Relative Perturbation Bounds for the Unitary Polar Factor

Ren-Cang Li *

July 25, 1994

Abstract

Let B be an $m \times n(m \geq n)$ complex matrix. It is known that there is a unique polar decomposition $B=Q H$, where $Q^{*} Q=I$, the $n \times n$ identity matrix, and H is positive definite, provided B has full column rank. This paper addresses the following question: how much may Q change if B is perturbed to $\widetilde{B}=D_{1}^{*} B D_{2}$? Here D_{1} and D_{2} are two nonsingular matrices and close to the identities of suitable dimensions.

Known perturbation bounds for complex matrices indicate that in the worst case, the change in Q is proportional to the reciprocal of the smallest singular value of B. In this paper, we will prove that for the above mentioned perturbations to B, the change in Q is bounded only by the distances from D_{1} and D_{2} to identities!

As an application, we will consider perturbations for one-side scaling, i.e., the case when $G=D^{*} B$ is perturbed to $\widetilde{G}=D^{*} \widetilde{B}$, where D is usually a nonsingular diagonal scaling matrix but for our purpose we do not have to assume this, and B and \widetilde{B} are nonsingular.

Let B be an $m \times n(m \geq n)$ complex matrix. It is known that there are Q with orthonormal column vectors, i.e., $Q^{*} Q=I$, and a unique positive semidefinite H such that

$$
\begin{equation*}
B=Q H \tag{1}
\end{equation*}
$$

Hereafter I denotes an identity matrix with appropriate dimensions which should be clear from the context or specified. The decomposition (1) is called the polar decomposition of B. If, in addition, B has full column rank then Q is uniquely determined also. In fact,

$$
\begin{equation*}
H=\left(B^{*} B\right)^{1 / 2}, \quad Q=B\left(B^{*} B\right)^{-1 / 2}, \tag{2}
\end{equation*}
$$

[^0]where superscript "*" denotes conjugate transpose. The decomposition (1) can also be computed from the singular value decomposition (SVD) $B=U \Sigma V^{*}$ by
\[

$$
\begin{equation*}
H=V \Sigma_{1} V^{*}, \quad Q=U_{1} V^{*} \tag{3}
\end{equation*}
$$

\]

where $U=\left(U_{1}, U_{2}\right)$ and V are unitary, U_{1} is $m \times n, \Sigma=\binom{\Sigma_{1}}{0}$ and $\Sigma_{1}=$ $\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ is nonnegative.

There are many published bounds upon how much the two factor matrices Q and H may change if entries of B are perturbed in arbitrary manner [1, 2, $3,4,6,5,7,8,9]$. In these papers, no assumption was made on how B was perturbed unlike what we are going to do here.

In this paper, we obtain some bounds for the perturbations of Q, assuming B is complex and is perturbed to $\widetilde{B}=D_{1}^{*} B D_{2}$, where D_{1} and D_{2} are two nonsingular matrices and close to the identities of suitable dimensions. Assume also B has full column rank and so do $\widetilde{B}=D_{1}^{*} B D_{2}$. Let

$$
\begin{equation*}
B=Q H, \quad \widetilde{B}=\widetilde{Q} \tilde{H} \tag{4}
\end{equation*}
$$

be the polar decompositions of B and \widetilde{B} respectively, and let

$$
\begin{equation*}
B=U \Sigma V^{*}, \quad \widetilde{B}=\tilde{U} \widetilde{\Sigma} \tilde{V}^{*} \tag{5}
\end{equation*}
$$

be the SVDs of B and \widetilde{B}, respectively, where $\widetilde{U}=\left(\widetilde{U}_{1}, \widetilde{U}_{2}\right), \widetilde{U}_{1}$ is $m \times n$, and $\tilde{\Sigma}=\binom{\tilde{\Sigma}_{1}}{0}$ and $\tilde{\Sigma}_{1}=\operatorname{diag}\left(\widetilde{\sigma}_{1}, \ldots, \tilde{\sigma}_{n}\right)$. Assume as usual that

$$
\begin{equation*}
\sigma_{1} \geq \cdots \geq \sigma_{n}>0, \quad \text { and } \quad \tilde{\sigma}_{1} \geq \cdots \geq \tilde{\sigma}_{n}>0 \tag{6}
\end{equation*}
$$

It follows from (2) and (5) that

$$
Q=U_{1} V^{*}, \quad \widetilde{Q}=\tilde{U}_{1} \tilde{V}^{*}
$$

In what follows, $\|X\|_{F}$ denotes the Frobenius norm which is the square root of the trace of $X^{*} X$. Then

$$
\begin{aligned}
\widetilde{U}^{*}(\widetilde{B}-B) V & =\widetilde{\Sigma}^{*} \tilde{V}^{*} V-\widetilde{U}^{*} U \Sigma \\
\widetilde{U}^{*}(\widetilde{B}-B) V & =\widetilde{U}^{*}\left(D_{1}^{*} B D_{2}-D_{1}^{*} B+D_{1}^{*} B-B\right) V \\
& =\widetilde{U}^{*}\left[\widetilde{B}\left(I-D_{2}^{-1}\right)+\left(D_{1}^{*}-I\right) B\right] V \\
& =\widetilde{\Sigma} \widetilde{V}^{*}\left(I-D_{2}^{-1}\right) V+\widetilde{U}^{*}\left(D_{1}^{*}-I\right) U \Sigma,
\end{aligned}
$$

and similarly

$$
\begin{aligned}
U^{*}(\widetilde{B}-B) \tilde{V} & =U^{*} \widetilde{U} \widetilde{\Sigma}-\Sigma V^{*} \tilde{V} \\
U^{*}(\widetilde{B}-B) \widetilde{V} & =U^{*}\left(D_{1}^{*} B D_{2}-B D_{2}+B D_{2}-B\right) \tilde{V} \\
& =U^{*}\left[\left(I-D_{1}^{-*}\right) \widetilde{B}+B\left(D_{2}-I\right)\right] \tilde{V} \\
& =U^{*}\left(I-D_{1}^{-*}\right) \widetilde{U} \widetilde{\Sigma}+\Sigma V^{*}\left(D_{2}-I\right) \widetilde{V} .
\end{aligned}
$$

Therefore, we obtained two perturbation equations.

$$
\begin{align*}
& \widetilde{\Sigma} \tilde{V}^{*} V-\tilde{U}^{*} U \Sigma=\tilde{\Sigma} \tilde{V}^{*}\left(I-D_{2}^{-1}\right) V+\tilde{U}^{*}\left(D_{1}^{*}-I\right) U \Sigma \tag{7}\\
& U^{*} \widetilde{U} \tilde{\Sigma}-\Sigma V^{*} \tilde{V}=U^{*}\left(I-D_{1}^{-*}\right) \widetilde{U} \tilde{\Sigma}+\Sigma V^{*}\left(D_{2}-I\right) \tilde{V} \tag{8}
\end{align*}
$$

The first n rows of the equation (7) yields

$$
\begin{equation*}
\widetilde{\Sigma}_{1} \tilde{V}^{*} V-\tilde{U}_{1}^{*} U_{1} \Sigma_{1}=\tilde{\Sigma}_{1} \tilde{V}^{*}\left(I-D_{2}^{-1}\right) V+\widetilde{U}_{1}^{*}\left(D_{1}^{*}-I\right) U_{1} \Sigma_{1} \tag{9}
\end{equation*}
$$

The first n rows of the equation (8) yields

$$
U_{1}^{*} \tilde{U}_{1} \tilde{\Sigma}_{1}-\Sigma_{1} V^{*} \tilde{V}=U_{1}^{*}\left(I-D_{1}^{-*}\right) \tilde{U}_{1} \tilde{\Sigma}_{1}+\Sigma_{1} V^{*}\left(D_{2}-I\right) \tilde{V}
$$

on taking conjugate transpose of which, one has

$$
\begin{equation*}
\widetilde{\Sigma}_{1} \tilde{U}_{1}^{*} U_{1}-\tilde{V}^{*} V \Sigma_{1}=\tilde{\Sigma}_{1} \tilde{U}_{1}^{*}\left(I-D_{1}^{-1}\right) U_{1}+\widetilde{V}^{*}\left(D_{2}^{*}-I\right) V \Sigma_{1} \tag{10}
\end{equation*}
$$

Now subtracting (10) from (9) leads to

$$
\begin{align*}
& \widetilde{\Sigma}_{1}\left(\widetilde{U}_{1}^{*} U_{1}-\tilde{V}^{*} V\right)+\left(\tilde{U}_{1}^{*} U_{1}-\tilde{V}^{*} V\right) \Sigma_{1} \tag{11}\\
& =\tilde{\Sigma}_{1}\left[\tilde{U}_{1}^{*}\left(I-D_{1}^{-1}\right) U_{1}-\tilde{V}^{*}\left(I-D_{2}^{-1}\right) V\right] \\
& \quad+\left[\widetilde{V}^{*}\left(D_{2}^{*}-I\right) V-\widetilde{U}_{1}^{*}\left(D_{1}^{*}-I\right) U_{1}\right] \Sigma_{1}
\end{align*}
$$

Set

$$
\begin{align*}
X & =\widetilde{U}_{1}^{*} U_{1}-\widetilde{V}^{*} V=\left(x_{i j}\right) \tag{12}\\
E & =\widetilde{U}_{1}^{*}\left(I-D_{1}^{-1}\right) U_{1}-\widetilde{V}^{*}\left(I-D_{2}^{-1}\right) V=\left(e_{i j}\right) \tag{13}\\
\widetilde{E} & =\widetilde{V}^{*}\left(D_{2}^{*}-I\right) V-\widetilde{U}_{1}^{*}\left(D_{1}^{*}-I\right) U_{1}=\left(\widetilde{e}_{i j}\right) \tag{14}
\end{align*}
$$

Then the equation (11) reads $\tilde{\Sigma}_{1} X+X \Sigma_{1}=\widetilde{\Sigma}_{1} E+\widetilde{E} \Sigma_{1}$, or componentwisely, $\tilde{\sigma}_{i} x_{i j}+x_{i j} \sigma_{j}=\tilde{\sigma}_{i} e_{i j}+\tilde{e}_{i j} \sigma_{j}$. Thus

$$
\begin{aligned}
\left|\left(\tilde{\sigma}_{i}+\sigma_{j}\right) x_{i j}\right| & \leq \sqrt{\widetilde{\sigma}_{i}^{2}+\sigma_{j}^{2}} \sqrt{\left|e_{i j}\right|^{2}+\left|\widetilde{e}_{i j}\right|^{2}} \\
& \Rightarrow\left|x_{i j}\right|^{2} \leq \frac{\widetilde{\sigma}_{i}^{2}+\sigma_{j}^{2}}{\left(\widetilde{\sigma}_{i}+\sigma_{j}\right)^{2}}\left(\left|e_{i j}\right|^{2}+\left|\widetilde{e}_{i j}\right|^{2}\right) \leq\left|e_{i j}\right|^{2}+\left|\widetilde{e}_{i j}\right|^{2}
\end{aligned}
$$

Summing on i and j for $i, j=1,2, \cdots, n$ produces

$$
\begin{equation*}
\|X\|_{\mathrm{F}}^{2}=\sum_{i, j=1}^{n}\left|x_{i j}\right|^{2} \leq\|E\|_{\mathrm{F}}^{2}+\|\widetilde{E}\|_{\mathrm{F}}^{2} \tag{15}
\end{equation*}
$$

Notice that

$$
\begin{aligned}
X & =\widetilde{U}_{1}^{*} U_{1}-\tilde{V}^{*} V=\tilde{V}^{*}\left(\tilde{V} \tilde{U}_{1}^{*} U_{1} V^{*}-I\right) V=\tilde{V}^{*}\left(\tilde{Q}^{*} Q-I\right) V \\
& \Rightarrow\|X\|_{\mathrm{F}}=\left\|\widetilde{Q}^{*} Q-I\right\|_{\mathrm{F}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \|E\|_{F} \leq\left\|I-D_{1}^{-1}\right\|_{\mathrm{F}}+\left\|I-D_{2}^{-1}\right\|_{\mathrm{F}}, \\
& \|\widetilde{E}\|_{\mathrm{F}} \leq\left\|D_{2}^{*}-I\right\|_{\mathrm{F}}+\left\|D_{1}^{*}-I\right\|_{\mathrm{F}} .
\end{aligned}
$$

Lemma 1

$$
\begin{aligned}
& \left\|\widetilde{Q}^{*} Q-I\right\|_{\mathrm{F}} \\
& \quad \leq \sqrt{\left(\left\|I-D_{1}^{-1}\right\|_{\mathrm{F}}+\left\|I-D_{2}^{-1}\right\|_{\mathrm{F}}\right)^{2}+\left(\left\|D_{2}^{*}-I\right\|_{\mathrm{F}}+\left\|D_{1}^{*}-I\right\|_{\mathrm{F}}\right)^{2}} .
\end{aligned}
$$

When $m=n$, both Q and \widetilde{Q} are unitary. Thus $\left\|\widetilde{Q}^{*} Q-I\right\|_{\mathrm{F}}=\|Q-\widetilde{Q}\|_{\mathrm{F}}$, and Lemma 1 yields

Theorem 1 Let B and $\widetilde{B}=D_{1}^{*} B D_{2}$ be two $n \times n$ nonsingular complex matrices whose polar decompositions are given by (4). Then

$$
\begin{align*}
\|Q-\widetilde{Q}\|_{\mathrm{F}} & \leq \sqrt{\left(\left\|I-D_{1}^{-1}\right\|_{\mathrm{F}}+\left\|I-D_{2}^{-1}\right\|_{\mathrm{F}}\right)^{2}+\left(\left\|D_{2}-I\right\|_{\mathrm{F}}+\left\|D_{1}-I\right\|_{\mathrm{F}}\right)^{2}} \\
& \leq \sqrt{2} \sqrt{\left\|I-D_{1}^{-1}\right\|_{\mathrm{F}}^{2}+\left\|I-D_{2}^{-1}\right\|_{\mathrm{F}}^{2}+\left\|D_{2}-I\right\|_{\mathrm{F}}^{2}+\left\|D_{1}-I\right\|_{\mathrm{F}}^{2}} . \tag{16}
\end{align*}
$$

If, however, $m>n$, then it follows from the last $m-n$ rows of the equations (7) and (8) that

$$
\begin{aligned}
\widetilde{U}_{2}^{*} U_{1} \Sigma_{1} & =\widetilde{U}_{2}^{*}\left(D_{1}^{*}-I\right) U_{1} \Sigma_{1} \quad \text { and } \\
U_{2}^{*} \widetilde{U}_{1} \widetilde{\Sigma} & =U_{2}^{*}\left(I-D_{1}^{-*}\right) \widetilde{U}_{1} \widetilde{\Sigma}_{1}
\end{aligned}
$$

Since we assume that both B and \widetilde{B} have full column rank, both Σ_{1} and $\tilde{\Sigma}_{1}$ are nonsingular diagonal matrices. So

$$
\widetilde{U}_{2}^{*} U_{1}=\tilde{U}_{2}^{*}\left(D_{1}^{*}-I\right) U_{1} \quad \text { and } \quad U_{2}^{*} \widetilde{U}_{1}=U_{2}^{*}\left(I-D_{1}^{-*}\right) \tilde{U}_{1}
$$

Therefore, we have

$$
\begin{equation*}
\left\|\widetilde{U}_{2}^{*} U_{1}\right\|_{\mathrm{F}} \leq\left\|D_{1}^{*}-I\right\|_{\mathrm{F}} \quad \text { and } \quad\left\|U_{2}^{*} \widetilde{U}_{1}\right\|_{\mathrm{F}}=\left\|I-D_{1}^{-*}\right\|_{\mathrm{F}} \tag{17}
\end{equation*}
$$

Notice that $\left(U_{1} V^{*}, U_{2}\right)=\left(Q, U_{2}\right)$ and $\left(\tilde{U}_{1} \tilde{V}^{*}, \tilde{U}_{2}\right)=\left(\widetilde{Q}, \tilde{U}_{2}\right)$ are unitary. Hence $U_{2}^{*} Q=0=\widetilde{U}_{2}^{*} \widetilde{Q}$ and

$$
\begin{align*}
& \| Q-\widetilde{Q}\left\|_{\mathrm{F}}=\right\|\left(Q, U_{2}\right)^{*}(Q-\widetilde{Q})\left\|_{\mathrm{F}}=\right\|\binom{I-Q^{*} \widetilde{Q}}{-U_{2}^{*} \widetilde{Q}} \|_{\mathrm{F}} \\
& \leq \sqrt{\left\|I-Q^{*} \widetilde{Q}\right\|_{\mathrm{F}}^{2}+\left\|-U_{2}^{*} \widetilde{U}_{1} \widetilde{V}^{*}\right\|_{\mathrm{F}}^{2}} \\
& \leq \sqrt{\left\|I-Q^{*} \widetilde{Q}\right\|_{\mathrm{F}}^{2}+\left\|U_{2}^{*} \widetilde{U}_{1}\right\|_{\mathrm{F}}^{2}} \\
& \quad \leq \sqrt{\left(\left\|I-D_{1}^{-1}\right\|_{\mathrm{F}}+\left\|I-D_{2}^{-1}\right\|_{\mathrm{F}}\right)^{2}+\left(\left\|D_{2}^{*}-I\right\|_{\mathrm{F}}+\left\|D_{1}^{*}-I\right\|_{\mathrm{F}}\right)^{2}+\left\|I-D_{1}^{-*}\right\|_{\mathrm{F}}^{2}} \tag{18}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
\| Q & -\widetilde{Q}\left\|_{\mathrm{F}}=\right\|\left(\widetilde{Q}, \widetilde{U}_{2}\right)^{*}(Q-\widetilde{Q})\left\|_{\mathrm{F}}=\right\|\binom{\widetilde{Q}^{*} Q-I}{\widetilde{U}_{2} Q} \|_{\mathrm{F}} \\
& \leq \sqrt{\left(\left\|I-D_{1}^{-1}\right\|_{\mathrm{F}}+\left\|I-D_{2}^{-1}\right\|_{\mathrm{F}}\right)^{2}+\left(\left\|D_{2}^{*}-I\right\|_{\mathrm{F}}+\left\|D_{1}^{*}-I\right\|_{\mathrm{F}}\right)^{2}+\left\|D_{1}^{*}-I\right\|_{\mathrm{F}}^{2}} . \tag{19}
\end{align*}
$$

Theorem 2 below follows from (18) and (19).
Theorem 2 Let A and \tilde{A} be two $m \times n(m>n)$ complex matrices having full column rank and with the polar decompositions (4). Then

$$
\begin{aligned}
&\|Q-\widetilde{Q}\|_{\mathrm{F}} \leq\left[\left(\left\|I-D_{1}^{-1}\right\|_{\mathrm{F}}+\left\|I-D_{2}^{-1}\right\|_{\mathrm{F}}\right)^{2}\right. \\
&\left.+\left(\left\|I-D_{2}\right\|_{\mathrm{F}}+\left\|I-D_{1}\right\|_{\mathrm{F}}\right)^{2}+\min \left\{\left\|I-D_{1}^{-1}\right\|_{\mathrm{F}}^{2},\left\|I-D_{1}\right\|_{\mathrm{F}}^{2}\right\}\right]^{\frac{1}{2}} \\
& \leq \sqrt{3} \sqrt{\left\|I-D_{2}\right\|_{\mathrm{F}}^{2}+\left\|I-D_{2}^{-1}\right\|_{\mathrm{F}}^{2}+\left\|I-D_{1}\right\|_{\mathrm{F}}^{2}+\left\|I-D_{1}^{-1}\right\|_{\mathrm{F}}^{2}}
\end{aligned}
$$

Now we are in the position to apply Theorem 1 to perturbations for oneside scaling (from the left). Here we consider two $n \times n$ nonsingular matrices $G=D^{*} B$ and $\widetilde{G}=D^{*} \widetilde{B}$, where D is a scaling matrix and usually diagonal (but this is not necessary to the theorem that follows). B is nonsingular and usually better conditioned than G itself. Set

$$
\Delta B \stackrel{\text { def }}{=} \widetilde{B}-B .
$$

\widetilde{B} is also nonsingular by the condition $\|\Delta B\|_{2}\left\|B^{-1}\right\|_{2}<1$ which will be assumed henceforth. Notice that

$$
\widetilde{G}=D^{*} \widetilde{B}=D^{*}(B+\Delta B)=D^{*} B\left(I+B^{-1}(\Delta B)\right)=G\left(I+B^{-1}(\Delta B)\right)
$$

So applying Theorem 1 with $D_{1}=0$ and $D_{2}=I+B^{-1}(\Delta B)$ leads to
Theorem 3 Let $G=D^{*} B$ and $\widetilde{G}=D^{*} \widetilde{B}$ be two $n \times n$ nonsingular matrices, and let

$$
G=Q H \quad \text { and } \quad \widetilde{G}=\widetilde{Q} \tilde{H}
$$

be their polar decompositions. Set $\Delta B \stackrel{\text { def }}{=} \widetilde{B}-B$. If $\|\Delta B\|_{2}\left\|B^{-1}\right\|_{2}<1$ then

$$
\begin{aligned}
\|Q-\widetilde{Q}\|_{\mathrm{F}} & \leq \sqrt{\left\|B^{-1}(\Delta B)\right\|_{\mathrm{F}}^{2}+\left\|I-\left(I+B^{-1}(\Delta B)\right)^{-1}\right\|_{\mathrm{F}}^{2}} \\
& \leq \sqrt{1+\frac{1}{\left(1-\left\|B^{-1}\right\|_{2}\|\Delta B\|_{2}\right)^{2}}}\left\|B^{-1}\right\|_{2}\|\Delta B\|_{\mathrm{F}}
\end{aligned}
$$

One can deal with one-side scaling from the right in the similar way.
Acknowledgement: I thank Professor W. Kahan for his supervision and Professor J. Demmel for valuable discussions.

References

[1] A. Barrlund. Perturbation bounds on the polar decomposition. BIT, 30:101113, 1990.
[2] C.-H. Chen and J.-G. Sun. Perturbation bounds for the polar factors. J. Comp. Math., 7:397-401, 1989.
[3] N. J. Higham. Computing the polar decomposition-with applications. SIA M Journal on Scientific and Statistical Computing, 7:1160-1174, 1986.
[4] C. Kenney and A. J. Laub. Polar decompostion and matrix sign function condition estimates. SIAM Journal on Scientific and Statistical Computing, 12:488-504, 1991.
[5] R.-C. Li. New perturbation bounds for the unitary polar factor. Manuscript submitted to SIAM J. Matrix Anal. Appl., 1993.
[6] R.-C. Li. A perturbation bound for the generalized polar decomposition. BIT, 33:304-308, 1993.
[7] J.-Q. Mao. The perturbation analysis of the product of singular vector matrices $u v^{h}$. J. Comp. Math., 4:245-248, 1986.
[8] R. Mathias. Perturbation bounds for the polar decomposition. SIAM J. Matrix Anal. Appl., 14:588-597, 1993.
[9] J.-G. Sun and C.-H. Chen. Generalized polar decomposition. Math. Numer. Sinica, 11:262-273, 1989. In Chinese.

[^0]: *Department of Mathematics, University of California at Berkeley, Berkeley, California 94720, (li@math.berkeley.edu).

