LAPACK Working Note 82
Call Conversion Interface (CCI) for LAPACK/ ESSIL*

Jack Dongarra and Michael Kolatis
Department of Computer Science
University of Tennessee

Knoxville, Tennessee 37996-1301
October 3, 1994

1 Overview

This document reviews the initial version of the Call Conversion Interface (CCI) from LAPACK to the
Engineering and Scientific Subroutine Library (ESSL). The CCI substitutes a call to an ESSL subroutine
in place of an LAPACK routine whenever ESSL subroutines provide either functional or near-functional
equivalence. In either case, the ESSL subroutine will be used only if its calling sequence can be made to
fit that of LAPACK in structure. Finally, the CCI consists of several parts: a list of possible subroutine
matchings, interfacing requirements, the successes and failures of those matchings, timings (LAPACK vs.

the CCI), and availability.

1.1 Minimum Software Requirements
This enablement requires the following software:

e AIX 3.2)5

e XLF 3.1

e ESSL 2.2.1.1

e LAPACK 2.0

2 Subroutine Matchings

*ESSL is a trademark of IBM.
T This work supported in part by the Office of Scientific Computing, U.S. Department of Energy, under Contract DE-ACO05-
840R21400 and in part by IBM.

Subroutine Matchings
Linear Algebra Eigensystem

types LAPACK ESSL types LAPACK ESSL
S,D,CZ | .GETRF _GEF SD,CZ | _GEEV GEEV
S,D,CZ | .GETRS | .GESM | S,D,C,Z | .GEEVX | _GEEV

S,D _GETRI | _.GEICD S,D SPEV SPEV
S,D,CZ | _POTRF _POF S,D SPEVX SPSV
S,D,CZ | -POTRS | _POSM CZ _HPEV _HPEV

S,D _POTRI | _POICD CZ _HPEVX | _HPSV

S,D _PPTRF _PPF S,D GEGV GEGV

S,D _PPTRI | _PPICD S,D SYGV SYGV

S,D _PBTRF | _PBCHF Others

S,D -GESVD | _.GESVF S,D _TRTRI _TRI

S,.D _GELSS | _GESVS S,D _TPTRI _TPI

S,D _GELS -GELLS || S,D,C,Z | _.LASWP | _.LASWP

Table 1: This is a list of all the possible subroutine pairings (LAPACK <« ESSL) for the initial version of
the CCI.

Table 1 holds the list of LAPACK/ESSL subroutine pairings. The subroutine types (ie. types) in Table 1
represent {S} single precision, {D} double precision, {C} complex and {Z} double complex.

3 Interfacing Requirements

The interface subroutines use the following structure. (See also Section 6.1).
1. The full header including the following is used verbatim from the replaced subroutine:

e Subroutine statement and arguments.

o LAPACK interface code, including modifications indicating that the particular subroutine is for
the ESSL enablement.

o Argument declarations, verbatim from LAPACK routine.
e Purpose statement, verbatim from LAPACK.

e ESSL special modifications clause, describing any special modifications necessary for the ESSL
enablement.

o Argument list, verbatim from LAPACK. The range of arguments allowed should be functionally
equivalent to the range for LAPACK.

2. Local arguments (by and large, the same as for LAPACK-with some omissions).

3. EINFO, ERRSAV, ERRSET and ERRSTR are declared and externalized, as necessary.

10.

4

The usual LAPACK argument checking is used.
All software and documentation conforms to LAPACK “standards”.

Calls to EINFO, ERRSAV, ERRSET and ERRSTR do not allow computational errors to cause
loss of program control. All calls to EINFO are of the three argument form, with integers IERR1 and
IERR2 acting as the error information arguments. All calls to ERRSAV and ERRSTR . utilize a
CHARACTERH*S variable in the form SV zzzz where zzzz is the four-digit ESSL error number. Finally,
these calls are never made when they are not needed.

Call to the ESSL computational subroutine. Some calls include an alternate return for error handling.

Any postcomputation needed. Then, control skips around error handling code to common ERRSTR
call to restore ESSL error handling.

Computation error handling. ESSL error codes are mapped onto LAPACK error codes, if possible. If
not, the necessary LAPACK routines are called to determine the proper LAPACK error codes.

After ESSL ERRSTR, control is returned to calling program.

Working Description/Status

This section describes the level of ESSL enablement that was given to each LAPACK routine. If a routine
is fully enabled, then it has passed the entire LAPACK test suite. If a routine could not be enabled, the
limiting factors are described. If workspace limitations are present, the LAPACK workspace size requirement
(usually, LWORK) is given with the ESSL workspace size requirement (always NAUX).

4.1

4.1.1

Linear Algebra: 26/32 routines
_GETRF < _GEF: 4/4 routines

_GETRF calls .GEF when the input matrix is square (M = N). In all other cases, GETRF is the LAPACK
routine GETRF.

4.1.2

_GETRS < _GESM: 4/4 routines

This pair is fully enabled.

4.1.3

_GETRI < _GEICD: 2/2 routines

This pair is fully enabled.

4.1.4

POTRF < _POF: 4/4 routines

This pair is fully enabled.

Architecture | Cache size | Line size | Cutover Value = Half Band Width
POWERI1 32K 64B 72
POWERI1 64K 64B 100
POWERI1 64K 128B 100
POWER2 128K 128B 140
POWER2 256K 256B 190

Table 2: IBM-supplied tuning information for the crossover values in ESSL routine DPBCHF: the crossover
value reflects when the subroutine uses either a narrow band or wide band algorithm for the factorization.

4.1.5 _POTRS < _POSM: 4/4 routines

This pair is fully enabled.

4.1.6 _POTRI < _POICD: 2/2 routines

This pair is fully enabled.

4.1.7 _PPTRF < _PPF: 2/2 routines

_PPTRF calls _PPF when the input matrix A is stored in lower-packed format only. _.PPF does not handle
upper-packed format; in this case, _PPTRF is the LAPACK routine _.PPTRF.

4.1.8 _PPTRI < _PPICD: 2/2 routines

_PPTRI calls _"PPICD when the input matrix A is stored in lower-packed format only. _PPICD does not
handle upper-packed format; in this case, _PPTRI 1s the LAPACK routine _PPTRI.

4.1.9 _PBTRF < _PBCHEF: 2/2 routines

_PBTRF calls _PBCHF when the input matrix A is stored in lower-band-packed format only. _PBCHF does
not handle upper-band-packed format; in this case, "PBTRF is the LAPACK routine _PBTRF.

For performance reasons, divides are done in a way that reduces the effective exponent range for which
DPBCHF works properly, only when processing narrow band widths (see Table 2); therefore, elements less
than [2145] are required.

4.1.10 _GESVD < _GESVF: 0/2 routines

_GESVD modifies input matrix A based upon user request whereas _GESVF destroys A. Thus, in simply
finding singular values, .GESVD returns A in bidiagonal form, when all the singular values fail to converge,
with possible info from orthogonal matrices Q and P; _.GESVF does not. However, this transformation of A is
not documented for .GESVD; rather, it is a biproduct of a routine that is called by _.GESVD, called _BDSQR.
Also, if the SVD algorithm fails to converge, .GESVD returns the number of super- or subdiagonals that

failed to converge in INFO; but, .GESVF returns the position of a singular value that did not converge. Since
_GESVF destroys any information about A, it is not possible to duplicate the _.GESVD INFO information.
This is a functionality mismatch, and no enablement is possible. Further, the destruction of A and B by
_GESVF makes it impossible to compute any of the orthogonal matrices U, U, V| and V7 due to limitations
on workspace. (_GESVD workspace varies in size but is guaranteed to work any algorithm with LIWORK >
MAX(3*MIN(M,N)+MAX (M N),5*MIN(M,N)-4) & NAUX can range from needing at least N+ MAX(M,N)
to 2N+MAX(M,N,NB) where NB is equivalent to LAPACK’s NRHS - the number of righthandsides.)

4.1.11 _GELSS < _GESVS: 0/2 routines

In Section 4.1.10, _.GESVD and _GESVF do compute correct factorizations; however, the results are specific
to their respective solve routines, .GELSS and _GESVS. Consequently, without an enablement for . GESVD
< _GESVF, the wrong results would be produced. Thus, it appears possible to use the combination of
_GESVF and _GESVS to enable _GELSS; but, all of the problems that occur in using . GESVF still apply.
This is a functionality mismatch, and no enablement is possible. (.GELSS workspace varies in size but is
guaranteed to work any algorithm with LTWORK > 3*N+MAX(2*N NRHS,M) if M > N else LWORK should
be > 3*M+MAX(2*M ,NRHS,N) & _GESVS has no extra workspace requirement.)

4.1.12 _GELS <« _GELLS: 0/2 routines

_GELS and _GELLS both use QR to solve the minimal norm least squares solution of AX = B. However,
_GELS returns A with either its QR or LQ factorization; whereas, .GELLS destroys A. This is a functionality
mismatch, and no enablement is possible. Also, for .GELLS, if LDB > MAX(M,N), then matrix B (input)
and matrix X (output) can be the same; otherwise, the results are unpredictable. Since .GELS always
has matrix B and X the same, it would be necessary to have extra workspace (for _GELLS’ X) to make
sure _GELSS worked in all cases. Also, -GELS puts the residual in matrix B on output; but, .GELLS has
a separate vector RN that takes on this value-thus, the need for more extra workspace. Further, .GELS
already has an extra workspace requirement. (LWORK > MIN(M,N) + MAX(1,M,N,NRHS) & NAUX >
3N + MAX(N,NB) where NB = NRHS.)

4.2 Eigensystem: 0/20 routines
4.2.1 _GEEV < _GEEV: 0/4 routines

There is a name conflict here. No enablement is possible. LAPACK stores S&D eigenvalues in real arrays
WR and WI whereas ESSL uses complex array W. LAPACK stores S&D right eigenvectors in real matrix
VR whereas ESSL uses complex array Z. These type mismatch problems do not exist in the C&Z routines.
In eigenvector calculation, ESSL utilizes LOGICAL array SELECT to determine which eigenvectors are
calculated, and ESSL only finds the right eigenvectors; conversely, LAPACK has no equivalent of SELECT
and will find all the eigenvectors based on user request. Of course, it would be possible to calculate the left
eigenvectors by using the ESSL routine on A7 but A is destroyed by the ESSL routine & there is certainly
not enough storage for a copy of A. So, it appears that as long as LAPACK’s JOBVL = "N’ (left eigenvectors
are not computed), then this routine will be functionally the same & LAPACK’s WORK will be able to
provide enough workspace for ESSL’s AUX in S&D routines. But, in the C&Z routines, only the eigenvalues

can be computed. (LAPACK’s complex routines use RWORK with size 2N & ESSL’s complex routines
need NAUX > 3N for eigenvector computation.)

4.2.2 _GEEVX < _GEEV: 0/4 routines

There is a name conflict here (see Section 4.2.1). No enablement is possible. ESSL routine automatically
balances input matrix A w/o capability of returning LAPACK’s ILO, THI, and SCALE array which contain
all sorts of information used to balance A. Further, only a partial enablement would be possible given
LAPACK’s balancing options given by input variable BALANC. All the problems in .GEEV < _GEEV
enablement still apply.

4.2.3 _SPEV < SPEV: 0/2 routines

There is a name conflict here. No enablement is possible. A suggestion would be for ESSL to continue the
use of the name _SLEV which was used in earlier versions of ESSL. ESSL does not offer information that will
allow LAPACK’s INFO to return with the number of off-diagonal elements of an intermediate tridiagonal
form that failed to converge to zero. Also, LAPACK returns information about input matrix A’s reduction
to tridiagonal form in packed array AP; ESSL does not offer this information.

4.2.4 _SPEVX < _SPSV: 0/2 routines

There is a name conflict here. LAPACK’s linear algebra _SPSV conflicts with ESSL’s eigensystem _SPSV.
W/o a name change, it would be necessary to remove all of the dependencies on SPSV in the LAPACK
library. This seems to be a compromise of this enablement. ESSL does not offer information that will allow
LAPACK’s INFO and IFAIL to return with information about the number and indices of eigenvectors that
failed to converge. Also, LAPACK returns information about input matrix A’s reduction to tridiagonal
form in packed array AP; ESSL does not offer this information. Finally, there is only enough workspace
offered by LAPACK for ESSL to compute eigenvalues. (WORK’s size is 8N & AUX needs > 9N to compute
eigenvectors.)

4.2.5 _HPEV < HPEV: 0/2 routines

There is a name conflict here. No enablement is possible. A suggestion would be for ESSL to continue the
use of the name _HLEV which was used in earlier versions of ESSL. ESSL does not offer information that will
allow LAPACK’s INFO to return with the number of off-diagonal elements of an intermediate tridiagonal
form that failed to converge to zero. Also, LAPACK returns information about input matrix A’s reduction
to tridiagonal form in packed array AP; ESSL does not offer this information.

4.2.6 _HPEVX < HPSV: 0/2 routines

There is a name conflict here. LAPACK’s linear algebra _HPSV conflicts with ESSL’s eigensystem _-HPSV.
W/o a name change, it would be necessary to remove all of the dependencies on _HPSV in the LAPACK
library. This seems to be a compromise of this enablement. ESSL does not offer information that will allow
LAPACK’s INFO and IFAIL to return with information about the number and indices of eigenvectors that
failed to converge. Also, LAPACK returns information about input matrix A’s reduction to tridiagonal form

in packed array AP; ESSL does not offer this information. Finally, there is only enough workspace offered
by LAPACK for ESSL to compute eigenvalues. (RWORK’s size is 6N & AUX needs > 11N to compute
eigenvectors.)

4.2.7 _GEGV < _GEGYV: 0/2 routines

There is a name conflict here. No enablement is possible. LAPACK stores alpha (the numerators of the
eigenvalues) in real arrays ALPHAR and ALPHAT whereas ESSL uses complex array ALPHA. Eigenvectors
are returned in LAPACK in real array VR; in ESSL, they are in complex array Z. At this time, LAPACK’s
INFO is extremely dependent on other LAPACK routines, and no match seems possible with ESSL.

4.2.8 _SYGV < SYGV: 0/2 routines

There is a name conflict here. No enablement is possible. Only a partial enablement would be allowed
because ESSL only allows for A in lower storage mode only (LAPACK allows upper and lower). LAPACK’s
B returns the triangular factor U or L; ESSL’s B is destroyed. Also, LAPACK’s INFO returns the number
of off-diagonal elements that failed to converge; ESSL does not offer this information. In LAPACK there is
an option for the eigenvectors to be returned in A, but ESSL returns eigenvectors in Z. It is possible for Z to
be copied to A, but there is no guarantee that enough workspace is provided. (LWORK > MAX(1,3*N-1)
& NAUX > 2N and Z = N). However, there is enough workspace for an eigenvalue computation only.

4.3 Others: 4/8 routines
4.3.1 _TRTRI «< _TRI: 2/2 routines

This pair is fully enabled.

4.3.2 _TPTRI « _TPI: 2/2 routines

This pair is fully enabled.

4.3.3 _LASWP < LASWP: 0/4 routines

There is a name conflict here. _-LASWP does not exist for this version of ESSL, and no enablement is
possible.

5 Timing Comparisons

Timing was performed on both an IBM RISC System/6000 model 550 and a model 590. The timer used
was READRTC—an IBM-supplied microsecond timing routine. Compile switches were set as follows:

e On the 550, -u -03 -gMAXMEM=8192 were set.
e On the 590, -u -03 -gMAXMEM=8192 -qarch=pwrz were set.

The standard LAPACK timing routines were used: these routines provide a comprehensive timing suite and
are suitable for a performance comparison of the fortran LAPACK routines against the CCI routines. Most
of the results for the {D} double precision routines are presented in the Tables.

Table 3: There are two columns under each subroutine:
the right is the CCI w/ ESSL BLAS. NB is the number of blocks for the fortran LAPACK routines only;
ESSL times are independent of NB. For each NB, LDA = 513 (LDA is the leading dimension of the matrix)
and, if necessary, UPLO = 'L’ (operations performed with the lower triangle of the input matrix). Finally,
all matrices are square w/ order N = 500.

Mflops for LAPACK vs. the CCI on an RS/6000-550

NB | DGETRF | DPOTRF | DPBTRF® | DGETRI DPOTRI DTRTRI
1 19.7 | 644 | 26.1 | 724 | 20.6 | 67.2 | 31.2 | 70.0 | 27.9 | 71.0 | 26.5 | 70.5
16 | 464 | 64.4 | 55.9 | 72.4 | 485 | 67.2 | 56.9 | 70.0 | 62.3 | 71.0 | 55.7 | 70.5
32 | 49.1 | 644 | 62.2 | 724 | 52.6 | 67.2 | 63.2 | 70.0 | 65.7 | 71.0 | 62.2 | 70.5
48 | 47.7 | 644 | 62.2 | 724 | 51.9 | 67.2 | 65.1 | 70.0 | 66.3 | 71.0 | 64.1 | 70.5
64 | 464 | 644 | 64.1 | 724 | 53.6 | 67.2 | 66.1 | 70.0 | 66.2 | 71.0 | 64.5 | 70.5

¢LDA = 602, N = 1000, K = 200 (the half band width)

the left is fortran LAPACK w/ ESSL BLAS, and

Mflops for LAPACK vs. the CCI on an RS/6000-590
NB DGETRF DPOTRF DPBTRF* DGETRI DPOTRI DTRTRI
1 69.9 | 219.9 | 122.9 | 245.8 | 129.7 | 233.4 | 136.4 | 237.7 | 151.7 | 240.8 | 109.7 | 245.1
16 | 169.8 | 219.9 | 181.7 | 245.8 | 194.5 | 233.4 | 200.5 | 237.7 | 228.7 | 240.8 | 189.4 | 245.1
32 | 180.9 | 219.9 | 209.0 | 245.8 | 184.2 | 233.4 | 221.9 | 237.7 | 249.1 | 240.8 | 208.3 | 245.1
48 | 180.9 | 219.9 | 209.0 | 245.8 | 184.3 | 233.4 | 228.0 | 237.7 | 219.6 | 240.8 | 208.3 | 245.1
64 | 187.0 | 219.9 | 209.0 | 245.8 | 175.0 | 233.4 | 228.0 | 237.7 | 219.6 | 240.8 | 219.3 | 245.1

Table 4: There are two columns under each subroutine:
the right is the CCI w/ ESSL BLAS. NB is the number of blocks for the fortran LAPACK routines only;
ESSL times are independent of NB. For each NB, LDA = 513 (LDA is the leading dimension of the matrix)
and, if necessary, UPLO = 'L’ (operations performed with the lower triangle of the input matrix). Finally,
all matrices are square w/ order N = 500.

¢LDA = 602, N = 1000, K = 200 (the half band width)

the left is fortran LAPACK w/ ESSL BLAS, and

Mflops for LAPACK vs. the CCI on both the 550 and 590
DGETRS DPOTRS
NRHS 550 590 550 590
1 27.0 | 28.0 | 95.6 | 105.8 | 32.6 | 32.7 | 105.3 | 109.9
2 27.6 | 280 | 99.9 | 101.4 | 32.8 | 32.2 | 110.2 | 105.7
16 59.7 | 59.2 | 199.8 | 199.8 | 59.4 | 60.0 | 181.1 | 196.0
100 68.1 | 70.4 | 227.0 | 237.9 | 72.5 | 72.5 | 245.9 | 248.7

Table 5: There are two columns under each architecture: the left is fortran LAPACK w/ ESSL BLAS, and
the right is the CCI w/ ESSL BLAS. NRHS is the number of right hand sides. For each NRHS, LDA = 513
(LDA is the leading dimension of the matrix) and, if necessary, UPLO = 'L’ (operations performed with the
lower triangle of the input matrix). Finally, all matrices are square w/ order N = 500.

Mflops for LAPACK vs. the CCI on both the 550 and 590

DPPTRF DPPTRI DTPTRI

N 550 590 550 590 550 590

50 | 18.8 | 48.2 | 57.7 | 170.5 | 185 | 46.5 | 48.6 | 1554 | 15.2 | 44.8 | 45.1 | 145.6
100 | 24.4 | 645 | 93.6 | 232.6 | 31.3 | 53.0 | 91.4 | 213.6 | 27.6 | 57.7 | 81.3 | 209.6
200 | 23.7 | 59.2 | 115.1 | 235.1 | 35.7 | 61.5 | 136.5 | 224.8 | 33.2 | 63.3 | 125.5 | 224.8
300 | 23.5 | 64.0 | 113.1 | 226.1 | 37.8 | 66.2 | 133.7 | 233.9 | 35.8 | 65.4 | 133.3 | 227.3
400 | 23.6 | 67.1 | 100.4 | 227.1 | 38.9 | 66.0 | 118.7 | 230.5 | 37.1 | 65.2 | 118.5 | 237.0
500 | 23.3 | 67.5 | 99.5 | 232.2 | 39.7 | 66.1 | 117.5 | 231.8 | 37.7 | 66.0 | 115.7 | 231.5

Table 6: There are two columns under each architecture: the left is fortran LAPACK w/ ESSL BLAS, and
the right is the CCI w/ ESSL BLAS. LDA = 513 (LDA is the leading dimension of the matrix) and, if
necessary, UPLO = 'L’ (operations performed with the lower triangle of the input matrix). N is the order
of the square input matrix.

10

6 Availability

The CCI will be distributed similarly to LAPACK itself. Along with the CCI routines, three text files and
one makefile will be distributed to guide the incorporation of the CCI. An example CCI routine plus the
other four files follow.

6.1 Example
SUBROUTINE DGETRF(M, N, A, LDA, IPIV, INFO)

-—- LAPACK routine (version 2.0) —-
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
March 31, 1993

-- ESSL CCI enablement (version 1.0) —--
Univ. of Tennessee, IBM Kingston and Yorktown,
August 1, 1994

* X K X X X X X ¥ ¥ *

. Scalar Arguments ..
INTEGER INFO, LDA, M, N

* ¥

. Array Arguments ..
INTEGER IPIV(*)
DOUBLE PRECISION A(LDA, *)

* ¥ ¥

Purpose

*

DGETRF computes an LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges.

The factorization has the form

A=P*L*U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

ESSL Enablement Comments

* X K X K X X K X K X ¥ ¥ X *

11

* K X K X ¥ ¥

*

¥ K K X X X K K X K K X K X K K X K X K O ¥ K X K X ¥ ¥ ¥ *

This is a stub routine that calls the ESSL subroutine DGEF when

the input matrix is square (M = N). If M.ne.N, DGETRF is the

LAPACK routine DGETRF (the right-looking Level 3 BLAS version of

the algorithm). In all cases, the results returned will be identical
in structure to those of the normal LAPACK routine DGETRF.

Arguments

LDA

IPIV

INFO

(input) INTEGER
The number of rows of the matrix A. M >= 0.

(input) INTEGER
The number of columns of the matrix A. N >= 0.

(input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix to be factored.

On exit, the factors L and U from the factorization

A = P#L#U; the unit diagonal elements of L are not stored.

(input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

(output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).

(output) INTEGER

= 0: successful exit

0: if INFO = -i, the i-th argument had an illegal value

0: if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.

<
>

. Parameters

DOUBLE PRECISION ONE, ZERO
PARAMETER (ONE = 1.0D+0, ZERO = 0.0D+0)

. Local Scalars

CHARACTER#*8 SV2103
INTEGER I, IERR1, IERR2, IINFO, J, JB, NB

12

* ¥

* ¥

* X ¥ ¥ ¥

* ¥ X ¥ ¥

. External Subroutines ..

EXTERNAL DGEF, DGEMM, DGETF2, DLASWP, DTRSM, EINFO,

$ ERRSAV, ERRSET, ERRSTR, XERBLA

. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV

Intrinsic Functions ..
INTRINSIC MAX, MIN

. Executable Statements ..
Test the input parameters.

INFO = 0

IF(M.LT.0) THEN
INFO = -1

ELSE IF(N.LT.0) THEN
INFO = -2

ELSE IF(LDA.LT.MAX(1, M)) THEN
INFO = -4

END IF

IF(INFO.NE.O) THEN
CALL XERBLA(’DGETRF’, -INFO)
RETURN

END IF

Quick return if possible

IF(M.EQ.0 .OR. N.EQ.0)
$ RETURN

IF(M.EQ.N) THEN
Execute ESSL routine DGEF
ESSL error-handling initialization
CALL EINFO(O, IERR1, IERR2)

CALL ERRSAV(2103, SV2103)
CALL ERRSET(2103, 256, -1, 0, 0, 2103)

13

* ¥ ¥ *

* K ¥ K X ¥ ¥

* ¥ X ¥ ¥

10

20

30

Call to appropriate ESSL routine

CALL DGEF(A, LDA, N, IPIV, *10)
GO TO 30

ESSL Run-time error: use error information to
determine INFO and continue processing

CONTINUE
CALL EINFO(2103, IERR1, IERR2)

IERR1 gets the column number of the LAST zero diagonal element;
BUT, INFO needs to return the column number of the FIRST

zero diagonal element. So, if an error is reported, we
re-examine all the elements on the diagonal up to IERR1

to find the correct value for INFO.

DO 20 J = 1, IERR1
IF(AC J, J).EQ.ZERO) THEN

INFO = J

GO TO 30
END IF
CONTINUE

Restore setting of parameters for error 2103

CONTINUE
CALL ERRSTR(2103, SV2103)

ELSE

Execute LAPACK code for DGETRF
Determine the block size for this environment.

NB = ILAENV(1, ’DGETRF’, ’® ’, M, N, -1, -1)
IF(NB.LE.1 .OR. NB.GE.MIN(M, N)) THEN

Use unblocked code.

CALL DGETF2(M, N, A, LDA, IPIV, INFO)
ELSE

Use blocked code.

14

* ¥ X *

40

@ &H

DO 50 J = 1, MIN(M, N), NB

JB = MIN(MIN(M, N)-J+1, NB)

Factor diagonal and subdiagonal blocks and test for exact

singularity.

CALL DGETF2(M-J+1, JB, A(J, J), LDA, IPIV(J),
IINFO)

Adjust INFO and the pivot indices.

IF(INFO.EQ.O .AND. IINFO.GT.O)
INFO = IINFO + J - 1

DO 40 I = J, MIN(M, J+JB-1)
IPIV(I) =J -1 + IPIV(I)

CONTINUE

Apply interchanges to columns 1:J-1.
CALL DLASWP(J-1, A, LDA, J, J+JB-1, IPIV, 1)
IF(J+JB.LE.N) THEN

Apply interchanges to columns J+JB:N.

CALL DLASWP(N-J-JB+1, A(1, J+JB), LDA, J, J+JB-1,
IPIV, 1)

Compute block row of U.

CALL DTRSM(’Left’, ’Lower’, ’No transpose’, ’Unit’,
JB, N-J-JB+1, ONE, A(J, J), LDA,
A(C J, J+JB), LDA)

IF(J+JB.LE.M) THEN

Update trailing submatrix.

CALL DGEMM(’No transpose’, ’No transpose’,
M-J-JB+1, N-J-JB+1, JB, -ONE,
AC J+JB, J), LDA, AC J, J+JB), LDA,
ONE, A(J+JB, J+JB), LDA)
END IF
END IF

15

50

CONTINUE
END IF
END IF
RETURN

End of DGETRF

END

16

6.2 CCI_.README

CCI README FILE

VERSION 1.0 : August 1, 1994
DATE: August 1, 1994

CCI is a Call Conversion Interface that allows LAPACK users to
incorporate the optimized performance of the Engineering and
Scientific Subroutine Library (ESSL) when using an IBM RS/6000
architecture.

CCI is available via netlib and xnetlib as a tar file. A CCI
performance report is available as an LAPACK Working Note.

To receive a list of available reports, send email to
netlib@ornl.gov with a message of the form:

send index from lapack/lawns.

To utilize this package, the following software is required:

-— AIX 3.2.5
-—- XLF 3.1
-— ESSL 2.
-— LAPACK

2.1.1

2.0

The package includes several LAPACK/SRC/*.f files that will
access routines in ESSL to significantly speed up execution time
while maintaining LAPACK testing standards.

A CCI_README file containing the information in this letter and a
CCI_QUICK_INSTALL file containing a quick reference guide to the
installation process are located in the LAPACK directory.
Further, a new make.inc file is provided within the LAPACK
directory to make the CCI incorporation even easier.

A CCI_NOTES file contains all documentation on the CCI routines
available in this version.

Remember that LAPACK with the CCI will always need to be used

with the ESSL library when compiling your programs; further, in
order to prevent linking problems, LAPACK must be linked BEFORE
ESSL. For example, on an IBM RS\6000, a file would be compiled

17

as follows:
x1f filename.f lapack.a —-lessl
Please send comments, corrections, and suggestions to:
Dr. Jack Dongarra
107 Ayres Hall
Department of Computer Science
University of Tennessee

Knoxville, TN 37996-1301

Office: (615) 974-8295
Fax : (615) 974-8296

Email : dongarra@cs.utk.edu

18

6.3 CCI_.QUICK_INSTALL

Quick Reference Guide to Incorporate the CCI

1. Uudecode, uncompress and tar the file on
top of the existing LAPACK directory.

uudecode cci.uu

uncompress cci.tar.Z
tar xvf cci.tar

2. Remove the old LAPACK library so that it
may be replaced by a new LAPACK library
containing the CCI.

cd LAPACK
rm lapack.a

3. Edit the LAPACK/make.inc file to create the
appropriate link to ESSL for the IBM
architecture that you are using.

For example, on an IBM RS/6000-550, choose
BLASLIB = -lessl

as the library name for this architecture.

4. Make the new LAPACK library containing the
CCI.

make lapacklib

19

6.4 CCI_NOTES

CCI NOTES FILE

VERSION 1.0 : August 1, 1994
DATE: August 1, 1994

This Notes file contains any available documentation that will
allow the best use of each subroutine available in the CCI.
Information is listed alphabetically by subroutine name.

Exact documentation can be obtained by examining the

ESSL Enablement Comments present in each CCI subroutine.

CGETRF: supply square matrix (M = N)
CGETRS: wuse as is
CPOTRF: wuse as is
CPOTRS: wuse as is
DGETRF: supply square matrix (M = N)

DGETRI: use as is

DGETRS: use as is

DPBTRF: supply lower band format (UPLO = °L’), and
scale input matrix so that exponents < 10**146

DPOTRF: use as is

DPOTRI: use as is

DPOTRS: use as is

DPPTRF: supply lower packed format (UPLO = ’L’)

DPPTRI: supply lower packed format (UPLO = ’L’)

DTPTRI: use as is

DTRTRI: use as is

SGETRF: supply square matrix (M = N)

SGETRI: wuse as is

SGETRS: wuse as is

SPBTRF: supply lower band format (UPLO = ’L’)

SPOTRF: wuse as is

SPOTRI: wuse as is

SPOTRS: wuse as is

SPPTRF: supply lower packed format (UPLO = 'L’)

SPPTRI: supply lower packed format (UPLO = 'L’)

STPTRI: wuse as is

STRTRI: wuse as is

ZGETRF: supply square matrix (M = N)

20

ZGETRS:
ZPOTRF:
ZPOTRS:

use as is
use as is
use as is

21

6.5 make.inc

HH R S R R S R R R R R
LAPACK make include file.

LAPACK, Version 2.0

June 30, 1994

Modified to incorporate ESSL CCI (version 1.0),
August 1, 1994.

HH R S R R S R R R R R
#

The machine (platform) identifier to append to the library names
#

PLAT = _rsék

H B HH
H B HH

#

Modify the FORTRAN and OPTS definitions to refer to the

compiler and desired compiler options for your machine. NOOPT
refers to the compiler options desired when NO OPTIMIZATION is
selected. Define LOADER and LOADOPTS to refer to the loader and
desired load options for your machine.

#

FORTRAN = £77

OPTS = -03 -gMAXMEM=8192 -u

NOOPT = -u

LOADER = £77

LOADOPTS =

#

The archiver and the flag(s) to use when building archive (library)
If you system has no ranlib, set RANLIB = echo.

#

ARCH = ar

ARCHFLAGS= cr

RANLIB = ranlib

#

The location of the libraries to which you will link. (The

machine-specific, optimized BLAS library is contained within IBM’s
ESSL. Thus, the BLASLIB identifier should be used for both the
BLAS library and the ESSL library identifier. Select the

appropriate library name for the IBM architecture you are using
by removing the # in front of the BLASLIB identifiers below.)

#

#BLASLIB = -lessl

#BLASLIB = -lesslp2

LAPACKLIB = lapack$(PLAT).a

TMGLIB = tmglib$(PLAT).a

22

EIGSRCLIB = eigsrc$(PLAT).a

