
Vector Processing on Scalar ArchitecturesMicah Beck and Antonio CastellanosDepartment of Computer ScienceUniversity of Tennessee, Knoxville TN 37996-1301fbeck, castellag@cs.utk.eduSeptember 1994AbstractA 64-bit processor must necessarily implement substantial parallelism in the movement andprocessing of data. Data movement is inherently parallel at the bit level, and many operationsimplemented in the integer unit exhibit bit-level parallelism. A microvector is an array ofsmall data items or bit �elds packed into a single word. Scalar operations performed on amicrovector can be used to implement vector parallelism on its constituent �elds. In this paperwe present libuvec, a library for computing with data which is packed into bit �elds. Wepresent experimental results showing excellent performance, up to 30 times the speed of scalararithmetic in certain applications.1 IntroductionThe current generation of microprocessor architectures all have a word length of 64 bits, meaningthat both instruction and data are processed 64 bits at a time: DEC Alpha, IBM/Motorola/ApplePower PC, and Intel Pentium. The increase in word length has accompanied an increase in thecomplexity of processor which can be implemented on a single chip. Longer instruction words canbe used to allow more directly addressable registers or to specify operations for replicated functionalunits. Longer data words have thus far been used mainly to increase the range and precision ofrepresentable integers and
oating point numbers.A 64-bit processor must necessarily implement substantial parallelism in the movement andprocessing of data. Memory buses and internal data paths must all be 64 bits wide. Data movementis inherently parallel at the bit level, and many operations implemented in the integer unit exhibitbit-level parallelism. In this paper we will show how this data parallelism can be exploited usingmicrovector programming.A microvector is an array of small data items or bit �elds packed into a single word. Bystoring bit �elds in this way, the programmer can make full use of the available memory-to-registerbandwidth and memory tra�c can be reduced. In some cases, the total size of the data space isalso reduced, improving the performance of the memory hierarchy.There are two problems with this approach:� packed bit �elds may not correspond to addressable units of memory, and� packed bit �elds must be unpacked, processed, and repacked before being stored.The �rst problem can be overcome by packing only addressable units: 8, 16, or 32 bits. Thisapproach will work, but it limits the performance improvements which might be obtained by min-imizing the size of bit �elds. Packing in non-addressable units is most e�ective when applied toapplications in which arrays are processed as aggregates and random addressing is not necessary.1

The second problem is a serious one: in some applications the overhead of unpacking andrepacking can be higher than the bene�t of reduced memory tra�c. In addition, the need to retainpacked words while processing them increases register pressure.Microvector programming is a technique for computing on packed bit �elds without unpackingthem. The key to our approach is that we exploit integer operations which are parallel at the bitlevel. We have obtained excellent results on several example applications, achieving a speedup ofover 30 when implementing the Life cellular automaton.Consider an array A[1024] containing integers which all lie in the interval [0; 15]. Each arrayelement can be stored in a bit �eld of width 4, and so 16 of them can be packed into a 64-bitmicrovector. If a bit parallel operation such as ones complement is to be performed on the array, itcan be performed just as well on the microvector with no unpacking. In this case 16-way parallelismreduces memory tra�c and integer operations by a factor of 16, achieving linear speedup.This observation can obviously be generalized to binary logical operations, and to addition onpositive numbers. Libuvec is an extensive library of vector parallel operations, which includeslogical, arithmetic, and some multiplicative operations on signed integers and �xed point numbers.In addition, libuvec provides support for data distribution of packed arrays which can increase theavailable parallelism. The libuvec source code and manual are available by anonymous FTP fromdirectory cs.utk.edu:pub/beck/libuvec.The remainder of this paper is organized as follows:� in Section 2 we introduce the microvector data structure and vector parallel programmingusing libuvec,� in Section 3 we explain the importance of data distribution when computing with microvectorarrays,� in Section 4 we illustrate microvector programming using two examples, and� in Section 5 we present our conclusions, plans for future work on microvectors, and relatedwork.2 Microvector ProgrammingA microvector is a data word which is interpreted as a vector of bit �elds. Any full word arithmeticoperation has an interpretation as an operation on the corresponding microvector. The most usefuloperations are those which apply the same operation to every bit �eld. Libuvec is a collection ofthese vector parallel operations, implemented in C.De�nition A microvector v of length l and width w (or an l � w microvector) is a bit string oflength lw, as illustrated if Figure 1. The i'th element of a l � w microvector v is the substringconsisting of bits iw through (i+ 1)w� 1.Vector parallel operations which can be implemented by a single instruction yield linear speedupwhen applied to microvectors. The class of such operations is limited to data transfer, bitwise logicaloperations, and multiplication of an unsigned vector by an unsigned scalar. Unsigned addition andsubtraction can be implemented by a single machine instruction in those cases where over
ow isguaranteed not to occur. 2

. . .

16 fields (l)

4 bits per field (w)Figure 1: A 64-Bit 16� 4 MicrovectorA more general class of vector parallel operations can be implemented using a small number ofmachine operations. This class of operations includes signed and �xed point arithmetic, relationaloperators, and conditional expressions. Other operations such as testing for equality are moreexpensive, requiring a number of machine instructions proportional to the �eld width. Generalmicrovector programming is analogous to the programming techniques which have long been appliedto pipelined vector processors [Hwa93].Libuvec is a programming interface which implements a useful set of microvector operations.Some operations such as componentwise multiplication and division are best implemented by un-packing the argument vectors and repacking the result. These have been included in libuvec forcompleteness and programming convenience. The libuvec operations used throughout this papersection are representative of the complete interface, which is described in more detail in the libuvecmanual [BC94].2.1 The uvec typeMicrovectors are represented using the type uvec, which is de�ned in header �le uvector.h alongwith the rest of the libuvec interface. Normally, uvec will be de�ned as unsigned long. In theexamples in this section, u, v and x are 16� 4 microvector variables declareduvec u, v, x;Note that all microvector values have the same length in bits (UV SIZE) and that the uvecdata type applies to all microvectors regardless of their dimensions. The length of a microvector istherefore a function of the �eld width (UV LENGTH(w)).2.2 Simple Vector OperationsThe simplest and most e�cient microvector operations operate on integer values without over
ow.The libuvec names given to these simple vector operations all start with the pre�x UV and takethe �eld width as an argument.Note that simple 4-bit �elds can represent integer values in the range [0; 15].Example Bitwise logical disjunction xi = ui _ vi is writtenx = UV OR(u, v, 4)Example Equality xi = (1 if u = v0 otherwise is writtenx = UV EQUAL(u, v, 4)3

Example Average xi = (ui + vi)=2 is writtenx = UV RSHIFT(UV PLUS(u, v, 4), 4)as long as the addition is guaranteed not to over
ow the 4-bit �eld.Example The conditional expression xi = (ui if ui = vi0 otherwise is writtenx = UV IF(UV EQUAL(u, v, 4), u, UV S2VEC(0, 4), 4)where UV S2VEC() converts a scalar �eld value s to a vector in which every �eld holdsthe value s.2.3 Over
ow Vector OperationsIn order to avoid arithmetic over
ow, k-bit signed integer operations can be implemented using�elds of width k + 1 and requiring that the most signi�cant always be 0. Field over
ow due toaddition will cause the most signi�cant bit to be set to one, but it can be reset between operations.The cost of this encoding is one bit per �eld plus one masking operation for every operation whichcan cause over
ow.Libuvec includes a set of operations which implements this \over
ow" representation of signedmicrovector �elds. The libuvec names given to these simple vector operations all start with thepre�x UVO and have a �nal argument which speci�es the total width of the �eld, including theover
ow bit.Note that 4-bit over
ow �elds can represent integer values in the range [�4; 3].Example Subtraction xi = ui � vi is writtenx = UVO MINUS(u, v, 4)Example Average xi = (ui + vi)=2 is writtenx = UVO RSHIFTA(UV PLUS (u, v, 4), 4)Example The less-than relation xi = (1 if ui < vi0 otherwise is writtenx = UVO LT(u, v, 4)Example The sign function xi = (1 if ui < 00 otherwise is writtenx = UVO SIGN(u, 4)4

2.4 Fixed Point OperationsBecause the
oating point unit is not parallel at the bit level, microvectors with
oating point �eldscannot be e�ciently implemented. In contrast, operations on microvectors with �xed point �eldscan be implemented using a small number of integer operations. Libuvec provides support formicrovector programming with �xed point �elds.A �xed point number m2f has two parts, an integer mantissa m and an integer exponent f .The libuvec �xed point representation stores only the mantissa. Additive operations on �xedpoint number with the same exponent can be implemented using integer arithmetic, as long asall arguments have the same exponent. Multiplicative operations require that the exponent besupplied as an argument. Libuvec currently supports �xed point only operations whose argumentsand result all have the same exponent, which must be negative.In order to obtain the full accuracy available in the result, the result of multiplication must becomputed using twice the �eld width of the operands. This requires the vector to be split into twosubvectors consisting of the �elds with even and odd indices and twice the �eld width. The resultsof multiplication are then truncated and recombined to form a single vector.In this example, we will assume that u,v and x are microvectors with 4-bit �xed point�elds and exponent f = �2. and s is a scalar integer. Note these �xed point �elds canrepresent integer multiples of .25 in the range [�1:00; :75].Example Subtraction of �xed point numbers xi = ui � vi is writtenx = UVO MINUS(u, v, 4)Example Multiplication of an integer scalar by a �xed point vector xi = sui is writtenx = UVO XSMUL(UVO I2X(s, -2), u, 4, -2)2.5 Field Access OperationsIn cases where computation cannot be e�ciently implemented in vectorized form, and for thepurpose of external reading and writing of data it is necessary to access individual �eld values. Whenaccessing signed �eld values, truncation and sign extension must also be performed as appropriate.Field access operations are de�ned on vector values, and also on microvectors stored in memory.The abstraction of arbitrary length arrays of �eld values implemented using microvectors is alsosupported. The distribution of data (block vs. scattered) in these arrays of microvector �elds isvery important in exposing vector parallelism in the presence of loop carried data dependences.This issue is discussed more fully in section 3.Example The value s = u1 is writtens = UVO FGET(u, 4, 1)Example The value of u with �eld u1 set to �1 is writtens = UVO FSET(u, 4, 1, UVO VAL(-1, 4))5

Example If uvec *up is a pointer to a microvector stored in memory, then values = �up1 is written s = UVP GET(up, 4, 1)Example If uvec ua[] is an array of microvector �elds stored in scattered distribution,then �eld s = ua[253] is writtens = UVA SGET(ua, 4, 253)2.6 InliningThe libuvec interface is de�ned in terms of macros, as indicated by the use of upper case names.The library is in fact implemented in two forms: subroutines and inlined macros. The names ofthe subroutine library are identical to the the macro names, but written in lower case.The default mode of compilation uses subroutines rather than macros by de�ning the uppercase names to be the lower case ones. This gives the greatest generality in programming the library,reduces the chance of an error due to inlining, and eases the interpretation of compiler errors anddebugging. Unfortunately, introducing subroutine calls for basic microvector operations makesmicrovector code terribly slow.In order to obtain high performance, libuvec calls must be inlined and the resulting code mustbe optimized. Inlining is accomplished by simply de�ning the symbol UV INLINE before includingthe �le uvector.h in your source �le. The inlined code is full of constant expressions and shouldbe optimized aggressively. Unfortunately, inlining does somewhat restrict the manner in which thelibrary can be used.The inlined library makes extensive use of token concatonation, a feature of the gcc preprocessorwhich other compilers do not implement. This has two implications: the inlined code must becomplied using gcc, and �eld widths must be literal constants. This means that the following codesequence is not acceptable:#define UV_INLINE#include "uvector.h"#define W 4v = UV_NOT(u, W);because the call must be written UV NOT(u, 4). Not every macro uses concatenation, and thosethat do not can be called with an arbitrary expression for the �eld width.There are some ways around this problem:� In order to implement a global symbol W to specify the �eld width for an entire program,use a preprocessor such as sed to textually substitute its literal value into the code beforecompilation.� Individual subroutine calls can be explicitly inserted in inlined code by using the lower casesubroutine names, but this may slow execution drastically.Future versions of the library may remove the dependence on gcc and implement other solutionsto this problem. 6

3 Data Distribution: An Architectural AnalogyIn Section 2 we saw how an array of �eld values can be stored as a microvector array. Whenimplementing microvector arrays, �elds can be distributed across the array in one of two ways: ascattered or a blocked distribution. The terminology is taken from the �eld of distributed memorymultiprocessing because one way of understanding microvector computing is to use an architecturalanalogy. We view a scalar computer operating on microvectors to be a SIMD (single instruction,multiple data) machine with distributed memory [Hwa93].When a vector parallel operation is performed on a 16�4 microvector, then the same operationis performed on every �eld. Fixing the width of the �eld, the scalar computer can be viewed asa SIMD machine with 16 4-bit processors. The resources of each processor are a 4-bit wide sliceof scalar processor's registers, data paths and processing logic. Vector parallel operations do notcommunicate between these \processors."In this analogy the address space of the scalar processor is also divided into 16 slices, one slicebeing local to each \processor". A single address does not specify a single location, but speci�edone location in each memory slice. Memory operations act on local registers and local memories inparallel. SIMD computing and addressing of this sort is found, for example, on the vector units ofthe Thinking Machines Corp. CM-5 [Hwa93].In the context of this analogy, scalar instructions can be interpreted in a multiprocessor context.Bit parallel operations implement local computation, shifts are for parallel communication betweenprocessors, and multiplication by a scalar uses a built-in broadcast mechanism. The analogy ismost useful for understanding the relevance of data distribution to microvector computing.3.1 Scattered DistributionScattered distribution is the most direct implementation of a microvector array. Adjacent arrayelements are stored in adjacent �elds, starting with the �rst microvector in the array and proceedingto the last, as illustrated in Figure 2. Adjacent elements are stored in di�erent local memories andare therefore local to di�erent processors.
0x1000

0x1200

0x1018

0x1008

Address

0x1010

2 3

...

15

16 17 18 19
. . .32 34 35 47

48 49 50 51 63

0

33

10231008 1009 1010 1011

1

31Figure 2: 1024-Element Array: 64 16� 4 Microvectors, Scattered Distrib.
7

65

0x2008

0x2210

0x2020

0x2018

0x2000

0x2208

0x2010

Address

.

.

127

128 960

.

1023 63 191

1 129 961
.

193

2 130 194 96266

3 67 131 963

.

102363 191 255127

. . .

64 128 192 0256

.

0 64

195

192

959

Figure 3: 1024-Element Array: 64 16� 4 Microvectors, Blocked Distrib., Replicated BoundaryExample Consider computing the sum of two arrays A and B implemented as arraysof microvectors with a scattered data distribution. To compute the sum of these twoarrays it is simply necessary to add the corresponding vectors:uvec A[64];for (i = 0; i < 64; i++)C[i] = A[i] + B[i];A scattered data distribution can be conveniently used whenever the indices of arguments tobinary operations are the same, or di�er by a multiple of the vector length. Speci�cally, binaryoperations cannot be conveniently performed on adjacent array elements. This restriction rules outmany applications.3.2 Blocked DistributionIn order to allow binary operations to be performed on adjacent array elements, it is necessary tostore them at adjacent addresses in the same local memory. This means that array elements arestored in the �rst �eld of every microvector in the array, then in the second �eld, etc, as illustratedin Figure 3. Adjacent microvectors in the array then hold vectors of adjacent elements, except atthe beginning and end of each local memory where a special case occurs.In many cases, the boundary condition can be handled by maintaining a copy of the values atthe extreme end of each memory in a location at the opposite extreme end of the next memory.Libuvec implements microvector arrays with a replicated boundary and provides a boundaryupdate function.
8

Example Consider computing the sum B[i] = A[i] + A[i + 1] of adjacent elementswhere arrays A and B are implemented as an array of microvectors with local datadistribution and with a replicated one-�eld boundary. Let us assume that a copy of theboundary of A is maintained. Then to compute the sum of A[i] and A[i+1] it is simplynecessary to add the corresponding vectors. The replicated boundary of B must thenbe updated.uvec A[66], B[66];for (i = 1; i < 65; i++)B[i] = A[i] + A[i+1];UV_BWRAP(B, 64, 4, 1);The following data illustrate the execution of this code. The values shown in the arraycells below are arbitrarily chosen data items, not cell indices as in Figures 2 and 3. Notethat the values in the boundary of B are not de�ned until after the call to UV BWRAP().
1

...

.

3 0 1 2

0
.

2

7 2 0

2 0 3 1

4 0 4 2 6

1 1 2 0 2

0 2 1 2 3

2 1 02 3

0

1

...

.

.
7

0

2

3 1 9 3

2 5 1

6 4 5 7

5 1 6 8

1 3 3 2 5

41. Array A before executing loop 2. Array B before executing UV BWRAP()
1

...

.
7

0

2

3 1 9 3

2
.

5 1

6 4 5 7

5 1 6 8

1 9 3 5 3

1 3 3 2 5

5 1 3 3 1

43. Array B after executing UV BWRAP()When the entire array is not updated at once, replicating the entire boundary after each updatemay not be feasible. In this case, more complex code which performs communication betweenmemories can be used. 9

4 Programming Examples and Performance4.1 Matrix MultiplicationConsider a one-dimensional array A[1024] of 8-bit unsigned integer values. This array can betreated as an array of byte values or as an array of 128 8�8 microvectors. If over
ow is guaranteednot to occur, then a microvector u can be multiplied by a positive scalar value s by writingUV SMUL(s, u, 8). The entire array A can be multiplied by s in a simple loop using byte arithmetic:unsigned char A[1024], B[1024];for (i = 0; i < 1024; i++)B[i] = s * A[i];If A is treated as an array of microvectors, this loop can be strip mined and microvectorized:uvec A[128], B[128];for (i = 0; i < 128; i++)B[i] = UV_SMUL(s, A[i], 8);Because the UV SMUL() operation is implemented by a single integer multiplication, we obtain aspeedup of 8 over byte arithmetic using vectors of length 8, or linear speedup.Unoptimized matrix multiplication can be implemented in byte arithmetic as a simple nestingof loops:unsigned char A[1024][1024], B[1024][1024];int i, j, k;for (i = 0; i < m; i++)for (j = 0; j < m; j++)for (k = 0; k < m; k++)B[i][j] += A[i][k] * A[k][j];A two-dimensional byte array can be viewed as a two dimensional array of microvectors byvectorizing in one dimension. We can write a vectorized form of matrix multiplication using scalar-vector multiplication and vector addition as basic operations:uvec A[1024][128], B[1024][128];int i, j, k1, k2;for (i = 0; i < 1024; i++)for (k1 = 0; k1 < 128; k1++)for (k2 = 0; k2 < 8; k2++){ int s = UV_FGET(A[i][k1], w, k2);for (j = 0; j < 128; j++)B[i][j] = UV_PLUS(C[i][j], UV_SMUL(s, A[k1*8+k2][j], 8), 8);} 10

PerformanceFigures 4 and 5 show the execution time and speedup respectively for multiplying two 1024� 1024matrices in various ways. Our experiments involved several similar versions of matrix multiplication:� using scalar byte arithmetic (mmulb),� using
oating point arithmetic (mmulf),� using 8� 8 integer microvectors to store the matrix and unpacking them to use scalar arith-metic when performing arithmetic operations (mmulp),� using 8� 8 integer microvectors (mmulv),� using 8� 8 �xed point microvectors (mmulx).The total number of bits in each microvector was varied to obtain a speedup curve: n = 8, 16,32, and 64 bits. Speedup is de�ned to be the ratio of execution times to the execution time ofmmulf. The independent axis of these graphs shows the number of bits in a microvector. The linelabeled \linear speedup" shows where the speedup is equal to the length of the microvector.The speedups achieved with 64-bit microvectors are given in Figure 6.� mmulp packs byte values into microvectors but unpacks in order to perform byte arithmetic.Its performance is worse than any scalar version.� In our experiments, the speed of mmulf is 1.7 times that of mmulb, which uses scalar integerarithmetic. So although the performance of mmulv represents 89% of linear speedup overmmulb, this is only 52% of linear speedup over mmulf.� Finally, mmulx uses �xed point scalar-vector multiplication, which is the most expensive libu-vec arithmetic operation, and so achieves only 27% of linear speedup of mmulf.In all cases, the code has been optimized by hand to obtain the best possible performance. Allexperiments were performed on the DEC Alpha 3000/500 with 222 Mbytes of main memory.It is interesting to note that the execution time for mmulf is approximately half that of anequivalent program which uses integer arithmetic. This di�erence re
ects the relative speed ofinteger and
oating arithmetic.4.2 Cellular AutomataA 2-dimensional cellular automaton (CA) is a discrete simulation of a world in which locations arearranged in a two-dimensional grid of cells [vN66, Ula86]. Every cell of the grid c is associated withan integer value. The execution of a CA proceeds in synchronous steps known as generations. Ineach generation, the value of every cell in the grid is updated. The new value c1[i; j] of a cell c[i; j]is a function of the old values of the grid in some �xed neighborhood of c.Parallel execution of cellular automata has been implemented both in on general parallel pro-cessors and using specialized hardware [TM87, BH93]. The most well-known cellular automaton isConway's 2-dimensional CA \Life" [Gar70, Gar71]. Life is binary: the value associated with everycell is either 0 or 1. The Life update function is de�ned by this rule:c1[i; j] = 8><>: c[i; j] if s = 21 if s = 30 otherwise where s = Xx; y 2 f�1; 0; 1gx 6= 0 _ y 6= 0 c[i+ x; j + y]11

8 16 32 64

MicroVector Length (bits)

0

100

200

300

400

500

T
im

e
(s

ec
on

ds
)

mmulp (packed)
mmulx (fixed-point)
mmulv (integer)

Figure 4: Total computation time: Multiply two 1024� 1024 matrices
8 16 32 64

MicroVector Length (bits)

0

2

4

6

8

Sp
ee

du
p

ov
er

 m
m

ul
f

Linear Speedup
mmulv (integer)
mmulx (fixed-point)
Speedup = 1
mmulp (packed)

Figure 5: Speedup Over Scalar Arithmetic: Multiply two 1024� 1024 matricesProgram mmulp mmulv mmulx1024� 1024 matrices 0.34 4.19 2.22Figure 6: Matrix Multiply Speedup Using 64-bit Microvectors12

Implementing The GridThe most straightforward implementation of a 2D grid is as a two-dimensional array of binaryvalues. Consider a 4096� 4096 grid, implemented using 64-bit microvectors. Since each cell of thegrid holds either a zero or a one, it is natural to consider using 64 � 1 microvectors. However, inthe calculation of the update function, it is necessary to sum the values of eight grid locations, andthe resulting sum can require up to four bits to represent.We will show how to implement the update function using 16 � 4 microvectors. The bestperformance is obtained by storing the grid using 64� 1 microvectors, unpacking each of these into4 16� 4 microvectors in order to compute the update function, and then repacking these back intoa single 64�1 microvector. Figures 7 and 8 gives execution time and speedup for both microvectorprograms.Each row of the grid contains 4096 cells and so can be stored in 256 16�4 microvectors. Becausethe sum operation references adjacent locations in the grid, a blocked data distribution is used.Implementing The Update FunctionHaving chosen a data structure for the 2D grid, it remains to implement the calculation of gener-ations. If we let c[4096][256] represent the current state of the grid, then we calculate its stateone generation later as the array c1[4096][256]. We update each element using an outer loopwhich iterates over rows and an inner loop which iterates over the microvectors in the elements ofeach row. Thus the columns in each row are updated 16 at a time.for (i = 0; i < 4096; i++)for (j = 0; j < 256; j++){ s = UV_PLUS(c[i][j-1], c[i][j+1], 4);s = UV_PLUS(s, c[i-1][j-1], 4);s = UV_PLUS(s, c[i+1][j-1], 4);s = UV_PLUS(s, c[i-1][j], 4);s = UV_PLUS(s, c[i+1][j], 4);s = UV_PLUS(s, c[i-1][j+1], 4);s = UV_PLUS(s, c[i+1][j+1], 4);c1[i][j] = UV_IF(UV_EQUAL(s, S2VEC(2, 4), 4), c[i][j],UV_IF(UV_EQUAL(s, S2VEC(3, 4), 4), S2VEC(1, 4),0), 4);}The update function has two parts, the calculation of the sum and the conditional. Since everycell location takes the value zero or one, there is no possibility of over
ow when adding eight ofthem in a vector element four bits wide. Thus, sum is microvector parallel and can be implementedwith UV PLUS() and the case split is implemented using nested conditionals.13

PerformanceFigure 7 shows the time taken to calculate 100 microvectorized updates of a 4096� 4096 grid:� using byte arithmetic (lifeb),� using 64 � 1 microvectors to store the grid and integer arithmetic to compute the updatefunction (lifep),� using 16�4 microvectors to both store the grid and to compute the update function(lifev4),and� using 64 � 1 microvectors to store the grid and 16� 4 microvectors to compute the updatefunction (lifev1).The time measured was only the time taken to actually compute the updates. It does not includethe time taken to read the initial data and pack it into microvectors, and or the time taken tounpack the �nal data and write it out.Figure 8 shows the speedup achieved by the microvector implementations over byte arithmetic.The independent axis shows the length of microvector used in bits. Speedup is calculated as thetime taken for the microvectorized computations divided by the time taken by lifeb.Two lines labelled \linear speedup" show where the speedup is equal to the length of themicrovector.� The speedup curve for lifev4 can be compared directly with the 4-bit linear speedup curve,and it �ts closely.� In lifev1 1-bit �elds are used for memory operations and 4-bit �elds are used for compu-tations. As would be expected, the observed performance in lies between the linear speedupcurves for 1-bit and 4-bit �elds,� lifep shows relatively low speedup, showing that in this case the overhead of unpacking andrepacking data is signi�cant.The speedups achieved with 64-bit microvectors are given in Figure 9, for two grid sizes.� lifep packs byte values into microvectors but unpacks into order to perform byte arithmetic.It achieves moderate speedup over lifeb.� The maximum speedup of 27 occurs for lifev1 on the larger grid. This �gure re
ects bothmicrovector parallelism and the e�ect on the memory hierarchy of an 8-fold reduction in datamemory size.� lifev4 achieves higher speedup on the smaller grid than on the larger grid may also be dueto a memory hierarchy e�ect.� The speedup achieved on at 1024 � 1024 grid yields a speedup curve much closer to 4-bitlinear. 14

8 16 32 64

MicroVector Length (bits)

0

500

1000

T
im

e
(s

ec
on

ds
)

lifep (packed)
lifev4 (4-bit field width)
lifev1 (1-bit field width)Figure 7: Total Computation Time: 100 Life updates, 4096� 4096 grid

8 16 32 64

MicroVector Length (bits)

0

20

40

60

Sp
ee

du
p

ov
er

 L
if

eb

Linear for 4-bit field
lifev1 (1-bit field width)
Linear for 1-bit field
lifev4 (4-bit field width)
lifep (packed)Figure 8: Speedup Over Byte Arithmetic: 100 Life updates, 4096� 4096 gridProgram lifep lifev4 lifev11024� 1024 grid 2.48 16.40 20.504096� 4096 grid 3.07 14.84 33.11Figure 9: Life Speedup Using 64-bit Microvectors15

5 Conclusions, Future and Related WorkIn this paper, we have introduced the notion of microvector programming and have described thelibuvec programming interface. We have shown how two example applications can be easily codedusing libuvec:1. Dense matrix multiplication shows speedup over 4 when operating on 8-bit integers and over2 when operating on 8-bit �xed point numbers. These results show that excellent microvectorperformance can be di�cult to achieve when compared to
oating point operations which arehighly optimized in hardware. Our results indicate that some numerical applications can bespeeded up using microvector programming.2. The Life cellular automaton (CA) shows speedup over 30 when data are packed into mi-crovectors as tightly as possible. Other applications for cellular automata include discretephysical and biological simulations.Our results indicate that some of these applications canbe signi�cantly speeded up using microvector programming.Future Work Our continuing research on microvectors has two directions:1. We are �nding useful applications for the libuvec library. Microvector programming shareswith all vector processing the weakness that it cannot be used in every application. Promis-ing candidates for microvector programming include linear algebra, discrete simulation, textprocessing and graphics.2. We are developing automatic tools for translating parallel programs into microvector form.(a) Vector C is a preprocessor for the C language which translates high level vector opera-tions into microvector code using libuvec. A Vector C can always correctly interpretedas standard C, so Vector C code can be written, debugged, and executed in the standardC programming environment.(b) Cellang is a simple language for describing cellular automaton developed by Dana Eckartof Radford University [Eck92]. Cellang is inherently very parallel, and so provides a goodplatform for automatic vectorization. We are developing a back end for the Cellangcompiler which generates Vector C code.The libuvec source code and manual are available by anonymous FTP from directorycs.utk.edu:pub/beck/libuvec. We are very interested in exchanging ideas and collaborating withresearchers in any �eld where microvector programming can be applied. Libuvec is an ongoingdevelopment project, and its future development will be directed by the needs of users.Related Work Bitwise logical operations have long been used on bit arrays in many applica-tions, most notably bit-mapped graphics processing. Microvector programming is a generalizationof \multispin coding", a technique developed by Jacobs and Rebbi for implementing CA-basedsimulations [JR81]. The implementation of signed integer and �xed point operations are originalto our work.Acknowledgements Dana Eckart's development and distribution of Cellang led us to considergeneral techniques for parallelizing the execution of CA programs. Thanks to Bruce Boghosian forhis early encouragement and for bringing multispin coding to our attention. We are grateful toTodd Letsche for his helpful comments on this paper.16

References[BC94] Micah Beck and Antonio Castellanos. Libuvec Reference Manual. University of Tennessee,September 1994. Distribution by FTP from cs.utk.edu:pub/beck/uvector.[BH93] Per Brinch Hansen. Parallel cellular automata: A model program for computationalscience. Concurrency: Practice and Experience, 5(5):407{423, August 1993.[Eck92] J. Dana Eckart. Cellang 3.0: Language Reference Manual. Radford University, April 1992.For distribution contact dana@rucs.faculty.cs.runet.edu.[Gar70] Martin Gardner. The fantastic combinations of John Conway's new solitare game \life".Scienti�c American, 223(10):120{123, October 1970.[Gar71] Martin Gardner. On cellular automata, self-reproduction, the garden of eden and thegame \life". Scienti�c American, 224(2):112{117, February 1971.[Hwa93] Kai Hwang. Advanced Computer Architecture. McGraw-Hill, New York, NY, 1993.[JR81] Laurence Jacobs and Claudio Rebbi. Multi-spin coding: A very e�cient technique formonte carlo simulations of spin systems. Journal of Computational Physics, 41:203{210,1981.[TM87] Tommaso To�oli and Norman Margolus. Cellular Automata Machines: A New Environ-ment for Modelling. The MIT Press, Cambridge, MA, 1987.[Ula86] S. Ulam. Science, Computers and People: From the Tree of Mathematics. Brikh�auser,Boston, MA, 1986.[vN66] John von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press,Urbana, IL, 1966. Edited and completed by A. W. Burks.
17

