
Blocked Data Distribution for the Conjugate GradientAlgorithm on the CRAY T3D�Michael W. Berryy Charles Grasslz Vijay K. KrishnaxAbstractIn this paper, we present a sparse matrix-vector multiplication algorithm formassively-parallel computers such as the CRAY T3D. Performance results on a 256-processor CRAY T3D are presented along with a detailed analysis of the algorithm'scomputational complexity. The speci�c sparse matrix-vector multiplication algorithmsdiscussed include the block-block algorithm (BBA) for implementation on the CRAYT3D, and the block row algorithm (BRA) for comparative results on the CRAY C90.The performance of these algorithms, when used with in the Conjugate Gradient kernelfrom the NAS Parallel Benchmarks, is presented for both the CRAY T3D and a 16-CPUCRAY C90. Results of this study demonstrate that the Conjugate Gradient benchmarkfor the class A problem size (matrix order 14; 000) can be executed in 1:3 seconds ona 256-processor CRAY T3D, which is quite competitive with published results for thisbenchmark on other massively-parallel machines.1 IntroductionSparse matrix-vector multiplication kernels are commonly used within iterative methodsfor solving large, sparse systems of equations and computing several of the largest singularvalues, or eigenvalues, of sparse matrices. The singular value decomposition of sparsematrices, in particular, is needed in applications such as information retrieval, seismicreection tomography, and real-time signal processing [3]. E�cient parallel algorithms areespecially needed to perform the matrix-vector multiplication operations associated withiterative methods on massively-parallel processors (MPP's). These MPP's may consist oftens to hundreds of processors each with its own local memory and a fast interconnect for�Submitted to Parallel Computing.yDepartment of Computer Science, 107 Ayres Hall, University of Tennessee, Knoxville, TN 37996-1301,berry@cs.utk.edu, fax number 615-974-4404zCray Research Inc., Benchmarking, 655F Lone Oak Drive, Eagan, MN 55121, cmg@ferrari.cray.comxCray Research Inc., Network Media Section, 655F Lone Oak Drive, Eagan, MN 55121,krishna@ironwood.cray.com 1

2 Berry, Grassl, and Krishnamovement of control information and data.The main objective of this work is the design analysis of sparse matrix-vectormultiplication algorithms suitable for a state-of-the-art massively-parallel computer systemsuch as the CRAY T3D from Cray Research Inc. The �rst algorithm developed is similar tothe one described in [6], but with extensions to handle a non-square number of processors.Other algorithms developed speci�cally address multiplication by over- or under-determined(rectangular) matrices. The application of these algorithms within real applications as wellas a theoretical analysis of computational complexity are considered. The organization ofthe paper is provided below.In Section 2 we discuss the hardware characteristics of the CRAY T3D including detailsof the processors used and the interconnection topology [4]. In Section 3 we state thevarious sparse matrix-vector multiplication operations for which algorithms are developedand then discuss each algorithm in detail. In Section 4 we discuss the performance of thesparse matrix-vector multiplication algorithms when they are used within the ConjugateGradient kernel from the NAS Parallel Benchmarks, and we summarize and note futurework in enhancing the performance of the sparse matrix-vector multiplication algorithmsin Section 5.2 Introduction to the CRAY T3DThe CRAY T3D is an MIMD (Multiple Instruction Multiple Data) machine comprised ofup to 2048 DEC Alpha processors with a fast interconnect network for movement of controlinformation and data. The memory is physically-distributed but is logically-shared [4].2.1 Microprocessor Architecture and Network TopologyThe peak speed of the DEC Alpha processor used in the CRAY T3D is 150 megaop/s(millions of oating-point operations/second). The frequency of the clock in the processorsis 150 megahertz. The Alpha is considered a superscalar processor capable of issuing twoinstructions (integer and/or oating-point) per clock cycle and a superpipelined processorwith multiple segment functional units. The Alpha has 32 integer and 32 oating-pointregisters, an 8-kbyte on-chip data cache and an 8-kbyte instruction cache; it performs 64-

Conjugate Gradient Algorithm on the CRAY T3D 3bit IEEE arithmetic. The particular machine used in this work has 256 processors, eachprocessor having 2 MW (mega words) of memory and a total peak performance of about38 gigaop/s (billions of oating-point operations per second).
Fig. 1. Node architecture of the CRAY T3D.The topology of the CRAY T3D is a 3-dimensional torus with 2 processing elementsper node (see Figure 1). Each processing element (PE) can contain 2 or 8 MW of DRAM.It has redundant nodes to replace defective nodes. Each node has latency hiding hardware(Block Transfer Engine) which can transfer data without interrupting a PE. A peak rateof 300 MB/sec transfer rate is available in each of the 6 directions in which data can travelfrom a node (Figure 2). Data is sent in the form of packets, with each packet containing aheader with destination information followed by data.The CRAY T3D has a front-end UNICOS host system (CRAY Y-MP) through whichall I/O activities (data and control) are performed. I/O communication between the T3Dand the UNICOS host is done through CRAY T3D I/O Gateways (IOGs).2.2 CRAY T3D Software OverviewThe operating system of the CRAY T3D is UNICOS MAX. It has a microkernel runningon each PE which handles processor management, memory management and processor-to-processor communication. There is a UNIX agent running on the host system which

4 Berry, Grassl, and Krishna

Fig. 2. System con�guration and interconnection topology of the CRAY T3D.handles T3D requests. There are enhanced accounting and new administrative commands.The front-end runs the UNICOS operating system.The CRAY T3D programming environment provides a graphical performance analyzer,a graphical debugging tool, compilers, and libraries. The CRAY T3D has Fortran andC compilers along with a high-level parallel programming language called Cray FortranProgramming Model (CRAFT) and message passing libraries. The compilation of programsis done on the host system. The Cray Fortran Programming model provides a globalshared address space. CRAFT is based on the sharing of data and work between processingelements. Data is shared among the processors and each processor works on the data presentin its local memory. The CRAY T3D native debugger is TotalView. The performancemonitoring and instrumenting tool is Apprentice.

Conjugate Gradient Algorithm on the CRAY T3D 5The CRAY T3D also utilizes various standard libraries along with highly-optimizedscienti�c library routines. Message-passing support is provided through the SMA Com-munication Library [7] and PVM (Parallel Virtual Machine) [10]. The PVM (Version 3.0)message-passing library is available on the CRAY T3D. PVM message passing can be usedin either homogeneous or heterogeneous manner. A shared-memory access (SMA) libraryis available for performing direct memory access to remote PE's.3 Parallel Matrix-Vector Multiplication AlgorithmsLet A be an m�n sparse matrix, x be an n� 1 dense vector and y an m� 1 dense vector.The target operation for algorithmic development is the sparse matrix-vector multiplicationy = Ax. We assume that the nonzeros of the sparse matrix A are stored in some compressedform in order to conserve memory and to avoid redundant computations on explicit zeros.Speci�cally, compressed sparse row and column formats (CSR and CSC from [2]) were usedin our experiments.3.1 Block-Block Algorithm (BBA)The sparse matrix-vector multiplication algorithm considered uses a block-block decompo-sition quite suitable for iterative methods, in which the result vector y has to be distributedin the same fashion as the input vector x. This is similar to the algorithm described in [6],but with extensions to handle a non-square number of processors. However, this algorithmfor computing y = Ax does assume that the number of processors is a power of 2.3.1.1 Block-Block Domain Decomposition. For simplicity, we consider a sparsesquare matrix A of order n, which is divided into a npy � npx processor grid (npy � npx)with each processor being assigned a block of the matrix A with dimensions (n=npy) �(n=npx). Figure 3 illustrates the distribution of data for a 4� 4 processor grid. Each blockof the matrix assigned to a processor is stored in compressed-row (CSR) or compressed-column (CSC) format. BBA is independent of the data structure used to represent theblocks of the matrix A as illustrated in Figure 3. This algorithm is well suited for iterativemethods (see Table 1) in which the output vector yi is the input vector xi+1 for the nextiterate. Hence, at the end of the matrix-vector multiplication operation processor P�� must

6 Berry, Grassl, and Krishna
-

-

-

-

-

-

y xA

npy

npx

α

β

αβAFig. 3. Distribution of data for npy = npx = 4 with indices �=3 and �=2.contain y�. Table 1An iterative framework for using sparse matrix-vector multiplication.For i = 1, . . .yi = Axi...xi+1 = yi...EndFor3.1.2 Communication Primitives. BBA requires three kinds of communication prim-itives. The �rst primitive adds vectors present in di�erent processors in each row and iscalled a fold operation [5, 6]. As seen from Figure 3 processor, P�� owns a block of thematrix A�� and vector x� . If z�� = A��x�, theny� = z�1 + z�2 + � � �+ z�;npx:

Conjugate Gradient Algorithm on the CRAY T3D 7The fold operation is used for adding vectors z�� of length n=npy present in npx processorshaving the same block row index �. At the end of this operation (see Table 2), eachprocessor P�� has a vector y�� of length n(npx�npy) which is a partition of the vector y�. Thealgorithm, which requires log2npx steps, to accomplish this is recursive halving. As outlinedin Table 2, at each step a pair of processors divide the vector z into two halves and carryout the add operation on opposite halves. In Step 3) of Table 2, each processor exchangesdata with a processor chosen from a set of processors in increasing powers of 2 by ippingbits from the left in the binary representation of the processor number. Figure 4 illustratesthe fold operation in a row of 4 processors. The total number of elements of z�� in eachprocessor at the start of this operation is n=npy and the total number of elements in theresult y�� in each processor at the end of this operation is n=(npx � npy). Therefore, thetotal number of data elements that are sent (received) by a processor in the fold operationis given by (nnpy - n(npx�npy)). The total number of elements sent (received) by a processorcan also be written as a geometric series with log2npx termsTimeFoldcomm = log2npxXk=1 n2k � npy = nnpy �1� 1npx� :(1)The Put primitive is used to copy blocks of data directly from one processor's memoryto another processor's memory, while the Barrier call is used for synchronization, i.e, aprocessor is forced to wait until all other processors have executed the Barrier instruction.These communication primitives are provided by SMA Communication Library [7].After the fold operation, processors in each row have data that must be shared byprocessors in a corresponding column to prepare for the next matrix-vector multiplication.This is achieved by a transpose operation in which processors in a row send data tocorresponding processors in a column (see Table 3). In this communication primitive,processor P�� exchanges y�� of length n=(npx � npy) vector with processor Pnew�;new� ,where new� = � + (�:and:(k � 1)) � npx; k = npy=npx; and new� = �=k:As seen in Figure 5, on square processor grids processor P�� communicates with processorP��. An example of data movement in transpose operation for non-square processor gridsis shown in Figure 6. The total number of data elements that are sent (received) by a

8 Berry, Grassl, and Krishna Table 2Fold Operation for processor P�� in row �.Processor P�� contains z�� 2 <n=npy, and w1, w2,z1 and z2 2 <n=npx are temporary arrays.1) For i = 0; :::; (log2npx)� 12) Partition z�� = (zT1 j zT2)T3) P��0 = P�� with ith bit of � ipped4) If bit i of � is 1 then5) Put z1 into w1 of processor P��06) Barrier()7) z�� = z2 + w28) Else9) Put z2 into w2 of processor P��010) Barrier()11) z�� = z1 + w112) Endif13) EndFor14) y�� = z��Processor P�� now contains y�� 2 <n=(npx�npy)processor in the transpose operation is given by n(npx�npy) so thatTimeTransposecomm = n(npx � npy) :Table 3Transpose operation for processor P��.Processor P�� contains y�� 2 <n=(npx�npy)k = npy=npxnew� = � + (�:and:(k� 1)) � npxnew� = �=kPut y�� into z�� of processor Pnew�;new�Barrier()y�� = z��The expand operation combines vectors from di�erent processors to obtain a singlevector which is duplicated on all the processors. After the transpose operation, eachprocessor in a column has data which must be shared with other processors in the samecolumn. A vector y�� of length n=(npx � npy) from each processor is combined to form avector y� of length n=npx on all processors in the column.The exchange of data between processors in the expand operation is the inversecommunication pattern of the fold operation as seen in Figure 7 and Table 4. The number

Conjugate Gradient Algorithm on the CRAY T3D 9
z(1)+z(2)+z(3)+z(4)

z(1)+z(2)+z(3)+z(4)

z(1)+z(2)+z(3)+z(4)

z(1)+z(2)+z(3)+z(4)

z(1)

z(2)

z(3)

z(4)

z(1)+z(2)

z(1)+z(2)

z(1)+z(2)

z(1)+z(2)

z(3)+z(4)

z(3)+z(4)

z(3)+z(4)

z(3)+z(4)

z(1)

z(1)

z(1)

z(2)

z(2)

z(2)

z(3)

z(3)

z(3)

z(4)

z(4)

z(4)

Fig. 4. Fold operation with 4 processors in a row (npx = 4), each having a vector z(i) oflength n=4. At the end of the operation each processor has a subvector of length n=16 containing aunique piece of the result vector.of elements sent (received) is equal to the fold operation and from Equation (1) is givenby (nnpx � n(npx�npy)). For a non-square processor grid, an additional log2(npynpx) steps arerequired in which nnpx number of values are exchanged per step. The total number of dataelements that are sent (received) by a processor in the expand operation is given byTimeExpandcomm = nnpx � n(npx � npy) + log2�npynpx� � � nnpx� :(2)3.1.3 Parallel Matrix-Vector Multiplication Algorithm. In the �rst step of theparallel matrix vector algorithm shown in Table 5, a local matrix vector product is computedon each processor with a block of the matrix A�� and x� to obtain z�� . Using the foldoperation illustrated in Table 2 and Figure 4, we add vectors z�� from processors within rowsto get y�� which is a subvector of the vector y�. If the next matrix-vector multiplicationon processor P�� requires y� (see Table 1), the transpose operation can be used to copysubvectors of y� into vector w of the processors in column � (see Table 3, Figure 5, and

10 Berry, Grassl, and Krishna
PPP

P

P

P

P
01 02 0300

10

20

30Fig. 5. Transpose operation for a processor grid with npx = npy = 4. The movement of datais shown for the �rst row of processors.
00 01 02 03

10

20

30

40

50

60

70

11 12 13

Fig. 6. Transpose operation for a processor grid with npy = 8 and npx = 4. Data movementis shown for the �rst and second row of processors.

Conjugate Gradient Algorithm on the CRAY T3D 11
y1 (1)

y1 (3)
y1 (2)

y1 (4)

y1(1)

y1(1)

y1(3)

y1(3)

y1(1)

y1
(3)

y1(1)

y1(3)

y1(2) y1(2)

y1(4) (4)y1

y1(2)

y1(4)

y1(2)

y1(4)

y1(2)

y1(4)

y1(1)

y1(3)

y1(4)
y1(3)
y1(2)
y1(1)

PROC 1 PROC 3 PROC 2 PROC 4

Fig. 7. Expand operation for npy=4. Each processor in a column contains a vector y1(i) oflength n=16. At the end of the operation each processor has the complete vector y1 of length n=4.Figure 6). Finally, the expand operation shown in Figure 7 and Table 4 combines thesubvectors w and places the complete vector y� in each processor of column �.

12 Berry, Grassl, and Krishna Table 4Expand operation for processor P�� in column �.Processor P�� contains y�� 2 <n=(npx�npy)For i = (log2npx)� 1; :::; 0P�0;� = P�� with ith bit of � ippedPut y�� into w of processor P�0;�If bit i of � is 1 ThenPrepend w so that yT�� = (wTyT��)ElseAppend w so that yT�� = (yT��wT)EndifEndforIf (npx:ne:npy) ThenFor i = 1; :::; log2(npy=npx)new� = �:xor:(npx � i)Put y�� into w of processor Pnew�;�y�� = y�� + wEndforEndif
Table 5Parallel matrix vector multiplication algorithm.w; z 2 <n=npy are temporary arrays.1) Compute z�� = A��x�.2) Perform fold operation on z�� within rows to form y�� .3) Transpose operation to put y�� into w of Processor Pnew�;new�where new� and new� are de�ned in Figure 4.4) Expand w to obtain y� .

Conjugate Gradient Algorithm on the CRAY T3D 133.1.4 Complexity Model. The complexity of the algorithm shown in Table 5 can berepresented by the total times for startup, communication, and arithmetic operations. Themaximum number of oating-point operations per processor is given by (2 � nnz � n)=pwhere nnz is the total number of nonzeros in the sparse matrix, n is the order of the sparsematrix and p is the number of processors. From Equation (1) we know that the total num-ber of steps in the fold operation is log2npx, and from Equation (2) the total number ofsteps in the expand operation is log2npx+ log2(npynpx). Only one message is initiated in thetranspose operation. Therefore, the total startup cost for sending messages isTimestartup = �2 � log2npx + log2�npynpx�+ 1� � tstartup;where tstartup is the amount of time taken to initiate a put operation. The totalcommunication time is given byTimecomm = TimeFoldcomm + TimeTransposecomm + TimeExpandcomm= nnpy � nnpx � npy + n(npx � npy) + nnpx� n(npx � npy) + log2�npynpx� � � nnpx�(3) = � nnpy�+ � nnpx�� nnpx � npy + log2�npynpx� � � nnpx�= � nnpy�+ nnpx �1� 1npy + log2�npynpx�� :The total run time is given byTotalT ime = �2 � nnz � np � � Tflop + Timestartup + Timecomm;where Tflop is the time taken by a single oating point operation. For simplicity, weconsider the scalability of the algorithm in Table 5 for a square grid of p processors wherenpx = npy = pp. For this grid, the total communication time from Equation (3) is givenby Timecomm = npp 2� 1pp! = n � �2 � pp� 1p � :From the above equation the communication time is directly proportional to n and inverselyproportional to the square root of the number of processors p so that the communication

14 Berry, Grassl, and Krishnacomplexity of BBA is given by n ��2 � pp� 1p � :Hence, the block-block algorithm scales very well as the number of processors is increased(see Figure 8). Scaling refers to the decrease in the communication time as the number ofprocessors increases, which results in overall better performance and a higher computation-to-communication ratio as p approaches in�nity.

16 32 64 128 256

Number of Processors

 6

 4

 2

 0

Co
m

m
un

ica
tio

n
Ti

m
e x

 1
00

0

BBA

Fig. 8. Communication time versus the number of processors used for BBA. The order of thesparse matrix (n) is �xed at 14; 000.We particularly note that for BBA each processor only has that part of the vectorcorresponding to the rows in its local block (x�). A larger portion of the multiplied vectorcould be cached in the local processor's data cache. This e�ect is measurable for smallerproblems, but is not likely to be signi�cant for larger problems where the size of the localvector is large compared to the size of the data cache.

Conjugate Gradient Algorithm on the CRAY T3D 153.2 Block Row Algorithm (BRA)An alternate algorithm which can be used to compute y = Ax divides the sparse matrix Ainto row blocks1 so that each processor gets one row block (see Figure 9). This particularmethod was used on a 16-CPU CRAY C90 for comparison purposes. Here, each row blockof the sparse matrix is stored in compressed column format and processed by a unique CPU,i.e., the number of row blocks is equal to the number of CPU's. The parallel matrix-vectormultiplication algorithm given in Table 6 ensures each CPU Pi will compute yi. Whereason the CRAY T3D each processor Pi can initially store xi and use a comparable expandoperation on p processors to acquire the entire x vector [8], on the CRAY C90 x is simplyshared among the 16 CPU's. The number of oating-point operations per CPU is equal to((2�nnz�n)p) � Tflop, where Tflop is the cost of a single oating-point operation.
-

-

-

x
1

.

.

-

-

-

y

y
1

.

.

.

A x

1

2

.

.

A

A

A
p

.

y
p

x
pFig. 9. Domain decomposition of data for computing y = Ax.Table 6Block row matrix vector multiplication algorithm for computing y = Ax.1) Assign Ai and xi to processor Pi.2) Perform expand operation on xi within p processors to obtain x on each node.3) Compute yi = Aix4 Performance of NAS Conjugate Gradient BenchmarkThe BBA algorithm described in the previous Section is well-suited for massively-parallelsystems such as the CRAY T3D. Although several key features of the CRAY T3D have1A comparable Block Column Algorithm (BCA) which partitions the matrix A into column blocks isanother alternative, of course.

16 Berry, Grassl, and Krishnabeen exploited, the most important feature is the communication bandwidth for exchangingdata between processors. The put communication primitive allows any processor to writedata directly to the memory of any other processor. The processor-to-processor bandwidthof this primitive is approximately 130 Mbytes/second [9]. Another key feature of the CRAYT3D is that from any processor, it takes almost the same amount of time to write to farthestprocessor as it takes to write to a nearest neighbor.Both the Conjugate Gradient kernel and BBA (discussed in Section 3) have beenimplemented in Fortran 77 with communication between processors accomplished us-ing message-passing. Message-passing was accomplished using routines shmem put andshmem get from the SMA Communication Library [7]. No assembly language optimizationwas applied. Table 7Conjugate Gradient algorithm.(1) x = 0(2) r = b(3) p = b(4) � = rTr(5) For i = 1; :::(6) y = Ap(7) = pTy(8) � = �=(9) x = x+ �p(10) r = r � �y(11) �0 = rTr(12) � = �0=�(13) � = �0(14) p = r + �p(15) EndForThe classical Conjugate Gradient method is outlined in Table 7. It mainly consists ofsparse matrix vector multiplication, vector updates (saxpy's) and inner-product kernels.BBA has been implemented for the sparse matrix-vector multiplication computed inStep (6) of Table 7. The sparse symmetric positive de�nite matrix generated in theNAS Conjugate Gradient benchmark [1] has a random structure or pattern of non-zeros(1; 853; 104 in total) with full main-diagonal sparsity. However, for BBA the sparse inputmatrix was assumed to be unstructured.

Conjugate Gradient Algorithm on the CRAY T3D 17For benchmarking purposes, two di�erent problem sizes and known solutions areavailable. The two di�erent size problems, called the class A and class B sizes, respectivelycompute the smallest eigenvector of matrices of order 14; 000 and 75; 000. For each problem,the given matrix is very sparse, with the class A problem being 0.1% dense and the classB problem being 0.25% dense.
16 32 64 128 256

Number of Processors

0.5

1.0

1.5

G
fl

o
p

/s
ec

o
n

d

Class A
Class B

Fig. 10. Performance in gigaop/s (billions of oating-point operations per second) for thelocal sparse matrix-vector multiplication operation in BBA versus the number of processors used.Figure 10 illustrates the performance of the local sparse matrix-vector multiplicationoperation in BBA for class A and class B problems. With 256 processors, this operationyields a performance of 1:5 gigaop/s for the class A problem. Note that the routine runsfaster on the class A size problem. This can be attributed to the sparsity of the classB problem. The performance was calculated by dividing the total CPU time in secondsinto the total number of oating-point operations. Figure 11 shows the performance of theConjugate Gradient kernel in gigaop/s. Notice that with 256 processors we obtain about1:1 gigaop/s for the class A problem.Time for the expand, transpose and fold communication operations used in BBAfor class A and class B problems are given in Tables 8 and 9, respectively. The total

18 Berry, Grassl, and Krishna
16 32 64 128 256

Number of Processors

0.5

1.0

G
fl

o
p

/s
ec

o
n

d
Class A
Class B

Fig. 11. Performance in gigaop/s as the number of processors used is increased for CGbenchmark on Class A and Class B problems.communication time in BBA along with the total user CPU time for CG is also given.Clearly the communication time decreases as the number of processors is increased. Thisagrees with our prediction in the complexity analysis of communication time for BBA inSection 3. Table 8Time in seconds for communication primitives for Class A problem in BBA.PE 0s TRANSP EXPAND FOLD TotalCommTime TotalUserTime16 0.071 0.182 0.313 0.566 15.632 0.054 0.225 0.173 0.452 8.064 0.041 0.116 0.219 0.376 4.3128 0.029 0.150 0.134 0.313 2.3256 0.025 0.093 0.144 0.262 1.3Our implementation of the benchmark for the class A problem size in 1:3 secondscompares very well with other published results on massively parallel machines [6]. Theslight degradation in gigaop/s for the entire CG benchmark as compared to that of theBBA algorithm (Figure 10) can be attributed to the additional message-passing requiredto maintain the iterative framework in Table 1.

Conjugate Gradient Algorithm on the CRAY T3D 19Table 9Time in seconds for communication primitives for class B problem in BBA.PE 0s TRANSP EXPAND FOLD TotalCommTime TotalUserTime16 1.766 3.93 7.203 12.899 609.632 1.411 5.506 5.732 12.649 309.964 1.187 2.282 6.378 9.847 171.2128 0.701 3.243 3.774 7.718 89.8256 0.569 1.609 3.626 5.804 52.5Tables 10 and 11 compare the performance of the CG kernel on the CRAY T3D (usingBBA) with that of the CRAY C902 For the C90, the BRA method (see Section 3.2) wasimplemented for sparse matrix-vector multiplication. Notice that the performance relativeto the number of CPU's or PE's scales similarly on the CRAY T3D and the CRAY C90.For both systems, the measured per cent parallelism3 is 96% or 97%.Each CPU of the CRAY C90 is approximately 70 times faster than each PE in theCRAY T3D. This speed di�erence is a reection of the speed and number of memory banksin the C90. It is not indicative of the CPU speeds themselves. For MPP technology usedin the CRAY T3D, the memory bandwidth and speed are attained from using many slowerand smaller local memories. Speci�cally, 64 PEs of the T3D have 64 aggregate local memorybanks, while the entire 16-CPU C90 system has 1024 memory banks, or 64 banks per CPU.The 1-CPU C90 and 64 PEs from a T3D have similar performance (see Tables 10 and 11),and it is not surprising based on the number of memory banks available.Table 10Comparison of execution time in seconds for CG with Class A and B problems on the CRAYT3D and CRAY C90. CRAY T3D CRAY C90PE0s Class A Class B CPU 0s Class A Class B16 15.6 609.6 1 3.6 122.932 8.0 309.9 2 1.8 |{64 4.3 171.2 4 1.0 33.9128 2.3 89.8 8 0.5 18.3256 1.3 52.5 16 0.3 10.62Results on exactly 2 dedicated CPU's were not available.3The measured percent parallelism is the parallelism parameter extracted from a �t of the data to anAmdahl's law curve.

20 Berry, Grassl, and Krishna Table 11Speed comparison in gigaop/s of CG with Class A and B problems on the CRAY T3D andCRAY C90. CRAY T3D CRAY C90PE 0s Class A Class B CPU 0s Class A Class B16 0.096 0.090 1 0.425 0.44632 0.187 0.177 2 0.841 |{64 0.345 0.320 4 1.568 1.615128 0.638 0.611 8 2.765 2.993256 1.077 1.044 16 4.378 5.035This memory banking problem can be partially alleviated on the CRAY T3D withschemes which will further enhance localization. If the density of the matrix A is highenough, then the blocks can be further broken down into subblocks which have betterlocalization. Such subblocking can only be carried out if there are a su�cient number ofelements per subblock. However, the subblocking scheme has the liability of being datadependent in that unstructured sparse matrices do not usually bene�t from localization.5 Summary and Future WorkWe have presented a competitive algorithm for sparse matrix-vector multiplication alongwith detailed analysis of its complexity. The block-block algorithm (BBA) is well suitedfor iterative methods in which the result vector has to be distributed in the same fashionas the input vector. This algorithm was used in the Conjugate Gradient kernel from theNAS Parallel Benchmarks on the CRAY T3D. For this particular benchmark, a class Aproblem size (matrix order 14; 000) is solved in 1:3 seconds which is competitive with otherpublished results on massively-parallel machines.Comparisons in the performance of the BBA method on the CRAY T3D with a a blockrow algorithm (BRA) for sparse matrix-vector multiplication on a 16-CPU CRAY C90 werealso made. Di�erences in the number of memory banks associated with each processor (orCPU) on the di�erent architectures account for the disparities in speed of the CG kernelfrom the NAS Parallel Benchmarks. It was shown that the performance of a 64-processorCRAY T3D roughly approximates that of a single CPU of the CRAY C90.The BRA and BRA-like algorithms have recently been used in a heterogeneous

Conjugate Gradient Algorithm on the CRAY T3D 21implementation of a block-Lanczos method designed to �nd several of the largest singulartriplets of large unstructured sparse matrices [8]. In that implementation, all code exceptthe sparse matrix-vector multiplication kernels executed on the CRAY Y-MP host; thematrix-vector multiplication operations executed on the CRAY T3D. Future performanceanalysis of such implementations is warranted.Future work may also include modifying the block-block algorithm for structured sparsematrices such as block tridiagonal matrices arising from �nite element-based computations.From a future hardware/software perspective, the communication bandwidth between theCRAY Y-MP and CRAY T3D should also be improved. One way to achieve this would beto allow the processor(s) on the T3D to directly access the shared memory of the Y-MP.New communication primitives could be devised to get and put data directly from Y-MPmemory without interrupting the Y-MP. This might require special hardware and softwarefeatures.AcknowledgementsThe authors would like to thank Marco Zagha (marcoz@cs.cmu.edu) at the School ofComputer Science, Carnegie Mellon University for use of his implementation of the NASConjugate Gradient kernel which employs the BRA method for sparse matrix-vectormultiplication.References[1] D. Bailey, J. Barton, T. Lasinski, and H. Simon, The NAS Parallel Benchmarks, Tech.Report RNR-91-002, NAS Ames Research Center, Mo�et Field, CA, January 1991.[2] R. Barrett, M. Berry, T. Chan, J. Demmel, et al., Templates for the Solution ofLinear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.[3] M. W. Berry, Large scale singular value computations, International Journal of Supercom-puter Applications, 6 (1992), pp. 13{49.[4] Cray Research Inc., MPP Overview, Cray Research Inc., Eagan, MN, 1993.[5] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, SolvingProblems on Concurrent Processors: Volume 1, Prentice-Hall, Englewood Cli�s, NJ, 1988.[6] B. Hendrickson, R. Leland, and S. Plimpton, A parallel algorithm for matrix-vectormultiplication, Tech. Report SAND 92-2765, Sandia National Laboratories, Albuquerque, NM,

22 Berry, Grassl, and KrishnaMarch 1993.[7] A. Knies and R. Baruiso, SHMEM User's Guide, Cray Research Inc., Eagan, MN, August1993.[8] V. K. Krishna, Sparse Matrix-Vector Multiplication Kernels on the CRAY T3D, Master'sthesis, University of Tennessee, Knoxville, August 1994.[9] R. Numrich, P. Springer, and J. Peterson, Measurement of communication rates on theCRAY T3D interprocessor network, in HPCN Europe, 1994.[10] P. Rigsbee, PVM Reference Manual for CRAY Platforms, Cray Research Inc., Eagan, MN,1993.

