Blocked Data Distribution for the Conjugate Gradient

Algorithm on the CRAY T3D*

Michael W. Berry' Charles Grassl* Vijay K. Krishna®

Abstract

In this paper, we present a sparse matrix-vector multiplication algorithm for
massively-parallel computers such as the CRAY T3D. Performance results on a 256-
processor CRAY T3D are presented along with a detailed analysis of the algorithm’s
computational complexity. The specific sparse matrix-vector multiplication algorithms
discussed include the block-block algorithm (BBA) for implementation on the CRAY
T3D, and the block row algorithm (BRA) for comparative results on the CRAY C90.
The performance of these algorithms, when used with in the Conjugate Gradient kernel
from the NAS Parallel Benchmarks, is presented for both the CRAY T3D and a 16-CPU
CRAY C90. Results of this study demonstrate that the Conjugate Gradient benchmark
for the class A problem size (matrix order 14,000) can be executed in 1.3 seconds on
a 2b56-processor CRAY T3D, which is quite competitive with published results for this
benchmark on other massively-parallel machines.

1 Introduction

Sparse matrix-vector multiplication kernels are commonly used within iterative methods
for solving large, sparse systems of equations and computing several of the largest singular
values, or eigenvalues, of sparse matrices. The singular value decomposition of sparse
matrices, in particular, is needed in applications such as information retrieval, seismic
reflection tomography, and real-time signal processing [3]. Efficient parallel algorithms are
especially needed to perform the matrix-vector multiplication operations associated with
iterative methods on massively-parallel processors (MPP’s). These MPP’s may consist of

tens to hundreds of processors each with its own local memory and a fast interconnect for

*Submitted to Parallel Computing.

"Department of Computer Science, 107 Ayres Hall, University of Tennessee, Knoxville, TN 37996-1301,
berry0Qcs.utk.edu, fax number 615-974-4404

{Cray Research Inc., Benchmarking, 655F Lone Oak Drive, Eagan, MN 55121, cmg@ferrari.cray.com

$Cray Research Inc., Network Media Section, 655F Lone Oak Drive, Eagan, MN 55121,
krishna@ironwood.cray.com



2 BERRY, GRASSL, AND KRISHNA

movement of control information and data.

The main objective of this work is the design analysis of sparse matrix-vector
multiplication algorithms suitable for a state-of-the-art massively-parallel computer system
such as the CRAY T3D from Cray Research Inc. The first algorithm developed is similar to
the one described in [6], but with extensions to handle a non-square number of processors.
Other algorithms developed specifically address multiplication by over- or under-determined
(rectangular) matrices. The application of these algorithms within real applications as well
as a theoretical analysis of computational complexity are considered. The organization of
the paper is provided below.

In Section 2 we discuss the hardware characteristics of the CRAY T3D including details
of the processors used and the interconnection topology [4]. In Section 3 we state the
various sparse matrix-vector multiplication operations for which algorithms are developed
and then discuss each algorithm in detail. In Section 4 we discuss the performance of the
sparse matrix-vector multiplication algorithms when they are used within the Conjugate
Gradient kernel from the NAS Parallel Benchmarks, and we summarize and note future
work in enhancing the performance of the sparse matrix-vector multiplication algorithms

in Section 5.

2 Introduction to the CRAY T3D

The CRAY T3D is an MIMD (Multiple Instruction Multiple Data) machine comprised of
up to 2048 DEC Alpha processors with a fast interconnect network for movement of control

information and data. The memory is physically-distributed but is logically-shared [4].

2.1 Microprocessor Architecture and Network Topology

The peak speed of the DEC Alpha processor used in the CRAY T3D is 150 megaflop/s
(millions of floating-point operations/second). The frequency of the clock in the processors
is 150 megahertz. The Alpha is considered a superscalar processor capable of issuing two
instructions (integer and/or floating-point) per clock cycle and a superpipelined processor
with multiple segment functional units. The Alpha has 32 integer and 32 floating-point

registers, an 8-kbyte on-chip data cache and an 8-kbyte instruction cache; it performs 64-



CONJUGATE GRADIENT ALGORITHM ON THE CRAY T3D 3

bit IEEE arithmetic. The particular machine used in this work has 256 processors, each
processor having 2 MW (mega words) of memory and a total peak performance of about

38 gigaflop/s (billions of floating-point operations per second).

2 PEs/Node

\._.,:_ngh:aﬁp DRAM
A} 2084 Memary

Prafalch
Oueus &
Synch

Mamory
Conltrol

" INorth

Down
r/4 Al
| | South

¥

Fia. 1. Node architecture of the CRAY T3D.

The topology of the CRAY T3D is a 3-dimensional torus with 2 processing elements
per node (see Figure 1). Each processing element (PE) can contain 2 or 8 MW of DRAM.
It has redundant nodes to replace defective nodes. Each node has latency hiding hardware
(Block Transfer Engine) which can transfer data without interrupting a PE. A peak rate
of 300 MB/sec transfer rate is available in each of the 6 directions in which data can travel
from a node (Figure 2). Data is sent in the form of packets, with each packet containing a
header with destination information followed by data.

The CRAY T3D has a front-end UNICOS host system (CRAY Y-MP) through which
all 1/0O activities (data and control) are performed. /O communication between the T3D

and the UNICOS host is done through CRAY T3D 1/O Gateways (I0Gs).

2.2 CRAY T3D Software Overview

The operating system of the CRAY T3D is UNICOS MAX. It has a microkernel running
on each PE which handles processor management, memory management and processor-

to-processor communication. There is a UNIX agent running on the host system which



4 BERRY, GRASSL, AND KRISHNA

l.lf‘:‘r_:

-lu"t.ﬂl.!

um

HISP/LOSP

WORK STATIONS TAPES DISKS NETWODRKS

Fia. 2. System configuration and interconnection topology of the CRAY T3D.

handles T3D requests. There are enhanced accounting and new administrative commands.
The front-end runs the UNICOS operating system.

The CRAY T3D programming environment provides a graphical performance analyzer,
a graphical debugging tool, compilers, and libraries. The CRAY T3D has Fortran and
C compilers along with a high-level parallel programming language called Cray Fortran
Programming Model (CRAFT) and message passing libraries. The compilation of programs
is done on the host system. The Cray Fortran Programming model provides a global
shared address space. CRAFT is based on the sharing of data and work between processing
elements. Data is shared among the processors and each processor works on the data present
in its local memory. The CRAY T3D native debugger is TotalView. The performance

monitoring and instrumenting tool is Apprentice.



CONJUGATE GRADIENT ALGORITHM ON THE CRAY T3D 5

The CRAY T3D also utilizes various standard libraries along with highly-optimized
scientific library routines. Message-passing support is provided through the SMA Com-
munication Library [7] and PVM (Parallel Virtual Machine) [10]. The PVM (Version 3.0)
message-passing library is available on the CRAY T3D. PVM message passing can be used
in either homogeneous or heterogeneous manner. A shared-memory access (SMA) library

is available for performing direct memory access to remote PE’s.

3 Parallel Matrix-Vector Multiplication Algorithms

Let A be an m X n sparse matrix, 2 be an n X 1 dense vector and y an m X 1 dense vector.
The target operation for algorithmic development is the sparse matrix-vector multiplication
y = Az. We assume that the nonzeros of the sparse matrix A are stored in some compressed
form in order to conserve memory and to avoid redundant computations on explicit zeros.
Specifically, compressed sparse row and column formats (CSR and CSC from [2]) were used

in our experiments.

3.1 Block-Block Algorithm (BBA)

The sparse matrix-vector multiplication algorithm considered uses a block-block decompo-
sition quite suitable for iterative methods, in which the result vector y has to be distributed
in the same fashion as the input vector . This is similar to the algorithm described in [6],
but with extensions to handle a non-square number of processors. However, this algorithm

for computing y = Az does assume that the number of processors is a power of 2.

3.1.1 Block-Block Domain Decomposition. For simplicity, we consider a sparse
square matrix A of order n, which is divided into a npy X npz processor grid (npy > npx)
with each processor being assigned a block of the matrix A with dimensions (n/npy) X
(n/npz). Figure 3 illustrates the distribution of data for a 4 x 4 processor grid. Each block
of the matrix assigned to a processor is stored in compressed-row (CSR) or compressed-
column (CSC) format. BBA is independent of the data structure used to represent the
blocks of the matrix A as illustrated in Figure 3. This algorithm is well suited for iterative
methods (see Table 1) in which the output vector y; is the input vector z;41 for the next

iterate. Hence, at the end of the matrix-vector multiplication operation processor P, 3 must



6 BERRY, GRASSL, AND KRISHNA

npXx

npy
y A X

Fia. 3. Distribution of data for npy = npx = 4 with indices a=3 and F=2.

contain yg.

TABLE 1

An tterative framework for using sparse matriz-vector multiplication.

For:=1,...

y; = Ax;

Tit1 = Y

EndFor

3.1.2 Communication Primitives. BBA requires three kinds of communication prim-
itives. The first primitive adds vectors present in different processors in each row and is
called a fold operation [5, 6]. As seen from Figure 3 processor, P,3 owns a block of the

matrix A,g and vector zg. If 2,3 = Aspxg, then

Yo = Zal + Za2+ -+ Zompax-



CONJUGATE GRADIENT ALGORITHM ON THE CRAY T3D 7

The fold operation is used for adding vectors z,3 of length n/npy present in npa processors
having the same block row index a. At the end of this operation (see Table 2), each

processor P,z has a vector y,3 of length 0 ) which is a partition of the vector y,. The

ey
algorithm, which requires loganpz steps, to accomplish this is recursive halving. As outlined
in Table 2, at each step a pair of processors divide the vector z into two halves and carry
out the add operation on opposite halves. In Step 3) of Table 2, each processor exchanges
data with a processor chosen from a set of processors in increasing powers of 2 by flipping
bits from the left in the binary representation of the processor number. Figure 4 illustrates
the fold operation in a row of 4 processors. The total number of elements of 2,53 in each
processor at the start of this operation is n/npy and the total number of elements in the
result y,p in each processor at the end of this operation is n/(npz * npy). Therefore, the
total number of data elements that are sent (received) by a processor in the fold operation
is given by (% - (npx”w). The total number of elements sent (received) by a processor

can also be written as a geometric series with logsnpz terms

logonpx
1
(1) TimeFold.opmm = g T " - (1— )
pr 2% x npy npy npx

The Put primitive is used to copy blocks of data directly from one processor’s memory
to another processor’s memory, while the Barrier call is used for synchronization, i.e, a
processor is forced to wait until all other processors have executed the Barrier instruction.
These communication primitives are provided by SMA Communication Library [7].

After the fold operation, processors in each row have data that must be shared by
processors in a corresponding column to prepare for the next matrix-vector multiplication.
This is achieved by a transpose operation in which processors in a row send data to
corresponding processors in a column (see Table 3). In this communication primitive,
processor P,3 exchanges y,g of length n/(npx * npy) vector with processor Peya newss
where

newa = 3+ (a.and.(k — 1)) * npz, k= npy/npz, and news = a/k.

As seen in Figure 5, on square processor grids processor F,3 communicates with processor
Pgo. An example of data movement in transpose operation for non-square processor grids

is shown in Figure 6. The total number of data elements that are sent (received) by a



8 BERRY, GRASSL, AND KRISHNA

TABLE 2

Fold Operation for processor Pyg tn row o.

Processor P, contains z,5 € %”/”py, and wy, wo,
z1 and zy € RV7PT are temporary arrays.

1) For : =0, ..., (logznpz) — 1

2) Partition z,5 = (21 | 21)7

3) P, = P,p with i bit of 3 flipped

4) If bit ¢ of §is 1 then

5) Put z; into wy of processor P, g

6) Barrier()

7) Zap = Z2 + Wwo

8) Else

9) Put z; into w; of processor P, g

10) Barrier()

11) Zag = 21 + Wy

12) Endif

13) EndFor

14) Yap = Zap

Processor P, 3 now contains 4,5 € g/ (nprnpy)

processor in the transpose operation is given by W so that

TimeTranspose omm = m .

TABLE 3

Transpose operation for processor Pug.

Processor P,g contains y,g € R/ (meny)
k = npy/npz

newa = 4 (a.and.(k — 1)) * npz

newf = a/k

Put y,5 into z,g of processor P cia,news
Barrier()

Yo = Zap

The expand operation combines vectors from different processors to obtain a single
vector which is duplicated on all the processors. After the transpose operation, each
processor in a column has data which must be shared with other processors in the same
column. A vector y,g of length n/(npz * npy) from each processor is combined to form a
vector y, of length n/npx on all processors in the column.

The exchange of data between processors in the expand operation is the inverse

communication pattern of the fold operation as seen in Figure 7 and Table 4. The number



CONJUGATE GRADIENT ALGORITHM ON THE CRAY T3D 9

0 <--| ® ) <--|
1) <-- 22 43 <-- 24
) > W i el
) > W i el
21)+2(2) i it )
2L)+22) I e )
214+ s I T e
1020 o I ——— ||

2)+2(2)+2(3)+2(4)

2(1)+2(2)+2(3)+2(4)

2(1)+2(2)+2(3)+2(4)

2(1)+2(2)+2(3)+z(4)

Fic. 4. Fold operation with { processors in a row (npx = 4), each having a vector z(i) of
length n/4. At the end of the operation each processor has a subvector of length n/16 containing a

unique piece of the result vector.

of elements sent (received) is equal to the fold operation and from Equation (1) is given

by (n”% - W). For a non-square processor grid, an additional 1092(%) steps are

required in which n”% number of values are exchanged per step. The total number of data

elements that are sent (received) by a processor in the expand operation is given by

2) TimeEzpandopmm = —— — "4 log, (@) . (L)
npxr  (npx * npy) npz npz

3.1.3 Parallel Matrix-Vector Multiplication Algorithm. In the first step of the
parallel matrix vector algorithm shown in Table 5, a local matrix vector product is computed
on each processor with a block of the matrix A, and z3 to obtain z,3. Using the fold
operation illustrated in Table 2 and Figure 4, we add vectors z,3 from processors within rows
to get yop which is a subvector of the vector y,. If the next matrix-vector multiplication
on processor P, requires yg (see Table 1), the transpose operation can be used to copy

subvectors of yg into vector w of the processors in column § (see Table 3, Figure 5, and



10 BERRY, GRASSL, AND KRISHNA

P o | ool Fos
Py
Po
P,

Fia. 5. Transpose operation for a processor grid with npz = npy = 4. The movement of data

1s shown for the first row of processors.

oo | ot | o2 | o3

Fia. 6. Transpose operation for a processor grid with npy = 8 and npx = 4. Data movement

1s shown for the first and second row of processors.



CONJUGATE GRADIENT ALGORITHM ON THE CRAY T3D 11

PROC1 PROC3 PROC 2 PROC 4
yl oyl T T
<=7 ::‘_‘_-____yi(_z)________ y1(2)
|- s ] .
<=7 ::‘_‘_-____y]@_______ y1(4)
A0 ie) ¥e ¥e

FiG. 7. Exzpand operation for npy=4. Each processor in a column contains a vector y1() of

length n/16. At the end of the operation each processor has the complete vector yl of length n/4.

Figure 6). Finally, the expand operation shown in Figure 7 and Table 4 combines the

subvectors w and places the complete vector yg in each processor of column 3.



12

BERRY, GRASSL, AND KRISHNA

TABLE 4

Frpand operation for processor Py in column (.

Processor P, contains y,g € R/ (npznpy)
For i = (loganpz) — 1,...,0
Py g = P,g with i bit of « flipped
Put y,p into w of processor P,/ 5
If bit 2 of a is 1 Then
Prepend w so that ygﬁ = (wTygﬁ)

Else
Append w so that ygﬁ = (ygﬁwT)
Endif
Endfor

If (npz.ne.npy) Then
For i = 1,...,loga(npy/npz)
newo = a.Xor.(npx 1)
Put y,s into w of processor Pepn,s

Yo = Yap +w
Endfor
Endif
TABLE 5

Parallel matriz vector multiplication algorithm.

w,z € RV are temporary arrays.

1) Compute z,3 = Ayp2g.

2) Perform fold operation on z,g within rows to form y,g.

3) Transpose operation to put y,g into w of Processor Py news
where newa and newf are defined in Figure 4.

4) Expand w to obtain yg.




CONJUGATE GRADIENT ALGORITHM ON THE CRAY T3D 13

3.1.4 Complexity Model. The complexity of the algorithm shown in Table 5 can be

represented by the total times for startup, communication, and arithmetic operations. The

maximum number of floating-point operations per processor is given by (2 « nnz — n)/p

where nnz is the total number of nonzeros in the sparse matrix, n is the order of the sparse

matrix and p is the number of processors. From Equation (1) we know that the total num-

ber of steps in the fold operation is logs npz, and from Equation (2) the total number of
npy

steps in the expand operation is loge npx + logg(w). Only one message is initiated in the

transpose operation. Therefore, the total startup cost for sending messages is

. npy
Tlmestartup = (2 * lng npr + 1092 (%) + 1) * tstartup7

where tgqrtyp is the amount of time taken to initiate a put operation. The total

communication time is given by

Timecomm = TimeFoldqomm + Timelransposecomm + TimeFErpand.qpmm

n n n n

+ +
npy  npxrxnpy  (npxr *npy)  npz
(3) " 4 log, (@) . (L)
(npx * npy) npz npx
n n n n n
= (or) * ()~ ey 1o () + ()
npy npx npT * npy npx npx
n n 1 n
= (og) F e (1 g 1o (52
npy npz npy npz

The total run time is given by

2«nnz —n

TotalTime = (
P

) * Tflop + Timestartup + Timecommv

where Ty, is the time taken by a single floating point operation. For simplicity, we
consider the scalability of the algorithm in Table 5 for a square grid of p processors where
npxr = npy = /p. For this grid, the total communication time from Equation (3) is given
by

VP VP p

From the above equation the communication time is directly proportional to n and inversely

1 2 -1
Timecommzi(Q——) :n*(i)

proportional to the square root of the number of processors p so that the communication



14 BERRY, GRASSL, AND KRISHNA

complexity of BBA is given by

n*<2*\/]_)—1)

p

Hence, the block-block algorithm scales very well as the number of processors is increased
(see Figure 8). Scaling refers to the decrease in the communication time as the number of
processors increases, which results in overall better performance and a higher computation-

to-communication ratio as p approaches infinity.

6 —
g
—
>
(5]
E a-
'_
CC) —e— BBA
=
2
[
>
e
IS
S
2 —
(e]

T T T T 1
16 32 64 128 256
Number of Processors

Fia. 8. Communication time versus the number of processors used for BBA. The order of the
sparse matriz (n) is fived at 14,000.

We particularly note that for BBA each processor only has that part of the vector
corresponding to the rows in its local block (23). A larger portion of the multiplied vector
could be cached in the local processor’s data cache. This effect is measurable for smaller
problems, but is not likely to be significant for larger problems where the size of the local

vector is large compared to the size of the data cache.



CONJUGATE GRADIENT ALGORITHM ON THE CRAY T3D 15

3.2 Block Row Algorithm (BRA)

An alternate algorithm which can be used to compute y = Az divides the sparse matrix A
into row blocks! so that each processor gets one row block (see Figure 9). This particular
method was used on a 16-CPU CRAY C90 for comparison purposes. Here, each row block
of the sparse matrix is stored in compressed column format and processed by a unique CPU,
i.e., the number of row blocks is equal to the number of CPU’s. The parallel matrix-vector
multiplication algorithm given in Table 6 ensures each CPU P; will compute y;. Whereas
on the CRAY T3D each processor F; can initially store z; and use a comparable expand
operation on p processors to acquire the entire z vector [8], on the CRAY C90 z is simply

shared among the 16 CPU’s. The number of floating-point operations per CPU is equal to

(W) * Triop, where Ty, is the cost of a single floating-point operation.
X
el A g 1
A 2
| = i
A
’p P “p
y A X

Fia. 9. Domain decomposition of data for computing y = Ax.

TABLE 6

Block row matriz vector multiplication algorithm for computing y = Ax.

1) Assign A; and z; to processor P;.
2) Perform expand operation on z; within p processors to obtain z on each node.

3) Compute y; = Az

4 Performance of NAS Conjugate Gradient Benchmark

The BBA algorithm described in the previous Section is well-suited for massively-parallel

systems such as the CRAY T3D. Although several key features of the CRAY T3D have

' A comparable Block Column Algorithm (BCA) which partitions the matrix A into column blocks is
another alternative, of course.



16 BERRY, GRASSL, AND KRISHNA

been exploited, the most important feature is the communication bandwidth for exchanging
data between processors. The put communication primitive allows any processor to write
data directly to the memory of any other processor. The processor-to-processor bandwidth
of this primitive is approximately 130 Mbytes/second [9]. Another key feature of the CRAY
T3D is that from any processor, it takes almost the same amount of time to write to farthest
processor as it takes to write to a nearest neighbor.

Both the Conjugate Gradient kernel and BBA (discussed in Section 3) have been
implemented in Fortran 77 with communication between processors accomplished us-
ing message-passing. Message-passing was accomplished using routines shmem put and
shmem_get from the SMA Communication Library [7]. No assembly language optimization

was applied.

TABLE 7
Conjugate Gradient algorithm.

—
[l
<

[\

=~ w

—_ O\_/\_/\_/\@\_/\_/\_/\_/\_/
Ned
[l
L
3

—
\]
DT
=)
Il
=,
~
s

)
H < 3 &
1
. 3 O

— — = O -1
(VS]
=]
=

e =,
= @.0]

15

The classical Conjugate Gradient method is outlined in Table 7. It mainly consists of
sparse matrix vector multiplication, vector updates (saxpy’s) and inner-product kernels.
BBA has been implemented for the sparse matrix-vector multiplication computed in
Step (6) of Table 7. The sparse symmetric positive definite matrix generated in the
NAS Conjugate Gradient benchmark [1] has a random structure or pattern of non-zeros
(1,853,104 in total) with full main-diagonal sparsity. However, for BBA the sparse input

matrix was assumed to be unstructured.



CONJUGATE GRADIENT ALGORITHM ON THE CRAY T3D 17

For benchmarking purposes, two different problem sizes and known solutions are
available. The two different size problems, called the class A and class B sizes, respectively
compute the smallest eigenvector of matrices of order 14,000 and 75, 000. For each problem,
the given matrix is very sparse, with the class A problem being 0.1% dense and the class

B problem being 0.25% dense.

15+
- 104
c
Q -
§§ —eo— ClassA
el - #- ClassB
O
s
Q]
0.5

[ [
16 32 64 128 256
Number of Processors

Fic. 10. Performance in gigaflop/s (billions of floating-point operations per second) for the

local sparse matriz-vector multiplication operation in BBA versus the number of processors used.

Figure 10 illustrates the performance of the local sparse matrix-vector multiplication
operation in BBA for class A and class B problems. With 256 processors, this operation
yields a performance of 1.5 gigaflop/s for the class A problem. Note that the routine runs
faster on the class A size problem. This can be attributed to the sparsity of the class
B problem. The performance was calculated by dividing the total CPU time in seconds
into the total number of floating-point operations. Figure 11 shows the performance of the
Conjugate Gradient kernel in gigaflop/s. Notice that with 256 processors we obtain about
1.1 gigaflop/s for the class A problem.

Time for the expand, transpose and fold communication operations used in BBA

for class A and class B problems are given in Tables 8 and 9, respectively. The total



18 BERRY, GRASSL, AND KRISHNA

—e— ClassA
— #- ClassB

Gflop/second

[ [ [ |
16 32 64 128 256
Number of Processors

Fia. 11. Performance in gigaflop/s as the number of processors used is increased for CG

benchmark on Class A and Class B problems.

communication time in BBA along with the total user CPU time for CG is also given.
Clearly the communication time decreases as the number of processors is increased. This
agrees with our prediction in the complexity analysis of communication time for BBA in

Section 3.

TABLE &8

Tume in seconds for communication primitives for Class A problem in BBA.

PLE's | TRANSP | EXPAND | FOLD | TotalCommTime | TotalUserTime

16 0.071 0.182 0.313 0.566 15.6

32 0.054 0.225 0.173 0.452 8.0

64 0.041 0.116 0.219 0.376 4.3

128 0.029 0.150 0.134 0.313 2.3

256 0.025 0.093 0.144 0.262 1.3

Our implementation of the benchmark for the class A problem size in 1.3 seconds
compares very well with other published results on massively parallel machines [6]. The
slight degradation in gigaflop/s for the entire CG benchmark as compared to that of the
BBA algorithm (Figure 10) can be attributed to the additional message-passing required

to maintain the iterative framework in Table 1.



CONJUGATE GRADIENT ALGORITHM ON THE CRAY T3D 19

TABLE 9

Time in seconds for communication primitives for class B problem in BBA.

PLE's | TRANSP | EXPAND | FOLD | TotalCommTime | TotalUserTime
16 1.766 3.93 7.203 12.899 609.6
32 1.411 5.506 5.732 12.649 309.9
64 1.187 2.282 6.378 9.847 171.2

128 0.701 3.243 3.774 7.718 89.8

256 0.569 1.609 3.626 5.804 52.5

Tables 10 and 11 compare the performance of the CG kernel on the CRAY T3D (using
BBA) with that of the CRAY C90? For the C90, the BRA method (see Section 3.2) was
implemented for sparse matrix-vector multiplication. Notice that the performance relative
to the number of CPU’s or PE’s scales similarly on the CRAY T3D and the CRAY (C90.
For both systems, the measured per cent parallelism?® is 96% or 97%.

Each CPU of the CRAY (90 is approximately 70 times faster than each PE in the
CRAY T3D. This speed difference is a reflection of the speed and number of memory banks
in the C90. It is not indicative of the CPU speeds themselves. For MPP technology used
in the CRAY T3D, the memory bandwidth and speed are attained from using many slower
and smaller local memories. Specifically, 64 PEs of the T3D have 64 aggregate local memory
banks, while the entire 16-CPU C90 system has 1024 memory banks, or 64 banks per CPU.
The 1-CPU C90 and 64 PEs from a T3D have similar performance (see Tables 10 and 11),
and it is not surprising based on the number of memory banks available.

TaBLE 10
Comparison of execution time in seconds for CG with Class A and B problems on the CRAY
T3D and CRAY C90.

CRAY T3D CRAY C90
PE's | Class A | Class B | CPU’s | Class A | Class B
16 15.6 609.6 1 3.6 122.9
32 8.0 309.9 2 1.8 —
64 4.3 171.2 4 1.0 33.9
128 2.3 89.8 8 0.5 18.3
256 1.3 52.5 16 0.3 10.6

2Results on exactly 2 dedicated CPU’s were not available.
®The measured percent parallelism is the parallelism parameter extracted from a fit of the data to an
Amdahl’s law curve.



20 BERRY, GRASSL, AND KRISHNA

TABLE 11
Speed comparison in gigaflop/s of CG with Class A and B problems on the CRAY T3D and
CRAY C90.

CRAY T3D CRAY C90
PLE's | Class A | Class B | CPU’s | Class A | Class B
16 0.096 0.090 1 0.425 0.446
32 0.187 0.177 2 0.841 —
64 0.345 0.320 4 1.568 1.615
128 0.638 0.611 8 2.765 2.993
256 1.077 1.044 16 4.378 5.035

This memory banking problem can be partially alleviated on the CRAY T3D with
schemes which will further enhance localization. If the density of the matrix A is high
enough, then the blocks can be further broken down into subblocks which have better
localization. Such subblocking can only be carried out if there are a sufficient number of
elements per subblock. However, the subblocking scheme has the liability of being data

dependent in that unstructured sparse matrices do not usually benefit from localization.

5 Summary and Future Work

We have presented a competitive algorithm for sparse matrix-vector multiplication along
with detailed analysis of its complexity. The block-block algorithm (BBA) is well suited
for iterative methods in which the result vector has to be distributed in the same fashion
as the input vector. This algorithm was used in the Conjugate Gradient kernel from the
NAS Parallel Benchmarks on the CRAY T3D. For this particular benchmark, a class A
problem size (matrix order 14, 000) is solved in 1.3 seconds which is competitive with other
published results on massively-parallel machines.

Comparisons in the performance of the BBA method on the CRAY T3D with a a block
row algorithm (BRA) for sparse matrix-vector multiplication on a 16-CPU CRAY C90 were
also made. Differences in the number of memory banks associated with each processor (or
CPU) on the different architectures account for the disparities in speed of the CG kernel
from the NAS Parallel Benchmarks. It was shown that the performance of a 64-processor
CRAY T3D roughly approximates that of a single CPU of the CRAY (C90.

The BRA and BRA-like algorithms have recently been used in a heterogeneous



CONJUGATE GRADIENT ALGORITHM ON THE CRAY T3D 21

implementation of a block-Lanczos method designed to find several of the largest singular
triplets of large unstructured sparse matrices [8]. In that implementation, all code except
the sparse matrix-vector multiplication kernels executed on the CRAY Y-MP host; the
matrix-vector multiplication operations executed on the CRAY T3D. Future performance
analysis of such implementations is warranted.

Future work may also include modifying the block-block algorithm for structured sparse
matrices such as block tridiagonal matrices arising from finite element-based computations.
From a future hardware/software perspective, the communication bandwidth between the
CRAY Y-MP and CRAY T3D should also be improved. One way to achieve this would be
to allow the processor(s) on the T3D to directly access the shared memory of the Y-MP.
New communication primitives could be devised to get and put data directly from Y-MP
memory without interrupting the Y-MP. This might require special hardware and software

features.

Acknowledgements

The authors would like to thank Marco Zagha (marcoz@cs.cmu.edu) at the School of
Computer Science, Carnegie Mellon University for use of his implementation of the NAS
Conjugate Gradient kernel which employs the BRA method for sparse matrix-vector

multiplication.

References

[1] D. BaiLEy, J. BArRTON, T. LASINSKI, AND H. SIMON, The NAS Parallel Benchmarks, Tech.
Report RNR-91-002, NAS Ames Research Center, Moffet Field, CA, January 1991.

[2] R. BARRETT, M. BERRY, T. CHAN, J. DEMMEL, ET AL., Templates for the Solulion of
Linear Systems: Building Blocks for Iterative Methods, STAM, Philadelphia, 1994.

[3] M. W. BERRY, Large scale singular value computations, International Journal of Supercom-
puter Applications, 6 (1992), pp. 13-49.

[4] CraY RESEARCH INC., MPP Querview, Cray Research Inc., Eagan, MN, 1993.

[6] G. Fox, M. Jounson, G. LvzENGA, S. OTTO, J. SALMON, AND D. WALKER, Solving
Problems on Concurrent Processors: Volume 1, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[6] B. HENDRICKSON, R. LELAND, AND S. PLIMPTON, A parallel algorithm for matriz-vector

multiplication, Tech. Report SAND 92-2765, Sandia National Laboratories, Albuquerque, NM,



22 BERRY, GRASSL, AND KRISHNA

March 1993.

[7] A. KnieEs AND R. Baruviso, SHMEM User’s Guide, Cray Research Inc., Eagan, MN, August
1993.

[8] V. K. KRISHNA, Sparse Matriz-Vector Multiplication Kernels on the CRAY T3D, Master’s
thesis, University of Tennessee, Knoxville, August 1994.

[9] R. NUMRICH, P. SPRINGER, AND J. PETERSON, Measurement of communication rates on the
CRAY T3D wnterprocessor network, in HPCN Europe, 1994.

[10] P. RiGSBEE, PVM Reference Manual for CRAY Platforms, Cray Research Inc., Eagan, MN,

1993.



