
Relative Perturbation Bounds forthe Unitary Polar FactorRen-Cang Li �July 25, 1994AbstractLet B be an m�n (m � n) complex matrix. It is known that there isa unique polar decompositionB = QH, where Q�Q = I, the n�n identitymatrix, and H is positive de�nite, provided B has full column rank. Thispaper addresses the following question: how much may Q change if B isperturbed to eB = D�1BD2? Here D1 and D2 are two nonsingular matricesand close to the identities of suitable dimensions.Known perturbation bounds for complex matrices indicate that in theworst case, the change in Q is proportional to the reciprocal of the small-est singular value of B. In this paper, we will prove that for the abovementioned perturbations to B, the change in Q is bounded only by thedistances from D1 and D2 to identities!As an application, we will consider perturbations for one-side scaling,i.e., the case when G = D�B is perturbed to eG = D� eB, whereD is usuallya nonsingular diagonal scaling matrix but for our purpose we do not haveto assume this, and B and eB are nonsingular.Let B be anm�n (m � n) complexmatrix. It is known that there are Q withorthonormal column vectors, i.e., Q�Q = I, and a unique positive semide�niteH such that B = QH: (1)Hereafter I denotes an identitymatrix with appropriate dimensions which shouldbe clear from the context or speci�ed. The decomposition (1) is called the polardecomposition of B. If, in addition, B has full column rank then Q is uniquelydetermined also. In fact,H = (B�B)1=2; Q = B(B�B)�1=2; (2)�Department of Mathematics, University of California at Berkeley, Berkeley, California94720, (li@math.berkeley.edu). 1



where superscript \�" denotes conjugate transpose. The decomposition (1) canalso be computed from the singular value decomposition (SVD) B = U�V � byH = V �1V �; Q = U1V �; (3)where U = (U1; U2) and V are unitary, U1 is m � n, � = � �10 � and �1 =diag (�1; : : : ; �n) is nonnegative.There are many published bounds upon how much the two factor matricesQ and H may change if entries of B are perturbed in arbitrary manner [1, 2,3, 4, 6, 5, 7, 8, 9]. In these papers, no assumption was made on how B wasperturbed unlike what we are going to do here.In this paper, we obtain some bounds for the perturbations of Q, assumingB is complex and is perturbed to eB = D�1BD2, where D1 and D2 are twononsingular matrices and close to the identities of suitable dimensions. Assumealso B has full column rank and so do eB = D�1BD2. LetB = QH; eB = eQ eH (4)be the polar decompositions of B and eB respectively, and letB = U�V �; eB = eU e�eV � (5)be the SVDs of B and eB, respectively, where eU = (eU1; eU2), eU1 is m � n, ande� = � e�10 � and e�1 = diag (e�1; : : : ; e�n). Assume as usual that�1 � � � � � �n > 0; and e�1 � � � � � e�n > 0: (6)It follows from (2) and (5) thatQ = U1V �; eQ = eU1 eV �:In what follows, kXkF denotes the Frobenius norm which is the square rootof the trace of X�X. TheneU�( eB �B)V = e�eV �V � eU�U�;eU�( eB �B)V = eU�(D�1BD2 �D�1B +D�1B �B)V= eU� h eB(I �D�12 ) + (D�1 � I)BiV= e�eV �(I �D�12 )V + eU�(D�1 � I)U�;and similarlyU�( eB � B)eV = U� eU e�� �V � eV ;U�( eB � B)eV = U�(D�1BD2 �BD2 + BD2 � B)eV= U� h(I �D��1 ) eB +B(D2 � I)i eV= U�(I �D��1 )eU e�+ �V �(D2 � I)eV :2



Therefore, we obtained two perturbation equations.e�eV �V � eU�U� = e�eV �(I �D�12 )V + eU�(D�1 � I)U�; (7)U� eU e�� �V � eV = U�(I �D��1 )eU e�+ �V �(D2 � I)eV : (8)The �rst n rows of the equation (7) yieldse�1 eV �V � eU�1U1�1 = e�1eV �(I �D�12 )V + eU�1 (D�1 � I)U1�1: (9)The �rst n rows of the equation (8) yieldsU�1 eU1e�1 ��1V � eV = U�1 (I �D��1 )eU1e�1 + �1V �(D2 � I)eV ;on taking conjugate transpose of which, one hase�1 eU�1U1 � eV �V �1 = e�1 eU�1 (I �D�11 )U1 + eV �(D�2 � I)V �1: (10)Now subtracting (10) from (9) leads toe�1(eU�1U1 � eV �V ) + (eU�1U1 � eV �V )�1 (11)= e�1 heU�1 (I �D�11 )U1 � eV �(I �D�12 )V i+ heV �(D�2 � I)V � eU�1 (D�1 � I)U1i�1:Set X = eU�1U1 � eV �V = (xij); (12)E = eU�1 (I �D�11 )U1 � eV �(I �D�12 )V = (eij); (13)eE = eV �(D�2 � I)V � eU�1 (D�1 � I)U1 = (eeij): (14)Then the equation (11) reads e�1X +X�1 = e�1E + eE�1, or componentwisely,e�ixij + xij�j = e�ieij + eeij�j. Thusj(e�i + �j)xijj � qe�2i + �2jqjeijj2 + jeeijj2) jxijj2 � e�2i + �2j(e�i + �j)2 (jeijj2 + jeeijj2) � jeijj2 + jeeijj2:Summing on i and j for i; j = 1; 2; � � � ; n produceskXk2F = nXi; j=1 jxijj2 � kEk2F + k eEk2F: (15)Notice thatX = eU�1U1 � eV �V = eV �(eV eU�1U1V � � I)V = eV �( eQ�Q� I)V;) kXkF = k eQ�Q� IkF; 3



and kEkF � kI �D�11 kF + kI �D�12 kF;k eEkF � kD�2 � IkF + kD�1 � IkF:Lemma 1k eQ�Q� IkF� q�kI �D�11 kF + kI �D�12 kF�2 + (kD�2 � IkF + kD�1 � IkF)2:When m = n, both Q and eQ are unitary. Thus k eQ�Q� IkF = kQ� eQkF, andLemma 1 yieldsTheorem 1 Let B and eB = D�1BD2 be two n�n nonsingular complex matriceswhose polar decompositions are given by (4). ThenkQ� eQkF � q�kI �D�11 kF + kI �D�12 kF�2 + (kD2 � IkF + kD1 � IkF)2(16)� p2qkI �D�11 k2F + kI �D�12 k2F + kD2 � Ik2F + kD1 � Ik2F:If, however, m > n, then it follows from the last m�n rows of the equations(7) and (8) that eU�2U1�1 = eU�2 (D�1 � I)U1�1 andU�2 eU1e� = U�2 (I �D��1 )eU1e�1:Since we assume that both B and eB have full column rank, both �1 and e�1 arenonsingular diagonal matrices. SoeU�2U1 = eU�2 (D�1 � I)U1 and U�2 eU1 = U�2 (I �D��1 )eU1:Therefore, we havekeU�2U1kF � kD�1 � IkF and kU�2 eU1kF = kI �D��1 kF: (17)Notice that (U1V �; U2) = (Q;U2) and (eU1 eV �; eU2) = ( eQ; eU2) are unitary. HenceU�2Q = 0 = eU�2 eQ andkQ � eQkF = k(Q;U2)�(Q� eQ)kF = � I �Q� eQ�U�2 eQ �F� qkI � Q� eQk2F + k � U�2 eU1eV �k2F� qkI � Q� eQk2F + kU�2 eU1k2F� q�kI �D�11 kF + kI �D�12 kF�2 + (kD�2 � IkF + kD�1 � IkF)2 + kI �D��1 k2F:(18)4



Similarly, we havekQ � eQkF = k( eQ; eU2)�(Q� eQ)kF = � eQ�Q � IeU2Q �F� q�kI �D�11 kF + kI �D�12 kF�2 + (kD�2 � IkF + kD�1 � IkF)2 + kD�1 � Ik2F:(19)Theorem 2 below follows from (18) and (19).Theorem 2 Let A and eA be two m � n (m > n) complex matrices having fullcolumn rank and with the polar decompositions (4). ThenkQ� eQkF � h�kI �D�11 kF + kI �D�12 kF�2+ (kI �D2kF + kI �D1kF)2 +min�kI �D�11 k2F; kI �D1k2F	i12� p3qkI �D2k2F + kI �D�12 k2F + kI �D1k2F + kI �D�11 k2F:Now we are in the position to apply Theorem 1 to perturbations for one-side scaling (from the left). Here we consider two n � n nonsingular matricesG = D�B and eG = D� eB, where D is a scaling matrix and usually diagonal (butthis is not necessary to the theorem that follows). B is nonsingular and usuallybetter conditioned than G itself. Set�B def= eB � B:eB is also nonsingular by the condition k�Bk2kB�1k2 < 1 which will be assumedhenceforth. Notice thateG = D� eB = D�(B +�B) = D�B(I +B�1(�B)) = G(I +B�1(�B)):So applying Theorem 1 with D1 = 0 and D2 = I +B�1(�B) leads toTheorem 3 Let G = D�B and eG = D� eB be two n� n nonsingular matrices,and let G = QH and eG = eQ eHbe their polar decompositions. Set �B def= eB � B. If k�Bk2kB�1k2 < 1 thenkQ� eQkF � rkB�1(�B)k2F + I � �I + B�1(�B)��12F� s1 + 1(1� kB�1k2k�Bk2)2 kB�1k2k�BkF:One can deal with one-side scaling from the right in the similar way.Acknowledgement: I thank Professor W. Kahan for his supervision and Pro-fessor J. Demmel for valuable discussions.5
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