
Bibliography[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users' Guide,Second Edition, SIAM, Philadelphia, PA, 1994.[2] E. Anderson and J. Dongarra, LAPACK Working Note 16: Results from the InitialRelease of LAPACK, University of Tennessee, CS-89-89, November 1989.[3] E. Anderson, J. Dongarra, and S. Ostrouchov, LAPACK Working Note 41: Installa-tion Guide for LAPACK, University of Tennessee, CS-92-151, February 1992 (revisedOctober 1994).[4] C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, andD. Sorensen, LAPACK Working Note #5: Provisional Contents, Argonne NationalLaboratory, ANL-88-38, September 1988.[5] Z. Bai, J. Demmel, and A. McKenney, LAPACK Working Note #13: On the Condi-tioning of the Nonsymmetric Eigenvalue Problem: Theory and Software, University ofTennessee, CS-89-86, October 1989.[6] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling, \A Set of Level 3 Basic LinearAlgebra Subprograms," ACM Trans. Math. Soft., 16, 1:1-17, March 1990[7] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling, \A Set of Level 3 Basic LinearAlgebra Subprograms: Model Implementation and Test Programs," ACM Trans. Math.Soft., 16, 1:18-28, March 1990[8] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, \An Extended Set of FortranBasic Linear Algebra Subprograms," ACM Trans. Math. Soft., 14, 1:1-17, March 1988.[9] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, \An Extended Set of FortranBasic Linear Algebra Subprograms: Model Implementation and Test Programs," ACMTrans. Math. Soft., 14, 1:18-32, March 1988.[10] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, \Basic Linear AlgebraSubprograms for Fortran Usage," ACM Trans. Math. Soft., 5, 3:308-323, September1979. 19

lapack@cs.utk.edu.Tell us the type of machine on which the tests were run, the version of the operatingsystem, the compiler and compiler options that were used, and details of the BLAS libraryor libraries that you used. You should also include a copy of the output �le in which thefailure occurs.We would like to keep our release notes �le as up-to-date as possible. Therefore, if youdo not see an entry for your machine, please contact us with your testing results.Comments and suggestions are also welcome.We encourage you to make the LAPACK library available to your users and provideus with feedback from their experiences. This release of LAPACK is not guaranteed to becompatible with any previous test release.AcknowledgmentsEd Anderson of Cray Research Inc. contributed to previous versions of this report.

18

a) To make a library of the instrumented LAPACK routines, �rst go toLAPACK/TIMING/EIG/EIGSRC and type make followed by the data types desired, asin the examples of Section 5.3. The library of instrumented code is created inLAPACK/TIMING/EIG/eigsrc PLAT.a, where PLAT is the user-de�ned architecture suf-�x speci�ed in the �le LAPACK/make.inc.b) To make the eigensystem timing programs, go to LAPACK/TIMING/EIG and type makefollowed by the data types desired, as in the examples of Section 5.3. The executable�les are called xeigtims, xeigtimc, xeigtimd, and xeigtimz and are created inLAPACK/TIMING.c) Go to LAPACK/TIMING and make any necessary modi�cations to the input �les. Youmay need to set the minimum time a subroutine will be timed to a positive value,or to restrict the number of tests if you are using a computer with performance inbetween that of a workstation and that of a supercomputer. Instead of decreasingthe matrix dimensions to reduce the time, it would be better to reduce the number ofmatrix types to be timed, since the performance varies more with the matrix size thanwith the type. For example, for the nonsymmetric eigenvalue routines, you could useonly one matrix of type 4 instead of four matrices of types 1, 3, 4, and 6. Refer toLAPACK Working Note 41 [3] for further details.d) Run the programs for each data type you are using. For the REAL version, thecommands for the small data sets arexeigtims < sgeptim.in > sgeptim.outxeigtims < sneptim.in > sneptim.outxeigtims < sseptim.in > sseptim.outxeigtims < ssvdtim.in > ssvdtim.outor the commands for the large data sets arexeigtims < SGEPTIM.in > SGEPTIM.outxeigtims < SNEPTIM.in > SNEPTIM.outxeigtims < SSEPTIM.in > SSEPTIM.outxeigtims < SSVDTIM.in > SSVDTIM.outSimilar commands should be used for the other data types.6.8 Send the Results to TennesseeCongratulations! You have now �nished installing, testing, and timing LAPACK. Ifyou encountered failures in any phase of the testing or timing process, please consult ourrelease notes �le on netlib (send email to netlib@ornl.gov and in the message type "sendrelease notes from lapack"). This �le contains machine-dependent installation clues whichhopefully will alleviate your di�culties or at least let you know that other users havehad similar di�culties on that machine. If there is not an entry for your machine or thesuggestions do not �x your problem, please feel free to contact the authors at17

the small data �les are sblasa.in, sblasb.in, and sblasc.in and the large data �lesare SBLASA.in, SBLASB.in, and SBLASC.in. There are three sets of inputs because thereare three parameters in the Level 3 BLAS, M, N, and K, and in most applications one ofthese parameters is small (on the order of the blocksize) while the other two are large (onthe order of the matrix size). In sblasa.in, M and N are large but K is small, while insblasb.in the small parameter is M, and in sblasc.in the small parameter is N. TheLevel 2 BLAS are timed only in the �rst data set, where K is also used as the bandwidthfor the banded routines.a) Go to LAPACK/TIMING and make any necessary modi�cations to the input �les. Youmay need to set the minimum time a subroutine will be timed to a positive value. Ifyou modi�ed the values of N or NB in Section 6.7.1, set M, N, and K accordingly. Thelarge parameters among M, N, and K should be the same as the matrix sizes used intiming the linear equation routines, and the small parameter should be the same asthe blocksizes used in timing the linear equation routines. If necessary, the large dataset can be simpli�ed by using only one value of LDA.b) Run the programs for each data type you are using. For the REAL version, thecommands for the small data sets arexlintims < sblasa.in > sblasa.outxlintims < sblasb.in > sblasb.outxlintims < sblasc.in > sblasc.outor the commands for the large data sets arexlintims < SBLASA.in > SBLASA.outxlintims < SBLASB.in > SBLASB.outxlintims < SBLASC.in > SBLASC.outSimilar commands should be used for the other data types.6.7.3 Timing the Eigensystem RoutinesThe eigensystem timing program is found in LAPACK/TIMING/EIG and the input �les arein LAPACK/TIMING. Four input �les are provided in each data type for timing the eigensys-tem routines, one for the generalized nonsymmetric eigenvalue problem, one for the non-symmetric eigenvalue problem, one for the symmetric and generalized symmetric eigenvalueproblem, and one for the singular value decomposition. For the REAL version, the smalldata sets are called sgeptim.in, sneptim.in, sseptim.in, and ssvdtim.in, respectively.and the large data sets are called SGEPTIM.in, SNEPTIM.in, SSEPTIM.in, and SSVDTIM.in.Each of the four input �les reads a di�erent set of parameters, and the format of the inputis indicated by a 3-character code on the �rst line.The timing program for eigenvalue/singular value routines accumulates the operationcount as the routines are executing using special instrumented versions of the LAPACKroutines. The �rst step in compiling the timing program is therefore to make a library ofthe instrumented routines. 16

run, the version of the operating system, the compiler and compiler options that were used,and details of the BLAS library or libraries that you used. You should also include a copyof the output �le in which the failure occurs.Please note that the BLAS timing runs will still need to be run as instructed in 6.7.2.6.7.1 Timing the Linear Equations RoutinesThe linear equation timing program is found in LAPACK/TIMING/LIN and the input �lesare in LAPACK/TIMING. Three input �les are provided in each data type for timing thelinear equation routines, one for square matrices, one for band matrices, and one for rect-angular matrices. The small data sets for the REAL version are stime.in, sband.in, andstime2.in, respectively, and the large data sets are STIME.in, SBAND.in, and STIME2.in.a) To make the linear equation timing programs, go to LAPACK/TIMING/LIN and typemake followed by the data types desired, as in the examples in Section 5.3. Theexecutable �les are called xlintims, xlintimc, xlintimd, and xlintimz and arecreated in LAPACK/TIMING.b) Go to LAPACK/TIMING and make any necessary modi�cations to the input �les. Youmay need to set the minimum time a subroutine will be timed to a positive value, or torestrict the size of the tests if you are using a computer with performance in betweenthat of a workstation and that of a supercomputer. The computational requirementscan be cut in half by using only one value of LDA. If it is necessary to also reduce thematrix sizes or the values of the blocksize, corresponding changes should be made tothe BLAS input �les (see Section 6.7.2).c) Run the programs for each data type you are using. For the REAL version, thecommands for the small data sets arexlintims < stime.in > stime.outxlintims < sband.in > sband.outxlintims < stime2.in > stime2.outor the commands for the large data sets arexlintims < STIME.in > STIME.outxlintims < SBAND.in > SBAND.outxlintims < STIME2.in > STIME2.outSimilar commands should be used for the other data types.6.7.2 Timing the BLASThe linear equation timing program is also used to time the BLAS. Three input �lesare provided in each data type for timing the Level 2 and 3 BLAS. These input �les timethe BLAS using the matrix shapes encountered in the LAPACK routines, and we will usethe results to analyze the performance of the LAPACK routines. For the REAL version,15

6.7 Run the LAPACK Timing ProgramsThere are two distinct timing programs for LAPACK routines in each data type, onefor the linear equation routines and one for the eigensystem routines. The timing programfor the linear equation routines is also used to time the BLAS. We encourage you to con-duct these timing experiments in REAL and COMPLEX or in DOUBLE PRECISION andCOMPLEX*16; it is not necessary to send timing results in all four data types.Two sets of input �les are provided, a small set and a large set. The small data sets areappropriate for a standard workstation or other non-vector machine. The large data setsare appropriate for supercomputers, vector computers, and high-performance workstations.We are mainly interested in results from the large data sets, and it is not necessary to runboth the large and small sets. The values of N in the large data sets are about �ve timeslarger than those in the small data set, and the large data sets use additional values forparameters such as the block size NB and the leading array dimension LDA. Small datasets are indicated by lower case names, such as stime.in, and large data sets are indicatedby upper case names, such as STIME.in. Except as noted, the leading `s' (or `S') in theinput �le name must be replaced by `d', `c', or `z' (`D', `C', or `Z') for the other data types.We encourage you to obtain timing results with the large data sets, as this allows us tocompare di�erent machines. If this would take too much time, suggestions for paring backthe large data sets are given in the instructions below. We also encourage you to experimentwith these timing programs and send us any interesting results, such as results for largerproblems or for a wider range of block sizes. The main programs are dimensioned for thelarge data sets, so the parameters in the main program may have to be reduced in orderto run the small data sets on a small machine, or increased to run experiments with largerproblems.The minimum time each subroutine will be timed is set to 0.0 in the large data �lesand to 0.05 in the small data �les, and on many machines this value should be increased.If the timing interval is not long enough, the time for the subroutine after subtracting theoverhead may be very small or zero, resulting in megaop rates that are very large or zero.(To avoid division by zero, the megaop rate is set to zero if the time is less than or equal tozero.) The minimum time that should be used depends on the machine and the resolutionof the clock.For more information on the timing programs and how to modify the input �les, pleaserefer to LAPACK Working Note 41 [3].If you do not wish to run each of the timings individually, you can go to LAPACK, editthe de�nition timing in the �le Makefile to specify the data types desired, and type maketiming. This will compile and run the timings for the linear equation routines and theeigensystem routines (see Sections 6.7.1 and 6.7.3).If you are installing LAPACK on a Silicon Graphics machine, you must modify thede�nition of timing to betiming: (cd TIMING; $(MAKE) -f Makefile.sgi)If you encounter failures in any phase of the timing process, please feel free to contactthe authors as directed in Section 6.8. Tell us the type of machine on which the tests were14

6.6.2 Testing the Eigensystem Routinesa) Go to LAPACK/TESTING/EIG and type make followed by the data types desired. Theexecutable �les are called xeigtsts, xeigtstc, xeigtstd, and xeigtstz and arecreated in LAPACK/TESTING.b) Go to LAPACK/TESTING and run the tests for each data type. The tests for the eigen-system routines use seventeen separate input �les for testing the nonsymmetric eigen-value problem, the symmetric eigenvalue problem, the banded symmetric eigenvalueproblem, the generalized symmetric eigenvalue problem, the generalized nonsymmet-ric eigenvalue problem, the singular value decomposition, the banded singular valuedecomposition, the generalized singular value decomposition, the generalized QR andRQ factorizations, the generalized linear regression model, and the constrained linearleast squares problem. The tests for the REAL version are as follows:xeigtsts < nep.in > snep.outxeigtsts < sep.in > ssep.outxeigtsts < svd.in > ssvd.outxeigtsts < sec.in > sec.outxeigtsts < sed.in > sed.outxeigtsts < sgg.in > sgg.outxeigtsts < ssg.in > ssg.outxeigtsts < ssb.in > ssb.outxeigtsts < sbb.in > sbb.outxeigtsts < sbal.in > sbal.outxeigtsts < sbak.in > sbak.outxeigtsts < sgbal.in > sgbal.outxeigtsts < sgbak.in > sgbak.outxeigtsts < glm.in > sglm.outxeigtsts < gqr.in > sgqr.outxeigtsts < gsv.in > sgsv.outxeigtsts < lse.in > slse.outThe tests using xeigtstc, xeigtstd, and xeigtstz also use the input �les nep.in,sep.in, svd.in, glm.in, gqr.in, gsv.in, and lse.in, but the leading `s' in the otherinput �le names must be changed to `c', `d', or `z'.If you encountered failures in this phase of the testing process, please refer to Section 6.8.13

The LAPACK library is created in LAPACK/lapack PLAT.a, where PLAT is the user-de�nedarchitecture su�x speci�ed in the �le LAPACK/make.inc.6.5 Create the Test Matrix Generator Librarya) Go to the directory LAPACK and edit the de�nition of tmglib in the �le Makefile tospecify the data types desired, as in the example in Section 5.3.b) Type make tmglib. The make command can be run more than once to add anotherdata type to the library if necessary.The test matrix generator library is created in LAPACK/tmglib PLAT.a, where PLAT is theuser-de�ned architecture su�x speci�ed in the �le LAPACK/make.inc.6.6 Run the LAPACK Test ProgramsThere are two distinct test programs for LAPACK routines in each data type, one forthe linear equation routines and one for the eigensystem routines. In each data type, thereis one input �le for testing the linear equation routines and seventeen input �les for testingthe eigenvalue routines. The input �les reside in LAPACK/TESTING. For more informationon the test programs and how to modify the input �les, please refer to LAPACK WorkingNote 41 [3].If you do not wish to run each of the tests individually, you can go to LAPACK, edit thede�nition testing in the �le Makefile to specify the data types desired, and type maketesting. This will compile and run the tests as described in sections 6.6.1 and 6.6.2.If you are installing LAPACK on a Silicon Graphics machine, you must modify thede�nition of testing to betesting:(cd TESTING; $(MAKE) -f Makefile.sgi)6.6.1 Testing the Linear Equations Routinesa) Go to LAPACK/TESTING/LIN and type make followed by the data types desired. Theexecutable �les are called xlintsts, xlintstc, xlintstd, or xlintstz and arecreated in LAPACK/TESTING.b) Go to LAPACK/TESTING and run the tests for each data type. For the REAL version,the command isxlintsts < stest.in > stest.outThe tests using xlintstd, xlintstc, and xlintstz are similar with the leading `s'in the input and output �le names replaced by `d', `c', or `z'.If you encountered failures in this phase of the testing process, please refer to Section 6.8.12

6.2 Create the BLAS LibraryIdeally, a highly optimized version of the BLAS library already exists on your machine.In this case you can go directly to Section 6.3 to make the BLAS test programs. Youmay already have a library containing some of the BLAS, but not all (Level 1 and 2, butnot Level 3, for example). If so, you should use your local version of the BLAS whereverpossible.a) Go to LAPACK and edit the de�nition of blaslib in the �le Makefile to specify thedata types desired, as in the example in Section 5.3.If you already have some of the BLAS, you will need to edit the �le LAPACK/BLAS/SRC/Makefileto comment out the lines de�ning the BLAS you have.b) Type make blaslib. The make command can be run more than once to add anotherdata type to the library if necessary.The BLAS library is created in LAPACK/blas PLAT.a, where PLAT is the user-de�ned archi-tecture su�x speci�ed in the �le LAPACK/make.inc.6.3 Run the BLAS Test ProgramsTest programs for the Level 1, 2, and 3 BLAS are in the directory LAPACK/BLAS/TESTING.To compile and run the Level 1, 2, and 3 BLAS test programs, go to LAPACK andtype make blas testing. The executable �les are called xblat s, xblat d, xblat c, andxblat z, where the (underscore) is replaced by 1, 2, or 3, depending upon the level ofBLAS that it is testing. All executable and output �les are created in LAPACK/BLAS/. Forthe Level 1 BLAS tests, the output �le names are sblat1.out, dblat1.out, cblat1.out,and zblat1.out. For the Level 2 and 3 BLAS, the name of the output �le is indicated onthe �rst line of the input �le and is currently de�ned to be SBLAT2.SUMM for the Level 2REAL version, and SBLAT3.SUMM for the Level 3 REAL version, with similar names for theother data types.If the tests using the supplied data �les were completed successfully, consider whetherthe tests were su�ciently thorough. For example, on a machine with vector registers, atleast one value ofN greater than the length of the vector registers should be used; otherwise,important parts of the compiled code may not be exercised by the tests. If the tests werenot successful, either because the program did not �nish or the test ratios did not passthe threshold, you will probably have to �nd and correct the problem before continuing. Ifyou have been testing a system-speci�c BLAS library, try using the Fortran BLAS for theroutines that did not pass the tests. For more details on the BLAS test programs, see [9]and [7].6.4 Create the LAPACK Librarya) Go to the directory LAPACK and edit the de�nition of lapacklib in the �le Makefileto specify the data types desired, as in the example in Section 5.3.b) Type make lapacklib. The make command can be run more than once to addanother data type to the library if necessary.11

`E': Epsilon (relative machine precision)`O': Overow threshold`P': Precision = Epsilon*Base`S': Safe minimum (often same as underow threshold)`U': Underow thresholdSome people may be familiar with R1MACH (D1MACH), a primitive routine for set-ting machine parameters in which the user must comment out the appropriate assignmentstatements for the target machine. If a version of R1MACH is on hand, the assignments inSLAMCH can be made to refer to R1MACH using the correspondenceSLAMCH(`U') = R1MACH(1)SLAMCH(`O') = R1MACH(2)SLAMCH(`E') = R1MACH(3)SLAMCH(`B') = R1MACH(5)The safe minimum returned by SLAMCH('S') is initially set to the underow value, butif 1=(overow) � (underow) it is recomputed as (1=(overow)) � (1 + "), where " is themachine precision.BE AWARE that the initial call to SLAMCH or DLAMCH is expensive. We suggestthat installers run it once, save the results, and hard-code the constants in the version theyput in their library.6.1.3 Installing SECOND and DSECNDBoth the timing routines and the test routines call SECOND (DSECND), a real functionwith no arguments that returns the time in seconds from some �xed starting time. Ourversion of this routine returns only \user time", and not \user time + system time". Theversion of SECOND in second.f calls ETIME, a Fortran library routine available on somecomputer systems. If ETIME is not available or a better local timing function exists, youwill have to provide the correct interface to SECOND and DSECND on your machine.The test program in secondtst.f performs a million operations using 5000 iterations ofthe SAXPY operation y := y+�x on a vector of length 100. The total time and megaopsfor this test is reported, then the operation is repeated including a call to SECOND on eachof the 5000 iterations to determine the overhead due to calling SECOND. The test programexecutable is called testsecond (or testdsecnd). There is no single right answer, but thetimes in seconds should be positive and the megaop ratios should be appropriate for yourmachine. The �les second.f and dsecnd.f are automatically copied to LAPACK/SRC/ forinclusion in the LAPACK library. 10

(UPLO.EQ.'U').OR.(UPLO.EQ.'u')The test program in lsametst.f tests all combinations of the same character in upperand lower case for A and B, and two cases where A and B are di�erent characters.Run the test program by typing testlsame. If LSAME works correctly, the only messageyou should see after the execution of testlsame isASCII character setTests completedThe �le lsame.f is automatically copied to LAPACK/BLAS/SRC/ and LAPACK/SRC/. Thefunction LSAME is needed by both the BLAS and LAPACK, so it is safer to have it inboth libraries as long as this does not cause trouble in the link phase when both librariesare used.6.1.2 Installing SLAMCH and DLAMCHSLAMCH and DLAMCH are real functions with a single character parameter thatindicates the machine parameter to be returned. The test program in slamchtst.f simplyprints out the di�erent values computed by SLAMCH, so you need to know somethingabout what the values should be. For example, the output of the test program executabletestslamch for SLAMCH on a Sun SPARCstation isEpsilon = 5.96046E-08Safe minimum = 1.17549E-38Base = 2.00000Precision = 1.19209E-07Number of digits in mantissa = 24.0000Rounding mode = 1.00000Minimum exponent = -125.000Underflow threshold = 1.17549E-38Largest exponent = 128.000Overflow threshold = 3.40282E+38Reciprocal of safe minimum = 8.50706E+37On a Cray machine, the safe minimum underows its output representation and the overowthreshold overows its output representation, so the safe minimum is printed as 0.00000and overow is printed as R. This is normal. If you would prefer to print a representablenumber, you can modify the test program to print SFMIN*100. and RMAX/100. for thesafe minimum and overow thresholds.Likewise, the test executable testdlamch is run for DLAMCH.The �les slamch.f and dlamch.f are automatically copied to to LAPACK/SRC/. If bothtests were successful, go to Section 6.1.3.If SLAMCH (or DLAMCH) returns an invalid value, you will have to create your ownversion of this function. The following options are used in LAPACK and must be set:`B': Base of the machine 9

The entire installation process will then be performed by typing make.Questions and/or comments can be directed to the authors as described in Section 6.8.If test failures occur, please refer to the appropriate subsection in Section 6.If disk space is limited, I would suggest building each data type separately and/or delet-ing all object �les after building the libraries. Likewise, all testing and timing executablescan be deleted after the testing and timing process is completed. The removal of all object�les and executables can be accomplished by the following:cd LAPACKmake clean6 Further Details of the Installation ProcessAlternatively, you can choose to run each of the phases of the installation process separately.The following sections give details on how this may be achieved.6.1 Test and Install the Machine-Dependent Routines.There are �ve machine-dependent functions in the test and timing package, at leastthree of which must be installed. They areLSAME LOGICAL Test if two characters are the same regardless of caseSLAMCH REAL Determine machine-dependent parametersDLAMCH DOUBLE PRECISION Determine machine-dependent parametersSECOND REAL Return time in seconds from a �xed starting timeDSECND DOUBLE PRECISION Return time in seconds from a �xed starting timeIf you are working only in single precision, you do not need to install DLAMCH andDSECND, and if you are working only in double precision, you do not need to installSLAMCH and SECOND.These �ve subroutines are provided in LAPACK/INSTALL, along with �ve test programs.To compile the �ve test programs and run the tests, go to LAPACK and type make install.The test programs are called testlsame, testslamch, testdlamch, testsecond, andtestdsecnd. If you do not wish to run all tests, you will need to modify the installde�nition in the LAPACK/Makefile to only include the tests you wish to run. Otherwise,all tests will be performed. The expected results of each test program are described below.6.1.1 Installing LSAMELSAME is a logical function with two character parameters, A and B. It returns .TRUE.if A and B are the same regardless of case, or .FALSE. if they are di�erent. For example,the expressionLSAME(UPLO, 'U')is equivalent to 8

and ranlib for your machine. If your architecture does not require ranlib to be run aftereach archive command (as is the case with CRAY computers running UNICOS, or HewlettPackard computers running HP-UX), set ranlib=echo. And �nally, you must modify theBLASLIB de�nition to specify the BLAS library to which you will be linking. If an optimizedversion of the BLAS is available on your machine, you are highly recommended to link tothat library. Otherwise, by default, BLASLIB is set to the Fortran 77 version.5.3 Edit the �le LAPACK/MakefileThis Makefile can be modi�ed to perform as much of the installation process as the userdesires. Ideally, this is the ONLY make�le the user must modify. However, modi�cationof lower-level make�les may be necessary if a speci�c routine needs to be compiled with adi�erent level of optimization.First, edit the de�nitions of blaslib, lapacklib, tmglib, testing, and timing in the�le LAPACK/Makefile to specify the data types desired. For example, if you only wish tocompile the single precision real version of the LAPACK library, you would modify thelapacklib de�nition to be:lapacklib:(cd SRC; $(MAKE) single)Likewise, you could specify double, complex, or complex16 to build the double pre-cision real, single precision complex, or double precision complex libraries, respectively. Bydefault, the presence of no arguments following the make command will result in the build-ing of all four data types. The make command can be run more than once to add anotherdata type to the library if necessary.If you are installing LAPACK on a Silicon Graphics machine, you must modify therespective de�nitions of testing and timing to betesting:(cd TESTING; $(MAKE) -f Makefile.sgi)andtiming: (cd TIMING; $(MAKE) -f Makefile.sgi)Next, if you will be using a locally available BLAS library, you will need to removeblaslib from the lib de�nition. And �nally, if you do not wish to build all of the librariesindividually and likewise run all of the testing and timing separately, you can modify theall de�nition to specify the amount of the installation process that you want performed.By default, the all de�nition is set toall: install lib blas_testing testing timing blas_timingwhich will perform all phases of the installation process { testing of machine-dependentroutines, building the libraries, BLAS testing, LAPACK testing, LAPACK timing, andBLAS timing. 7

or apply an orthogonal matrix given as a sequence of elementary transformations, and thereductions to bidiagonal, tridiagonal, or Hessenberg form for eigenvalue computations. Theoperation counts used in computing the megaop rates are computed from a formula; seeLAPACKWorking Note 41 [3]. The eigenvalue timing program is used with the eigensystemroutines and returns the execution time, number of oating point operations, and megaoprate for each of the requested subroutines. In this program, the number of operations iscomputed while the code is executing using special instrumented versions of the LAPACKsubroutines.5 Installing LAPACK on a Unix SystemInstalling, testing, and timing the Unix version of LAPACK involves the following steps:1. Read the tape or uncompress and tar the �le.2. Edit the �le LAPACK/make.inc.3. Edit the �le LAPACK/Makefile and type make.5.1 Read the Tape or Untar the FileIf you received a tar tape of LAPACK, type one of the following commands to unloadthe tape (the device name may be di�erent at your site):tar xvf /dev/rst0 (cartridge tape), ortar xvf /dev/rmt8 (9-track tape)Alternatively, if you received a tar �le of LAPACK via xnetlib, anonymous ftp, or theWorld Wide Web, enter the following two commands to untar the �le:uncompress �le (where �le is the name of the compressed tar file)tar xvf �le (where �le is the name of the tar file)This will create a top-level directory called LAPACK, which requires approximately 33 Mbytesof disk space. The total space requirements including the object �les and executables isapproximately 80 Mbytes for all four data types.5.2 Edit the �le LAPACK/make.incBefore the libraries can be built, or the testing and timing programs run, you must de�neall machine-speci�c parameters for the architecture to which you are installing LAPACK.All machine-speci�c parameters are contained in the �le LAPACK/make.inc. First, you willneed to modify the PLAT de�nition, which is appended to all library names, to specify thearchitecture to which you are installing LAPACK. This features avoids confusion in librarynames when you are installing LAPACK on more than one architecture. Next, you willneed to modify FORTRAN, OPTS, NOOPT, LOADER, LOADOPTS, ARCH, ARCHFLAGS, and RANLIBto specify the compiler, compiler options, loader, loader options, archiver, archiver options,6

4.1 LAPACK RoutinesThere are three classes of LAPACK routines:� driver routines solve a complete problem, such as solving a system of linear equationsor computing the eigenvalues of a real symmetric matrix. Users are encouraged to usea driver routine if there is one that meets their requirements. The driver routines arelisted in LAPACK Working Note 41 [3] and the LAPACK Users' Guide [1].� computational routines, also called simply LAPACK routines, perform a distinctcomputational task, such as computing the LU decomposition of an m-by-n matrixor �nding the eigenvalues and eigenvectors of a symmetric tridiagonal matrix usingthe QR algorithm. The LAPACK routines are listed in LAPACK Working Note 41 [3]and the LAPACK Users' Guide [1].� auxiliary routines are all the other subroutines called by the driver routines andcomputational routines. The auxiliary routines are listed in LAPACK Working Note41 [3] and the LAPACK Users' Guide [1].4.2 Level 1, 2, and 3 BLASThe BLAS are a set of Basic Linear Algebra Subprograms that perform vector-vector,matrix-vector, and matrix-matrix operations. LAPACK is designed around the Level 1, 2,and 3 BLAS, and nearly all of the parallelism in the LAPACK routines is contained in theBLAS. Therefore, the key to getting good performance from LAPACK lies in having ane�cient version of the BLAS optimized for your particular machine. If you have access toa library containing optimized versions of some or all of the BLAS, you should certainlyuse it (but be sure to run the BLAS test programs). If an optimized library of the BLAS isnot available, Fortran source code for the Level 1, 2, and 3 BLAS is provided on the tape.Users should not expect too much from the Fortran BLAS; these versions were written tode�ne the basic operations and do not employ the standard tricks for optimizing Fortrancode.The formal de�nitions of the Level 1, 2, and 3 BLAS are in [10], [8], and [6]. Copies ofthe BLAS Quick Reference card are available from the authors or netlib.4.3 LAPACK Test RoutinesThis release contains two distinct test programs for LAPACK routines in each datatype. One test program tests the routines for solving linear equations and linear leastsquares problems, and the other tests routines for the matrix eigenvalue problem. Theroutines for generating test matrices are used by both test programs and are compiled intoa library for use by both test programs.4.4 LAPACK Timing RoutinesThis release also contains two distinct timing programs for the LAPACK routines ineach data type. The linear equation timing program gathers performance data in megaopson the factor, solve, and inverse routines for solving linear systems, the routines to generate5

LAPACK

INSTALL

Machine depen-
dent routines

BLAS

SRC
L
L

Level 1 BLAS
Level 2 BLAS
Level 3 BLAS

TESTING
L
L

BLAS2 & 3 test
routines

SRC

LAPACK routines
& auxiliary routines

TESTING
L
L
L
L
L

LIN
L
L

MATGEN
L
L

EIG
L
L

Linear eqn.
test routines

Test matrix
generators

Eigensystem
test routines

TIMING

LIN
L
L

EIG
L
L

Linear eqn.
timing routines

Eigensystem
timing routinesFigure 1: Unix organization of LAPACKrefer to LAPACK Working Note 41, although the overview in section 4 applies to both theUnix and non-Unix versions.The software on the tar tape or tar �le is organized in a number of essential directoriesas shown in Figure 1. Please note that this �gure does not reect everything that iscontained in the LAPACK directory. Input and instructional �les are also located at variouslevels. Libraries are created in the LAPACK directory and executable �les are created inone of the directories BLAS, TESTING, or TIMING. Input �les for the test and timingprograms are also found in these three directories so that testing may be carried out in thedirectories LAPACK/BLAS, LAPACK/TESTING, and LAPACK/TIMING. A top-levelmake�le in the LAPACK directory is provided to perform the entire installation procedure.4 Overview of Tape ContentsMost routines in LAPACK occur in four versions: REAL, DOUBLE PRECISION,COMPLEX, and COMPLEX*16. The �rst three versions (REAL, DOUBLE PRECISION,and COMPLEX) are written in standard Fortran 77 and are completely portable; theCOMPLEX*16 version is provided for those compilers which allow this data type. Forconvenience, we often refer to routines by their single precision names; the leading `S' canbe replaced by a `D' for double precision, a `C' for complex, or a `Z' for complex*16. ForLAPACK use and testing you must decide which version(s) of the package you intend toinstall at your site (for example, REAL and COMPLEX on a Cray computer or DOUBLEPRECISION and COMPLEX*16 on an IBM computer).4

1 IntroductionLAPACK is a linear algebra library for high-performance computers. The library in-cludes Fortran 77 subroutines for the analysis and solution of systems of simultaneous linearalgebraic equations, linear least-squares problems, and matrix eigenvalue problems. Our ap-proach to achieving high e�ciency is based on the use of a standard set of Basic LinearAlgebra Subprograms (the BLAS), which can be optimized for each computing environ-ment. By con�ning most of the computational work to the BLAS, the subroutines shouldbe transportable and e�cient across a wide range of computers.This working note describes how to install, test, and time this release of LAPACK on aUnix System.The instructions for installing, testing, and timing are designed for a person whoseresponsibility is the maintenance of a mathematical software library. We assume the installerhas experience in compiling and running Fortran programs and in creating object libraries.The installation process involves reading the tape or tarring the �le, creating a set oflibraries, and compiling and running the test and timing programs.Section 3 describes how the �les are organized on the tape or �le, and Section 4 givesa general overview of the parts of the test package. Step-by-step instructions appear inSection 5.For users desiring additional information, please refer to LAPACK Working Note 41.2 Revisions Since the First Public ReleaseSince its �rst public release in February, 1992, LAPACK has had several updates, whichhave encompassed the introduction of new routines as well as extending the functionalityof existing routines. The �rst update, June 30, 1992, was version 1.0a; the second update,October 31, 1992, was version 1.0b; the third update, March 31, 1993, was version 1.1;and �nally, September 30, 1994, version 2.0. All LAPACK routines reect the currentversion number with the date on the routine indicating when it was last modi�ed. For moreinformation on revisions please refer to the LAPACK release notes �le on netlib, or thesecond edition of the LAPACK Users' Guide.We plan to have only one or two updates a year, and provide a PRERELEASE directoryon netlib to contain new software that is being considered for inclusion. Users can then pro-vide input and experimentation with these prerelease routines. The tar �le lapack.tar.zthat is available on netlib is always the most up-to-date.On-line manpages (tro� �les) for LAPACK driver and computational routines, as wellas most of the BLAS routines, are available via the lapack index on netlib.3 File FormatThe software for LAPACK is distributed in the form of a compressed tar �le (via xnetlib,anonymous ftp, or the World Wide Web) or a Unix tar tape from NAG (Numerical Al-gorithms Group, Inc.), which contains the Fortran source for LAPACK, the Basic LinearAlgebra Subprograms (the Level 1, 2, and 3 BLAS) needed by LAPACK, the testing pro-grams, and the timing programs. Users who wish to have a non-Unix installation should3

Contents1 Introduction : 32 Revisions Since the First Public Release : 33 File Format : 34 Overview of Tape Contents : 44.1 LAPACK Routines : 54.2 Level 1, 2, and 3 BLAS : 54.3 LAPACK Test Routines : 54.4 LAPACK Timing Routines : 55 Installing LAPACK on a Unix System : 65.1 Read the Tape or Untar the File : 65.2 Edit the �le LAPACK/make.inc : 65.3 Edit the �le LAPACK/Makefile : 76 Further Details of the Installation Process : : : : : : : : : : : : : : : : : : : 86.1 Test and Install the Machine-Dependent Routines. : : : : : : : : : : 86.1.1 Installing LSAME : 86.1.2 Installing SLAMCH and DLAMCH : : : : : : : : : : : : : 96.1.3 Installing SECOND and DSECND : : : : : : : : : : : : : : 106.2 Create the BLAS Library : 116.3 Run the BLAS Test Programs : 116.4 Create the LAPACK Library : 116.5 Create the Test Matrix Generator Library : : : : : : : : : : : : : : : 126.6 Run the LAPACK Test Programs : : : : : : : : : : : : : : : : : : : 126.6.1 Testing the Linear Equations Routines : : : : : : : : : : : 126.6.2 Testing the Eigensystem Routines : : : : : : : : : : : : : : 136.7 Run the LAPACK Timing Programs : : : : : : : : : : : : : : : : : : 146.7.1 Timing the Linear Equations Routines : : : : : : : : : : : 156.7.2 Timing the BLAS : 156.7.3 Timing the Eigensystem Routines : : : : : : : : : : : : : : 166.8 Send the Results to Tennessee : 17Bibliography : 192

LAPACK Working Note 81Quick Installation Guide for LAPACK on Unix Systems1Jack Dongarra and Susan OstrouchovDepartment of Computer ScienceUniversity of TennesseeKnoxville, Tennessee 37996-1301REVISED: VERSION 2.0, September 30, 1994AbstractThis working note describes how to install, test, and time version 2.0 of LAPACK, a linearalgebra package for high-performance computers, on a Unix System. Non-Unix installa-tion instructions and further details of the testing and timing suites are only contained inLAPACK Working Note 41, and not in this abbreviated version.

1This work was supported by NSF Grant No. ASC-8715728.1

