of results of theoretical signi�cance on the subject. Wereexamine the results on the Hankel-wrapped storage schemes in the setting of a parallel im-� Intel Supercomputer Systems Division, 14924 N.W. Greenbrier Pkwy, Beaverton, OR 97006,henry@ssd.intel.comy Department of Computer Sciences, The University of Texas, Austin, Texas 78712, rvdg@cs.utexas.edu

plementation of a state-of-the-art sequential implementation. Theoretically we can show thatunder certain conditions the described approach is asymptotically 100% e�cient: if the num-ber of processors is �xed and the problem size grows arbitrarily large, perfect speedup can beapproached. However, we also show that our approach is not scalable in the following sense:To maintain a given level of e�ciency, the dimension of the matrix must grow linearly with thenumber of processors. As a result, it will be impossible to maintain performance as processorsare added, since memory requirements grow with the square of the dimension, and physical mem-ory grows only with the number of processors. While this could be a de�ciency attributable toour implementation, we also show that for the standard implementations of the sequential QRalgorithm, it is impossible to �nd an implementation with better scalability properties. Finally,we show that these techniques can indeed be incorporated into a real code by giving details of aprototype distributed memory implementation of the serial algorithm DLAHQR [1], the LAPACKversion of the double implicit shifted QR algorithm. Full functionality of the LAPACK codecan be supported. That is, the techniques can be extended to allow for the cases of computingthe Schur vectors, computing the Schur decomposition of H, or just computing the eigenvaluesalone. We have implemented a subset of this functionality, for which the code is described andperformance results are given.Thus this paper makes four contributions: It describes a data decomposition that allows, atleast conceptually, straight-forward implementation of the QR algorithm; It gives theoreticallimitations for parallelizing the standard QR algorithm; It describes a parallel implementationbased on the proposed techniques; It reports performance results of this proof-of-concept imple-mentation obtained on the Intel ParagonTM system.2. Sequential QR Algorithm. While we assume the reader of this paper to be fully versedin the intricate details of the QR algorithm, we brie
y review the basics in this section.The Francis double implicit shifted QR algorithm has been a successful serial method forcomputing the Schur decomposition H = QTQT . Here T is upper pseudo-triangular with 1x1or 2x2 blocks along the diagonal and Q is orthogonal. We assume for simplicity that our initialmatrix H is Hessenberg. The parallelization of the reduction to Hessenberg form is a wellunderstood problem, and unlike the eigenvalue problem, the Hessenberg reduction has beenshown to parallelize well [5, 10].One step of the Francis double shift Schur decomposition is in Figure 1. Here, the Householdermatrices are symmetric orthogonal transforms of the form:Pi = I � 2vvTvTvwhere v 2 <n and vj = (0 if j < i+ 1 or j > i+ 31 if j = i+ 1We assume the Hessenberg matrix is unreduced, and if not, �nd the largest unreduced submatrixof H. Suppose this submatrix is H(k : l; k : l). We then apply the Francis HQR Step to the rows

Francis HQR Stepe = eig(H(n� 1 : n; n� 1 : n))Let x = (H � e(1)In) � (H � e(2)In)Let P0 2 <n�n be a Householder matrixs.t. P0x is a multiple of e1.H P0HP0for i = 1; : : : ; n� 2Compute Pi so thatPiH has zero (i+ 2; i) and(i+ 3; i) entries.Update H PiHPiUpdate Q QPiendforFig. 1. Sequential Francis HQR Stepand columns of H corresponding to the submatrix; that is,H(k : l; :) PiH(k : l; :)H(:; k : l) H(:; k : l)PiThe double implicit shifts in this case are chosen to be the eigenvalues ofe = eig(H(l � 1 : l; l � 1 : l))In practice, after every couple of iterations, some of the subdiagonals of H will become nu-merically zero, and at this point the problem de
ates into smaller problems.3. Parallel QR Algorithms.3.1. Data Decomposition. We brie
y describe the storage scheme presented in [30]. Sup-pose A 2 <n�n where n = mhp for some integers h and m and p is the number of processors.Suppose A is partitioned as followsA = 266666664 A1;1 A1;2 � � � A1;mp�1 A1;mpA2;1 A2;2 � � � A2;mp�1 A2;mpA3;1 A3;2 � � � A3;mp�1 A3;mp...Amp;1 Amp;2 � � � Amp;mp�1 Amp;mp 377777775 ;where Ai;j 2 <h�h. We denote processor k owning block Ai;j with a superscript A(k)ij . The onedimensional block Hankel-wrapped storage for m = 1 assigns submatrix Ai;j to processor(i+ j � 2) mod p:

0 00 0 00 0 0 00 0 0 0 00 0 0 0 0 1 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 1 2 2 2 2 22 2 2 2 22 2 2 2 22 2 2 2 22 2 2 2 2 3 3 3 3 33 3 3 3 33 3 3 3 33 3 3 3 33 3 3 3 31 2 22 2 22 2 2 22 2 2 2 22 2 2 2 2BBB 3 3 3 3 33 3 3 3 33 3 3 3 33 3 3 3 33 3 3 3 3 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 03 0 00 0 00 0 0 00 0 0 0 00 0 0 0 0 1 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 11 2 22 2 22 2 2 22 2 2 2 22 2 2 2 2Fig. 2. Data decomposition and chasing of the bulge.That is, the distribution amongst the processors is as follows [30]:2666666664 A(0)1;1 A(1)1;2 A(2)1;3 � � � A(p�2)1;mp�1 A(p�1)1;mpA(1)2;1 A(2)2;2 A(3)2;3 � � � A(p�1)2;mp�1 A(0)2;mpA(3)3;2 A(4)3;3 � � � A(0)3;mp�1 A(1)3;mp.A(p�3)mp;mp�1 A(p�2)mp;mp 3777777775where the superscript indicates the processor assignment.3.2. Basic Parallel Algorithm. We start describing the basic parallel QR algorithm byconsidering the Francis HQR Step. The basic loop in Figure 1, indexed by i, is generally referredto as \chasing the bulge". Figure 2 gives an arbitrary example of i = 7, in a 20�20 matrix, wherethe integers indicate nonzero elements of the upper Hessenberg matrix, and the B's indicate the �llin at that stage of the loop. In the next step of Francis HQR step, a Householder transformationPi is computed and applied from the left and the right. The a�ected elements are within thedashed lines. After this application of the Householder transformation, the bulge moves downthe diagonal one position, and the next iteration starts.Figure 2 also demonstrates the possible parallelism in the Francis HQR step: The applicationof Pi to the appropriate elements of H, referred to as a re
ection, is perfectly distributed amongthe processors, except for the processor that owns the bulge and the �ll-in elements. Thisprocessor must do slightly more work (associated with the intersection of the two boxes). It isthe parallelism within the application of each Householder transformation that is the key to thesuccess of the approach.The entire Francis HQR step now parallelizes as follows:

1. The processor(s) that holds eig(H(n � 1 : n; n � 1 : n) computes the shifts, and sendsthem to the �rst processor. Alternatively, all processors could compute the shifts, sinceit is a lower order operation.2. The processor that owns the data required to compute P0 computes it, and then broad-casts it to all other processors.3. All processors update their portions of the matrix according to P0.4. for i = 1; : : : ; n� 2(a) The processor that owns the data required to compute Pi computes it and thenbroadcasts it to all other processors.(b) All processors update their portions of the matrix according to Pi.Naturally, everytime the computation hits data that lies on the boundaries between processors,a limited amount of communication is required to bring appropriate rows and columns together.3.3. Analysis of the Simple Parallel Algorithm. Before discussing the �ner details ofthe parallel code, let us analyze the simple algorithm given above. This will give us an idea ofhow well the basic approach works. We will restrict our analysis to a single Francis step, andignore shift derivation, convergence, or decoupling set up costs. We show later how this extraO(n) work can be done without incurring excessive overhead.For our analysis, we will use the following model: Performing a
oating point computationrequires time
. Sending a message of length n between two nodes requires time � + n�, where� represents the latency, and � the penalty per double precision number transferred. For conve-nience, we shall assume all communication is nearest neighbor, and hence no network con
ictsoccur. Processors can send and receive simultaneously.We start by computing the sequential expense of the algorithm: Computing a Householdertransformation from a vector of length three requires C, some small constant,
ops. Applyingsuch a Householder transformation of size three to three rows or columns of length n requires10n
ops. Within the loop indexed by i, each transformation is applied to n � i + 1 tripletsof rows and i + 3 triplets of columns. Applying the transformations to the Hessenberg matrixtherefore requires 10(n+4)
ops and applying the transformations to the Schur matrix requires10n
ops. The total cost of executing a single Francis step thus becomes approximatelyn�1Xi=1 (C + 10(n + 4) + 10n)
 = 20n2
 +O(n)Turning now to the parallel implementation, contributions to the critical path are given roughlyas follows: Computing a transformation still contributes C
ops. Broadcasting this transforma-tion requires time �+ 3�, since the parallel implementation can be arranged to pipeline aroundthe logical ring of processors. After this, the processors that computed the transformation mustupdate its part of the rows and columns. The row and column vectors are of length approxi-mately n=p, with a few extra introduced by the bulge. This contributes the equivalent of about20(n=p + 4)
ops. Now, it can compute the next transformation, and the process repeats itselfn� 1 times. The total contribution becomesn�1Xi=1 C
 + 10(np + 4) + 10np
 + �+ 3�! = Cn
 + 20n2p
 + 40n
 + n�+ 3n� +O(1)(1)

Here we cannot ignore O(n) terms, since if p is comparable to n, these terms matter.Equation 1 ignores the communication required when a boundary of processors is reached,which happens every h iterations. Each \border" row contains roughly (n � i)=p elements perprocessor, and each \border" column contains roughly i=p elements per processor. Using trans-forms of size three implies that when the boundary of processors is reached, the next transformwill also cross the boundary. Hence 2n=p items must be communicated to the right and returned.This means that the total communication volume for \border" or boundary data isnh(4np)(2)The communication volume in Equation 2 can be done in anywhere from one to eight messagesdepending on the implementation. Eight messages are required when both rows and both columnsfor the two iterations are sent separately, and returned again. One message is possible if data isonly sent rightward around the ring, and the results accumulated into a bu�er and sent back inO(1) communications at the end of the Francis step. For the purpose of our model, we assumetwo communications, requiring time 2nh � + 2np�!(3)for a total estimated parallel time ofTest(n; p; h) = Cn
 + 20n2p
 + 40n
 + n�+ 3n� + 2nh� + 4n2hp� +O(1)(4)On current generation architectures, the above model shows that the bulk of ine�ciency comesfrom the number of messages generated, since � is typically several orders of magnitude greaterthan either � or
. To investigate the scalability of the approach, we start by computing theestimated speedupSpeedupest(n; p; h) = Tseq(h)Test(n; p; h) = 20n220n2p
 + 4n2hp +O(n) = p1 + 4h +O(pn)(5)If h is chosen big enough, e.g. h = n=p, the second term in the denominator also becomesO(p=n),and we can make the following observations: if p is �xed, and n is allowed to grow, eventuallyperfect speedup will be approached. Furthermore, the estimated e�ciency attained is given byE�ciencyest(n; p; h) = Speedupest(n; p; h) = 11 +O(pn)(6)From this last equation, we can say something about the scalability of the implementation: Inorder to maintain e�ciency, we must grow n linearly with p. This poses a serious problem:memory grows linearly with p, but memory requirements grow with n2. We conclude thatthis approach to parallelization will not scale, since memory constraints dictate that eventuallye�ciency cannot be maintained, even if the problem is allowed to grow to �ll the combinedmemories.

The previous modeling extends to the overall algorithm in a simple manner. On average, to�nd the eigenvalues of a matrix of size n requires 2n HQR iterations. Every other iteration, thereis usually a de
ation of size one or two. Since de
ation occurs less frequently in the beginningthan the end, our overall model satis�es:Overall Flops = nXk=1 3 � 20k2 = 20n3;where 3 is a heuristic fudge factor. Compare, for example, [15] which uses a similar heuristic,but di�erent fudge factor, to suggest overall
ops at 25n3.Similarly, we can extend any of the formulas in the previous subsection. In Equation 4, thenumber of communication start-ups is n+ 2n=h. For the overall algorithm, before the bundlingdescribed in x 3.5.4, we can estimateCommunication Start-ups = nXk=1 3 � (k + 2k=h) = (32 + 3h)n23.4. Theoretical Limitations. For many dense linear algebra algorithms, better scalabil-ity can be obtained by using a so-called two dimensional data decomposition. Examples includethe standard decomposition algorithms, like LU, QR, and Cholesky factorization [11, 16], as wellas the reduction to condensed form required for reducing a general matrix to upper Hessenbergform [5, 10]. It is therefore natural to try to reformulate the parallel QR algorithm in an attemptto extract an algorithm that has better scalability properties. In this section we show theoret-ically that there is an inherent limitation to the scalability of the QR algorithm that indicatesthat a more complicated data and work decomposition alone cannot improve the scalability ofthe parallel implementation.We present a simple analysis of the theoretical limitations of the QR algorithm. There is a cleardependence in the chasing of the bulge that requires at least O(n) steps to complete one FrancisHQR step. The associated computation can be thought of as running down the diagonal of thematrix. Moreover, the last element of the matrix must be computed before the next Francis stepcan start, since it is needed to compute the shift. Since there are O(n2) computations performedin one such step, the speedup is limited to O(n), which indicates that the maximal number ofprocessors that can be usefully employed is O(n). Hence, p � Cn for some constant C.Let us now analyze the implications of this: If e�cient use of the processors is to be attained,the equation p � Cn must hold for some constant C. The total memory requirements for aproblem of size n is Kn2, for some constant K. HenceMemory Requirements = Kn2 � KC2p2 = O(p2):Notice however that memory only grows linearly with the number of processors. We concludethat due to memory restrictions, it is impossible to solve a problem large enough to maintaine�ciency as processors are added. In the conclusion, we indicate how it may be possible toovercome this apparent negative result.

3.5. Re�nements of the Parallel Algorithm. The above analysis shows that there isreason to believe that trying to generalize the Hankel-wrapped mapping to yield the equivalentof a two dimensional wrapping will not result in the same kinds of bene�ts as it would for afactorization algorithm. However, there are a number of re�nements that can be made thatwill improve the performance of the parallel QR algorithm. Moreover, the algorithm as it wasdescribed in Section 3.2 is far from a complete implementation.3.5.1. Accumulating Q. The algorithm in Section 3.2 ignores the accumulation of theorthogonal matrix Q. There is a perfect parallelism in this operation, requiring no more com-munication than must already be performed as part of the updating of H.Each stage of the Francis HQR step in Figure 1 requires the computation Q QPi. SincePi is broadcasted during the update of the Hessenberg matrix, all processors already have thisinformation. The computation Q QPi re
ects three columns of Q. Which three get re
ecteddepends on i. Since Q is not accessed elsewhere within the HQR kernel, we can assume Q has thebest data storage possible for re
ecting three columns. This data storage is a one dimensionalrow mapping. With a one dimensional row mapping, the data in any row is always contained ona single processor. Each row in a column transform can be computed independently. So thereis no extra communication required to complete the column transform, and this extra work isembarrassingly parallel.3.5.2. De
ation. We previously mentioned that as subdiagonal elements become numer-ically zero, the process proceeds with unreduced submatrices on the diagonal. This process isknown as de
ation. One convenient way to determine the points where such a block start andend is to broadcast enough diagonal information during the bulge chase so that at the end of acomplete HQR step, all processors hold all information required to determine when breakpointsoccur. This requires sending six elements instead of three per transformation. While this cre-ates a certain redundancy, the overhead is O(n), and hence in line with the cost of the totalcomputation.3.5.3. Determining shifts. Related to the re�nement mentioned above concerning de
a-tion, it is convenient to also broadcast all entries of the tridiagonal of the newly formedHessenbergmatrix, since this allows all processors access to the data required to compute the next shifts.3.5.4. Bundling transformations. As is argued in Section 3.3, the bulk of the communi-cation overhead is due to communication startup cost. This cost can be amortized over severalcomputations and applications of Householder transformations by bundling several Householdertransformations before broadcasting.We direct the reader's attention to Figure 3.This picture represents the data in the block that currently holds the bulge. This block isassumed to be completely assigned to one processor. In chasing the bulge a few positions, towhere it moves from the position indicated by \B"s to the position indicated by \b"s, a number ofHouseholder transformations are computed. To do so, only the computation associated with the

@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@BB B bb b m2m1m3Fig. 3. Bundling Householder transformations and order of updatesregion marked by \1" needs to be performed. 1 Thus these transformations can be bundled byperforming this minimal computation, followed by the broadcast, after which the other regions,marked by \2" and \3" can be updated. The net e�ect is that the number of startups is reduced bythe number of transformations that are bundled. Naturally, bundling across processor boundariesbecomes complicated, and has only marginal bene�t.Repeating the analysis in Subsection 3.3 above, we get the following estimates: Computing rtransformations, updating only region \1" in Figure 3 requires approximatelyr(C + 10(r + 4))
time. Broadcasting the transformations requires time�+ 3r�:Next, updating regions \2" and \3" on the processor that computes the transformations requirestime 10r(np � r)
to update matrix A, and 10rnp
to update matrix Q. This is repeated n=r times, and border information must be communicatedevery h transformations, giving a (very rough) total estimated time of20n2p
 + Cn
 + 40n
 + nr � + 3n� + 2nh�+ 4n2hp� +O(1):1 As is noted in Henry [17, 20], the minimal information needed to determine the upcoming transforms isroughly eighty percent of the total
ops required to actually complete the entire update in region \1" of Figure 3.This \partial" step is referred to as a lookahead step and can also be used to determine better shifts (cf. Henry[19].)

Clearly the above estimate is only a rough estimate: It suggests that increasing bundling factorr arbitrarily will continue to improve total time. Notice that this estimate is only reasonablewhen the pipe is undisturbed. However, everytime a boundary is encountered, the boundary willbe disturbed and therefore larger bundling factors will increase load imbalance. Nonetheless, ourmodel gives us insight.4. Performance Results. In this section, we report the performance of a prototype work-ing implementation of the described parallel implementation. Our implementation is a paral-lelization of the LAPACK [1] routine DLAHQR, and is mathematically exact except that the sequen-tial routine applies one �nal rotation per converged eigenpair so that the resulting \Schur" formhas some regularity. Hence there is no need to report in detail on the numerical accuracy of theimplementation: all numerical properties of the LAPACK apply to this parallel implementation.We report performance obtained on an Intel ParagonTM XP/S Model 140 Supercomputer,running SUNMOS version S1.4.8. Since �nding all eigenvalues of a very large matrix takes aconsiderable amount of time (measured in days) we report the performance of the algorithmduring the �rst �ve iterations. For problems of size 2750 or less, and for 64 processors or less,we saw �ve iterations was always within three percent of predicting overall performance. Inaddition, it is hard to measure speedup with respect to a single processor, due to insu�cientmemory to hold a large matrix. As a result, we measured the performance of the best knownsequential QR algorithm, and report the parallel performance with respect to that: The singlenode performance of the fastest QR algorithm (not necessarily a standard double shift algorithmfrom LAPACK) peaks at 10 M
ops for the �ve iterations. We report scaled speedup as being thespeedup obtained with respect to the calculated time required to run a given problem on a singlenode performing at 10 M
ops. In this case, actual
ops within the algorithm were calculatedand used for results, and not heuristics.Many parameters are used to describe the parallel implementation, including the number ofnodes used, p, the matrix size, n, the blocking factor, h, and the bundling factor, r. All the runsin Table 1 were for problems of size approximately 10 to 14 Mbytes, all with blocking factors hgiven by n=p, with bundling factors constant at r = 2. Our models predict that varying h and rimpacts communication overhead incurred. However, in practice the major source of ine�ciencyappears to come from the fact that row and column updates do not have the same memory accesspatterns, and therefore execute at di�erent rates. Our experiments indicate row transforms are13 percent faster than column transforms. At each step there is a roughly even amount of workfor all the nodes, but there is not the same amount of row or column work. This means that ateach step there is a delay for a few of the nodes to complete the ring broadcast. Hence althoughin our model predicts the load balance to be quite good, the di�erent rates of execution makeit much less well balanced. This shows up in the timings given in Table 1. Notice that at best,about 65 percent e�ciency is attained.5. Conclusion. The research described in this paper was meant as a response to claimsthat no parallelism exists in the QR algorithm. The theoretical results in this paper show thereare approaches to implementing the QR algorithm that allow parallelism to be extracted in anatural way. The actual implementation of this method on a high performance parallel computer

p n ScaledSpeedup E�ciency4 2000 2.5 .638 2800 5.2 .6516 4000 10.0 .6332 4800 17.1 .5348 6000 23.0 .4864 8000 30.1 .4796 9600 37.4 .39Table 1Parallel HQRshows that in practice, parallelism can be extracted as well.We caution the reader against misinterpreting the results in this paper as largely supportingthe notion that new methods like those developed by Bai and Demmel [4] and Dongarra andSidani [9] must be pursued if nonsymmetric eigenvalue problems are to be solved on massivelyparallel computers. Let us address some of the arguments that can be made to support such aninterpretation and how these arguments are somewhat unsatisfactory.No parallelism exists in the nonsymmetric QR algorithm.We believe the major results in this paper are a counter example to this state-ment, both in theory and practice.The performance of even the sequential algorithm leaves something to be desired.One argument for matrix-matrix multiplication based methods is that matrixmultiplication can achieve much higher performance rates than a kernel that ap-plies a Householder transformation. This more than o�sets the added
oatingpoint operations required for such novel solutions. This argument is true onlybecause the matrix-matrix multiplication is recognized as an important kernelthat warrants highly optimized implementation. It is the data reuse availablein the matrix-matrix multiplication that allows near-peak performance to beachieved on a large number of platforms. However, a careful analysis of reuseof data when multiple Householder transformations are applied, which could beexploited with bundling, shows that the performance of the sequential QR algo-rithm could be greatly improved if such a kernel were assembly coded. Clearlya user who can a�ord a massively parallel computer would be able to a�ord toassembly code such a kernel.One could argue that assembly coding this kernel would only improve the 40percent of total time spent in useful computation and hence would actuallydecrease e�ciency. However, since we argue that the bulk of overhead is due toload imbalance, the total time should bene�t, not just the time spent in usefulcomputation.

Parallel QR algorithms cannot be scalable.One could draw this conclusion from Section 3.4. However, notice that the anal-ysis holds for the algorithm when only a single double-shift is used during eachiteration. If a method is parallelized that uses s shifts, the total computation periteration is increased to O(sn2), while the dependence during the bulge chaseonly increases to O(n+s) if multiple bulges are chased in a pipelined fashion. Weconclude that the limit on speedup is now given by O(sn2)=O(n + s) � O(sn).O(sn) processors can be usefully employed, leading to memory requirementsMemory Requirements = Kn2 >= O(p2s2)As long as p=s2 = O(1), i.e. s = O(pp), scalability can be achieved whilemeeting the �xed memory per processor criteria.Scalable implementations of the QR algorithm may be achievable forparallel implementations that use s shifts simultaneously, provided thenumber of shifts grows with the square-root of the number of proces-sors.We must note that our data decomposition inherently requires n to grow with pand therefore it will not provide for the required parallel implementation. There-fore, generalizations to two dimensional data decompositions will be necessary.Notice that some of the above comments indicate that many of the observations made fromthe earlier sections were merely due to the fact that we restricted ourselves in this paper todiscussing the parallel implementation of widely used QR algorithms.We conclude by saying that the reason parallel QR algorithm implementations may not becompetitive is because insu�cient resources have been allocated to study their implementation.Those resources are currently being used to instead explore novel algorithms. If someone hasthe required resources, our research points clearly to what properties a parallel implementationmust have to be successful.Acknowledgements. Our �nal runs were made on Sandia's ParagonTM XP/S Model 140Supercomputer running SUNMOS S1.4.8, and we are grateful for this resource and operatingsystem. SUNMOS stands for Sandia and University of New Mexico Operating System, and isa joint collaboration between Sandia National Laboratories and UNM. SUNMOS is copyrightedby Sandia National Laboratories. Most of the development was done on various ParagonTMsupercomputers at Intel Supercomputer Systems Division. We thank Ken Stanley and DavidWatkins for communications regarding this work.REFERENCES[1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S.,McKenney, A., Sorenson, D., LAPACK Users' Guide, SIAM Publications, Philadelphia, PA, 1992[2] Auslander, L., Tsao, A., On Parallelizable Eigensolvers, Advanced Appl. Math., Vol. 13, pp. 253{261, 1992

[3] Bai, Z., Demmel, J., On a Block Implementation of Hessenberg Multishift QR Iteration, International Journalof High Speed Computing, Vol. 1, pp. 97{112, 1989[4] Bai, Z., Demmel, J., Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I,Parallel Processing for Scienti�c Computing, Editors R. Sincovec, D. Keyes, M. Leuze, L. Petzold, andD. Reed, SIAM Publications, Philadelphia, PA, 1993[5] Berry, M. W., Dongarra, J. J., and Kim, Y., A Highly Parallel Algorithm for the Reduction of a Nonsym-metric Matrix to Block Upper-Hessenberg Form, LAPACK working note 68, University of Tennessee,CS-94-221, Feb. 1994[6] Boley, D., Solving the Generalized Eigenvalue Problem on a Synchronous Linear Processor Array, ParallelComputing, Vol. 3, pp. 123{166, 1986[7] Boley., D., Maier, R., A Parallel QR Algorithm for the Nonsymmetric Eigenvalue Problem, Univ. of Minn.,Dept. of Computer Science, Technical Report TR-88-12, 1988[8] Demmel, J. W., LAPACK Working Note 47: Open Problems in Numerical Linear Algebra, University ofTennessee, Technical Report CS-92-164, May 1992[9] Dongarra, J. J., and Sidani, M., A Parallel Algorithm for the Nonsymmetric Eigenvalue Problem, TechnicalReport Number ORNL/TM-12003, ORNL, Oak Ridge Tennessee, 1991[10] Dongarra, J. J., van de Geijn, R. A., Reduction to Condensed Form on Distributed Memory Architectures,Parallel Computing, 18, pp. 973{982, 1992.[11] Dongarra, J. J., van de Geijn, R. A., and Walker, D. , Scalability Issues A�ecting the Design of a DenseLinear Algebra Library, Journal of Parallel and Distributed Computing,Vol. 22, No. 3, Sept. 1994.[12] Eberlein, P. J., On the Schur Decomposition of a Matrix for Parallel Computation, IEEE Transactions onComputers, Vol. C-36, pp. 167{174, 1987[13] Francis, J. G. F., The QR Transformation: A Unitary Analogue to the LR Transformation, Parts I and II,Comp. J., Vol. 4, pp. 332{345, 1961[14] Geist, G.A., Ward, R.C., Davis, G.J., Funderlic, R.E., Finding Eigenvalues and Eigenvectors of Unsym-metric Matrices using a Hypercube Multiprocessor, Proceedings of the Third Conference on HypercubeConcurrent Computers and Applications, Editor G. Fox, pp. 1577{1582, 1988[15] Golub, G., Van Loan, C., F., Matrix Computations, 2nd Ed., 1989, The John Hopkins University Press.[16] Hendrickson, B.A., Womble, D.E., The torus-wrap mapping for dense matrix calculations on massivelyparallel computers., SIAM J. Sci. Stat. Comput., 1994[17] Henry, G., Improving the Unsymmetric Parallel QR Algorithm on Vector Machines, SIAM 6th ParallelConference Proceedings, 3/93[18] Henry, G., Increasing Data Reuse in the Unsymmetric QR Algorithm, Theory Center Technical Report,CTC92TR100, 7/92[19] Henry, G., A New Approach to the Schur Decomposition, Theory Center Technical Report in Progress[20] Henry, G., Improving Data Re-Use in Eigenvalue-Related Computations, Ph.D. Thesis, Cornell University,January 1994[21] Ipsen, I.C.F., Saad, Y., The Impact of Parallel Architectures on the Solution of Eigenvalue Problems, LargeScale Eigenvalue Problems, Editors J. Cullum and R. Willoughby, Elsevier Science Publishers, 1986[22] Ipsen, I.C.F., Saad, Y., Schultz, M. H., Complexity of Dense-Linear-System Solution on a MultiprocessorRing, Linear Algebra and its Applications, Vol. 77, pp. 205{239, 1986[23] Juszczak, J.W., van de Geijn, R.A., An Experiment in Coding Portable Parallel Matrix Algorithms, Pro-ceedings of the Fourth Conference on Hypercube Concurrent Computers and Applications, 1989[24] Lederman, S., Tsao, A., Turnbull, T., A parallelizable eigensolver for real diagonalizable matrices with realeigenvalues, Technical Report TR-91-042, Supercomputing Research Center, 1991[25] Moler, C.B.,MATLAB User's Guide Technical Report CS81-1, Department of Computer Science, Universityof New Mexico, Albuquerque, New Mexico, 1980[26] Purkayastha, A., A Parallel algorithm for the Sylvester-Observer Equations, Ph.D. dissertation, NorthernIllinois University, DeKalb, Illinois, Jan. 1993[27] Stewart, G. W., A Parallel Implementation of the QR Algorithm, Parallel Computing 5, pp. 187{196, 1987[28] van de Geijn, R., A., Implementing the QR-Algorithm on an Array of Processors, Ph.D. Thesis, Departmentof Computer Science, Univ. of MD, TR-1897, 1987

[29] van de Geijn, R., A., Storage Schemes for Parallel Eigenvalue Algorithms, Numerical Linear Algebra,Digital Signal Processing and Parallel Algorithms, Editors G. Golub and P. Van Dooren, Springer Ver-lag, 1988[30] van de Geijn, R.,A., Hudson, D.G., An E�cient Parallel Implementation of the Nonsymmetric QR Algo-rithm, Proceedings of the 4th Conference on Hypercube Concurrent Computers and Applications, 1989[31] Watkins, D., Shifting strategies for the parallel QR algorithm, SIAM J. Sci. Comput., Vol. 15, July 1994[32] Watkins, D., Transmission of shifts in the multishift QR algorithm, Proceedings of the 5th SIAM Conferenceon Applied Linear Algebra, Snowbird, Utah, June 1994[33] Wilkinson, J.H., The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965

