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Abstract

In this paper, we consider how eigenvalues of a matrix A change when
it is perturbed to A = DT AD; and how singular values of a (nonsquare)
matrix B change when it is perturbed to B = DYBDs, where D; and
D> are assumed to be close to unitary matrices of suitable dimensions.
We have been able to generalize many well-known perturbation theorems,
including Hoffman-Wielandt theorem and Weyl-Lidskii theorem. As ap-
plications, we obtained bounds for perturbations of graded matrices in
both singular value problems and nonnegative definite Hermitian eigen-
value problems.

1 Introduction

Relative perturbation theory for eigensystems and singular systems has been
becoming a hot topic in the last five years and ever since It was first studied by
Kahan [18] in 1966, later by [1, 6, 8, 9, 29] and most recently by [7, 10, 11, 13,
15, 25].

1.1 What to be Covered?

This paper deals with perturbations of the following kinds:
¢ Eigenvalue problems:
1. A and A = D*AD for Hermitian case, where D is nonsingular and
close to I or more generally to a unitary matrix;

2. A and A = D7 ADs for general diagonalizable case, where D; and
Dy are nonsingular and close to I or more generally to some unitary
matrix;
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3. H=D*AD and H = D*AD for graded nonnegative Hermitian case,
where it is assumed that A and A are nonsingular and often that D
is a highly graded diagonal matrix (this assumption is not necessary
to our theorems below).

¢ Singular value problems:

1. Band B = Dy BDsy, where Dy and Ds are nonsingular and close to
I or more generally to two unitary matrices;

2. G = BD and G = BD for graded case, where it is assumed that B
and B are nonsingular and often that D) is a highly graded diagonal
matrix (this assumption is not necessary to our theorems below).

The above perturbations include component-wise relative perturbations of the
entries in symmetric tridiagonal matrices with zero diagonal [8, 18], in bidiagonal
and biacyclic matrices [1, 7, 8], in graded nonnegative Hermitian matrices [9, 25]
and in graded matrices of singular value problems [9, 25] and more [10].

1.2 Notation

We will adopt this convention: capital letters denote unperturbed matrices and
capital letters with filde denote their perturbed ones. For example, X 1is per-
turbed to X .

Throughout the paper, capital letters are for matrices, lowercase Latin let-
ters for column vectors or scalars, and lowercase Greek letters for scalars. The
following is a detailed list of our notation, but still more notation will be intro-
duced when 1t appears for the first time.

Cm>n:  the set of m x n complex matrices;

cm.  Cmxd;
c. Ccl
R™>™: the set of m x n real matrices;
Bm™. RmX1;
R: RL

U,:  the set of n x n unitary matrices;
Omn: the m X n zero matrix (we may simply
write 0 instead);
I,:  the n x n identity matrix (we may sim-
ply write I instead);
X*: the complex conjugate of a matrix X;
A(X): the set of the eigenvalues of X,
counted according to their algebraic
multiplicities;
o(X): the set of the singular values of X,
counted according to their algebraic
multiplicities;



omin(X): the smallest singular value of X €
@l Xn ’
omax(X):  the largest singular value of X € C™*";
[|X|]2:  the spectral norm of X, opax(X);

[[X]||F: the Frobenius norm of X, /> |52,
¥

where X = (z;;);
[|X]||p: the p-Holder operator norm of X to de-
fined later;

IX|l: some unitary invariant norm of X to
defined later.

1.3 Organization of the Paper

In §2, we define two kinds of relative distances which will be heavily used in the
rest of this paper. It is proved in Appendixes A and B that the relative distances
are really (generalized) metrics on the space of nonnegative real numbers or that
of nonpositive real numbers and that some of them are actually a metric on R.
A brief summary of what we will accomplish in this paper in comparison with
well-known perturbation theorems with the metric of absolute value on C will
be conducted in §3. Full statements of these well-known theorems are presented
in §3. We devote two sections to present and discuss our theorems. §5 handles
nonnegative definite cases, singular value problems and graded cases, while §6
handles the rest of the perturbations listed in §1.1 and singular value problems
again for comparison purpose. In §7, we give a brief account of established
theorems related to our relative perturbation theorems. We will briefly remark
how our relative perturbation theorems can be applied to generalized eigen-
value problems and generalized singular value problems. Finally, our proofs of
theorems are presented in §§9—12.



2 Relative Distances

2.1 The p-Relative Distance

Given «, 8 € C, the p-relative distance between them is defined as
deft o — B

RelDistp(a,ﬁ) = W, (21)

where 1 < p < co. We define, for convenience; 0/0 ry. RelDisty, was first
used by Deift, Demmel, Li, and Tomei [6] for defining relative gaps.

Proposition 2.1 Let 1 <p <oo and «, 8 € C.
1. RelDist,(«, 3) > 0 and the equality sign holds if and only if « = 3;
RelDist, (o, 3) = RelDist, (8, a);
Ea,€f5) = RelDist, («, 3) for all 0 £ € € C;
1/a,1/8) = RelDist,(«, ) for a £ 0 and § #0;

RelDist, (o, 8) < 21-1r and the equality sign holds if and only if & =
_6 7& 07.

6. RelDist,(a,0) =1 if oo # 0; RelDisty (v, 8) > 1 forp > 1 and RelDisty (o, 8) =
1, if af < 0; Finally, RelDisty(«, 8) <1 for all p if o > 0.

RelDist,,
RelDist,,

(
(
(
(

7. RelDist,(«, ) increases as p does.
8 ifa, a1, B, 1 ER and a <oy < 31 < 3 and a1y > 0, then
RelDist, (@, §) > RelDisty (a1, £1). (2.2)
Moreover if either o < oy or 1 < 3 holds, the inequality (2.2) is strict.

Proof: Properties 1-6 are trivial. Property 7 holds because {/|a|P + |F|P is a
decreasing function of p for 1 < p < co. To prove Property 8, it suffices to show
that

RelDist, («, 3) > RelDist, (o, £1), (2.3)

where o < 41 < 8 and af3; > 0. Consider function f(£) defined by
1-¢
1+ e

We claim that the function f(£) so defined is strictly monotonically decreasing.

This is true if p = co. When p < oo, set A(€) def [f(£)]P. Because for 0 < € < 1

L—gpiatent
(I+e)

J (6 o where —1 < ¢ < 1.

W(g) = _ <0,



f(€) is strictly monotonically decreasing for 0 < ¢ < 1. For —1 < £ < 0, set

g(&) o h(—¢). Since for 0 < £ < 1

yey - PAHOPTHA =€)
) (f) - (1 +€p)2

¢(&) is strictly monotonically increasing for 0 < ¢ < 1, and thus h(€) and f(¢)
is strictly monotonically decreasing for —1 < ¢ < 0. This completes the proof
of that the function f(¢) is strictly monotonically decreasing. There are several
cases to deal with in order to prove (2.3).

1. ifa >0, then 0 < o/B < a/B < 1 and

RelDist, (o, 8) = f(a/B) > f(c/B1) = RelDisty(ar, By ):
2. if 3 <0, then 0 < B/a < B/ < 1 and

RelDist, (o, 8) = f(B/a) > f(B1/a) = RelDist,(a, By );

3. 81 <0< g, then 0 < B1/a < 1. Let & be the one of o/ and 3/«
which lies in [—1,0]. Now if & = 51 = 0, (2.3) is trivial; otherwise either
a< <0< fora<f =0< fis true, and thus —1 < & < 0 <
B1/a < 1, so we have

RelDist,(«, 8) = f(€0) > f(51/a) = RelDist, (o, 51),

as was to be shown.

>0,

The proof of Property 8 is completed. |

Remark: In Property 8 of Proposition 2.1, the assumption a15; > 0 is es-
sential. This can be seen by noting that for § > o > 0, —a < —a < a <
while

_atf

Now, we introduce another global notation of this paper. Henceforth p and
q are reserved for a dual number pair as defined below

1—1—1:1, where 1 <p < oo and 1 < ¢ < 0.
P q
In general, when people say the relative perturbation in a real number « is
at most ¢, it is meant that « is perturbed to another real number 3 in the sense
that if we write 5 = a(1+68) then § € R and |§| < € (see, e.g., [8]), which is also
equivalently to say
g

——l‘ge.
o

RelDist,(—a, ) = < 2=l = RelDist, (—a, o).

So it would be interesting to relate our p-relative distance to this common sense
of relative perturbations.



Proposition 2.2 Let 0 <e < 1, and o, B € R. We have the following:

B _ 1‘ < e = RelDist, (o, 8) < ¢, (2.4)
o
and
. e 2¢
RelDisty (o, 8) <€ = max{g—l , B—l}gl_g; (2.5)
RelDists(a, ) < ¢ = L R O R L (2.6)
elDists (e, B) < € max § | |3 ST
. g « €
< o1, = -1t <
RelDisteo (v, ) <€ = max{ " 11, 3 1 < 1< (2.7)
For general 1 < p < oo, if 21/Pe < 1 we have
. 8 « 2U/r ¢
RelDlstp(a,ﬁ)§€:>maX{‘E—l s B—l S m (28)
Asymptotically,
lim RelDisty(@8) _ o1y (2.9)

f—a

8 _ 1‘
thus (2.4), (2.5), (2.6) and (2.7), (2.8) are at least asymptotically sharp.

Proof: (2.4) is trivial to show since # — a = a(1+6) — o = aé. To prove (2.5),
(2.6) and (2.7), we set either £ = B/ or £ = /3. Then £ > 0. Tt follows from
the left-hand side of (2.5) that

€ — 1]
E+1
So if £ > 1, one deduces £ — 1 < 12—65; and if & < 1one has1—¢ < 12;6. This
completes the proof of (2.5). The proof of (2.7) is analogous. So is that of (2.8)
by noting that 21/pRelDistp(0z, 3) > RelDistes (v, 3). To show (2.6), we see that

Cesle—1 < e+ 1) =€ — 1)+ 2.

the left-hand side of (2.6) implies % def n <e. So
2
E-D? =@+ )= 5E+1=0

solving which gives

:L \/2_772:>€_1:i7“2_772+772,

1—n? 1—n?

§



Hence

92— n2 2 2 _pn2
|€_1|§77\/1772+77: N VEowdn o < 5
-1

1—1py 147 —1—c
since 7V21__|_n;+n is decreasing for 0 <n < 1. |

Proposition 2.3 Let & = a(l +61) and B: Bl +82). If |6;] < e < 1, then

RelDist, («v, 8) € ) ~ _ RelDist,(«, 3) €
> RelDist > - 2.1
1—¢ +1_€_Re isty(a, ) 2 1+¢ 1+¢’ (2.10)
RelDist, (o, 5) 21/ 4¢ .~ =~ _ RelDisty(a, 8) 21/4¢
> RelDist > - (2.1
1—¢ +1_€_Re istp(@, ) 2 1+e¢ 1+e¢ (2.11)

Proof: We will only provide a proof of (2.11). Since |a|(1 —¢) < |a| < |a|(1+¢€)
and |B](1 =€) < [B] < [BI(1 +¢),
@ - )

{1l + 181

o = B — laés = 565

Yl + (8P (1+ €)

jo = 81— YRFF B yaTe

Nalp + 181+ )
RelDist, (o, 8) 21/ 1¢

1+e€ 1+¢€’
loo = B] + |ady — Bds]
Ylalr +[8P(1—€)
jo— 81+ P A BFyaTa
Yalr +[8P(1—€)
RelDist, (o, 8) 21/ 1¢
+ )
1—¢ 1—c¢

RelDist, (&, B)

v

v

RelDist, (&, B) <

IN

as were to be shown. [ |

Proposition 2.4 below shows how to bound RelDist, (a?, 3%) by RelDist,(«, 3),
and vice versa.

Proposition 2.4 Let o, 5 € C. For 1 <p < oo,

RelDist, (a?, 3%) < 2 RelDist, (a, 3). (2.12)
If, moreover, a, § € R and a3 > 0, then

RelDist, («, ) < RelDist,(a?, 3%). (2.13)



Proof: There is nothing to prove if « = = 0. Assume at least one of the two
is not zero.

. la? — 57|
RelDist, (a”, §%) = (|a|?? + |B|2)1/p
o+ 8] x (laf + |8P) /7 o — 5l

X
(|a|2p + |ﬁ|2p)1/p (|a|p + |ﬁ|p)1/P
21U (a4 |BI)2 x 2120 ((afP 4 B

<
- (ol + |B|>) M

RelDist, («v, 8)
= 2RelDist,(«a, )

which proves (2.12). To prove (2.13), without loss of any generality, we may
assume «, 3 > 0. Notice that a 4+ 8 > (o + §%)Y/?7 and (o + gP)MP >
(@ + 32P)1/% S

02— (Jar £ )
(la?P +1817)1 (o + B)([arl? + |BIP) /P
RelDist, (a?, %),

RelDist, («v, 8)

IN

as was to be shown. [ |

Let {ay, -+, an} and {&, -, @,} be two sequences of n real numbers in
ascending (descending) order respectively, i.e.,

a1 < <an, @< <ap(orar > an, @ > >a). (2.14)

Now we consider some partial solutions to the question: What are the best
one-one pairings belween the o;’s and the &;’s under certain measures?.

Proposition 2.5 If all a;’s and &;’s are nonnegative, then

max RelDist, (a;, ;) = min max RelDist, (a;, a-()),

1<i<n 7 1<i<n
where the minimization is taken over all permutations 7 of {1,2,---,n}.
Proof: For any permutation 7 of {1,2,--- n}, the idea of our proof is to con-

struct n + 1 permutations 7; such that
To =T, Tp = lidentity permutation
and for j =0,1,2,---,n—1

112&;% RelDisty, (i, @7, 5)) > 121%)(” RelDist, (o, @7, (1))



The construction of these 7;’s goes as follows: Set 7o = 7. Given 7, if 7;(j+1) =
J+ 1, set 7541 = 1;; otherwise define

75 (d), i G+ D #i#i+1,
rp1(d) =<4 j+1, ifi=j+1,
T(G+1), fi=7G+1).
With Property 8 in Proposition 2.1, it is easy to prove by induction that such
constructed 7;’s have the desired properties. [ |

Remark. Proposition 2.5 may fail if not all of the «;’s and &;’s are of the same
sign. A counterezample is as follows: n = 2 and

o =—2<ay=1 and o1 =2<as;=4.

Another point we want to make is that given two sequences of a;’s and @;’s as
above, generally we do not have

n

Z [RelDista (e, &i)]z = minz [RelDistz(ai, &T(i))] . (2.15)

i=1 i=1
(2.15) may even fail when all o;, &; > 0. Here is a counterezample: n =2
0 <o) <ay <as=a/2< as,

where « is sufficiently close to 0, and @ is sufficiently close to «y which is
fixed. Since as oy — 0% and &1 — a3

[RelDista (e, az)]z + [RelDisty (s, &1)]2 — 1,
1
V5
(2.15) must fail for some 0 < a1 < &1 < @y = &3/2 < @&z. But we still have
Proposition 2.6 below.

[RelDista (e, al)]z + [RelDisty (s, &2)]2 — 1+

Proposition 2.6 Let o;’s and o;’s be as described above and in ascending or-
der. Assume that both sequences contain exactly k negative numbers and n — k
posttive numbers, t.e.,

a1 < ap <0< aper <, and o < <0< gl <A

Then given a permutation o of {1,2,---,n}, there exisls another permutation T

of {1,2,--- n} such that
1<rG) <k for1<j<h

and
n

[RelDistz(ai, &U(i))] ’ > Z [RelDistz(ai, &T(i))]z )

i=1 i=1



The proof of this proposition depends heavily on Property 6 of Proposition 2.1.

Let £ be an positive integers, and set
an+1:"':an+k:an+1:"':an+k:0~

Appending these 0’s to the two previous sequences, we have two larger sequences,
each of which has at least & zeros. The following proposition says that it is
always better to pair zeros with zeros.

Proposition 2.7 Given a permutation o of {1,2,--- n+k}, there is a permu-
tation T of {1,2,---,n} such that

n+k n
Z [RelDistz(ai, &U(i))]z > Z [RelDistz(ai, aT(i))] ’
i=1 i=1

A combination of Propositions 2.6 and 2.7 illustrates two things:
1. It is always better to pair zeros to zeros as many as possible;

2. It is always better to pair numbers to these of the same signs as many as
possible.

2.2 Barlow-Demmel-Veselié Relative Distance

We introduce another notion of relative distance: RelDist which 1s defined as

follows.

RelDist(a, @) % 12 =01 (2.16)

V1eB]

We treat 0/0 = 0 and 1/0 = co. We call R/ei\]j/ist(a,ﬁ) the Barlow-Demmel-
Veseli¢ Relative Distance between « and 3 because it was first used by Barlow
and Demmel [1] and Demmel and Veseli¢ [9] for defining relative gaps between

the spectra of two matrices. Regarding to RelDist, we have
Proposition 2.8 Let o, f € C.
1. R/ei\]j/ist(a,ﬁ) > 0 and the equality sign holds if and only if « = 5;

2. RelDist(a, 8) = RelDist(3, a);

3. RelDist(€a, £3) = RelDist(a, §) for all 0 # £ € C;
4. R/ei\]j/ist(l/a, 1/8) = R/ei\]j/ist(a,ﬁ) fora £ 0 and 8 #0;

5. RelDist(a, 0) = o0 if a 2 0;

10



6. ifo, a1, B, /1 ERand a < a; < 1 < F and af > 0, then
RelDist(«, §) > RelDist(a1, B1). (2.17)
Proof: Properties 1-5 are trivial. To prove Property 6, it suffices to show that

RelDist(a, 3) > RelDist(a, 31), (2.18)

where 0 < a < 81 < . Since the function % — & for 0 < ¢ <1 is monotonically
decreasing and 0 < o/8 < /B < 1,

RelDist(a, 3) = ¢61W —a/p> J:W — \/a/B; = RelDist(a, 41),

as was to be shown. [ |

Remark: In Property 6 of Proposition 2.8, the assumption a3 > 0 is essential,
since the inequality (2.17) is clearly violated if @ < 0 < oy < 81 < § and « is
sufficiently close to 0.

As before, let us relate Barlow-Demmel-Veseli¢ relative distance to the com-
mon sense of relative perturbations.

Proposition 2.9 Let o, feR. If0 < e < 1, then

ﬁ—l‘gezR/ei\Di/st(a,ﬁ)g
8%

€

VI—¢

(2.19)

if 0 <e<2, then

RelDist(a, 8) < € = A I ST Uy By P (2.20)
elDist (o € = max< |— — - — - — e .
= e "B —\2 4
Asymptotically,

- RelDist(«, ) _1

B—ro g _1

thus (2.19) and (2.20) are at least asymptotically sharp.
Proof: The left-hand side of (2.19) implies 3 = a1 + §) for some 6 € R with
|6] < e. So

St |6ev| €
RelDist(e, ) = i) S Vs =)

as required. To prove (2.20), we set either £ = /3 or £ = B/a. Since € < 2,
& > 0. RelDist(«, 8) ! n < € gives

Bl s -eanierizo

11



solving which yields

2407 £/(24 9?2 -4 2
¢ = i (2 n?) =1+ g:l: 1—1—% 7.

2 2
€11 < (g+\/1+%)n§ (%Jr ”EZ)E

as was to be shown. [ |

Hence

Proposition 2.10 Let B = B(1 +8). Assume that |3 < |a] and |6] < e < 1,
then

R/ei\]j/ist(a,ﬁ) €
1+4+¢ 1+4¢

(2.21)

el Dist RelDist(r, 3
Re 118 (o, B) 4 - ¢ > RelDist(«, 8) >
— ¢ — €

Proof: Since [8](1 —¢) < |B] < [8I(1+ ¢) and |8/a] < 1,

T la =Bl _ | — Bl — 168
RelDist(er, 5) = >
Viedl ~ /il
s la—Bl—clpl
~ Vel + )
B R/ei\]j/ist(a,ﬁ) €
1+¢ 1+¢’
ey o — Bl + 68|

RelDist(a,B) < =
\ leB|

o — B + €] 8]

V0Bl (1 =€)

R/ei\]j/ist(a,ﬁ) €
1—¢ + 1—¢

IN

as required. [ |

Proposition 2.10, in contrast to Proposition 2.3, only provides bounds on how

————

RelDist varies when one of its arguments smallest in magnitude is perturbed

a little. Generally, we do not have a nice inequality like (2.11) for R/ei\]j/ist.
Following the lines of the proof above, one can establish

RelDist(«, ) e o+ 5] S R/ei\]j/ist(a B) S RelDist(o, 8) € o]+
1—c¢ 1—61/|aﬁ| - ’ - 1+e¢ 1—|—€1/|a6|’

12



where & = a(1+671) with |81 < e. So the ratio lf/l%jl which could be very large

plays a crucial role.
Proposition 2.11 For «, > 0,

RelDist(a2, 52) > 2 RelDist(a, 5),
and the equality sign holds if and only if o« = (3.

Proof: If either « or 3 1s zero, no proof is required. Assume both are positive.

——~ +Bla=8 _ la—8 o
RelDist(a?, 3?) = a > 2 = 2 RelDist(a,
( ) Vvap ap N (o, 5)
as was to be shown. [ |

Again there is no universal constant ¢ > 0 so that R/ei\]j/ist(oz, 3) is bounded by
¢ x RelDist(a?, 3?), unlike (2.13) in Proposition 2.4. One can always bound

——

RelDist, by RelDist, but not the other way around.

Proposition 2.12 For o, g € C,

RelDist,(«, §) < 9= 1/r R/ei\]j/ist(a,ﬁ),

and the equality sign holds if and only if || = |3)|.
Proof: Since

ol + 181 > 2/1alI8F = 2 (VIoBl)" = /ol + 3P > 2/7\/[af]

from which the inequality follows. [ |

——

Proposition 2.12 is useful in that, as we will see later, any bound with RelDist
yields a bound with RelDist,. Now consider the same pairing problem for this

newly-defined R/ei\]j/ist. First of all, the conclusion of Proposition 2.7 clearly

remains valid if RelDists is replaced by RelDist because of Property 5 in Propo-
sition 2.8; second, with the help of Property 6 in Proposition 2.8 we can prove

the same conclusion for RelDist as that for RelDist, in Proposition 2.5.

Proposition 2.13 Under the conditions of Proposition 2.5, we have

max RelDist(a;, a;) = min max RelDist(a;, @),
1<i<n 7 1<i<n
where the minimization is taken over all permutations 7 of {1,2,---,n}.

13



Remark. Proposition 2.13 may fail if not all a;’s and «;’s are of the same sign.
A countererample is as follows: n = 2 and

041:—1<Oé221 and &1: <&2:2.

I

We have showed that (2.15) cannot holds generally. In what follows, we will see
that RelDist can do better.

Lemma 2.1 Let 0 < a1 < s and 0 < a1 < @y, Then

—— — — — 2

2 2 2
RelDist( o, &1)] + [RelDist(az, &2)] < [RelDist(al, &2)] + [RelDist(az, &)

bl
or in another word,

(@1 — a1)? n (G2 — ay)?

(G2 —a1)? n (@1 — a»)?
&1(11 azOzz

Qary aron

<

and the equality sign holds if and only if either oy = s or &1 = as.
Proof: Complicated algebraic manipulations show that

(@1 —0)? | (F2—02)” (F2—0) (31— az)z)

0oy ( ~ ~ = =
[e5Ne %1 o¥g (e 5151 X1y

= —(as — )@ — aq)(an1ds + aran) <0,

and the equality sign holds if and only if either oy = a5 or a1 = @s. [ |

Armed with Lemma 2.1, by following the proof of Proposition 2.5, one can show
that

Proposition 2.14 Let {aq, -, a,} and {&1, -+, &, } be two sequences of n
positive numbers ordered ascendingly (descendingly) as in (2.14). Then

Zn: [R/ei\]j/ist(ozi, &i)] ’ = mTinZn: [R/ei\]j/ist(ozi, Qr(i)) ’ ,
i=1 i=1

where the minimization is taken over all permutations 7 of {1,2,---,n}.

Remark. It is clear to see that the conclusion of Proposition 2.14 remain valid
if we weaken the conditions by only assuming that «;’s and &;’s are nonnegative
and the number of zeros in «;’s equals that in &;’s. Proposition 2.14 may fail if
not all a;’s and «;’s are of the same sign. Here is a counterezample: n = 2 and

o =—2<ay=1 and a1 =1<as;=2.

14



2.3 Are RelDist, and RelDist Metrics?

Let X be a space. Recall that a function d : X x X+ [0, 00) is called a metric
if it has the following three properties: for a, 3, v € X

1. d(e, 3) = 0 if and only if o« = §;
2. d(a, B) = d(8, o);
3. d(a,y) <d(a, B) +d(B,7).

This definition excludes immediately the possibility that R/ei\]j/ist is a metric on

C, nor even on R since RelDist(er,0) = oo for o« # 0. To get around this, we,
as any mathematician would do, extend this definition of a metric by calling
d . XxX[0,00] a generalized metricif it possesses the above three properties.

Now take a look at Propositions 2.1 and 2.8. We see that the functions

RelDist, and R/ei\]j/ist on C x C satisfy the first two of the definition of a (gen-
eralized) metric. Naturally, we would like to ask: Is RelDist, a metric on C?

o

and is RelDist a generalized metric on C? Or, equivalently, we may ask if for

a, B, yeC

RelDist,(a,y) < RelDist,(«, 8) + RelDist, (5,7)? (2.22)
RelDist(er,7) < RelDist(a, 8) + RelDist(3, 7)? (2.23)

At this point, we are able to formulate our incomplete answers into Proposi-
tion 2.15. Since the proof is quite long and tedious, we leave it to Appendixs A

and B. Denote

Ryg = [0,00) and R4 = (0, 00).

Proposition 2.15

1. (2.22) holds for all o, 3, v > 0 and 1 < p < o0, and thus RelDist, is a
metric on Ryo;

2. (2.22) with p = 1,2 or oo holds for o, 3, v € R, and thus RelDisty,
RelDists and RelDisto, are metrics on R;

3. (2.23) holds for «, 3, v > 0, but not on whole R, and thus RelDist is a

generalized metric on Rq, but not on R nor C.

Still the question whether RelDist, is a metric on C is open.
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3 Summary of Results

To help the reader to grasp quickly what we have accomplished in this paper, we
give here a table to summarize partially the simplified versions of our theorems
in comparison with their corresponding well-known theorems in literature. Full
statement of these theorems and their stronger versions will be done in §5 and
§6. More results will be discussed in §7. Before we present the table, let us stick
to some notation: A, A € C**" and

MA) = {1, A} and MA) = {A, - ) (3.1)

B, B € Cm*" and

o(B)={o1,---,0n} and o(B)={c1, --,0,}. (3.2)

In the table, T always stands for some permutation of {1,2,---,n}; ¢;’s and 7;’s
are assumed in descending order, i.e.,

oL > 09> >0, >0

- - bl

512522"'>5n>0; (33)

Whenever, all A;’s and A;’s are real, we also require

M>Ae> >, A=A > > A (3.4)

In Table 3.1, each row consists of four boxes. The first one describes conditions
under which the inequality in the second box holds; the third one states, besides
these in the first one, additional conditions in order for the inequality in the
fourth box to be true.
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Table 3.1. Summary: (i) Hoffman and Wielandt Type Theorems

Classical Bounds

New Relative Bounds

A n ~ n ~ 2
Xi — A2 ~ [R]D't Aiy Ar(i ]
and 2| o1 A= Drap, |\ 2 [RePist:(A)
formal = ”g_ Allr < min{
VI = Dilz +1I - D7,
(Theorem 4.1)
VI = DB AT = D}
eorem 6.2
Th
. NOINEE > i Xo)]
i — A2 ~ [RelDistg Aiy Ar(i ]
and A=pAD |\ & ©
A ~
A | <A al < VI-DE+TT- DTG
(Theorems 4.1 and 4.3) (Theorem 6.3)
A " | X DR — e P
Ai — Al ~ [RelDist Aiy Ag
and V& A=D"AD ¢
- <|IA- Allr <|[D* = D||r
efinite
(Theorems 4.1 and 4.3) (Theorem 5.1)
A=XAX"! n ~ n — 2
o e~ [Xi = Arpyl? ~ [RelDist Xy Arci
I-xis- | V& @ A=piap, |\ & 20 Ar0)
< R(X)R(X)|IA = Allr < K(X)k(X) min{
(Theorem 4.2) \/”I = Dif|% + 1L = D2_1||§¢,
VT = DIYE T - D22}
(Theorem 6.1)
; > loi = 3il? \/Z" [RelDista(c:, 571))]* <
g, — 04 ~ = 200, O (4 >
a~nd i=1 B = DTBD2 1 o 2 (_)1 2
B <|IB - Bllr 75 I = Dallfe + 117 = DI
R + 11 = Dafl3 + = D3 E]
(Theorem 4.7)
(Theorem 6.7)
B N ~ 1y o~ 2
and 122:1 |0'i - a'i| E = DTBDZ \/22;1 [RelDlst(a'“gl)]
B <||B—Blr z

—_~

Theorem 4.7)

-1 1
< DT =D “llp+IIP3=D; " llp
= 2

(Theorem 5.2)
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Table 3.1. Summary (continued): (ii) Weyl-Lidskii Type Theorems

Classical Bounds

New Relative Bounds

A

i =X < A= Als A=D"AD | RelDistec (X, Xs)

and *

A (Theorem 4.3) /_\E 11 _~D Dll2, .

Hermitian RelDist (A, A) < 12271
(Ct. (7.3) and (7.4))

A A =il < A - Al N FelDist (i, Xi) < || D* = D=l

and A= D*AD

Z (Theorem 4.3) (Theorem5.1)

Definite

A= XAX-L | X=Xl RelDist,(As, Ar)

T Tiv-1 | < e(X)s(X))A - Al A=DIAD; | < k(X)x(X)min {

A and A real (Theorems 4.4 and 4.5) {’/HI = Dills + 11 = DI,

nonnegative Y= DT+ 11 = D23}
(Theorem 6.4)

B los — 54| < ||§ — B2 RelDist (04, 05) < min{

and 37— n* —

B (Theorem 4.7 B=DiBDz |\ /IT= D+ - D,
YN = Dallg+ 11 - D313}
(Theorem 6.8)

v o =7 < 1B = Bls _ RelDist (7, 7,

an _ *

7 (Theorem 4.7) B = DiBD: < 1Di=Dy M a+ID2 =D s

(Theorem 5.2)

Table 3.1. Summary (continued): (iii) A Bauer-Fike Type Theorem

Classical Bounds

New Relative Bounds

A=XAX"!

VA € AA), 3A € AA),
Sll(lh that N
A=Al < w(X)]|A = Al

(Theorem 4.6)

Either
A=AD
or
A=DA.

VA € A(A), 3N € A(A),
such that

B2 < (X = D2

(Theorem 6.6)
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Finally, let’s consider the graded case for which we will use H = D*AD and
H = D*AD for two n x n graded nonnegative definite Hermitian matrices with
A nonsingular and [[A=H|2||AAl2 < 1, where AA = EC . A, and G = BD
and G = BD for two m > n graded matrices whose singular values are of

interest. Also it is required that B is nonsingular and ||B~!||2||AB||2 < 1 where

AB d_efB B. Denote

MH)={A, - A} and AH)={A, - A}

and N
o(G)={o1, --,00} and o(G)={F1, --,0n},
and arrange them in the order prescribed by (3.3) and (3.4). Set

def

Fa A Y2AA)AY? and Ep E(AB)B~

Table 3.1. Summary (continued): (iv) Theorems for Graded Matrices

| Classical Bounds || New Relative Bounds
il ; H=D"AD g —
and > A= i and > [RelDist(n, )]
— =1
H H=DAD | <|I+E0~(+E2)" s
Definite < HH — Hllr
(Theorem 5.4)

(Theorem 4.1 and 4.3)
Hd A = M| < ||H = H||» Hd= D™AD | RelDist (A, &)
- (Theorem 4.3) o - SNUI+E) 2= (I+Ea) )2
H ’ H=D*AD
Definite (Theorem 5.4)
G G =DBD DR — NRE
and and Z [RelDlst(cri, oi)
~ =1
G G=BD < Wmg) —(reEs)

(Theorem 4.7) (Theorem 5.3)
G lo; — o] G=BD RelDist (0, 57)
afd < |G =Gl afd - < W4Bp) —(U+Bp) 7 s
G G =BD

(Theorem 4'7) (Theorem 5.3)
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4 Known Perturbation Theorems for Eigenvalue
and Singular Value Variations

In this section, we will briefly review a few most celebrated theorems for eigen-
value and singular value variations which will be generalized. Most of this
theorems can be found in Bhatia [3], Golub and Van Loan [14], Parlett [28]
and Stewart and Sun [30]. Notation introduced in §3 will be followed strictly.
Hoffman and Wielandt [16] proved

Theorem 4.1 (Hoffman-Wielandt) If A and A are normal, then there is a
permutation T of {1,2,- -+ n} such that

ST = Ao < 1A= Allp.

i=1

For a nonsingular matrix X € C**" the (spectral) condition number x(X) is

defined as et
£(X) = (IX 2| X ).

Theorem 4.1 was generalized by Sun [33] and Zhang [37] to two diagonalizable
matrices.

Theorem 4.2 (Sun-Zhang) Assume that both A and A are diagonalizable and
admat the following decompositions

A=XAX"' and A=XAX", (4.1)
where X and X are nonsingular and
A =diag(Ay, -+, Ay) and A= diag(Ay, -, An). (4.2)

Then there is a permutation 7 of {1,2,---,n} such that

Y= < R(DRXD(IA = Allp.
i=1

We will consider unitarily invariant norms || - || of matrices. In this we follow
Mirsky [27] and Stewart & Sun [30]. To say that the norm is unitarily invariant
on C™*™ means that it satisfies, besides the usual properties of any norm, also

L JUXV]| = X, for any U € Uy, and V € U
2. IXIl = 1| X]2, for any X € C™*" with rankX = 1.

20



Two unitarily invariant norms used frequently are the spectral norm || -||2 and
the Frobenius norm || - ||p. Let ||- || be a unitarily invariant norm living in
some matrix space. the following inequalities [30, p. 80] will be employed very
frequently in the rest this paper.

XY < (1IXN2 01 and Y- 2] < Y] 2]2-

Theorem 4.3 Suppose that A and A are both Hermitian, and that (3.4) holds.
Then for any wnitarily invariant norm || - ||

The inequality (4.3) was proved by Weyl [35] for the spectral norm, by Loewner
[24] and as a corollary of Hoffman-Wielandt theorem [16] for the Frobenius norm
and by Lidskii [23], Wielandt [36] and Mirsky [27] for all unitarily invariant
norms. Neither Lidskii nor Wielandt mentioned explicitly (4.3) which was done
by Mirsky [27]. For more detail, the reader is referred to Bhatia [3]. Theorem 4.3
has been generalized in many aspects. The following theorem is due to Bhatia,
Davis and Kittaneh [4].

diag(Ad1 — A1, ) A — An)

< {24l (43

Theorem 4.4 (Kahan, Bhatia, Davis and Kittaneh) 7o the hypotheses of
Theorem 4.2 adds this: all X;’s and A;’s are real and are arranged descendingly
as in (3.4). Then for any unitarily invariant norm || - ||

The inequality (4.4) was proved by Kahan [19] for the spectral norm, as a
corollary of Sun-Zhang theorem [33, 37] for the Frobenius norm. In another
aspect, the inequality (4.3) for the spectral norm was generalized to £, operator
norm. The p-Hélder norm of a vector & = (&) € C” is defined by

diag(Ad1 — A1, -, A — Ap)

H < k(X)r(X) H‘A - ZH‘ . (4.4)

def
e/l =

>l
i=1

The £y-operator norm of a matrix X € C"*” is defined by

def
X)), = max || Xz]],.
lelly=1

If X is nonsingular, its £, condition number is defined by

def —
kp(X) = X lIX -

Clearly, k2(X) = x(X), the (spectral) condition number. The following theorem
is due to Li [21, pp. 225-226].
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Theorem 4.5 (Li) Under the conditions of Theorem 4.4. Then

max [\ =l < wp(X)my ()14 = Ay

where 1 < p < co.

Generally, if one of A and B is diagonalizable, we have the following result
due to Bauer and Fike! [2].

Theorem 4.6 (Bauer-Fike) Assume A is diagonalizable, i.e.,
A=XAX"Y where A = diag(Ay, -+, A\n).
Then for any A € /\(zzlv), there exists a A € A(A) such that
X =l < (O - Al (45)

Regarding singular value perturbations, the following theorem was estab-

lished in Mirsky [27], based on Lidskii [23] and Wielandt [36].

Theorem 4.7 Arrange the singular values of B and B in descending order as
in (3.3). Then for any unitarily invariant norm || - ||

lding(e = 1, o0 = Fa)ll < || B = B (4.6)

10ne can prove a slightly more stronger inequality than (4.5)

=A< IX 1A = )Xo
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N

5 Statement of Theorems with RelDist: Non-
negative Definite Matrices

In this section, we devote our attention to the relative perturbation theory for
eigenvalues of nonnegative definite matrices, including singular value problems.
We will consider the following problems:

¢ Eigenvalue problems:
1. Aand A= D*AD with A nonnegative definite and D being close to
some unitary matrix;
2. H=D"AD and H = D*AD with both A and A positive definite
and ||A7Y|2]]A — A]|z < 1, where D is some square matrix.
¢ Singular value problems:
1. Band B = DyBDs with Dy and D5 being close to some unitary
matrices of suitable dimensions;
2. G = BD and G = BD with both B and B nonsingular and ||B_1||2||§—

Bl|2 < 1, where D is some square matrix.

Theorems presented here are often better than these in the next section when
applying to nonnegative definite matrices. We will make this more concrete in
the coming section.

5.1 Eigenvalue Variations for A and A = D*AD

Theorem 5.1 Let A and A = D*AD be two n x n Hermitian matrices, where
D is nonsingular. Denote their eigenvalues as in (3.1) and arrange them de-
scendingly as described in (3.4). Assume that A is nonnegative definite. Then

——

[max RelDist(A, ;) < ||D* = D~ Ys, (5.1)
n —~—— ~ 12

Z[RelDist(/\i,/\i) < ||D* = D7 Yp. (5.2)
=1

It is trivial to relate the right-hand sides of the inequalities (5.1) and (5.2) to
the singular values of D. In fact, let SVD of D be

D = UgSqVi. (5.3)
One has for any unitarily invariant norm || - ||

107 = D7 = [[Va(Sa = S3HUL | = [1£a - =3 -
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Another point we would like to make is that A and D* AD have the same rank,
or in another word, A and D* AD have the same number of zero eigenvalues. In
order for the inequalities (5.2) and (5.1) to be true, 0 eigenvalues, if any, must
be always paired with 0 ones.

5.2 Singular Value Variations for B and B = DiBD,

Theorem 5.2 Let B and B = DiBDs be two m x n matrices, where Dy and
Dy are square and nonsingular. Denote their singular values as in (3.2) and
arrange them as in (3.3). Then

ST ~ 1 . - . -
max RelDist(o3,7:) < 5 (107 = D7 [l + 1105 = D5 [l2) . (5.4)
- SN ~ 2 1 * -1 * -1
> [RelDist(o, )| < 5 (IDF = D7 llr + 1105 = D3 le) - (5.5)
i=1

Now, Let’s briefly mention a possible application of Theorem 5.2. It has some-
thing to do with deflation in computing the singular value systems of a bidi-
agonal matrix. For more details, the reader is referred to [6, 8, 10, 26]. We
formulate the application into a corollary.

Corollary 5.1 Assume in Theorem 5.2, one of the Dy and Dy s an identity
matriz and the other takes the form

p=(1 ).

where X 1s a matriz of suitable dimensions. With the notation of Theorem 5.2,
we have

vyl ~ 1
LF) < = .
121%)(” RelDist(o;,5;) < 2||X||2, (5.6)
-~ [l ’ Lix 5.7
elDist(o;, o5 ] < — . .
> [RelDist(os, )] < —5lIX1lr (5.7)
Proof: Notice that
A I —x\ _ X
and thus ||D* — D™Y| = | X||2 and [|D* — D™ Y|r = V2||X||F. |
It was proved by Eisenstat and Ipsen [10] that
|7; — o] < || X||203, or equivalently i _ 1‘ < I X]]2. (5.8)
o
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So as long as ¢; and o; are of the similar magnitude which is guaranteed if || X||2
is small, our inequality (5.6) is sharper by a factor 1/2. As a matter of fact, it
follows from (5.6) and Proposition 2.9 that if || X||2 < 4 then

~Oi H“(HZ H‘(H% H“(HZ H“(HZ 2
— =1 < | —=4+1/1+ = + O(||X|]5).
0; ‘_ ( 4 16 2 2 (H ||2)

Our inequality (5.7) is the first of its kind.

5.8 Graded Matrices

Theorem 5.3 Let G = BD and (2: BD be twon x n matrices, where B and
B are nonsingular, and let AB =B — B. Denote

o(G)={o1, -, 00} and o(G)= {51, -, 5},
and arrange them descendingly as in (3.3). If ||AB||2||B~ |2 < 1, then

max Rﬁ]\jgt(cri, o)

1<i<n
1
< 5|(1+(AB)B ) = (I +(AB)B™H)T,
B)B™' + BT*(AB)* |I2Jr [(AB)B~ |2 [(AB)B~ |2
- I(AB)B=12 1 —|I(AB)B~2 2
1B~ [2)|AB]l2
< , 5.9
< ( REEE ||AB||2) ; (5:9)
n 2
Z [R 1Dist (o, 01)]
i=1
1
< 5||(J+(AB)B ) = (I+(AB)B),
< B)B™' + BT*(AB)*||r II(AB) e [(AB)B!||r
- (AB)B~||r 1= |I(AB)B~2 2
1B~ l2][AB||»
< . (5.10)
( L= |IB=l2 IIABllz) 2

Remark. It is interesting to notice that if (AB)B~! is very skew, then
RelDist(0;, ;) = o([[(AB)B™1||s). Especially if ||(AB)B~! 4+ B=*(AB)*||2 =
O(||(AB)B~1|3), then RelDist(o;,5;) = O(][(AB)B~1|3) also.

Theorem 5.4 Let H = D*AD and H = D*AD be two n x n nonnegative
definite Hermitian matrices whose eigenvalues are

M) = (A, A and M) = (X, -+, A ), (5.11)
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and in descending order as in (3.4) and let AA = A—A If
AT 2]AA4]]2 < 1,

then

max R/ei\]j/ist(/\i,xi)
1<i<n

< anraa A - (g a2 aa)a 7))
2

A o[ AAll2
V1= (A7l AA]

J S [Rebieas i)

2

i=1

< o anraganm (g an A Aty

A lAAllr
T VI lATLAA]L
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6 Statement of Theorems with RelDist,

The rests of cases listed in §1.1, as well as singular value problems, will be
treated here. To be specific, we will consider

¢ Eigenvalue problems:

1. A and A = D*AD for Hermitian case, where D is nonsingular and
close to I or more generally to a unitary matrix;

2. A and A = D7 ADs for general diagonalizable case, where D7 and
Dy are nonsingular and close to I or more generally to some unitary
matrix;

¢ Singular value problems:

1. Band B = D} BDas, where Dy and Ds are nonsingular and close to
I or more generally to two unitary matrices;

We retreat singular value problems for comparison purpose. As we will see
soon that we will prove more nice inequalities for singular value variations,
but these inequalities may be potentially less sharp than those in §5 for large
perturbations. Brief comparisons among theorems in this section and these in
the previous section will be given.

6.1 Eigenvalue Variations

The following theorem is a generalization of Theorems 4.1 and 4.2.

Theorem 6.1 Assume that n x n matriz A is perturbed to A= DiADs and

both D1 and D4 are nonsingular. Assume also both A and A are diagonalizable
and admit the decompositions as described in (4.1) and (4.2). Then there is a
permutation T of {1,2,- -+ n} such that

n

~ 2
> [RelDistQ()\i,)\T(i))] (6.1)
i=1
< min {nf(%uxw X =1 = Do) X2+ |IX (D" = DX,
1 oI oA /1K =42 - DX + 15— (05 — J)Xn%}
< K(X)R(X) min {J 1 = Dall3 + 117 = D3 /Il = DT + 1 - D2II%} :
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For any given U € U,, UAU* = (D1U*)*AD3U* has the same eigenvalues as
A does, and moreover from (4.1)

UAU* = (XU*)'AXU™.
So applying Theorem 6.1 to matrices A and U AU* leads to the following theorem
which we will refer as Theorem 6.1s, where “s” is for indicating that it is stronger.

Theorem 6.1s Let all conditions of Theorem 6.1 hold. Then there is a permu-
tation T of {1,2,---,n} such that

n

S [RelDista(4s, A iy)] ’ (6.2)

i=1

< WCORCE) g min {0 = Dallz + 107 = D3,

T = D+ v - Dzn%}.

Suppose now A € € is an normal matrix, i.e., A*A = AA*. Perturb A
to A = DjAD,. The question is: When is A also normal? This is a rather
interesting question, and an instant answer is that A is normal provided

D5A*DyDiADy = DEADy DA Dy

However, this condition is, perhaps. too general to be useful. I do not know how
to approach this problem yet and therefore this question will not be addressed
further in what follows. On the other hand, if we happen to know that A is also
normal, the following theorem, as a corollary of Theorem 6.1, indicates that the
eigenvalues of A and A agrees to high relative accuracy.

Theorem 6.2 Let A and A = D} ADs be two n x n normal matrizes, where
Dy and Dy are nonsingular. Denote their eigenvalues as in (3.1). Then there
is a permutation T of {1,2, -+ n} such that

n

> [RelDistQ()\i,XT(i))r (6.3)

=1

< min min {Juv — Dilg A+ I0° = D5 A /I — DR+ U - mn%} .

We happen to know how to solve the minimization problem: find a Uy € U,
such that for any unitarily invariant norm || - |

foin IU =Dl =|Uo— D and foin lo* =D Y| = |lvg =D~ (6.4)
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in terms of the singular value decomposition (SVD) of D. As a matter of fact,
let SVD of D be given in (5.3). Tt follows from Theorem 4.7 that

|7 =Dl > 11 =Sall and ||[U* =D > [[1-37"||.  (65)
Fortunately, there is one Uy def UaVy which realizes the two equality signs.

Theorem 6.2, now applying to Hermitian matrices, leads to

Theorem 6.3 Let A and A = D*AD be two n x n Hermitian matrices, where
D is nonsingular. Denote their cigenvalues as in (3.1). Then there is a permu-
tation T of {1,2,---,n} such that

n

Z [RelDistz(/\i,Xr(i))] :

i=1

IN

: _D2 *—D_12
min /| = DI+ (1" — D=3

I = Sallz + 1= 553 (6.6)

It is worth mentioning that the permutation 7 in Theorem 6.3 may not be the
identity one, assuming eigenvalues are ordered in the way of (3.4). However, one
can always choose a 7 such that zeros are matched to zeros, negative eigenvalues
to negative ones and positive ones to positive ones (Cf. Propositions 2.6 and
2.7). A brief comparison of this theorem and the inequality (5.2) in Theorem 5.1
leads to the following conclusions:

1. Theorem 6.3 covers both the definite case and the indefinite case, while
the inequality (5.2) in Theorem 5.1 covers the definite case only;

2. When applying to the definite case, (5.2) is sharper than (6.6). As a
matter of fact, (6.6) is a corollary of (5.2). It follows from (5.2) and
Proposition 2.12 that if A is nonnegative definite

n n

~ 72 1 —~—— ~
RelDisto(A, )| < —= RelDist(A;, A;)
;[ elDi1sty ] \/§ ;[ elils

2

1 _
< ﬁHEd -3
< I = Zallz +111- 27,

by Lemma 6.1 below.

Lemma 6.1

1 _ -
—=1%a = 7 F < /I = Zallf + 11 - 23113,
V2

and the equality holds if and only if Xq = I, t.e., D s unitary.
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Proof: Notice that for £ € R

1 2

1 1
- —1+1-= N/1E=12+{1—-=
-1l <14 g\gmg -]

and the equality sign holds if and only if & = 1. [ |

The theorem below is a generalization of Theorems 4.3 and 4.4 for the spectral
norm and that of Theorem 4.5.

Theorem 6.4 To the hypotheses of Theorem 6.1 adds this: all A\;’s and Xj s
are nonnegative and are arranged descendingly as described in (3.4). Then we
have

jmax RelDistp(/\i,Xi) < Kp(X)krr(X) min{{’/”[— Di||F+ T — D2_1||g ,

i1 Do +||I—Dz||%}, (6.7)

where 1 < r < oo,

Similarly to Theorem 6.1, there is a stronger version of this theorem as follows.
Theorem 6.4s Let all conditions of Theorem 6.4 hold. Then

max RelDist, (A, X;) < rip (X)), (X) % (6.8)

1<i<

s min { 10— Dull+ 07 = D58, 0 = DTS+ 0 - D}

As a consequence of this theorem and the solution (6.5) to the optimization
problem (6.4), we deduce that

Theorem 6.5 Under the conditions of Theorem 6.3, if A is nonnegative defi-
nite and the eigenvalues of A and A are in descending order as in (3.4), then

max RelDist, (1, X) = I = Zalls + 11— =504, (6.9)

where X4 is defined in (5.3).
However, there is not much interest in this theorem for two reasons: One is that
(6.9) works for nonnegative definite matrices only just like the inequality (5.1)

of Theorem 5.1; and the other is that (6.9) is less sharper than (5.1). To see
this, we notice that (5.1) and Proposition 2.12 imply that

max RelDist, (\;, \;) < 2~ Y7 RelDist();, A;) < 27/7[|8q — B71Jo.

1<i<n

So with Lemma 6.2 below, one can deduce (6.9) from (5.1). But still (6.9) looks
nice and clean.
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Lemma 6.2

190 = =312 < 247 /07 = Sallg + 17 - =311, (6.10)
and the equality holds if and only if Xq = I, t.e., D s unitary.

Proof: Let € € o(D) so that ||Xgq — 251”2 = ‘5 — % . Then

_ 1 1
ISa— 57t = F—{sm—u+b——
i i
1 q
< 2lry |€—1Iq+‘1"
i
< 2= Sally + 11 - 271
as required. [ |

So far we have considered the case when both A and A are diagonalizable. In
what follows, we weaken this assumption by requiring only A to be diagonaliz-
able and derive relative eigenvalue perturbation bounds of Bauer-Fike Type [2].

Theorem 6.6 Assume that A € C**" is diagonalizable and admits the follow-
g decomposition
A= XAX"t where A =diag(A1,- -, \n). (6.11)

Assume? also either A = DA or A = AD. Then for any = ,\(Z) there exists
a A€ AA) such that

A=
min
AEA(A) A

<[XTHD = DX|lp < mp(X)|T = D, (6.12)

6.2 Singular Value Variations

As to singular value variations, we will prove

Theorem 6.7 Let B and B = DiBDs be two m x n matrices, where Dy and
Dy are nonsingular. Denote their singular values as in (3.2). Then there is a
permutation T of {1,2,- -+ n} such that

n

Z [RelDistz(Ui, 57(2'))] ’

i=1

1
2 -12 2 —1}2
< ﬁ\/llf— Dullp + 111 = Dyl + 1 = Dallp + 11— Dy ||7-(6.13)
2Unlike in our previous theorems, here we do not have to assume that D is nonsingular.
Of course, if D is far away from I, the bound (6.12) does not tell us much; if D is close enough
to I, it has to be nonsingular.
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For any given U € U,, and V € U,, UBV* = (D1U*)*BD3 V™ has the same
singular values as B does. Let the SVDs of Dy and D5 be as

D1 = Udlxdlvcﬁ and D2 = Udzzdzvd*z. (614)

Applying Theorem 6.7 to matrices B and UEV*, together with the solution
(6.5) to the optimization problem (6.4), leads to the following stronger version
of the theorem.

Theorem 6.7s Let all conditions of Theorem 6.7 hold. Then there is a permu-
tation T of {1,2,---,n} such that

n

Z [RelDiStz(Ui,gr(i))]2

=1

1 . _ _
< s min VIV = Dul 41U = D+ IV = Dl +1Ve - D3

1 - _
ﬁ\/llf = Sallp + 1 =S5 1% + 1 = Saxllz + 1 - S5, 117 (6.15)

where a1 and Xqo are defined in (6.14).

Theorems 6.7 and 6.7s are of less interest since they provide less sharper bounds
than Theorem 5.2 does. We keep them around for comparison purpose, though
still they look pretty. Now, we are going to show how to derive (6.15) from (5.5)
of Theorem 5.2. Tt follows from (5.5) and Proposition 2.12 that

Z [RelDistz(Ui,fﬂ)]z < — Z [RelDist(Ui,fﬂ)]
i=1 \/§ i=1
1
< — (1B =23 E + || Bae — 255
WG (IZar =23 e + [[Ba2 — 3535 (1)

1 _ —
< 5 (VW Sl 1= S5+ I~ Sl 10— 521
(by Lemma 6.1)

1 _ _
< ﬁ\/llf = Sallp + I =23 M1% + 11 = Saxll7 + 1 - 25, 117,

which shows (6.15). The proof in §10 of Theorem 6.7 is, however, of different
spirit.

Theorem 6.8 Let B and B = DiBDsy be two m X n matrices, where Dy and
Dy are nonsingular. Denote their singular values as in (3.2), and arrange the
singular values of B and B in descending order respectively as in (3.3). Then
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we have the following

jmax RelDist,(0;,0;) < min{{’/HI— D1_1||g + (|7 — Ds||4,

11— Dullg+ 11 - Dglnz}. (6.16)

Similarly, applying Theorem 6.8 to matrices B and UEV*, we will have
Theorem 6.8s Let all conditions of Theorem 6.8 hold. Then

max RelDisty(ai, ;)

1<i<n
. . a « _ n—1¢ _ g g _ q x _ n-1|e
< min_min {/JU = DIEHIV = Dalls, /U = Dillg+ 1V - D E}
= min { = S8+ 1T = Sl /17— Sasllg + 17— zg;ng} , (6.17)

where a1 and Xqo are defined in (6.14).

We can not say for sure that (5.4) of Theorem 5.2 is always sharper than the
inequality (6.17), but many evidences indicates so. Let’s weaken (6.17) a little
bit into

RelDist, (05, 0;
121%)(” elDist, (o5, 05)

1 g bt g bt
<5 <\/III — S5 18 1T = Sasllg + 7 - Sanllg + 17 - Ed;n%)<6.18>

(6.18) degrades (6.17) marginally in interesting cases. In what follows we will
show that (6.18) is a consequence of Theorem 5.2. To this end, let £ € a(Dy)
and ¢ € o(D3) so that

* — 1 % _ 1
|1D} = Dy e = ‘&— g‘ and ||D5 — D72 = ‘C_ Z‘

We notice that

RelDist, (03, 0;) < 2_1/pR/ei\]j/ist(ai,5i) (by Proposition 2.12)
1 _ _
< oo (a1 — 3} l2 + |Za2 — £3,1]2)  (by Theorem 5.2)
1 1 1
- e
1 1 1
A
1 17 17
< = 45—14+‘1—— +illt= 2] H)c=1p
(el - e
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1 _ 4 -
< 5 (Vir=sate =22+ i = Sa = Saal).

which gives (6.18).
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7 A Theorem of Ostrowski and Other Theorems

In this section, we briefly review the current state of research on the problems
listed in §1.1, together with our remarks.

Let A be an n x n Hermitian matrix. Perturbing A to D*AD, where D
is nonsingular, is actually performing a congruence transformation to A by D.
The following theorem is due to Ostrowski [17, pp. 224-225].

Theorem 7.1 (Ostrowski) Let A, D € C**" with A Hermitian and D non-
singular. Define A = D*AD. Denote the etgenvalues of A and A as in (3.1)
and arrange them in the order as specified by (3.4). Then there exist 8;’s so
that B

O'min(D)z S 9]' S O'maX(D)2 and /\]' = 9]'/\]',

forj=1,2--- n.

Ostrowski theorem implies immediately a relative perturbation bound on Her-
mitian eigenvalues.

Theorem 7.2 Let the conditions of Theorem 7.1 hold. Then

1A = Al

< | = D*D||s,
1A

or in another words,
X=X 48) with |§] <||I - D*Dls,
forj=1,2--- n.

Although the inequality (5.1) of Theorem 5.1 and Theorem 7.2 are independent
in the sense that one can not be inferred from the other, the latter is practically
more useful in the following aspects:

1. Theorem 7.2 covers more while the inequality (5.1) of Theorem 5.1 covers
nonnegative definite matrices only;

2. Theorem 7.2 is more friendly in the sense that it bounds directly on §; in

the expression X]' = A;(144;) which makes it easy to bound variations of
RelDist, as shown in Proposition 2.3 and Part II of this series [22].

Ostrowski theorem also applies to singular value problems of matrices B and
B = DyBD by working with Hermitian matrices

(B B*)and(é E*):<D2 Dl)*<B B*)<D2 D1(7).1.)
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Corollary 7.1 Let B and B= D} BDy be two m x n matrices, where D1 and
Dy are nonsingular. Denote their singular values as in (3.2) and arrange them
in descending order respectively as in (3.3). Then

min{amin(Dl)z, O'min(Dz)z} < ? < HlaX{O’maX(Dl)z, O'maX(Dz)z}
J
which gives
=] < a1 = DD 1= D3 Dalle )
or in another words,
oj=0j(l+v) with |y <max{[|[l = DT Dilla, [[T — D5 Dal|2}.
forj=1,2--- n.

This corollary, though it is an immediate consequence of the above Ostrowski
theorem and the equation (7.1), has appeared no where. Corollary 7.1 also has
a advantage over Theorem 6.8s and the inequality (5.4) of Theorem 5.2 in that
it bounds directly on v; in the expression o; = 0;(1 + ;). Of course, one can
develop bounds on ; with little effort from Theorem 6.8s and Theorem 5.2. It
turns out that Corollary 7.1 provides a less sharper bound than the following
theorem due to Eisenstat and Ipsen [10].

Theorem 7.3 (Eisenstat-Ipsen) Assume the conditions are as described in
Corollary 7.1. Then

5.
U'min(Dl)O'min(DZ) < 0__] < Umax(Dl)Umax(DZ)
J
which yields
|oj — il , ,
T S HlaX{|1 - Umln(Dl)Umln(D2)|a |1 - Umax(Dl)Umax(D2)|}a
J
or in another words, 0; = o;(1 4+ v;) with
|7]| S max{|1 - Umin(Dl)Umin(D2)|a |1 - Umax(Dl)Umax(D2)|}a
forj=1,2--- n.

Theorem 7.3 always provide a sharper bound than Corollary 7.1 does, as the
following lemma indicates.

Lemma 7.1 For &, ¢ >0,
maX{|1—€2|,|1—C2|}Z|1—€C|, (72)
and the equality sign holds if and only if € = (.
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Proof: The inequality is obvious if either max{¢,{} < 1 or min{{, ¢} > 1. Tt is
also clear if either € = 1 or ( = 1. Now it suffices for us to consider the case
when 0 < ¢ <1 <.

L1->C-1=28+0<2=2<1=21-8>1-6=1-¢&];

21— <1284 >2=2E6C+C >4+ >2=0-1>1-€4;
also (2> 6= —-1>60—-1.S0¢?—1>1-&|.

From the above proof, it is clear that max{|1 — &2|,|1 — ¢?|} = |1 — &(| if and
only if £ = (. [ |
Regarding to graded matrices, the following two theorems are due to Demmel

& Veseli¢ [9] and Mathias [25].

Theorem 7.4 (Demmel-Veseli¢) Let the conditions of Theorem 5.4 hold.
Arrange the eigenvalues of H = D*AD and H = D*AD descendingly as n
(3.4). Then
5=l e
W <Al AA]l2
J
or in another words,
= A4 e) with 6] < AT A,
forj=1,2--- n.

Theorem 7.5 (Mathias) Let the conditions of Theorem 5.3 hold. Arrange
the singular values of G = BD and G = BD descendingly as in (3.3). Then

Fo— o
5 =il 188,
J

or in another words,

5 = 0j(L+v;) with |y <[[B7Y2/ABl-,
forj=1,2--- n.

Finally, let us see what we can get from Theorems 7.2, 7.4, 7.5 and 7.3 and
Corollary 7.1, in terms of the two kinds of relative distances defined in §2.

1. From Theorem 7.2, it follows

RelDist, (Aj, %;) < RelDisto, (Aj, A;)

IN

[|I — D*D||a, (7.3)

TBitOn X [-DD
RelDist(Aj, ;) %.

IN

(7.4)
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The inequality (7.3) holds because

A=Al = A

RelDisto, (A, X;) = < < |[I = D*Dl}s;
DA Ll S ]
and the inequality (7.4) holds because
— X— X=Xl N I-D*D
RelDlSt(A],A]): | J .7| — | J .7| M < || ||2

ik bVl owie(D)

. From Corollary 7.1, we have

RelDistos(0,%,) < max{|ll = D; Dl |11 = D5 Dalla}. (7.5)
— max{||l — D Di|ls, |1 = D3 Ds]|5}
RelDist(o;,0;) < - :

(07,05) < min{omin(D1), Omin(D2)}

(7.6)

. From Theorem 7.3, it follows

RelDisto (05,7;5)
< max{|l = omin(D1)omin (D2)], |1 — 0max(D1)omax(D2)|}, (7.7)
RelDist(c;, 3;)
max{|l — omin(D1)0min(D2)], |1 — Omax(D1)omax(D2) [}
- V/Omin(D1)min(D2)

The inequalities (7.7) and (7.8) are sharper than (7.5) and (7.6), respec-
tively.

(7.8)

. From Theorem 7.4, we have

RelDistoo (A, %) < ||A™Y|2||AA]), (7.9)
— A7Y|o|AA
RelDist(};, ;) < 147 2l A Al (7.10)

VI A2 [AA]2
The inequality (7.10) has been derived in Theorem 5.4.

. From Theorem 7.5, it follows

RelDisto, (07,5;) < ||B™Y|2||AB2, (7.11)
— B~ 1]2||AB
RelDist(oj,5;) < 1B lJ=l|A B2 (7.12)

T V1= [BR([AB]

The inequality (7.12) turns out to be sharper than the last “<” in (5.9)
of Theorem 5.3.
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8 Remarks on Generalized Eigenvalue Problems
and Generalized Singular Value Problems

In this section, we are going to say a few words for the following perturbations.
As we shall see, the results in previous sections, as well as those in Li [22], can
be applied to derive relative perturbation bounds for them.

. Generalized eigenvalue problem: B
AHZ D AlDl AD;AZDZ and H1 AHZ D AlDl AD;AZDZ
Wlth all A; and A, positive definite and ||A; ||2||AZ Aill2 < 1, where D;

are some square matrices and one of them are nonsingular.

¢ Generalized singular problem: _ _
{Gl,Gz} = {BlDl,BzDz} and {Gl,Gz} {BlDl,BzDz} with all Bz
and B; nonsingular and || B dIE ||B — B;ll2 < 1, where D; are some square
matrices and one of them is nonsingular.

For the above mention generalized eigenvalue problem, without loss of any gen-
erality, consider only the case when D, is nonsingular. Then the generalized
eigenvalue problem for Hy — AHs = D7 A1 D1 — AD35 A2 D5 is equivalent to the
standard eigenvalue problem for

ATV D7 Dr Ay Dy Dy AT, (8.1)
and the generalized eigenvalue problem for ﬁfl — /\ffz = Di‘ngl — AD;EQDQ
is equivalent to the standard eigenvalue problem for

D*A;Y Dy Dr A, Dy Dy VAT YD, (8.2)
where Ady € Ay — Ay and D = D* ' (1 4+ A3 (AA)ATYH2 So
bounding relative distances between the eigenvalues of Hy — Al and these of
Hy— AH5 is transformed to bounding relative distances between the eigenvalues

of the matrix (8.1) and these of the matrix (8.2). The latter can be accomplished
in two steps:

1. Bounding relative distances between the eigenvalues of the matrix (8.1)
and these of R R
D*A;Y*D;'Dr A Dy Dy AT Dy (8.3)

2. Bounding relative distances between the eigenvalues of the matrix (8.3)
and these of the matrix (8.2).

As to the above mention generalized singular problem, we shall consider
their corresponding generalized eigenvalue problems [20, 32, 34] for

DiB*ByDy — AD;BiByDy and  DYBi By Dy — AD%B: By D,

instead.
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9 Proofs of Theorems 6.1 and 6.4

To prove the theorems, we need a little preparation. A matrix Y = (y;;) € R™*"
is doubly stochastic if all y;; > 0 and

Zn:yikzzn:ykal fork=1,2,---,n.
k=1 k=1

A matrix P € R™*" ig called a permutation matriz if exactly one entry in each
row and each column equals to 1 and all others are zero. Let ¢; be the ¢th column
vector of I,. Each permutation matrix P corresponds to a unique permutation

7of {1,2,---,n} so that
P =(er),er(2), s €r(n))s

and vice versa. The following wonderful result is due to Birkhoff [5] (see also

[17, pp. 527-528]).

Lemma 9.1 (Birkhoff') An n x n matriz is doubly stochastic if and only if it
lies in the convexr hull of n! permutation matrices.

Lemma 9.2 Let Y = (y;;) be an n x n doubly stochastic matriz, and let M =
(my;) € C**™. Then there exists a permutation T of {1,2,--- n} such that

n

n
D I Py = Y Imarn*

i,j=1 i=1

Proof: Denote all n x n permutation matrices as Py, and their corresponding
permutations of {1,2,--- n} as 7, where k = 1,2,---,nl. Tt follows from
Lemma 9.1 that Y can be written as

Y = ZakPk,

k=1
where ay > 0 and 22;1 ap = 1. Hence

n

n! n n

2 2 : 2

> Py = ZakZImm@I > 1<H1kl<11mZ|mm(i>| :
k=1 i=1 - T i=1

i,j=1
as was to be shown. [ |

The trick in the above proof is quite standard. It was first used by Hoffman
and Wielandt [16], and Sun [31] used it to prove a Hoffman-Wielandt type
theorem for a special class of matrix pencils.

The following lemma is due to Elsner and Friedland [12].
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Lemma 9.3 (Elsner-Friedland) LetY = (y;;) € C**". Then there exist two
n x n doubly stochastic matrices Y1, Y, so that entrywisely

Tmin(Y)? Y1 < (Jyij17) < omax(Y)? Yo,

where omin (V) and omax(Y) are the smallest and largest singular values of Y,
respectively.

Proof of Theorem 6.1: Let us first derive our perturbation equations.

“HA-AX = AXT'X - X'XA,
A—A = A—DiADs=A— ADs+ ADy— DIAD,
= A(I - D))+ (DI = D)A,
XMA-AX = X 'XA-AXT'X,
A—A = A—DiADs=A— DA+ DiA— DIAD,

= (I-D})A+ Ay —1).
Thus, we have
AXTIX —X7'XA = AX'(I— D)X+ X"YDr* = DXA, (9.1)
XT'XA-AXT'X = X '(I-DHXA+AX"YD7'—DX. (92)
Set ¥ = X7IX = (yyj), £ = XM = D)X = (e) and F = X~L(D]" -

I))? = (€;;). Then the equation (9. 1) reads AY — YA = AE + EA, or compo-
nentwisely A;y;; — y”/\ = Ajei; + e”/\], SO

[ = X3)wii [ < (Il + 1 1) (ei I* + 165 17),
which yields
~ 12
|6i]'|2 + |ft'iTZ']'|2 > [RelDiStz(/\i,/\]’)] |yij|2~

Hence
1 v 12 1 2 2
X~ (1= Do) K3+ X DT =D |F > Z [RelDists (A, 3)] " lyis | (9.3)

which, together with Lemmas 9.3 and 9.2, show that

~ ~ n 2
||X—1([—D2)X||%—|—||X—1(D1—* _I)XH% > Omin(Y 2 Z [RelDlstz /\Z,/\T( ))]

i=1

for some permutation 7 of {1,2,--- n}. Since

omin(Y) = V7T = (IXTIX5 0 2 XTI IXE
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SO

IIX‘lllzIIXIIz\/IIX‘l(I — Do) X5 + IX 1Dy = DX

n

v—1 . ~ 2
Z ||X_ ||2||X||20min(y) Z [RelDlStz(Ai,/\T(i))
i=1
- ~ 2
i=1

Set V &' ¥-1x = (¥ij ). Similarly, we get

~ ~ 2
140 = DX + 15 (05 = DXIE 2 3 [RelDista (0 %) 5547

i,j=1
which, together with Lemmas 9.3 and 9.2, show that

)XHF > Umln 2 Zn: [RelDlstz /\Z, /\T( ))] ?

i=1

XN =DD)X|p+IX 1 (Dy

Since

omin(Y) = V7 = (1N 2 XTI IXE

Along the lines as we were proceeding in (9.4), we will reach

IIX_lllzIIXIIz\/IIX‘l(I = DX |g + [X-1(D5 " = DX

n ~ 2
> |30 [RelDists (A, X)) (9.5)
i=1
The inequality (6.1) is now a simple consequence of (9.4) and (9.5). |

A proof of Theorem 6.4 is based on the following result due to Li [21, pp. 207-
208]. For a X € C™*" introduce the following notation for a k x £ submatrix
of X = (u55):

Tiyjr Tiggo Lirge
1 -k def 22J1 t2J2 12]¢
DG R . . . (9.6)
Ji-Je :
Lirjr  Tiggo Lirje

where 1 <y < ---
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Lemma 9.4 (Li) Suppose that X € C"*" is nonsingular, 1 <i; < -+ < i <
nand 1 <j1<---<jy<n,andk+0>n. Then

[ ()
Ji-Je

Moreover, if X s unitary then

[ ()
Ji-Je

Proof of Theorem 6.4: Let k be the index such that

> X7
P

=1.
2

p < ax RelDistp(/\i,Xi) = RelDistp(Ak,Xk).

1<i<n

If 5, = 0, the inequality (6.7) is trivial. Assume 75, > 0. Also assume, without
lose of any generality, that B
Ak > A > 0.

Partition X, X!, X and X! as follows:

W . PO . W*
X: XaX aX_lz 1*),XI XaX aX_lz ~1 )
(X1, X2) (Wz (X1, X2) e

where X1, Wi € C**F and )?1, Wl e Cx(k=1) "and write A = diag(A1, A2) and
A = diag(Ay, As), where Ay € R¥F** and A, € RGE=1x(k=1) 1§ follows from the
equations (9.1) and (9.2) that
MWiXy—WiXohy = MWP(I— Dy)Xo+ Wi (D" — DXoAs, (9.7)
WiX1Ay — AW Xy Wi(I — DHX1Ay + MWDy — D)X, (9.8)

which gives

WiXy— ATYWiXoRy = Wi (I — Dy)Xo+ AT'W (D" = DXoAy, (9.9)

WXy — AWy X AT Wi(I— D)Xy 4+ AWs (D7 — DX AT (9.10)

Lemma 9.4 implies

~ -1 ~ -1 ~
| % > x| g

v

ot

r

— -1 ~1—1 ~
|75 x: > [ %] s e

v

i

r

since Wi Xy is a k x (n—k+1) submatrix of X 71X, and WiXiisa (n—k+1)xk
submatrix of X7'X and k+ (n —k+ 1) = n+ 1> n. So it follows from (9.9)
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that

DY T -
(1—A )IIX X
k

< (1— —) HW1 5|
= %] - iart w g
< |wrx, —HA;1W1*)~(2K2
< Wf‘f(z—Al_le)?szH
= Wil = D)Xy 4+ ATTW (DT — 1) XaAs
< |wi = py)xs +iHWf(D;*—I))?2
* e Xk —%
< WX ] ||I—D2||r+A—||D1 = 1|
< XTI 1Jr—\/||f Dol + (|1 = DI}

Similarly, it follows from (9.10) that

Ak
(1——) XX
v—1 Xi 1
< XX 1+A—p€/III—D2 I# + 117 = D7
k

The inequality (6.7) is now a simple consequence of above inequalities.
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10 Proofs of Theorems 6.7 and 6.8

Proof of Theorem 6.7: We assume, without lose of any generality, that m = n;
otherwise, we can augment B and B with zero blocks of suitable size. For
example if m > n, we do

Bl = (B, Om,m—n)a §1 = (E, Om,m—n) = DTBldlag(DZa Im—n)

Since this way only increases the number of zero singular values, and Proposi-
tion 2.7 says that zero singular values should be always paired to zero ones, we
still have (6.13) in the end once we prove it for By and Bj.

Assume now m = n and let the singular value decompositions of B and B
be as

B=UXV* and B=UXV", (10.1)
where U, V| [7, Ve U, and

Y = diag(oy, -+, 0,) and Y= diag(ay, -, 0n). (10.2)
Notice
U(B—B)V = SV*V-UTUS,
B—B = B—D:!BDy=B— BDy+ BDs— D:BD,

B(I — D)+ (Dy* — I)B.

Thus, we have
SVAV —U*US = SVH(I — Do)V + U*(DT* = DU, (10.3)
One the other hand, we have

U(B-—B)V = U'UL-XV*V,
B—B = B-DIBDy=B-D:B+D!B—D:BD,
= (I-D})B+B(D;'—1).

Thus, we have
U*US — SV*V = U*(I — DO)US + SV5(Dy ' = DV.
Taking conjugate transpose in both sides, we get

SUAU — V*VE = SU*(I — DU + V*(D7* = V. (10.4)
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Set Q = U*U = (¢:;) and Q=V*V= (¢i;)- Both are unitary. Similarly to the
derivation of the inequality (9.3), from the perturbation equations (10.3) and
(10.4) one can get

I— Do)+ || = DT*% > |‘”q” q”‘”' , 10.5
I 27+l llE > Z;l P (10.5)
I—D 2 4 I_D—* 2 > |0-qu] qZ]U]| ) 106
I e+l o Z;l P (10.6)
Since
|03@i; — 45051 + loiqi; — @517 = o7 Qi) + lasj |77 — 2R(033;3557)

+07 1qi)* + 1Gi;1°5; — 2R(044i5 G5
> (0 =) (i I* + a5 ),
where R(-) takes the real part of a complex number. The last “>” holds because
W03 41505) < 0iFi (i ” + 13 1),
W03 31;05) < 03 (i ” + 13 1)
Now adding the corresponding two sides of the inequalities (10.5) and (10.6)
leads to
11 = Dall7 + 11 = DT + 1 = Dullf + 1T = D3 [[5
n 2 72
. ~ i1+ 1
> 2 Z [RelDista (o, 0']')]2 w
i,5=1
It is easy to see that the matrix whose (¢, j)th entry is M is a doubly
stochastic matrix. Hence applying Lemma 9.2 leads to the inequality (6.13).

Proof of Theorem 6.8: Similarly to the remark we made at the beginning of the
above proof, we may assume, without lose of any generality, that m = n because
of Proposition 2.5. Then still, we have the perturbation equations (10.3) and
(10.4). Let k be the index such that

p def max RelDist, (0;, 0;) = RelDist, (0, o).
_Z_n

If 5, = 0, the inequality (6.16) is trivial. Assume 7, > 0. Also assume, without
lose of generality, that
o > 0o > 0.

Partition U, V, [7, V as follows
U = (Ul,UZ), V= (Vl,VQ), ﬁ = (ﬁl,ﬁz) and ‘7 = (‘71,‘72),
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where Uy, Vi € C*** and [71, Vi € (k=1 Write ¥ = diag(X;,¥s) and
¥ = diag(Xy, Xs), where X € R¥** and ¥ € RGE=Dx(*k=1) T follows from the

equations (10.3) and (10.4) that

E1V1*‘72—Uf52§32 = Elvl*(I—D2)1~/2+Uf(D1_*—I)ﬁziz,
ElUfUz—Vl*VQEQ = ElUf(I_Dl)Uz—i‘Vl*(Dz_*_I)VQEQ

which yield

ViVo = ST LS, = Vi — Do)Vo + 37105 (DT* — DUsSs, (10.7)

UrlUs — STWEVEe = UF(I — DUy + X7WVH(D5* — 1)VaXs. (10.8)

Lemma 9.4 implies that

Uzl

2

and k+ (n—k+1) =n+1>n. Soit follows from (10.7) that

Therefore

O e A WA
ol 2 1 2
o SR
2 2
< Vf‘%—EflUl*ﬁzizH
2
- Vl*(I—Dz)f/erz;lUf(D;*—I)ﬁZEZHZ
Gy
< | = Dall2 + DT ~ 1|2
e
5£q q —% q
< i+ g - a4 07 - 11,
k

1—5k/0k

LY ey

< /Il = Dallg +1ID5 — 1],

Similarly, it follows from (10.8) that

1—5k/0k

LTk < i\l = Dullg +1ID5 — 1.
1+0k/0£

p =

The inequality (6.16) is a consequence of the last two inequalities.
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11 Proof of Theorems 5.1, 5.2, 5.3 and 5.4

Proof of Theorem 5.1: Since A is nonnegative, there is a matrix B € C**" such
that A = B*B. With this 5, A=D*AD = D*B*BD = B*B where B = BD.
Let SVDs of B and B be as

B=UAY?V* and B=UAY?*V*,

where
Al/z = dlag(\/za TV An) and Kl/z = dlag (\/X»la ) \/i) :

In what follows, we actually work with BB* and EE*, instead of A = B*B and
A= B"B.

BB* —BB* = BD*B*—BD™'B*
= B(D*—D™Y)B*,
U*(BB* — BB*)U = AU*U—U*UA,
U*B(D* — D™YB*U = AY2V*(D* =D H)VAY2

Thus, we have the following perturbation equation.
AU*U —U*UA = AY?V*(D* — D=Y)VAY2 (11.1)

Write @ iy = (¢i;)- It follows from (11.1) that

i =\l

o * — * — & |
V(D" =D OYWV|p = |ID" = D73 > > “=
i,j=1 \//\i/\j

Since (]g;j|?) is a doubly stochastic matrix, applying Lemma 9.2 concludes the
proof of the inequality (5.2). To show (5.1), let k be the index such that

lgi] 2.

Mp d:ef 1I£1§1J<X R/ei\]j/lst(/\l,xl) = R/ei\]j/lst(/\k,xk)

If 5, = 0, no proof is necessary. Assume 7, > 0. Also assume, without lose of
any generality, that B
Ak > A > 0.

Partition U, V, [7, V as follows
U = (Ul,UZ), V= (Vl,VQ), ﬁ = (ﬁl,ﬁz) and ‘7 = (‘71,‘72),

where Uy, V1 C*** and [71, 171 e C*=1) and write A = diag(A1, A2) and
A= dlag(Al, Az) where Ay € R¥>F and Ay € RE-DX(E=1) ¢ follows from the
equation (11.1) that

Kzﬁ;Ul — ﬁ;UlAl = K%/Z";;(D* — D_l)lei/z

48



which yields
AT AT — T30y = K2V (D" — D YA Y2, (11.2)

Lemma 9.4 implies that ‘ﬁ;Ul H = 1since U3U; is a (n—k+1)x k submatrix
N 2
of U*U and k+ (n—k+1) =n+1>n. So it follows from (11.2) that

Ak ~ ~ ~
1= = || - 1Rl |[T5on| fas?
" 2 Un[, = [[Aall2 || Uz U || 1ALl
S L R L
< |- ReBsonar |
_ K§/217;(D*—1)—1)1/1A;1/2H2
“1/2 Sk - -1/2
< RPN |7 (0 = DA ar
Xk [ .
= /T [0 - o7
/\k H 2( ) ! 2
Xk .
< —||D* - D
<\ o
an immediate consequence of which is the inequality (5.1). |

Proof of Theorem 5.2: Set B= BDs and denote
o(B)=1{61>62> > 5a}.

Applying Theorem 5.1 to B* B and B*B = D5 B*BDs leads to

——

max RelDist(o?,57) < ||D5— D2_1||2a
1<i<n
n P 2
Z [RelDist(a?,fr?) < ||1D5 = D3 Y|p.
=1
Now applying Proposition 2.11, we obtain
RelDist(0:,57) < 3|05~ Dy’
[pax RelDis (0i,00) < 2|| 3 — D5,
n —— 12 1 * _1
Z [RelDlSt(O’Z’, ) < §||D2 - D5y lr.
=1
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Similarly for BDy and Dj BDy, we have

—~— 1 * _1
11%1%)% RelDist(d;,7;) < §||D1 — D72,
n —~ 72 1 * _1
Z [RelDlSt(O’Z’, ) < §||D1 - Dy lp.
=1

——

Since RelDist is a generalized metric on Ro, we get

——

RelDist(01, %) < RelDist(o7,5;) + RelDist (57, 57)

1 N _ y _
< §<||D1 _D11||2+||D2_D21||2)’
n —~—— 2 n —~——— —~——— 2
[RelDist(Ui, 52')] < Z [RelDist(Ui, 7;) + RelDist(7;, 52')]
i=1 i=1
n —~——— 2 n —~—— 2
< | [RelDist(ei, 5] + | - [RelDist(s:, )]
i=1 i=1
1 * -1 * -1
< §<||D1 — Dy ||F+||D2_D2 ||F)’
as expected. [ |

Proof of Theorem 5.3: Write
G =(B+AB)D = (I+(AB)B~Y)BD = DG,

where D = T + (AB)B~!. Now applying Theorem 5.2 above to G and G =

DG yields the first inequalities in both (5.9) and in (5.10). To get the second
inequalities, we notice

I+E)y —(I+E) ' =1+E =) (-)'E'=E"+E+EY (-1)' B

1=0 i=2
where F' = (AB)B~!, and therefore for any unitarily invariant norm || - |

IT+Ey = +E)7 | < NE+E N+ 12N |IE]

i=1

e+ E-l, _1IE]: )
= + £
( I L= 1E]l:

The rest is trivial. [ |
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Proof of Theorem 5.4: Rewrite H and H as

H = D*AD = (AY?D) AY?D < BB,
H = D AY2(I4+ A7Y2(AA)A™Y2)AY2D
= (T4 A 2@ A2 222D ) (14 472 (AA)A72) 412D

B X a2p,

B Y (144712(A4)A"2) 42D,
Set D = (I + A~Y2(AA)A=1/%)"*. Thus B = DB. Notice that \(H) =
A(B*B) = A(BB*) and A(H) = A(B*B) = A(BB*) and BB* = DBB*D*. So
applying Theorem 5.1 to BB* and BB* yields the first “<” in both (5.13) and
(5.14). N
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12 Proof of Theorem 6.6

There is nothing to prove if A € A(A4). Assume that X ¢ A(A). Here we will
prove the case when A = DA only, since the proof for the case when A = AD
is very similar. Consider A — AJ.

A-X = A-XI+A-4A
= XA-ADX"'4+(D-DXAX?
= X|I+X ' (D-DXAA =X~ (A=XD)X~"
Since A — A is singular, we have for any 1 < p < oo
X1 (D = DXAGA = 3D, > 1

which gives

~ ,\|
1< X YD = DX, JAA = XD Y|, = |IX YD - )X]||, max ~|
= H ( ) ||P|| ( ) ||P H ( ) ||P AEA(A) |A . /\|

as was to be shown. [ |
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A Is RelDist, a Metric?

In this appendix, we will prove (2.22) under certain conditions. As a result, we
will see

1. RelDist, is a metric on Ry;
2. RelDisty, RelDist; and RelDist., are metrics on R.

We strongly conjecture that RelDist, is a metric on C. Unfortunately, we are
unable to prove it at this point.

Lemma A.1 The following statements are equivalent:
1. RelDist, (e, v) < RelDist,(«, §) + RelDist, (3, 7);

2. RelDist, (o, £v) < RelDist,(Ecr,&5) + RelDist, (63,87) for some 0 £ & €
C;

3. RelDist, (o, &) < RelDist, (v, £5) 4+ RelDist, (£3,&7) for all0 £ & € C.

The proof of this lemma is trivial, just by Property 3 of Proposition 2.1. With
Lemma A.1 in mind and that swapping « and v does not lose any generality,
we may assume from now on

a <o <. (A1)

The inequality (2.22) is trivial when one of the o, 8, yiszeroor f = avor § = 7.
So from now on, we may assume

a,B,v£0 and ao#[F#7. (A.2)
Now there are three possible positions for 53:
f<a or a<f<y or y<p.
When « < 0, we split the case § < « into two subcases:
<=y o —y<B<ao

Also in the case a < 0, without loss of generality, we may assume o = —1 by
Lemma A.1. We summarize the above cases we have to handle separately as
follows.

lLa< <y
2. ay >0, l.e, aand v are of the same sign;

3.a=-l<l<y<p
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4, —y<f<a=-1<1<4%;and

b << v <a==-1<1<n.
Lemma A.2 (2.22) holds for « < 3 < v, and the equality sign holds if and
only if =a or 8 =1~.

This lemma actually implies that (2.22) holds if 5 lies between o and 7y for all
a, ¥ € R, not just these o and = satisfying (A.1).

Proof: Assume o # § # . Because of (A1), we have y —a =7 -8+ F—«
and thus for 1 < p < o0
i S el p—a
Y lalr el AF ol
v—8 f—a
_|_
VP18 /18I + ol

1 1
+”_ﬁ)(vW+4Mp_<wp+ww)
1 1
+(8— «) (f/,yp T lap B af + |ﬁ|P)

= RelDist,(«, ) + RelDist, (53, 7)
(= B)IBF = lal") /T FIBF — 3/ ¥ TaF

RelDist,(a,y) =

P+ lalr g/ + 18I 18P — [aP
(B=a)(8IF =77)  /lalP +18IF = /7" + |afr
YA+ ol /ol + (8l |6lP — 2 '

Now if o < # < || < 7, then |B]F — |aff <0 and |B]F —4¥ < 0, and thus

(= B)BF = |o") /37 T 1BF — /77 F [

P+ el /47 +|BIP 1P — |alp
(B=a)(BF =77)  /lalP +]8IP = /7" + afr <o
VP + lalr /lalp + |8l |BIP — 47

Hence RelDist,(e,v) < RelDist,(«, 3) + RelDist,(3,7). Consider now |a| <
B < 7. Then

(v = BB —JalP) /5" +18F = /47 + lalr

AP+ alp /47 + |6 18P — [aP
(B =a)(BIF =~*)  /lalP +[BIP = /77 + |afr
AP+ lalp/lalp + [BIP |87 — 47
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W—ﬁﬂﬁ—MD( L P —laP Y EF - Y+ el

Y+l \ VP +F B—al g — ol
B 1 AP =B falP + 82— /4 + ol
Ylalp+pr 7—8 pr =P

< 0.
The last “<” is true because ¥/~? + 8P > &/|a|P + §P and

F—lal 2 =P

0 < :
B—lal = v=7
0 VP =+l el 8 = /7 + el
o — falp - pr =P '

So we also have RelDist, (o, ) < RelDist,(«, 5)+RelDist, (3, v) for |o| < 3 < 7.
The proof for the case p < 0o is completed.
When p = oo,

Yoo _1=8 p-a
g g g
1=, B-a

v maxilal], |5}

1 1
=) (5 - m)
< RelDisto,(a, B) + RelDisto (3,7),

RelDistoo (e, ) =

as was to be shown. [ |
Lemma A.3 (2.22) holds for ary > 0.

Proof: Lemma A.2 shows that (2.22) is true if & < 8 < 4. If either 8 < & or
v < 3, (2.22) follows from Property 8 of Proposition 2.1. |

As an immediate consequence of Lemma A.3, we have

Proposition A.1 RelDist, s a metric on Ryy.

Lemma A.4 (2.22) holds for —y < 8 < a <0< |a| <7, and the equality sign
holds if and only if B = «.

Proof: Assume 3 # «. Define

ﬂ@¥@%§§famm£Sm
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Clearly if p = o0, f(&) = Vvi increases in |a| <& < 5;if 0 < p < oo, we have

(Pt =gl

f’(g) = (’}/p +€p)1+1/p

>0, for o] <E&<y.

So f(&) is an increasing function for all p. Hence

RelDist, (o, 7) = f(—a) < f(—f) = RelDist, (3, 7) < RelDist, (e, 3)+RelDist, (5, 7),
as was to be proved. [ |

Proposition A.2 RelDistq, RelDists and RelDist., are metrics on R.

Proof: We have to prove (2.22) with p = 1,2 and oo for all 5 cases listed at the
beginning of this appendix. But Case 1 has been covered by Lemma A.2, Case
2 by Lemma A.3, and Case 4 by Lemma A.4. Cases 3 and § are to be dealt
with by Lemmas A.5 and A.6 below.

Lemma A.5 (2.22) withp = 1,2 or oo holds for « = =1 <1 <~y < 3. When
p=1,2, the equality sign holds if and only if B = v; when p = oo, the equality
sign holds if and only if either § =~ orvy=1.

Proof: Assume 3 # . First consider the case p = 2. Define

det E+1 £—7v
1= VETL Vet

We are going to show that f/(¢) > 0 for £ > v and thus

oFl
Vi +l
which concludes the proof for the present case. Since

£—1 (€ +7)
(€2 + 1)3/2 (&2 _1_72)3/2'

So to show f/(&) > 0, it suffices for us to show for £ >y > 1
YEFNE + DY > (€= 1)(E +4°),
or equivalently, to show for & > v > 1

E-D*E+7)P =Y+ )M +1)° <.

RelDist2(—1, 3) + RelDista(3,7) = f(5) > f(v) = = RelDista(—1,7)

(&) =-
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But tedious algebraic manipulations yield the following
(€= D*E +77)° =7 (€ +7)*(E + 1)°
= "+ =2+ (7 - 1ER =697 (L )€
—677(L+ 7)€ + (1 =71 =21+ )" + (1 = 47)¢®
= 17700 - 66%) = 29°(L 4+ %) =2 + 73 (77 - 66%)
—676% = 677€° + (1 = v")E° = 2(1+9°)7 + (1 = 7)€
< 0,
as required. This completes the proof for p = 2.
We have to show (2.22) for p = 1 or co. For the moment, let’s see what

is the implication of (2.22) for any 1 < p < oo for this particular case. Notice
v+1=p+1-(8—7) and

) v+1 8+1 B—x
RelDist,(—1,7) = = —
p(=17) Vv +1 WP +1 WP+ 1
g+1 B—=v

VEIE AT

1 1 1 1
0+ (gt - ) ) (vt )
= RelDist,(—1, 3) + RelDist, (5, 7)
%%+1—VW+1_U$JwVW+WW+VW+1
P R/ Rt
So (2.22) holds if and only if
B+1) (VT - 1) 5+

< B- (VT ) AL

+(B+1)

or equivalently

Yo+ (+ DY+ 1= (B + 1)/ +1) < (=T 497/ +1

which 1is true if and only if

y+1 B+1 )
P 4 ~P — <p—7. A3
/B 7/(VW+4 vEaT) S0 (A-3)
Our proof will be completed if we can prove (A.3) for p = 1 or co. When p =1,
the left-hand side of (A.3) is zero and its right-hand side is 3 —y > 0. When
P = 00,

mm&ummg@ouA$:ﬁ<7+l—6;1):ﬁ_Vgﬁ—%
7 7

Hence (A.3) holds for both p = 1 and co. |
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Lemma A.6 (2.22) withp = 1,2 or co holds for § < —y < a=-1<1<7,
and 1s strict, unless p = oo and v = 1.

Proof: We want to prove for p = 1, 2 and oo
RelDist,(—1,%) < RelDist,(—1, #) + RelDist, (3, ),
which, by Lemma A.1, is equivalent to
RelDist, (1, —) < RelDist, (1, — ) + RelDist, (-3, —7).

Set &£ = —f3. Then £ > ~v > 1. For the moment, let’s see what is the implication
of (2.22) for any 1 < p < oo for this particular case. Notice that v + 1 =
&4+ v —(¢£—1), and thus

. v+1 E+y E-1
RelDist, (1, —v) = = —
(L, =) VPH+T VP FL Y FI
§+7y §—1

Ve Y

1 1 1 1
e (g 7o) - 0 (Gt vee)
+(€+7)\z/€p+7p_\z/7p+1_(€_1)\z/€p+1+\z/»}/p+1
VAP TE + 7 VP FIYE+T
So (2.22) holds if and only if
\z/é’p_i_,-yp_\z/7p+1_(€_1)\z/€p+1+\z/»}/p+1<0 (A4)

or equivalently

(HOVE T (Y7 T = 7 +1) (€17 +& (V& + T+ AP +1)

or equivalently

Y (A DVEHT— (€= DY +1) S (1 + 7 +1U/E +1
which holds if and only if
7+ 1 €—1)
PP 4 £P — <y 4E€. Ab
Ve (o - ) < (45)
We have to show (A.5) (or (A.4)) for p = 1, 2 and co. When p = 2, We will
prove (A.4) by showing for £ >y

€+ -1 __1( Lo, )<0
VAR IVE 7 (VP T+ E 1 77) ViDL Vet

E+7)

(A.6)
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and thus our proof is completed. To show our claim, first, we notice that the
inequality (A.6) is equivalent to

E+nE+ o N 1
¢%+1¢@+wthﬂ+1+¢@+vﬂ Vi et

or equivalently

(€+7)(€+1)\/€2+1<(\/2 2 2 2 2

< 7+1+¢€+7)(¢€+1+¢7+Q.
/€2 2

o (A7)

Notice that

The left-hand side of (A.7)

IN

(E+7E+ D),
The right-hand side of (A.7) > (¢@+1+VH%+Q1

and

(VEFT+ VA7 H1) — (4 E+1)

= 1+ 142/ + IV +1 -8 - (1 + Dé—7

> 22+ 1V 4+ 11— (v +1)¢

> 0,
because

(v+ 1% = &9 428y +¢7
< 3¢ 4 €7,
AP+ +1) = 489" +482 + 49" +4.

Next, we are going to show (A.5) for p = 1 and co. When p =1,

2
the left-hand side of (A.5) = (y + f)m <y +E;

When p = oo,

E+7

the left-hand side of (A.5) =
Y

<{+7,
and the equality sign holds if and only if v = 1.
By now the proof of that RelDist;, RelDists; and RelDisty, are metrics on R is
completed. [ |
We briefly summarize what we have proved in this appendix.

59



1. When p =1, 2 or 00, (2.22) is true for all «, 8, ¥ € R, and thus RelDist;,
RelDists and RelDist., are metrics on R;

2. (2.22) is true for all @, 8, ¥ > 0 and for all 1 < p < oo, and thus RelDist,
for any 1 < p < oo is a metric on Ry ;

3. (2.22) for 1 < p < oo survives to Case 1, Case 2 and Case 4. But we
do not know whether it survives to Case 3 and/or Case 5. We believe it
would. Showing (2.22) survives to Case 3 is equivalent to showing (A.3)
for 1 < 5 < #; and showing (2.22) survives to Case 5 is equivalent to
showing (A.5) for 1 <y <&.

60



N

B Is RelDist a Generalized Metric?

In this appendix, we will prove (2.23) under certain conditions. As a result, we
will see

——

1. RelDist is a generalized metric on R»g, and a metric on R4;

——

2. RelDist is not a generalized metric on R (nor on C, of course).
Similarly to Lemma A.1, we also have

Lemma B.1 The following statements are equivalent:
1. RelDist(a, v) < RelDist(a, 3) + RelDist(8,7);
2. RelDist(éa, &7) < RelDist(€a, £3) + RelDist(£3, &7) for some 0 # € € C;

3. RelDist(€a, £7) < RelDist(a, £5) + RelDist(£4, £v) for all 0 # € € C.

This lemma follows from Property 3 of Proposition 2.8. Again, now with
Lemma B.1 in mind and that swapping « and ¥ does not lose any generality,
we may assume (A.1) holds, and also only cases (A.2) are interesting. Following
the similar arguments, we see nontrivial cases are exactly the same 5 cases as
we summarized in §A.

Lemma B.2 The inequality (2.23) holds for o < 5 < v, and the equality sign
holds of and only if B =« or = 1.

This lemma actually implies that (2.23) holds if 5 lies between o and 7y for all
a, ¥ € R, not just these o and = satisfying (A.1).

Proof: Assume o #  # . Because of (A.1), we havey —a =v— 4+ 7 —a,
and thus

R/i\]j'/t , :’y—a:’y—ﬁ_i_ﬁ—oz
eWDistlenn) = = Vel | Vil
y—0 pB-a

= +

VIBl V18al
+(y -




Now if o < 3 < |a| <, then \/|F] —/]a| < 0 and /|8| — /7 < 0, and thus

VBV Vi
=5 Vs 4 )\/Iaﬁ'yl <!

Hence R/ei\]j/ist(a,'y) < R/ei\]j/ist(a,ﬁ)—i—R/eiBi/st(ﬁ,'y). Consider now || < 5 < 7.
Then

() |6|—¢E_(ﬁ W V1Al

Vlapy| V3|
BtV P f
_ WA-VAWE- Vi -/
oy
< 0,
as required. [ |

Lemma B.3 (2.23) holds for ay > 0.

Proof: Lemma B.2 shows that (2.23) is true if « < § < . If either 8 < & or
v < 3, (2.23) follows from Property 6 of Proposition 2.8. |

As a immediate consequence of Lemma B.3, we have

——

Proposition B.1 RelDist is a metric on Ryy.

Lemma B.4 Ifa <0< —a <y < 3, then the inequality (2.23) holds, and the
equality sign holds if and only if 3 = ~.

Proof: Assume 3 # v. By Lemma B.1, we may assume o« = —1. Then we want
to have

7+1<6+1+5—7
VY VB By

or equivalently,
(Y +DVB=(B+ DA+ (B-7) <0
Since
G+DVB=B+ DA =B =) = WWB+VB-BA—Vi+ (=5
= VBIWVA-VO+VE-VI+ (-8
= (V- VBOWBy—1+7+VB)

< 0,

as was to be shown. [ |
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Lemma B.5 When o = —1 < 0 < —a < v, the inequality (2.23) holds for all
B <a=—1ifand only if v < 34 2v2. If, however, v > 3 + 2v/2, then (2.23)

holds for B < —ﬁﬂ;}.

Proof: The inequality
r+1 —1—5_|_ Y-8
S RV VAT

is equivalent to

(y+1)V/=F — (=1 =BT — (v — B) <0.

Write —3 = ¢2, so the above inequality reads

WA+ +(+1DE+ (T —7) <0 (B.1)

So that (2.23) holds for all 8 < o = —1 requires the inequality (B.1) is true for
all € > 1. Since the two zeros of —¢2(\/7+ 1)+ (y+ 1)é+ (V7 —7) are { =11

and & = %ﬁg, and

ToVT

VY+1 ™
gives v < 3 + 2v/2, we know that (2.23) holds for all # < a = —1 if and
only if v < 3+ 2v/2. If, however, v > 3 4 2v/2, then (2.23) is violated for

T <A< L n

We may summarize how (2.23) is doing under the 5 distinguished cases.

1. (2.23) survives to Case I by Lemma B.2;

[\]

2.23) survives to Case 2 by Lemma B.3;

o

23)
2.23) survives to Case 3 by Lemma B.4;
23)

(
(
-
1. (

2.23) dies at Cases 4 and/or 5, unless v < 3 + 2v/2 by Lemma B.5.
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