
Relative Perturbation Theory:(I) Eigenvalue VariationsRen-Cang Li �July 25, 1994AbstractIn this paper, we consider how eigenvalues of a matrix A change whenit is perturbed to eA = D�1AD2 and how singular values of a (nonsquare)matrix B change when it is perturbed to eB = D�1BD2, where D1 andD2 are assumed to be close to unitary matrices of suitable dimensions.We have been able to generalize many well-known perturbation theorems,including Ho�man-Wielandt theorem and Weyl-Lidskii theorem. As ap-plications, we obtained bounds for perturbations of graded matrices inboth singular value problems and nonnegative de�nite Hermitian eigen-value problems.1 IntroductionRelative perturbation theory for eigensystems and singular systems has beenbecoming a hot topic in the last �ve years and ever since It was �rst studied byKahan [18] in 1966, later by [1, 6, 8, 9, 29] and most recently by [7, 10, 11, 13,15, 25].1.1 What to be Covered?This paper deals with perturbations of the following kinds:� Eigenvalue problems:1. A and eA = D�AD for Hermitian case, where D is nonsingular andclose to I or more generally to a unitary matrix;2. A and eA = D�1AD2 for general diagonalizable case, where D1 andD2 are nonsingular and close to I or more generally to some unitarymatrix;�Department of Mathematics, University of California at Berkeley, Berkeley, California94720, (li@math.berkeley.edu). 1



3. H = D�AD and eH = D� eAD for graded nonnegative Hermitian case,where it is assumed that A and eA are nonsingular and often that Dis a highly graded diagonal matrix (this assumption is not necessaryto our theorems below).� Singular value problems:1. B and eB = D�1BD2, where D1 and D2 are nonsingular and close toI or more generally to two unitary matrices;2. G = BD and eG = eBD for graded case, where it is assumed that Band eB are nonsingular and often that D is a highly graded diagonalmatrix (this assumption is not necessary to our theorems below).The above perturbations include component-wise relative perturbations of theentries in symmetric tridiagonalmatrices with zero diagonal [8, 18], in bidiagonaland biacyclic matrices [1, 7, 8], in graded nonnegative Hermitian matrices [9, 25]and in graded matrices of singular value problems [9, 25] and more [10].1.2 NotationWe will adopt this convention: capital letters denote unperturbed matrices andcapital letters with tilde denote their perturbed ones. For example, X is per-turbed to eX .Throughout the paper, capital letters are for matrices, lowercase Latin let-ters for column vectors or scalars, and lowercase Greek letters for scalars. Thefollowing is a detailed list of our notation, but still more notation will be intro-duced when it appears for the �rst time.Cm�n : the set of m � n complex matrices;Cm : Cm�1 ;C : C 1 ;Rm�n: the set of m � n real matrices;Rm: Rm�1;R: R1;Un: the set of n � n unitary matrices;0m;n: the m � n zero matrix (we may simplywrite 0 instead);In: the n�n identity matrix (we may sim-ply write I instead);X�: the complex conjugate of a matrix X;�(X): the set of the eigenvalues of X,counted according to their algebraicmultiplicities;�(X): the set of the singular values of X,counted according to their algebraicmultiplicities; 2



�min(X): the smallest singular value of X 2Cn�n ;�max(X): the largest singular value ofX 2 Cm�n ;kXk2: the spectral norm of X, �max(X);kXkF : the Frobenius norm of X, rPi; j jxijj2,where X = (xij);kXkp: the p-H�older operator norm of X to de-�ned later;jjjXjjj: some unitary invariant norm of X tode�ned later.1.3 Organization of the PaperIn x2, we de�ne two kinds of relative distances which will be heavily used in therest of this paper. It is proved in Appendixes A and B that the relative distancesare really (generalized) metrics on the space of nonnegative real numbers or thatof nonpositive real numbers and that some of them are actually a metric on R.A brief summary of what we will accomplish in this paper in comparison withwell-known perturbation theorems with the metric of absolute value on C willbe conducted in x3. Full statements of these well-known theorems are presentedin x3. We devote two sections to present and discuss our theorems. x5 handlesnonnegative de�nite cases, singular value problems and graded cases, while x6handles the rest of the perturbations listed in x1.1 and singular value problemsagain for comparison purpose. In x7, we give a brief account of establishedtheorems related to our relative perturbation theorems. We will briey remarkhow our relative perturbation theorems can be applied to generalized eigen-value problems and generalized singular value problems. Finally, our proofs oftheorems are presented in xx9|12.
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2 Relative Distances2.1 The p-Relative DistanceGiven �; � 2 C , the p-relative distance between them is de�ned asRelDistp(�; �) def= j�� �jppj�jp + j�jp ; (2.1)where 1 � p � 1. We de�ne, for convenience, 0=0 def= 0. RelDist1 was �rstused by Deift, Demmel, Li, and Tomei [6] for de�ning relative gaps.Proposition 2.1 Let 1 � p �1 and �; � 2 C .1. RelDistp(�; �) � 0 and the equality sign holds if and only if � = �;2. RelDistp(�; �) = RelDistp(�; �);3. RelDistp(��; ��) = RelDistp(�; �) for all 0 6= � 2 C ;4. RelDistp(1=�; 1=�) = RelDistp(�; �) for � 6= 0 and � 6= 0;5. RelDistp(�; �) � 21�1=p and the equality sign holds if and only if � =�� 6= 0;6. RelDistp(�; 0) � 1 if � 6= 0; RelDistp(�; �) > 1 for p > 1 and RelDist1(�; �) =1, if �� < 0; Finally, RelDistp(�; �) < 1 for all p if �� > 0.7. RelDistp(�; �) increases as p does.8. if �; �1; �; �1 2 R and � � �1 � �1 � � and �1�1 � 0, thenRelDistp(�; �) � RelDistp(�1; �1): (2.2)Moreover if either � < �1 or �1 < � holds, the inequality (2.2) is strict.Proof: Properties 1{6 are trivial. Property 7 holds because ppj�jp + j�jp is adecreasing function of p for 1 � p � 1. To prove Property 8, it su�ces to showthat RelDistp(�; �) > RelDistp(�; �1); (2.3)where � � �1 < � and ��1 � 0. Consider function f(�) de�ned byf(�) def= 1� �pp1 + j�jp ; where �1 � � � 1.We claim that the function f(�) so de�ned is strictly monotonically decreasing.This is true if p =1. When p <1, set h(�) def= [f(�)]p. Because for 0 < � < 1h0(�) = �p(1 � �)p�1(1 + �p�1)(1 + �p)2 < 0;4



f(�) is strictly monotonically decreasing for 0 � � � 1. For �1 � � � 0, setg(�) def= h(��). Since for 0 < � < 1g0(�) = p(1 + �)p�1(1� �p�1)(1 + �p)2 > 0;g(�) is strictly monotonically increasing for 0 � � � 1, and thus h(�) and f(�)is strictly monotonically decreasing for �1 � � � 0. This completes the proofof that the function f(�) is strictly monotonically decreasing. There are severalcases to deal with in order to prove (2.3).1. if � � 0, then 0 � �=� < �=�1 � 1 andRelDistp(�; �) = f(�=�) > f(�=�1) = RelDistp(�; �1);2. if � � 0, then 0 � �=� < �1=� � 1 andRelDistp(�; �) = f(�=�) > f(�1=�) = RelDistp(�; �1);3. if �1 � 0 < �, then 0 � �1=� � 1. Let �0 be the one of �=� and �=�which lies in [�1; 0]. Now if � = �1 = 0, (2.3) is trivial; otherwise either� � �1 < 0 < � or � < �1 = 0 < � is true, and thus �1 � �0 < 0 ��1=� � 1, so we haveRelDistp(�; �) = f(�0) > f(�1=�) = RelDistp(�; �1);as was to be shown.The proof of Property 8 is completed.Remark: In Property 8 of Proposition 2.1, the assumption �1�1 � 0 is es-sential. This can be seen by noting that for � > � > 0, �� � �� < � < �while RelDistp(��; �) = �+ �pp�p + �p < 21�1=p = RelDistp(��; �):Now, we introduce another global notation of this paper. Henceforth p andq are reserved for a dual number pair as de�ned below1p + 1q = 1; where 1 � p � 1 and 1 � q � 1.In general, when people say the relative perturbation in a real number � isat most �, it is meant that � is perturbed to another real number � in the sensethat if we write � = �(1+ �) then � 2 Rand j�j � � (see, e.g., [8]), which is alsoequivalently to say ������ � 1���� � �:So it would be interesting to relate our p-relative distance to this common senseof relative perturbations. 5



Proposition 2.2 Let 0 � � < 1, and �; � 2 R. We have the following:������ � 1���� � �) RelDistp(�; �) � �; (2.4)and RelDist1(�; �) � � ) max������� � 1���� ; ������ � 1����� � 2�1� � ; (2.5)RelDist2(�; �) � � ) max������� � 1���� ; ������ � 1����� � p2 �1� � ; (2.6)RelDist1(�; �) � � ) max������� � 1���� ; ������ � 1����� � �1� � : (2.7)For general 1 � p � 1, if 21=p� < 1 we haveRelDistp(�; �) � �) max������� � 1���� ; ������ � 1����� � 21=p �1� 21=p� : (2.8)Asymptotically, lim�!� RelDistp(�; �)��� �� � 1��� = 21=p; (2.9)thus (2.4), (2.5), (2.6) and (2.7), (2.8) are at least asymptotically sharp.Proof: (2.4) is trivial to show since � � � = �(1 + �)� � = ��. To prove (2.5),(2.6) and (2.7), we set either � = �=� or � = �=�. Then � > 0. It follows fromthe left-hand side of (2.5) thatj� � 1j� + 1 � �) j� � 1j � �(� + 1) = �(� � 1) + 2�:So if � � 1, one deduces � � 1 � 2�1�� ; and if � � 1 one has 1 � � � 2�1+� . Thiscompletes the proof of (2.5). The proof of (2.7) is analogous. So is that of (2.8)by noting that 21=pRelDistp(�; �) � RelDist1(�; �). To show (2.6), we see thatthe left-hand side of (2.6) implies j��1jp1+�2 def= � � �. So(� � 1)2 = �2(�2 + 1)) �2 � 21� �2 � + 1 = 0solving which gives� = 1� �p2� �21� �2 ) � � 1 = ��p2� �2 + �21� �2 :6



Hence j� � 1j � �p2� �2 + �21� �2 = �1� � � p2� �2 + �1 + � � �1� � � p2since p2��2+�1+� is decreasing for 0 � � � 1.Proposition 2.3 Let e� = �(1 + �1) and e� = �(1 + �2). If j�ij � � < 1, thenRelDistp(�; �)1� � + �1� � � RelDistp(�; e�) � RelDistp(�; �)1 + � � �1 + � ; (2.10)RelDistp(�; �)1� � + 21=q�1� � � RelDistp(e�; e�) � RelDistp(�; �)1 + � � 21=q�1 + � : (2.11)Proof: We will only provide a proof of (2.11). Since j�j(1� �) � je�j � j�j(1+ �)and j�j(1� �) � je�j � j�j(1 + �),RelDistp(e�; e�) = je�� e�jpqje�jp + je�jp� j�� �j � j��1 � ��2jppj�jp + j�jp(1 + �)� j�� �j � ppj�jp + j�jp qp�q + �qppj�jp + j�jp(1 + �)= RelDistp(�; �)1 + � � 21=q�1 + � ;RelDistp(e�; e�) � j�� �j + j��1 � ��2jppj�jp + j�jp(1� �)� j�� �j + ppj�jp + j�jp qp�q + �qppj�jp + j�jp(1� �)= RelDistp(�; �)1� � + 21=q�1� � ;as were to be shown.Proposition 2.4 below shows how to bound RelDistp(�2; �2) by RelDistp(�; �),and vice versa.Proposition 2.4 Let �; � 2 C . For 1 � p � 1,RelDistp(�2; �2) � 2RelDistp(�; �): (2.12)If, moreover, �; � 2 R and �� � 0, thenRelDistp(�; �) � RelDistp(�2; �2): (2.13)7



Proof: There is nothing to prove if � = � = 0. Assume at least one of the twois not zero.RelDistp(�2; �2) = j�2 � �2j(j�j2p + j�j2p)1=p= j�+ �j � (j�jp + j�jp)1=p(j�j2p + j�j2p)1=p � j�� �j(j�jp + j�jp)1=p� 21�1=2p(j�j2p+ j�j2p)1=2p � 21=2p(j�j2p+ j�j2p)1=2p(j�j2p + j�j2p)1=p RelDistp(�; �)= 2RelDistp(�; �)which proves (2.12). To prove (2.13), without loss of any generality, we mayassume �; � � 0. Notice that � + � � (�2p + �2p)1=2p and (�p + �p)1=p �(�2p + �2p)1=2p. SoRelDistp(�; �) = j�2 � �2j(j�j2p + j�j2p)1=p (j�j2p+ j�j2p)1=p(�+ �)(j�jp + j�jp)1=p� RelDistp(�2; �2);as was to be shown.Let f�1; � � � ; �ng and fe�1; � � � ; e�ng be two sequences of n real numbers inascending (descending) order respectively, i.e.,�1 � � � � � �n; e�1 � � � � � e�n; (or �1 � � � � � �n; e�1 � � � � � e�n): (2.14)Now we consider some partial solutions to the question: What are the bestone-one pairings between the �i's and the e�j's under certain measures?.Proposition 2.5 If all �i's and e�j's are nonnegative, thenmax1�i�nRelDistp(�i; e�i) = min� max1�i�nRelDistp(�i; e��(i));where the minimization is taken over all permutations � of f1; 2; � � �; ng.Proof: For any permutation � of f1; 2; � � �; ng, the idea of our proof is to con-struct n+ 1 permutations �j such that�0 = �; �n = identity permutationand for j = 0; 1; 2; � � � ; n� 1max1�i�nRelDistp(�i; e��j(i)) � max1�i�nRelDistp(�i; e��j+1(i)):8



The construction of these �j 's goes as follows: Set �0 = � . Given �j , if �j(j+1) =j + 1, set �j+1 = �j; otherwise de�ne�j+1(i) = 8<: �j(i); if ��1j (j + 1) 6= i 6= j + 1,j + 1; if i = j + 1;�j(j + 1); if i = ��1j (j + 1):With Property 8 in Proposition 2.1, it is easy to prove by induction that suchconstructed �j's have the desired properties.Remark. Proposition 2.5 may fail if not all of the �i's and e�j's are of the samesign. A counterexample is as follows: n = 2 and�1 = �2 < �2 = 1 and e�1 = 2 < e�2 = 4:Another point we want to make is that given two sequences of �i's and e�j's asabove, generally we do not havenXi=1 [RelDist2(�i; e�i)]2 = min� nXi=1 �RelDist2(�i; e��(i))�2 : (2.15)(2.15) may even fail when all �i; e�j > 0. Here is a counterexample: n = 20 < �1 < e�1 < �2 = e�2=2 < e�2;where �1 is su�ciently close to 0, and e�1 is su�ciently close to �2 which is�xed. Since as �1 ! 0+ and e�1 ! ��2[RelDist2(�1; e�2)]2 + [RelDist2(�2; e�1)]2 ! 1;[RelDist2(�1; e�1)]2 + [RelDist2(�2; e�2)]2 ! 1 + 1p5 ;(2.15) must fail for some 0 < �1 < e�1 < �2 = e�2=2 < e�2. But we still haveProposition 2.6 below.Proposition 2.6 Let �i's and e�j's be as described above and in ascending or-der. Assume that both sequences contain exactly k negative numbers and n� kpositive numbers, i.e.,�1 � � � ��k < 0 < �k+1 � � � ��n; and e�1 � � � � e�k < 0 < e�k+1 � � � � e�n:Then given a permutation � of f1; 2; � � � ; ng, there exists another permutation �of f1; 2; � � � ; ng such that 1 � � (j) � k for 1 � j � kand nXi=1 �RelDist2(�i; e��(i))�2 � nXi=1 �RelDist2(�i; e��(i))�2 :9



The proof of this proposition depends heavily on Property 6 of Proposition 2.1.Let k be an positive integers, and set�n+1 = � � � = �n+k = e�n+1 = � � � = e�n+k = 0:Appending these 0's to the two previous sequences, we have two larger sequences,each of which has at least k zeros. The following proposition says that it isalways better to pair zeros with zeros.Proposition 2.7 Given a permutation � of f1; 2; � � �; n+kg, there is a permu-tation � of f1; 2; � � �; ng such thatn+kXi=1 �RelDist2(�i; e��(i))�2 � nXi=1 �RelDist2(�i; e��(i))�2 :A combination of Propositions 2.6 and 2.7 illustrates two things:1. It is always better to pair zeros to zeros as many as possible;2. It is always better to pair numbers to these of the same signs as many aspossible.2.2 Barlow-Demmel-Veseli�c Relative DistanceWe introduce another notion of relative distance: R̂elDist which is de�ned asfollows. R̂elDist(�; �) def= j�� �jpj��j : (2.16)We treat 0=0 � 0 and 1=0 = 1. We call R̂elDist(�; �) the Barlow-Demmel-Veseli�c Relative Distance between � and � because it was �rst used by Barlowand Demmel [1] and Demmel and Veseli�c [9] for de�ning relative gaps betweenthe spectra of two matrices. Regarding to R̂elDist, we haveProposition 2.8 Let �; � 2 C .1. R̂elDist(�; �) � 0 and the equality sign holds if and only if � = �;2. R̂elDist(�; �) = R̂elDist(�; �);3. R̂elDist(��; ��) = R̂elDist(�; �) for all 0 6= � 2 C ;4. R̂elDist(1=�; 1=�) = R̂elDist(�; �) for � 6= 0 and � 6= 0;5. R̂elDist(�; 0) =1 if � 6= 0; 10



6. if �; �1; �; �1 2 R and � � �1 � �1 � � and �� � 0, thenR̂elDist(�; �) � R̂elDist(�1; �1): (2.17)Proof: Properties 1{5 are trivial. To prove Property 6, it su�ces to show thatR̂elDist(�; �) � R̂elDist(�; �1); (2.18)where 0 � � � �1 < �. Since the function 1� � � for 0 � � � 1 is monotonicallydecreasing and 0 � �=� � �=�1 � 1,R̂elDist(�; �) = 1p�=� �p�=� � 1p�=�1 �p�=�1 = R̂elDist(�; �1);as was to be shown.Remark: In Property 6 of Proposition 2.8, the assumption �� � 0 is essential,since the inequality (2.17) is clearly violated if � < 0 < �1 < �1 � � and �1 issu�ciently close to 0.As before, let us relate Barlow-Demmel-Veseli�c relative distance to the com-mon sense of relative perturbations.Proposition 2.9 Let �; � 2 R. If 0 � � < 1, then������ � 1���� � �) R̂elDist(�; �) � �p1� � ; (2.19)if 0 � � < 2, thenR̂elDist(�; �) � �) max������� � 1���� ; ������ � 1����� �  �2 +r1 + �24 ! �: (2.20)Asymptotically, lim�!� R̂elDist(�; �)��� �� � 1��� = 1;thus (2.19) and (2.20) are at least asymptotically sharp.Proof: The left-hand side of (2.19) implies � = �(1 + �) for some � 2 R withj�j � �. So R̂elDist(�; �) = j��jp�2(1 + �) � �p1� � ;as required. To prove (2.20), we set either � = �=� or � = �=�. Since � < 2,� > 0. R̂elDist(�; �) def= � � � givesj� � 1jp� = �) �2 � (2 + �2)� + 1 = 0;11



solving which yields� = 2 + �2 �p(2 + �2)2 � 42 = 1 +  �2 �r1 + �24 ! �:Hence j� � 1j �  �2 +r1 + �24 ! � �  �2 +r1 + �24 ! �as was to be shown.Proposition 2.10 Let e� = �(1 + �). Assume that j�j � j�j and j�j � � < 1,then R̂elDist(�; �)1� � + �1� � � R̂elDist(�; e�) � R̂elDist(�; �)1 + � � �1 + � : (2.21)Proof: Since j�j(1� �) � je�j � j�j(1 + �) and j�=�j � 1,R̂elDist(�; e�) = j�� e�jqj�e�j � j�� �j � j��jqj�e�j� j�� �j � �j�jpj��j (1 + �)= R̂elDist(�; �)1 + � � �1 + � ;R̂elDist(�; e�) � j�� �j + j��jqj�e�j� j�� �j + �j�jpj��j (1� �)= R̂elDist(�; �)1� � + �1� � :as required.Proposition 2.10, in contrast to Proposition 2.3, only provides bounds on howR̂elDist varies when one of its arguments smallest in magnitude is perturbeda little. Generally, we do not have a nice inequality like (2.11) for R̂elDist.Following the lines of the proof above, one can establishR̂elDist(�; �)1� � + �1� � j�j+ j�jpj��j � R̂elDist(�; e�) � R̂elDist(�; �)1 + � � �1 + � j�j+ j�jpj��j ;12



where e� = �(1+�1) with j�1j � �. So the ratio j�j+j�jpj��j which could be very largeplays a crucial role.Proposition 2.11 For �; � � 0,R̂elDist(�2; �2) � 2 R̂elDist(�; �);and the equality sign holds if and only if � = �.Proof: If either � or � is zero, no proof is required. Assume both are positive.R̂elDist(�2; �2) = �+ �p�� j�� �jp�� � 2 j�� �jp�� = 2 R̂elDist(�; �)as was to be shown.Again there is no universal constant c > 0 so that R̂elDist(�; �) is bounded byc � R̂elDist(�2; �2), unlike (2.13) in Proposition 2.4. One can always boundRelDistp by R̂elDist, but not the other way around.Proposition 2.12 For �; � 2 C ,RelDistp(�; �) � 2�1=p R̂elDist(�; �);and the equality sign holds if and only if j�j = j�j.Proof: Sincej�jp + j�jp � 2pj�jpj�jp = 2�pj��j�p ) ppj�jp + j�jp � 21=ppj��j;from which the inequality follows.Proposition 2.12 is useful in that, as we will see later, any bound with R̂elDistyields a bound with RelDistp. Now consider the same pairing problem for thisnewly-de�ned R̂elDist. First of all, the conclusion of Proposition 2.7 clearlyremains valid if RelDist2 is replaced by R̂elDist because of Property 5 in Propo-sition 2.8; second, with the help of Property 6 in Proposition 2.8 we can provethe same conclusion for R̂elDist as that for RelDistp in Proposition 2.5.Proposition 2.13 Under the conditions of Proposition 2.5, we havemax1�i�n R̂elDist(�i; e�i) = min� max1�i�n R̂elDist(�i; e��(i));where the minimization is taken over all permutations � of f1; 2; � � �; ng.13



Remark. Proposition 2.13 may fail if not all �i's and e�j's are of the same sign.A counterexample is as follows: n = 2 and�1 = �1 < �2 = 1 and e�1 = 14 < e�2 = 2:We have showed that (2.15) cannot holds generally. In what follows, we will seethat R̂elDist can do better.Lemma 2.1 Let 0 < �1 � �2 and 0 < e�1 � e�2. ThenhR̂elDist(�1; e�1)i2+hR̂elDist(�2; e�2)i2 � hR̂elDist(�1; e�2)i2+hR̂elDist(�2; e�1)i2 ;or in another word,(e�1 � �1)2e�1�1 + (e�2 � �2)2e�2�2 � (e�2 � �1)2e�2�1 + (e�1 � �2)2e�1�2 ;and the equality sign holds if and only if either �1 = �2 or e�1 = e�2.Proof: Complicated algebraic manipulations show thate�1�1e�2�2� (e�1 � �1)2e�1�1 + (e�2 � �2)2e�2�2 � (e�2 � �1)2e�2�1 � (e�1 � �2)2e�1�2 �= �(�2 � �1)(e�2 � e�1)(e�1e�2 + �1�2) � 0;and the equality sign holds if and only if either �1 = �2 or e�1 = e�2.Armed with Lemma 2.1, by following the proof of Proposition 2.5, one can showthatProposition 2.14 Let f�1; � � � ; �ng and fe�1; � � � ; e�ng be two sequences of npositive numbers ordered ascendingly (descendingly) as in (2.14). ThennXi=1 hR̂elDist(�i; e�i)i2 = min� nXi=1 hR̂elDist(�i; e��(i))i2 ;where the minimization is taken over all permutations � of f1; 2; � � �; ng.Remark. It is clear to see that the conclusion of Proposition 2.14 remain validif we weaken the conditions by only assuming that �i's and e�j's are nonnegativeand the number of zeros in �i's equals that in e�j's. Proposition 2.14 may fail ifnot all �i's and e�j's are of the same sign. Here is a counterexample: n = 2 and�1 = �2 < �2 = 1 and e�1 = 1 < e�2 = 2:14



2.3 Are RelDistp and R̂elDist Metrics?Let Xbe a space. Recall that a function d : X�X 7! [0;1) is called a metricif it has the following three properties: for �; �;  2X1. d(�; �) = 0 if and only if � = �;2. d(�; �) = d(�; �);3. d(�; ) � d(�; �) + d(�; ).This de�nition excludes immediately the possibility that R̂elDist is a metric onC , nor even on R since R̂elDist(�; 0) = 1 for � 6= 0. To get around this, we,as any mathematician would do, extend this de�nition of a metric by callingd : X�X7! [0;1] a generalized metric if it possesses the above three properties.Now take a look at Propositions 2.1 and 2.8. We see that the functionsRelDistp and R̂elDist on C � C satisfy the �rst two of the de�nition of a (gen-eralized) metric. Naturally, we would like to ask: Is RelDistp a metric on C ?and is R̂elDist a generalized metric on C ? Or, equivalently, we may ask if for�; �;  2 C RelDistp(�; ) � RelDistp(�; �) + RelDistp(�; )? (2.22)R̂elDist(�; ) � R̂elDist(�; �) + R̂elDist(�; )? (2.23)At this point, we are able to formulate our incomplete answers into Proposi-tion 2.15. Since the proof is quite long and tedious, we leave it to Appendixs Aand B. Denote R�0 def= [0;1) and R+ def= (0;1):Proposition 2.151. (2.22) holds for all �; �;  � 0 and 1 � p � 1, and thus RelDistp is ametric on R�0;2. (2.22) with p = 1; 2 or 1 holds for �; �;  2 R, and thus RelDist1,RelDist2 and RelDist1 are metrics on R;3. (2.23) holds for �; �;  � 0, but not on whole R, and thus R̂elDist is ageneralized metric on R�0, but not on R nor C .Still the question whether RelDistp is a metric on C is open.15



3 Summary of ResultsTo help the reader to grasp quickly what we have accomplished in this paper, wegive here a table to summarize partially the simpli�ed versions of our theoremsin comparison with their corresponding well-known theorems in literature. Fullstatement of these theorems and their stronger versions will be done in x5 andx6. More results will be discussed in x7. Before we present the table, let us stickto some notation: A; eA 2 Cn�n , and�(A) = f�1; � � � ; �ng and �( eA) = fe�1; � � � ; e�ng; (3.1)B; eB 2 Cm�n , and�(B) = f�1; � � � ; �ng and �( eB) = fe�1; � � � ; e�ng: (3.2)In the table, � always stands for some permutation of f1; 2; � � � ; ng; �i's and e�j'sare assumed in descending order, i.e.,�1 � �2 � � � � � �n � 0; e�1 � e�2 � � � � � e�n � 0; (3.3)Whenever, all �i's and e�j 's are real, we also require�1 � �2 � � � � � �n; e�1 � e�2 � � � � � e�n: (3.4)In Table 3.1, each row consists of four boxes. The �rst one describes conditionsunder which the inequality in the second box holds; the third one states, besidesthese in the �rst one, additional conditions in order for the inequality in thefourth box to be true.
16



Table 3.1. Summary: (i) Ho�man and Wielandt Type TheoremsClassical Bounds New Relative BoundsAandeAnormal r nPi=1 j�i � e��(i)j2� k eA�AkF(Theorem 4.1) eA = D�1AD2 r nPi=1 hRelDist2(�i;e��(i))i2� min�pkI �D1k2F + kI �D�12 k2F ;pkI �D�11 k2F + kI �D2k2F	(Theorem 6.2)AandeAHermitian r nPi=1 j�i � e�ij2� k eA�AkF(Theorems 4.1 and 4.3) eA = D�AD r nPi=1 hRelDist2(�i;e��(i))i2� pkI �Dk2F + kI �D�1k2F(Theorem 6.3)AandeADe�nite r nPi=1 j�i � e�ij2� k eA�AkF(Theorems 4.1 and 4.3) eA = D�AD r nPi=1 hR̂elDist(�i;e�i)i2� kD� �D�1kF(Theorem 5.1)A = X�X�1;eA = eXe� eX�1 r nPi=1 j�i � e��(i)j2� �(X)�( eX)k eA�AkF(Theorem 4.2) eA = D�1AD2 r nPi=1 hRelDist2(�i;e��(i))i2� �(X)�( eX)minfpkI �D1k2F + kI �D�12 k2F ,pkI �D�11 k2F + kI �D2k2F g(Theorem 6.1)BandeB r nPi=1 j�i � e�ij2� k eB �BkF(Theorem 4.7) eB = D�1BD2 qPni=1 �RelDist2(�i;e��(i))�2 �1p2 �kI �D1k2F + kI �D�11 k2F+ kI �D2k2F + kI �D�12 k2F �1=2(Theorem 6.7)BandeB r nPi=1 j�i � e�ij2� k eB �BkF(Theorem 4.7) eB = D�1BD2 rPni=1 hR̂elDist(�i;e�i)i2� kD�1�D�11 kF+kD�2�D�12 kF2(Theorem 5.2)17



Table 3.1. Summary (continued): (ii) Weyl-Lidskii Type TheoremsClassical Bounds New Relative BoundsAandeAHermitian j�i � e�ij � k eA�Ak2(Theorem 4.3) eA = D�AD RelDist1(�i;e�i)� kI �D�Dk2,R̂elDist(�i;e�i) � kI�D�Dk2�min(D)(Cf. (7.3) and (7.4))AandeADe�nite j�i � e�ij � k eA�Ak2(Theorem 4.3) eA = D�AD R̂elDist(�i;e�i) � kD� �D�1k2(Theorem5.1)A = X�X�1;eA = eXe� eX�1� and e� realnonnegative j�i � e�ij� �(X)�( eX)k eA�Ak2(Theorems 4.4 and 4.5) eA = D�1AD2 RelDistp(�i;e�i)� �(X)�( eX)min �qpkI �D�1kq2 + kI �D�12 kq2;qpkI �D��1 kq2 + kI �D2kq2	(Theorem 6.4)BandeB j�i � e�ij � k eB �Bk2(Theorem 4.7) eB = D�1BD2 RelDistp(�i;e�i) � min�qpkI �D�11 kq2 + kI �D2kq2;qpkI �D1kq2 + kI �D�12 kq2	(Theorem 6.8)BandeB j�i � e�ij � k eB �Bk2(Theorem 4.7) eB = D�1BD2 R̂elDist(�i;e�i)� kD�1�D�11 k2+kD�2�D�12 k22(Theorem 5.2)Table 3.1. Summary (continued): (iii) A Bauer-Fike Type TheoremClassical Bounds New Relative BoundsA = X�X�1 8e� 2 �( eA), 9� 2 �(A),such thatje�� �j � �(X)k eA�Ak2(Theorem 4.6) EithereA = ADoreA = DA: 8e� 2 �( eA), 9� 2 �(A),such thatje���jj�j � �(X)kI �Dk2(Theorem 6.6)18



Finally, let's consider the graded case for which we will use H = D�AD andeH = D� eAD for two n�n graded nonnegative de�nite Hermitian matrices withA nonsingular and kA�1k2k�Ak2 < 1, where �A def= eA � A, and G = BDand eG = eBD for two m � n graded matrices whose singular values are ofinterest. Also it is required that B is nonsingular and kB�1k2k�Bk2 < 1 where�B def= eB �B. Denote�(H) = f�1; � � � ; �ng and �( eH) = fe�1; � � � ; e�ng;and �(G) = f�1; � � � ; �ng and �( eG) = fe�1; � � � ; e�ng;and arrange them in the order prescribed by (3.3) and (3.4). SetEA def= A�1=2(�A)A�1=2 and EB def= (�B)B�1:Table 3.1. Summary (continued): (iv) Theorems for Graded MatricesClassical Bounds New Relative BoundsHandeHDe�nite s nPi=1 j�i � e�ij2� k eH �HkF(Theorem 4.1 and 4.3) H = D�ADandeH = D� eAD r nPi=1 hR̂elDist(�i;e�i)i2� k(I+EA)1=2�(I+EA)�1=2kF(Theorem 5.4)HandeHDe�nite j�i � e�ij � k eH �Hk2(Theorem 4.3) H = D�ADandeH = D� eAD R̂elDist(�i;e�i)� k(I+EA)1=2�(I+EA)�1=2k2(Theorem 5.4)GandeG s nPi=1 j�i � e�ij2� k eG� GkF(Theorem 4.7) G = BDandeG = eBD r nPi=1 hR̂elDist(�i;e�i)i2� k(I+EB)��(I+EB)�1kF2(Theorem 5.3)GandeG j�i � e�ij� k eG� Gk2(Theorem 4.7) G = BDandeG = eBD R̂elDist(�i;e�i)� k(I+EB)��(I+EB)�1k22(Theorem 5.3)19



4 Known Perturbation Theorems for Eigenvalueand Singular Value VariationsIn this section, we will briey review a few most celebrated theorems for eigen-value and singular value variations which will be generalized. Most of thistheorems can be found in Bhatia [3], Golub and Van Loan [14], Parlett [28]and Stewart and Sun [30]. Notation introduced in x3 will be followed strictly.Ho�man and Wielandt [16] provedTheorem 4.1 (Ho�man-Wielandt) If A and eA are normal, then there is apermutation � of f1; 2; � � �; ng such thatvuut nXi=1 j�i � e��(i)j2 � k eA� AkF :For a nonsingular matrix X 2 Cn�n , the (spectral) condition number �(X) isde�ned as �(X) def= kXk2kX�1k2:Theorem 4.1 was generalized by Sun [33] and Zhang [37] to two diagonalizablematrices.Theorem 4.2 (Sun-Zhang) Assume that both A and eA are diagonalizable andadmit the following decompositionsA = X�X�1 and eA = eXe� eX�1; (4.1)where X and eX are nonsingular and� = diag(�1; � � � ; �n) and e� = diag(e�1; � � � ; e�n): (4.2)Then there is a permutation � of f1; 2; � � � ; ng such thatvuut nXi=1 j�i � e��(i)j2 � �(X)�( eX )k eA� AkF :We will consider unitarily invariant norms jjj � jjj of matrices. In this we followMirsky [27] and Stewart & Sun [30]. To say that the norm is unitarily invarianton Cm�n means that it satis�es, besides the usual properties of any norm, also1. jjjUXV jjj = jjjXjjj, for any U 2Um, and V 2Un;2. jjjXjjj = kXk2, for any X 2 Cm�n with rankX = 1.20



Two unitarily invariant norms used frequently are the spectral norm k � k2 andthe Frobenius norm k � kF . Let jjj � jjj be a unitarily invariant norm living insome matrix space. the following inequalities [30, p. 80] will be employed veryfrequently in the rest this paper.jjjXY jjj � kXk2 jjjY jjj and jjjY Zjjj � jjjY jjj kZk2:Theorem 4.3 Suppose that A and eA are both Hermitian, and that (3.4) holds.Then for any unitarily invariant norm jjj � jjj���������diag(�1 � e�1; � � � ; �n � e�n)��������� � ���������A� eA��������� : (4.3)The inequality (4.3) was proved by Weyl [35] for the spectral norm, by Loewner[24] and as a corollary of Ho�man-Wielandt theorem [16] for the Frobenius normand by Lidskii [23], Wielandt [36] and Mirsky [27] for all unitarily invariantnorms. Neither Lidskii nor Wielandt mentioned explicitly (4.3) which was doneby Mirsky [27]. For more detail, the reader is referred to Bhatia [3]. Theorem 4.3has been generalized in many aspects. The following theorem is due to Bhatia,Davis and Kittaneh [4].Theorem 4.4 (Kahan, Bhatia, Davis and Kittaneh) To the hypotheses ofTheorem 4.2 adds this: all �i's and e�j 's are real and are arranged descendinglyas in (3.4). Then for any unitarily invariant norm jjj � jjj���������diag(�1 � e�1; � � � ; �n � e�n)��������� � �(X)�( eX ) ���������A� eA��������� : (4.4)The inequality (4.4) was proved by Kahan [19] for the spectral norm, as acorollary of Sun-Zhang theorem [33, 37] for the Frobenius norm. In anotheraspect, the inequality (4.3) for the spectral norm was generalized to `p operatornorm. The p-H�older norm of a vector x = (�i) 2 Cn is de�ned bykxkp def= pvuut nXi=1 j�ijp:The `p-operator norm of a matrix X 2 Cn�n is de�ned bykXkp def= maxkxkp=1 kXxkp:If X is nonsingular, its `p condition number is de�ned by�p(X) def= kXkpkX�1kp:Clearly, �2(X) = �(X), the (spectral) condition number. The following theoremis due to Li [21, pp. 225{226]. 21



Theorem 4.5 (Li) Under the conditions of Theorem 4.4. Thenmax1�i�n j�i � e�ij � �p(X)�p( eX)kA � eAkp;where 1 � p � 1.Generally, if one of A and eB is diagonalizable, we have the following resultdue to Bauer and Fike1 [2].Theorem 4.6 (Bauer-Fike) Assume A is diagonalizable, i.e.,A = X�X�1; where � = diag(�1; � � � ; �n):Then for any e� 2 �( eA), there exists a � 2 �(A) such thatje�� �j � �(X)k eA � Ak2: (4.5)Regarding singular value perturbations, the following theorem was estab-lished in Mirsky [27], based on Lidskii [23] and Wielandt [36].Theorem 4.7 Arrange the singular values of B and eB in descending order asin (3.3). Then for any unitarily invariant norm jjj � jjjjjjdiag(�1 � e�1; � � � ; �n � e�n)jjj � ���������B � eB��������� : (4.6)
1One can prove a slightly more stronger inequality than (4.5)je�� �j � kX�1( eA� A)Xk2:22



5 Statement of Theorems with R̂elDist: Non-negative De�nite MatricesIn this section, we devote our attention to the relative perturbation theory foreigenvalues of nonnegative de�nite matrices, including singular value problems.We will consider the following problems:� Eigenvalue problems:1. A and eA = D�AD with A nonnegative de�nite and D being close tosome unitary matrix;2. H = D�AD and eH = D� eAD with both A and eA positive de�niteand kA�1k2k eA� Ak2 < 1, where D is some square matrix.� Singular value problems:1. B and eB = D�1BD2 with D1 and D2 being close to some unitarymatrices of suitable dimensions;2. G = BD and eG = eBD with both B and eB nonsingular and kB�1k2k eB�Bk2 < 1, where D is some square matrix.Theorems presented here are often better than these in the next section whenapplying to nonnegative de�nite matrices. We will make this more concrete inthe coming section.5.1 Eigenvalue Variations for A and eA = D�ADTheorem 5.1 Let A and eA = D�AD be two n� n Hermitian matrices, whereD is nonsingular. Denote their eigenvalues as in (3.1) and arrange them de-scendingly as described in (3.4). Assume that A is nonnegative de�nite. Thenmax1�i�n R̂elDist(�i; e�i) � kD� �D�1k2; (5.1)vuut nXi=1 hR̂elDist(�i; e�i)i2 � kD� �D�1kF : (5.2)It is trivial to relate the right-hand sides of the inequalities (5.1) and (5.2) tothe singular values of D. In fact, let SVD of D beD = Ud�dV �d : (5.3)One has for any unitarily invariant norm jjj � jjj������D� �D�1������ = ������Vd(�d � ��1d )U�d ������ = �������d ���1d ������ :23



Another point we would like to make is that A and D�AD have the same rank,or in another word, A and D�AD have the same number of zero eigenvalues. Inorder for the inequalities (5.2) and (5.1) to be true, 0 eigenvalues, if any, mustbe always paired with 0 ones.5.2 Singular Value Variations for B and eB = D�1BD2Theorem 5.2 Let B and eB = D�1BD2 be two m � n matrices, where D1 andD2 are square and nonsingular. Denote their singular values as in (3.2) andarrange them as in (3.3). Thenmax1�i�n R̂elDist(�i; e�i) � 12 �kD�1 �D�11 k2 + kD�2 �D�12 k2� ; (5.4)vuut nXi=1 hR̂elDist(�i; e�i)i2 � 12 �kD�1 �D�11 kF + kD�2 �D�12 kF � : (5.5)Now, Let's briey mention a possible application of Theorem 5.2. It has some-thing to do with deation in computing the singular value systems of a bidi-agonal matrix. For more details, the reader is referred to [6, 8, 10, 26]. Weformulate the application into a corollary.Corollary 5.1 Assume in Theorem 5.2, one of the D1 and D2 is an identitymatrix and the other takes the formD = � I XI � ;where X is a matrix of suitable dimensions. With the notation of Theorem 5.2,we have max1�i�n R̂elDist(�i; e�i) � 12kXk2; (5.6)vuut nXi=1 hR̂elDist(�i; e�i)i2 � 1p2kXkF : (5.7)Proof: Notice thatD� �D�1 = � IX� I �� � I �XI � = � XX� � ;and thus kD� �D�1k2 = kXk2 and kD� �D�1kF = p2kXkF .It was proved by Eisenstat and Ipsen [10] thatje�i � �ij � kXk2�i; or equivalently ���� e�i�i � 1���� � kXk2: (5.8)24



So as long as e�i and �i are of the similar magnitude which is guaranteed if kXk2is small, our inequality (5.6) is sharper by a factor 1=2. As a matter of fact, itfollows from (5.6) and Proposition 2.9 that if kXk2 � 4 then���� e�i�i � 1���� �  kXk24 +r1 + kXk2216 ! kXk22 = kXk22 +O(kXk22):Our inequality (5.7) is the �rst of its kind.5.3 Graded MatricesTheorem 5.3 Let G = BD and eG = eBD be two n� n matrices, where B andeB are nonsingular, and let �B = eB �B. Denote�(G) = f�1; � � � ; �ng and �( eG) = fe�1; � � � ; e�ng;and arrange them descendingly as in (3.3). If k�Bk2kB�1k2 < 1, thenmax1�i�n R̂elDist(�i; e�i)� 12 (I + (�B)B�1)� � (I + (�B)B�1)�12� �k(�B)B�1 +B��(�B)�k2k(�B)B�1k2 + k(�B)B�1k21� k(�B)B�1k2� k(�B)B�1k22� �1 + 11� kB�1k2k�Bk2� kB�1k2k�Bk22 ; (5.9)vuut nXi=1 hR̂elDist(�i; e�i)i2� 12 (I + (�B)B�1)� � (I + (�B)B�1)�1F� �k(�B)B�1 +B��(�B)�kFk(�B)B�1kF + k(�B)B�1k21� k(�B)B�1k2� k(�B)B�1kF2� �1 + 11� kB�1k2k�Bk2� kB�1k2k�BkF2 : (5.10)Remark. It is interesting to notice that if (�B)B�1 is very skew, thenR̂elDist(�i; e�i) = o(k(�B)B�1k2). Especially if k(�B)B�1 + B��(�B)�k2 =O(k(�B)B�1k22), then R̂elDist(�i; e�i) = O(k(�B)B�1k22) also.Theorem 5.4 Let H = D�AD and eH = D� eAD be two n � n nonnegativede�nite Hermitian matrices whose eigenvalues are�(H) = f�1; � � � ; �ng and �( eH) = fe�1; � � � ; e�ng; (5.11)25



and in descending order as in (3.4) and let �A = eA �A. IfkA�1k2k�Ak2 < 1; (5.12)then max1�i�n R̂elDist(�i; e�i)� (I + A�1=2(�A)A�1=2)1=2 � (I + A�1=2(�A)A�1=2)�1=22� kA�1k2k�Ak2p1� kA�1k2k�Ak2 ; (5.13)vuut nXi=1 hR̂elDist(�i; e�i)i2� (I + A�1=2(�A)A�1=2)1=2 � (I + A�1=2(�A)A�1=2)�1=2F� kA�1k2k�AkFp1� kA�1k2k�Ak2 : (5.14)
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6 Statement of Theorems with RelDistpThe rests of cases listed in x1.1, as well as singular value problems, will betreated here. To be speci�c, we will consider� Eigenvalue problems:1. A and eA = D�AD for Hermitian case, where D is nonsingular andclose to I or more generally to a unitary matrix;2. A and eA = D�1AD2 for general diagonalizable case, where D1 andD2 are nonsingular and close to I or more generally to some unitarymatrix;� Singular value problems:1. B and eB = D�1BD2, where D1 and D2 are nonsingular and close toI or more generally to two unitary matrices;We retreat singular value problems for comparison purpose. As we will seesoon that we will prove more nice inequalities for singular value variations,but these inequalities may be potentially less sharp than those in x5 for largeperturbations. Brief comparisons among theorems in this section and these inthe previous section will be given.6.1 Eigenvalue VariationsThe following theorem is a generalization of Theorems 4.1 and 4.2.Theorem 6.1 Assume that n � n matrix A is perturbed to eA = D�1AD2 andboth D1 and D2 are nonsingular. Assume also both A and eA are diagonalizableand admit the decompositions as described in (4.1) and (4.2). Then there is apermutation � of f1; 2; � � �; ng such thatvuut nXi=1 hRelDist2(�i;e��(i))i2 (6.1)� min�k eX�1k2kXk2qkX�1(I �D2) eXk2F + kX�1(D��1 � I) eXk2F ;kX�1k2k eXk2qk eX�1(I �D�1)Xk2F + k eX�1(D�12 � I)Xk2F�� �(X)�( eX)min�qkI �D1k2F + kI �D�12 k2F ;qkI �D�11 k2F + kI �D2k2F� :27



For any given U 2 Un, U eAU� = (D1U�)�AD2U� has the same eigenvalues aseA does, and moreover from (4.1)U eAU� = ( eXU�)�1e� eXU�:So applying Theorem 6.1 to matricesA and U eAU� leads to the following theoremwhich we will refer as Theorem 6.1s, where \s" is for indicating that it is stronger.Theorem 6.1s Let all conditions of Theorem 6.1 hold. Then there is a permu-tation � of f1; 2; � � �; ng such thatvuut nXi=1 hRelDist2(�i; e��(i))i2 (6.2)� �(X)�( eX ) minU2Unmin�qkU �D1k2F + kU� �D�12 k2F ;qkU� �D�11 k2F + kU �D2k2F� :Suppose now A 2 Cn is an normal matrix, i.e., A�A = AA�. Perturb Ato eA = D�1AD2. The question is: When is eA also normal? This is a ratherinteresting question, and an instant answer is that eA is normal providedD�2A�D1D�1AD2 = D�1AD2D�2A�D1:However, this condition is, perhaps. too general to be useful. I do not know howto approach this problem yet and therefore this question will not be addressedfurther in what follows. On the other hand, if we happen to know that eA is alsonormal, the following theorem, as a corollary of Theorem 6.1, indicates that theeigenvalues of A and eA agrees to high relative accuracy.Theorem 6.2 Let A and eA = D�1AD2 be two n � n normal matrixes, whereD1 and D2 are nonsingular. Denote their eigenvalues as in (3.1). Then thereis a permutation � of f1; 2; � � � ; ng such thatvuut nXi=1 hRelDist2(�i;e��(i))i2 (6.3)� minU2Un min�qkU �D1k2F + kU� �D�12 k2F ; qkU� �D�11 k2F + kU �D2k2F� :We happen to know how to solve the minimization problem: �nd a U0 2 Unsuch that for any unitarily invariant norm jjj � jjjminU2Un jjjU �Djjj = jjjU0 �Djjj and minU2Un ������U� �D�1������ = ������U�0 �D�1������ : (6.4)28



in terms of the singular value decomposition (SVD) of D. As a matter of fact,let SVD of D be given in (5.3). It follows from Theorem 4.7 thatjjjU �Djjj � jjjI � �djjj and ������U� �D�1������ � ������I ���1d ������ : (6.5)Fortunately, there is one U0 def= UdV �d which realizes the two equality signs.Theorem 6.2, now applying to Hermitian matrices, leads toTheorem 6.3 Let A and eA = D�AD be two n� n Hermitian matrices, whereD is nonsingular. Denote their eigenvalues as in (3.1). Then there is a permu-tation � of f1; 2; � � �; ng such thatvuut nXi=1 hRelDist2(�i; e��(i))i2 � minU2UnqkU �Dk2F + kU� �D�1k2F= qkI � �dk2F + kI ���1d k2F : (6.6)It is worth mentioning that the permutation � in Theorem 6.3 may not be theidentity one, assuming eigenvalues are ordered in the way of (3.4). However, onecan always choose a � such that zeros are matched to zeros, negative eigenvaluesto negative ones and positive ones to positive ones (Cf. Propositions 2.6 and2.7). A brief comparison of this theorem and the inequality (5.2) in Theorem 5.1leads to the following conclusions:1. Theorem 6.3 covers both the de�nite case and the inde�nite case, whilethe inequality (5.2) in Theorem 5.1 covers the de�nite case only;2. When applying to the de�nite case, (5.2) is sharper than (6.6). As amatter of fact, (6.6) is a corollary of (5.2). It follows from (5.2) andProposition 2.12 that if A is nonnegative de�nitevuut nXi=1 hRelDist2(�i; e�i)i2 � 1p2vuut nXi=1 hR̂elDist(�i; e�i)i2� 1p2k�d � ��1d kF� qkI ��dk2F + kI � ��1d k2F ;by Lemma 6.1 below.Lemma 6.1 1p2k�d ���1d kF �qkI ��dk2F + kI � ��1d k2F ;and the equality holds if and only if �d = I, i.e., D is unitary.29



Proof: Notice that for � 2 R����� � 1� ���� � ����� � 1 + 1� 1� ���� � p2sj� � 1j2 + ����1� 1� ����2and the equality sign holds if and only if � = 1.The theorem below is a generalization of Theorems 4.3 and 4.4 for the spectralnorm and that of Theorem 4.5.Theorem 6.4 To the hypotheses of Theorem 6.1 adds this: all �i's and e�j 'sare nonnegative and are arranged descendingly as described in (3.4). Then wehavemax1�i�nRelDistp(�i; e�i) � �r(X)�r( eX)min� qqkI �D�1kqr + kI �D�12 kqr ;qqkI �D��1 kqr + kI �D2kqr� ; (6.7)where 1 � r � 1.Similarly to Theorem 6.1, there is a stronger version of this theorem as follows.Theorem 6.4s Let all conditions of Theorem 6.4 hold. Thenmax1�i�nRelDistp(�i; e�i) � �r(X)�r( eX)� (6.8)minU2Unmin� qqkU �D1kq2 + kU� �D�12 kq2; qqkU� �D�11 kq2 + kU �D2kq2� :As a consequence of this theorem and the solution (6.5) to the optimizationproblem (6.4), we deduce thatTheorem 6.5 Under the conditions of Theorem 6.3, if A is nonnegative de�-nite and the eigenvalues of A and eA are in descending order as in (3.4), thenmax1�i�nRelDistp(�i; e�i) = qqkI ��dkq2 + kI � ��1d kq2; (6.9)where �d is de�ned in (5.3).However, there is not much interest in this theorem for two reasons: One is that(6.9) works for nonnegative de�nite matrices only just like the inequality (5.1)of Theorem 5.1; and the other is that (6.9) is less sharper than (5.1). To seethis, we notice that (5.1) and Proposition 2.12 imply thatmax1�i�nRelDistp(�i; e�i) � 2�1=pR̂elDist(�i; e�i) � 2�1=pk�d ���1d k2:So with Lemma 6.2 below, one can deduce (6.9) from (5.1). But still (6.9) looksnice and clean. 30



Lemma 6.2 k�d � ��1d k2 � 21=p qqkI ��dkq2 + kI � ��1d kq2; (6.10)and the equality holds if and only if �d = I, i.e., D is unitary.Proof: Let � 2 �(D) so that k�d ���1d k2 = ���� � 1� ��� : Thenk�d � ��1d k2 = ����� � 1� ���� � j� � 1j+ ����1� 1� ����� 21=p qsj� � 1jq + ����1� 1� ����q� 21=p qqkI ��dkq2 + kI � ��1d kq2;as required.So far we have considered the case when both A and eA are diagonalizable. Inwhat follows, we weaken this assumption by requiring only A to be diagonaliz-able and derive relative eigenvalue perturbation bounds of Bauer-Fike Type [2].Theorem 6.6 Assume that A 2 Cn�n is diagonalizable and admits the follow-ing decompositionA = X�X�1 where � = diag(�1; � � � ; �n): (6.11)Assume2 also either eA = DA or eA = AD. Then for any e� 2 �( eA) there existsa � 2 �(A) such thatmin�2�(A) je�� �jj�j � kX�1(D � I)Xkp � �p(X)kI �Dkp: (6.12)6.2 Singular Value VariationsAs to singular value variations, we will proveTheorem 6.7 Let B and eB = D�1BD2 be two m � n matrices, where D1 andD2 are nonsingular. Denote their singular values as in (3.2). Then there is apermutation � of f1; 2; � � �; ng such thatvuut nXi=1 �RelDist2(�i; e��(i))�2� 1p2qkI �D1k2F + kI �D�11 k2F + kI �D2k2F + kI �D�12 k2F :(6.13)2Unlike in our previous theorems, here we do not have to assume that D is nonsingular.Of course, if D is far away from I, the bound (6.12) does not tell us much; if D is close enoughto I, it has to be nonsingular. 31



For any given U 2 Um and V 2 Un, U eBV � = (D1U�)�BD2V � has the samesingular values as eB does. Let the SVDs of D1 and D2 be asD1 = Ud1�d1V �d1 and D2 = Ud2�d2V �d2: (6.14)Applying Theorem 6.7 to matrices B and U eBV �, together with the solution(6.5) to the optimization problem (6.4), leads to the following stronger versionof the theorem.Theorem 6.7s Let all conditions of Theorem 6.7 hold. Then there is a permu-tation � of f1; 2; � � �; ng such thatvuut nXi=1 �RelDist2(�i;e��(i))�2� 1p2 minU2Um ; V 2UnqkU �D1k2F + kU� �D�11 k2F + kV �D2k2F + kV � �D�12 k2F= 1p2qkI � �d1k2F + kI ���1d1 k2F + kI � �d2k2F + kI � ��1d2 k2F ; (6.15)where �d1 and �d2 are de�ned in (6.14).Theorems 6.7 and 6.7s are of less interest since they provide less sharper boundsthan Theorem 5.2 does. We keep them around for comparison purpose, thoughstill they look pretty. Now, we are going to show how to derive (6.15) from (5.5)of Theorem 5.2. It follows from (5.5) and Proposition 2.12 thatvuut nXi=1 [RelDist2(�i; e�i)]2 � 1p2vuut nXi=1 hR̂elDist(�i; e�i)i2� 12p2 �k�d1 ���1d1 kF + k�d2 ���1d2 kF �� 12 �qkI ��d1k2F + kI ���1d1 k2F +qkI ��d2k2F + kI ���1d2 k2F�(by Lemma 6.1)� 1p2qkI ��d1k2F + kI ���1d1 k2F + kI ��d2k2F + kI ���1d2 k2F ;which shows (6.15). The proof in x10 of Theorem 6.7 is, however, of di�erentspirit.Theorem 6.8 Let B and eB = D�1BD2 be two m � n matrices, where D1 andD2 are nonsingular. Denote their singular values as in (3.2), and arrange thesingular values of B and eB in descending order respectively as in (3.3). Then32



we have the followingmax1�i�nRelDistp(�i; e�i) � min� qqkI �D�11 kq2 + kI �D2kq2 ;qqkI �D1kq2 + kI �D�12 kq2� : (6.16)Similarly, applying Theorem 6.8 to matrices B and U eBV �, we will haveTheorem 6.8s Let all conditions of Theorem 6.8 hold. Thenmax1�i�nRelDistp(�i;e�i)� minU2Um ; V 2Un minn qpkU� �D�11 kq2 + kV �D2kq2; qpkU �D1kq2 + kV � �D�12 kq2o= min� qqkI ���1d1 kq2 + kI ��d2kq2; qqkI � �d1kq2 + kI ���1d2 kq2� ; (6.17)where �d1 and �d2 are de�ned in (6.14).We can not say for sure that (5.4) of Theorem 5.2 is always sharper than theinequality (6.17), but many evidences indicates so. Let's weaken (6.17) a littlebit intomax1�i�nRelDistp(�i; e�i)� 12 � qqkI � ��1d1 kq2 + kI ��d2kq2 + qqkI � �d1kq2 + kI � ��1d2 kq2� :(6.18)(6.18) degrades (6.17) marginally in interesting cases. In what follows we willshow that (6.18) is a consequence of Theorem 5.2. To this end, let � 2 �(D1)and � 2 �(D2) so thatkD�1 �D�11 k2 = ����� � 1� ���� and kD�2 �D�12 k2 = ����� � 1� ���� :We notice thatRelDistp(�i; e�i) � 2�1=pR̂elDist(�i; e�i) (by Proposition 2.12)� 121+1=p �k�d1 � ��1d1 k2 + k�d2 � ��1d2 k2� (by Theorem 5.2)= 121+1=p ������ � 1� ����+ ����� � 1� ������ 121+1=p �j� � 1j+ ����1� 1� ����+ j� � 1j+ ����1� 1� ������ 12  qsj� � 1jq + ����1� 1� ����q + qs����1� 1� ����q + j� � 1jq!33



� 12 � qqkI ��d1kq2 + kI � ��1d2 kq2 + qqkI � ��1d1 kq2 + kI ��d2kq2� ;which gives (6.18).
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7 A Theorem of Ostrowski and Other TheoremsIn this section, we briey review the current state of research on the problemslisted in x1.1, together with our remarks.Let A be an n � n Hermitian matrix. Perturbing A to D�AD, where Dis nonsingular, is actually performing a congruence transformation to A by D.The following theorem is due to Ostrowski [17, pp. 224{225].Theorem 7.1 (Ostrowski) Let A; D 2 Cn�n with A Hermitian and D non-singular. De�ne eA = D�AD. Denote the eigenvalues of A and eA as in (3.1)and arrange them in the order as speci�ed by (3.4). Then there exist �j 's sothat �min(D)2 � �j � �max(D)2 and e�j = �j�j ;for j = 1; 2; � � �; n.Ostrowski theorem implies immediately a relative perturbation bound on Her-mitian eigenvalues.Theorem 7.2 Let the conditions of Theorem 7.1 hold. Thenje�j � �j jj�jj � kI �D�Dk2;or in another words,e�j = �j(1 + �j) with j�jj � kI �D�Dk2;for j = 1; 2; � � �; n.Although the inequality (5.1) of Theorem 5.1 and Theorem 7.2 are independentin the sense that one can not be inferred from the other, the latter is practicallymore useful in the following aspects:1. Theorem 7.2 covers more while the inequality (5.1) of Theorem 5.1 coversnonnegative de�nite matrices only;2. Theorem 7.2 is more friendly in the sense that it bounds directly on �j inthe expression e�j = �j(1+ �j) which makes it easy to bound variations ofRelDistp as shown in Proposition 2.3 and Part II of this series [22].Ostrowski theorem also applies to singular value problems of matrices B andeB = D�1BD by working with Hermitian matrices� B�B � and  eB�eB ! = � D2 D1 ��� B�B �� D2 D1 � :(7.1)35



Corollary 7.1 Let B and eB = D�1BD2 be two m � n matrices, where D1 andD2 are nonsingular. Denote their singular values as in (3.2) and arrange themin descending order respectively as in (3.3). Thenminf�min(D1)2; �min(D2)2g � e�j�j � maxf�max(D1)2; �max(D2)2gwhich gives je�j � �j j�j � maxfkI �D�1D1k2; kI �D�2D2k2g;or in another words,e�j = �j(1 + j) with jj j � maxfkI �D�1D1k2; kI �D�2D2k2g:for j = 1; 2; � � �; n.This corollary, though it is an immediate consequence of the above Ostrowskitheorem and the equation (7.1), has appeared no where. Corollary 7.1 also hasa advantage over Theorem 6.8s and the inequality (5.4) of Theorem 5.2 in thatit bounds directly on j in the expression e�j = �j(1 + j). Of course, one candevelop bounds on j with little e�ort from Theorem 6.8s and Theorem 5.2. Itturns out that Corollary 7.1 provides a less sharper bound than the followingtheorem due to Eisenstat and Ipsen [10].Theorem 7.3 (Eisenstat-Ipsen) Assume the conditions are as described inCorollary 7.1. Then�min(D1)�min(D2) � e�j�j � �max(D1)�max(D2)which yieldsje�j � �j j�j � maxfj1� �min(D1)�min(D2)j; j1� �max(D1)�max(D2)jg;or in another words, e�j = �j(1 + j) withjj j � maxfj1� �min(D1)�min(D2)j; j1� �max(D1)�max(D2)jg;for j = 1; 2; � � �; n.Theorem 7.3 always provide a sharper bound than Corollary 7.1 does, as thefollowing lemma indicates.Lemma 7.1 For �; � � 0,maxfj1� �2j; j1� �2jg � j1� ��j; (7.2)and the equality sign holds if and only if � = �.36



Proof: The inequality is obvious if either maxf�; �g � 1 or minf�; �g � 1. It isalso clear if either � = 1 or � = 1. Now it su�ces for us to consider the casewhen 0 � � < 1 < �.1. 1� �2 � �2 � 1) �2 + �2 � 2) �� < 1) 1� �2 > 1� �� = j1� ��j;2. 1� �2 < �2� 1) �2+ �2 > 2) �� + �2 � �2+ �2 > 2) �2� 1 > 1� ��;also �2 > �� ) �2 � 1 > �� � 1. So �2 � 1 > j1� ��j.From the above proof, it is clear that maxfj1� �2j; j1� �2jg = j1 � ��j if andonly if � = �.Regarding to graded matrices, the following two theorems are due to Demmel& Veseli�c [9] and Mathias [25].Theorem 7.4 (Demmel-Veseli�c) Let the conditions of Theorem 5.4 hold.Arrange the eigenvalues of H = D�AD and eH = D� eAD descendingly as in(3.4). Then je�j � �j jj�jj � kA�1k2k�Ak2or in another words,e�j = �j(1 + �j) with j�j j � kA�1k2k�Ak2;for j = 1; 2; � � �; n.Theorem 7.5 (Mathias) Let the conditions of Theorem 5.3 hold. Arrangethe singular values of G = BD and eG = eBD descendingly as in (3.3). Thenje�j � �jj�j � kB�1k2k�Bk2;or in another words,e�j = �j(1 + j) with jj j � kB�1k2k�Bk2;for j = 1; 2; � � �; n.Finally, let us see what we can get from Theorems 7.2, 7.4, 7.5 and 7.3 andCorollary 7.1, in terms of the two kinds of relative distances de�ned in x2.1. From Theorem 7.2, it followsRelDistp(�j ; e�j) � RelDist1(�j ; e�j) � kI �D�Dk2; (7.3)R̂elDist(�j ; e�j) � kI �D�Dk2�min(D) : (7.4)37



The inequality (7.3) holds becauseRelDist1(�j ; e�j) = je�j � �j jmaxfj�jj; je�jjg � je�j � �jjj�jj � kI �D�Dk2;and the inequality (7.4) holds becauseR̂elDist(�j ; e�j) = je�j � �jjqj�jj je�jj = je�j � �jjj�jj s j�j jje�j j � kI �D�Dk2�min(D) :2. From Corollary 7.1, we haveRelDist1(�j ; e�j) � maxfkI �D�1D1k2; kI �D�2D2k2g; (7.5)R̂elDist(�j ; e�j) � maxfkI �D�1D1k2; kI �D�2D2k2gminf�min(D1); �min(D2)g : (7.6)3. From Theorem 7.3, it followsRelDist1(�j; e�j)� maxfj1� �min(D1)�min(D2)j; j1� �max(D1)�max(D2)jg; (7.7)R̂elDist(�j ; e�j)� maxfj1� �min(D1)�min(D2)j; j1� �max(D1)�max(D2)jgp�min(D1)�min(D2) : (7.8)The inequalities (7.7) and (7.8) are sharper than (7.5) and (7.6), respec-tively.4. From Theorem 7.4, we haveRelDist1(�j ; e�j) � kA�1k2k�Ak2; (7.9)R̂elDist(�j ; e�j) � kA�1k2k�Ak2p1� kA�1k2k�Ak2 : (7.10)The inequality (7.10) has been derived in Theorem 5.4.5. From Theorem 7.5, it followsRelDist1(�j ; e�j) � kB�1k2k�Bk2; (7.11)R̂elDist(�j ; e�j) � kB�1k2k�Bk2p1� kB�1k2k�Bk2 : (7.12)The inequality (7.12) turns out to be sharper than the last \�" in (5.9)of Theorem 5.3. 38



8 Remarks on Generalized Eigenvalue Problemsand Generalized Singular Value ProblemsIn this section, we are going to say a few words for the following perturbations.As we shall see, the results in previous sections, as well as those in Li [22], canbe applied to derive relative perturbation bounds for them.� Generalized eigenvalue problem:H1��H2 � D�1A1D1� �D�2A2D2 and eH1�� eH2 � D�1 eA1D1 ��D�2 eA2D2with all Ai and eAi positive de�nite and kA�1i k2k eAi�Aik2 < 1, where Diare some square matrices and one of them are nonsingular.� Generalized singular problem:fG1; G2g � fB1D1; B2D2g and f eG1; eG2g � f eB1D1; eB2D2g with all Biand eBi nonsingular and kB�1i k2k eBi�Bik2 < 1, where Di are some squarematrices and one of them is nonsingular.For the above mention generalized eigenvalue problem, without loss of any gen-erality, consider only the case when D2 is nonsingular. Then the generalizedeigenvalue problem for H1 � �H2 � D�1A1D1 � �D�2A2D2 is equivalent to thestandard eigenvalue problem forA�1=22 D�12 D�1A1D1D�12 A�1=22 ; (8.1)and the generalized eigenvalue problem for eH1 � � eH2 � D�1 eA1D1 � �D�2 eA2D2is equivalent to the standard eigenvalue problem forbD�A�1=22 D�12 D�1 eA1D1D�12 A�1=22 bD; (8.2)where �A2 def= eA2 � A2 and bD = bD� def= (I + A�1=22 (�A2)A�1=22 )�1=2. Sobounding relative distances between the eigenvalues of H1 � �H2 and these ofeH1�� eH2 is transformed to bounding relative distances between the eigenvaluesof the matrix (8.1) and these of the matrix (8.2). The latter can be accomplishedin two steps:1. Bounding relative distances between the eigenvalues of the matrix (8.1)and these of bD�A�1=22 D�12 D�1A1D1D�12 A�1=22 bD; (8.3)2. Bounding relative distances between the eigenvalues of the matrix (8.3)and these of the matrix (8.2).As to the above mention generalized singular problem, we shall considertheir corresponding generalized eigenvalue problems [20, 32, 34] forD�1B�1B1D1 � �D�2B�2B2D2 and D�1 eB�1 eB1D1 � �D�2 eB�2 eB2D2;instead. 39



9 Proofs of Theorems 6.1 and 6.4To prove the theorems, we need a little preparation. A matrix Y = (yij) 2 Rn�nis doubly stochastic if all yij � 0 andnXk=1 yik = nXk=1 ykj = 1 for k = 1; 2; � � � ; n.A matrix P 2 Rn�n is called a permutation matrix if exactly one entry in eachrow and each column equals to 1 and all others are zero. Let ei be the ith columnvector of In. Each permutation matrix P corresponds to a unique permutation� of f1; 2; � � � ; ng so that P = (e�(1); e�(2); � � � ; e�(n));and vice versa. The following wonderful result is due to Birkho� [5] (see also[17, pp. 527{528]).Lemma 9.1 (Birkho�) An n� n matrix is doubly stochastic if and only if itlies in the convex hull of n! permutation matrices.Lemma 9.2 Let Y = (yij) be an n� n doubly stochastic matrix, and let M =(mij) 2 Cn�n . Then there exists a permutation � of f1; 2; � � �; ng such thatnXi; j=1 jmijj2yij � nXi=1 jmi�(i)j2:Proof: Denote all n � n permutation matrices as Pk, and their correspondingpermutations of f1; 2; � � �; ng as �k, where k = 1; 2; � � � ; n!. It follows fromLemma 9.1 that Y can be written asY = n!Xk=1�kPk;where �k � 0 and Pn!k=1�k = 1. HencenXi; j=1 jmij j2yij = n!Xk=1�k nXi=1 jmi�k(i)j2 � min1�k�n! nXi=1 jmi�k(i)j2;as was to be shown.The trick in the above proof is quite standard. It was �rst used by Ho�manand Wielandt [16], and Sun [31] used it to prove a Ho�man-Wielandt typetheorem for a special class of matrix pencils.The following lemma is due to Elsner and Friedland [12].40



Lemma 9.3 (Elsner-Friedland) Let Y = (yij) 2 Cn�n . Then there exist twon� n doubly stochastic matrices Y1; Y2, so that entrywisely�min(Y )2 Y1 � (jyijj2) � �max(Y )2 Y2;where �min(Y ) and �max(Y ) are the smallest and largest singular values of Y ,respectively.Proof of Theorem 6.1: Let us �rst derive our perturbation equations.X�1(A� eA) eX = �X�1 eX �X�1 eXe�;A� eA = A�D�1AD2 = A� AD2 + AD2 �D�1AD2= A(I �D2) + (D��1 � I) eA;eX�1(A� eA)X = eX�1X� � e� eX�1X;A� eA = A�D�1AD2 = A�D�1A +D�1A�D�1AD2= (I �D�1)A + eA(D�12 � I):Thus, we have�X�1 eX �X�1 eXe� = �X�1(I �D2) eX +X�1(D��1 � I) eX e�; (9.1)eX�1X�� e� eX�1X = eX�1(I �D�1)X� + e� eX�1(D�12 � I)X: (9.2)Set Y def= X�1 eX = (yij), E = X�1(I � D2) eX = (eij) and eE = X�1(D��1 �I) eX = (eeij). Then the equation (9.1) reads �Y � Y e� = �E + eEe�, or compo-nentwisely �iyij � yije�j = �ieij + eeije�j , soj(�i � e�j)yij j2 � (j�ij2 + je�j j2)(jeijj2 + jeeijj2);which yields jeijj2 + jeeijj2 � hRelDist2(�i; e�j)i2 jyijj2:HencekX�1(I�D2) eXk2F+kX�1(D��1 �I) eXk2F � nXi; j=1hRelDist2(�i; e�j)i2 jyijj2 (9.3)which, together with Lemmas 9.3 and 9.2, show thatkX�1(I �D2) eXk2F +kX�1(D��1 � I) eXk2F � �min(Y )2 nXi=1 hRelDist2(�i; e��(i))i2for some permutation � of f1; 2; � � �; ng. Since�min(Y ) = kY �1k�12 = k eX�1Xk�12 � k eX�1k�12 kXk�12 ;41



so k eX�1k2kXk2qkX�1(I �D2) eXk2F + kX�1(D��1 � I) eXk2F� k eX�1k2kXk2�min(Y )vuut nXi=1 hRelDist2(�i; e��(i))i2� vuut nXi=1 hRelDist2(�i; e��(i))i2: (9.4)Set eY def= eX�1X = (eyij). Similarly, we getk eX�1(I �D�1)Xk2F + k eX�1(D�12 � I)Xk2F � nXi; j=1 hRelDist2(�i; e�j)i2 jeyjij2which, together with Lemmas 9.3 and 9.2, show thatk eX�1(I�D�1 )Xk2F +k eX�1(D�12 �I)Xk2F � �min(eY )2 nXi=1 hRelDist2(�i; e��(i))i2 :Since �min(eY ) = keY �1k�12 = kX�1 eXk�12 � kX�1k�12 k eXk�12 :Along the lines as we were proceeding in (9.4), we will reachkX�1k2k eXk2qk eX�1(I �D�1)Xk2F + k eX�1(D�12 � I)Xk2F� vuut nXi=1 hRelDist2(�i; e��(i))i2: (9.5)The inequality (6.1) is now a simple consequence of (9.4) and (9.5).A proof of Theorem 6.4 is based on the following result due to Li [21, pp. 207{208]. For a X 2 Cm�n , introduce the following notation for a k � ` submatrixof X = (xij): X � i1 � � � ikj1 � � � j` � def= 0BBB@ xi1j1 xi1j2 � � � xi1j`xi2j1 xi2j2 � � � xi2j`... ... . . . ...xikj1 xikj2 � � � xikj` 1CCCA ; (9.6)where 1 � i1 < � � � < ik � n and 1 � j1 < � � � < j` � n.42



Lemma 9.4 (Li) Suppose that X 2 Cn�n is nonsingular, 1 � i1 < � � � < ik �n and 1 � j1 < � � � < j` � n, and k + ` > n. ThenX � i1 � � � ikj1 � � �j` �p � kX�1k�1p :Moreover, if X is unitary thenX � i1 � � � ikj1 � � �j` �2 = 1:Proof of Theorem 6.4: Let k be the index such that�p def= max1�i�nRelDistp(�i; e�i) = RelDistp(�k; e�k):If �p = 0, the inequality (6.7) is trivial. Assume �p > 0. Also assume, withoutlose of any generality, that �k > e�k � 0:Partition X; X�1; eX and eX�1 as follows:X = (X1; X2); X�1 = � W �1W �2 � ; eX = ( eX1; eX2); eX�1 =  fW �1fW �2 ! ;where X1; W1 2 Cn�k and eX1; fW1 2 Cn�(k�1), and write � = diag(�1;�2) ande� = diag(e�1; e�2), where �1 2 Rk�k and e�1 2 R(k�1)�(k�1). It follows from theequations (9.1) and (9.2) that�1W �1 eX2 �W �1 eX2e�2 = �1W �1 (I �D2) eX2 +W �1 (D��1 � I) eX2e�2; (9.7)fW �2X1�1 � e�2fW �2X1 = fW �2 (I �D�1)X1�1 + e�2fW �2 (D�12 � I)X1 (9.8)which givesW �1 eX2 � ��11 W �1 eX2e�2 = W �1 (I �D2) eX2 + ��11 W �1 (D��1 � I) eX2e�2; (9.9)fW �2X1 � e�2fW �2X1��11 = fW �2 (I �D�1)X1 + e�2fW �2 (D�12 � I)X1��11 : (9.10)Lemma 9.4 impliesW �1 eX2r � (X�1 eX)�1�1r �  eX�1X�1r � k eX�1k�1r kXk�1r ;fW �2X1r � ( eX�1X)�1�1r � X�1 eX�1r � kX�1k�1r k eXk�1r ;sinceW �1 eX2 is a k�(n�k+1) submatrix ofX�1 eX , andfW �2X1 is a (n�k+1)�ksubmatrix of eX�1X and k + (n � k + 1) = n + 1 > n. So it follows from (9.9)43



that  1� e�k�k! k eX�1k�1r kXk�1r�  1� e�k�k!W �1 eX2r= W �1 eX2r � k��11 kr W �1 eX2r e�2r� W �1 eX2r � ��11 W �1 eX2e�2r� W �1 eX2 � ��11 W �1 eX2e�2r= W �1 (I �D2) eX2 + ��11 W �1 (D��1 � I) eX2e�2r� W �1 (I �D2) eX2r + e�k�k W �1 (D��1 � I) eX2r� kW �1 krk eX2kr  kI �D2kr + e�k�k kD��1 � Ikr!� kX�1krk eXkr ps1 + e�pk�pk qqkI �D2kqr + kI �D��1 kqr:Similarly, it follows from (9.10) that 1� e�k�k!kX�1k�1r k eXk�1r� k eX�1krkXkr ps1 + e�pk�pk qqkI �D�12 kqr + kI �D�1kqr:The inequality (6.7) is now a simple consequence of above inequalities.
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10 Proofs of Theorems 6.7 and 6.8Proof of Theorem 6.7: We assume, without lose of any generality, that m = n;otherwise, we can augment B and eB with zero blocks of suitable size. Forexample if m > n, we doB1 = (B; 0m;m�n); eB1 = ( eB; 0m;m�n) = D�1B1diag(D2; Im�n):Since this way only increases the number of zero singular values, and Proposi-tion 2.7 says that zero singular values should be always paired to zero ones, westill have (6.13) in the end once we prove it for B1 and eB1.Assume now m = n and let the singular value decompositions of B and eBbe as B = U�V � and eB = eU e�eV �; (10.1)where U; V; eU; eV 2Un and� = diag(�1; � � � ; �n) and e� = diag(e�1; � � � ; e�n): (10.2)Notice U�(B � eB)eV = �V � eV � U� eU e�;B � eB = B �D�1BD2 = B � BD2 + BD2 �D�1BD2= B(I �D2) + (D��1 � I) eB:Thus, we have�V � eV � U� eU e� = �V �(I �D2)eV + U�(D��1 � I)eU e�: (10.3)One the other hand, we haveeU�(B � eB)V = eU�U�� e�eV �V;B � eB = B �D�1BD2 = B �D�1B +D�1B �D�1BD2= (I �D�1)B + eB(D�12 � I):Thus, we haveeU�U�� e�eV �V = eU�(I �D�1)U�+ e�eV �(D�12 � I)V:Taking conjugate transpose in both sides, we get�U� eU � V � eV e� = �U�(I �D1)eU + V �(D��2 � I)eV e�: (10.4)45



Set Q = U� eU = (qij) and eQ = V � eV = (eqij). Both are unitary. Similarly to thederivation of the inequality (9.3), from the perturbation equations (10.3) and(10.4) one can getkI �D2k2F + kI �D��1 k2F � nXi; j=1 j�ieqij � qije�j j2�2i + e�2j ; (10.5)kI �D1k2F + kI �D��2 k2F � nXi; j=1 j�iqij � eqije�j j2�2i + e�2j : (10.6)Sincej�ieqij � qije�j j2 + j�iqij � eqije�jj2 = �2i jeqijj2 + jqijj2e�2j � 2<(�ieqij�qije�j)+�2i jqijj2 + jeqijj2e�2j � 2<(�i�qijeqije�j)� (�i � e�j)2(jqijj2 + jeqijj2);where <(�) takes the real part of a complex number. The last \�" holds because2<(�ieqij�qije�j) � �ie�j(jqijj2 + jeqijj2);2<(�i�qijeqije�j) � �ie�j(jqijj2 + jeqijj2):Now adding the corresponding two sides of the inequalities (10.5) and (10.6)leads to kI �D2k2F + kI �D��1 k2F + kI �D1k2F + kI �D��2 k2F� 2 nXi; j=1 [RelDist2(�i; e�j)]2 jqijj2 + jeqijj22 :It is easy to see that the matrix whose (i; j)th entry is jqij j2+jeqij j22 is a doublystochastic matrix. Hence applying Lemma 9.2 leads to the inequality (6.13).Proof of Theorem 6.8: Similarly to the remark we made at the beginning of theabove proof, we may assume, without lose of any generality, that m = n becauseof Proposition 2.5. Then still, we have the perturbation equations (10.3) and(10.4). Let k be the index such that�p def= max1�i�nRelDistp(�i; e�i) = RelDistp(�k; e�k):If �p = 0, the inequality (6.16) is trivial. Assume �p > 0. Also assume, withoutlose of generality, that �k > e�k � 0:Partition U; V; eU; eV as followsU = (U1; U2); V = (V1; V2); eU = (eU1; eU2) and eV = (eV1; eV2);46



where U1; V1 2 Cn�k and eU1; eV1 2 Cn�(k�1). Write � = diag(�1;�2) ande� = diag(e�1; e�2), where �1 2 Rk�k and e�1 2 R(k�1)�(k�1). It follows from theequations (10.3) and (10.4) that�1V �1 eV2 � U�1 eU2e�2 = �1V �1 (I �D2)eV2 + U�1 (D��1 � I)eU2e�2;�1U�1 eU2 � V �1 eV2e�2 = �1U�1 (I �D1)eU2 + V �1 (D��2 � I)eV2e�2which yieldV �1 eV2 ���11 U�1 eU2e�2 = V �1 (I �D2)eV2 +��11 U�1 (D��1 � I)eU2e�2; (10.7)U�1 eU2 � ��11 V �1 eV2e�2 = U�1 (I �D1)eU2 + ��11 V �1 (D��2 � I)eV2e�2: (10.8)Lemma 9.4 implies that U�1 eU22 = V �1 eV22 = 1, since U�1 eU2 is a k�(n�k+1)submatrix of U� eU 2Un and V �1 eV2 is a k � (n� k+ 1) submatrix of V � eV 2Unand k + (n� k + 1) = n+ 1 > n. So it follows from (10.7) that1� e�k�k = V �1 eV22 � k��11 k2 U�1 eU22 ke�2k2� V �1 eV22 � ��11 U�1 eU2e�22� V �1 eV2 � ��11 U�1 eU2e�22= V �1 (I �D2)eV2 + ��11 U�1 (D��1 � I)eU2 e�22� kI �D2k2 + e�k�k kD��1 � Ik2� ps1 + e�pk�pk qqkI �D2kq2 + kD��1 � Ikq2:Therefore �p = 1� e�k=�kpp1 + e�pk=�pk � qqkI �D2kq2 + kD��1 � Ikq2:Similarly, it follows from (10.8) that�p = 1� e�k=�kpp1 + e�pk=�pk � qqkI �D1kq2 + kD��2 � Ikq2:The inequality (6.16) is a consequence of the last two inequalities.47



11 Proof of Theorems 5.1, 5.2, 5.3 and 5.4Proof of Theorem 5.1: Since A is nonnegative, there is a matrix B 2 Cn�n suchthat A = B�B. With this B, eA = D�AD = D�B�BD = eB� eB, where eB = BD.Let SVDs of B and eB be asB = U�1=2V � and eB = eU e�1=2eV �;where�1=2 = diag(p�1; � � � ;p�n) and e�1=2 = diag�qe�1; � � � ;qe�n� :In what follows, we actually work with BB� and eB eB�, instead of A = B�B andeA = eB� eB. eB eB� �BB� = eBD�B� � eBD�1B�= eB(D� �D�1)B�;eU�( eB eB� �BB�)U = e�eU�U � eU�U�;eU� eB(D� �D�1)B�U = e�1=2eV �(D� �D�1)V �1=2:Thus, we have the following perturbation equation.e�eU�U � eU�U� = e�1=2eV �(D� �D�1)V �1=2: (11.1)Write Q def= eU�U = (qij). It follows from (11.1) thatkeV �(D� �D�1)V k2F = kD� �D�1k2F � nXi; j=1 je�i � �j jqe�i�j jqijj2:Since (jqijj2) is a doubly stochastic matrix, applying Lemma 9.2 concludes theproof of the inequality (5.2). To show (5.1), let k be the index such that�p def= max1�i�n R̂elDist(�i; e�i) = R̂elDist(�k; e�k):If �p = 0, no proof is necessary. Assume �p > 0. Also assume, without lose ofany generality, that �k > e�k � 0:Partition U; V; eU; eV as followsU = (U1; U2); V = (V1; V2); eU = (eU1; eU2) and eV = (eV1; eV2);where U1; V1 2 Cn�k and eU1; eV1 2 Cn�(k�1), and write � = diag(�1;�2) ande� = diag(e�1; e�2), where �1 2 Rk�k and e�1 2 R(k�1)�(k�1). It follows from theequation (11.1) thate�2 eU�2U1 � eU�2U1�1 = e�1=22 eV �2 (D� �D�1)V1�1=2148



which yields e�2 eU�2U1��11 � eU�2U1 = e�1=22 eV �2 (D� �D�1)V1��1=21 : (11.2)Lemma 9.4 implies that eU�2U12 = 1 since eU�2U1 is a (n�k+1)�k submatrixof eU�U and k + (n� k + 1) = n+ 1 > n. So it follows from (11.2) that1� e�k�k = eU�2U12 � ke�2k2 eU�2U12 k��11 k2� eU�2U12 � e�2 eU�2U1��11 2� eU�2U1 � e�2 eU�2U1��11 2= e�1=22 eV �2 (D� �D�1)V1��1=21 2� ke�1=22 k2 eV �2 (D� �D�1)V12 k��1=21 k2= se�k�k eV �2 (D� �D�1)V12� se�k�k kD� �D�1k2;an immediate consequence of which is the inequality (5.1).Proof of Theorem 5.2: Set bB = BD2 and denote�( bB) = fb�1 � b�2 � � � � � b�ng:Applying Theorem 5.1 to B�B and bB� bB = D�2B�BD2 leads tomax1�i�n R̂elDist(�2i ; b�2i ) � kD�2 �D�12 k2;vuut nXi=1 hR̂elDist(�2i ; b�2i )i2 � kD�2 �D�12 kF :Now applying Proposition 2.11, we obtainmax1�i�n R̂elDist(�i; b�i) � 12kD�2 �D�12 k2;vuut nXi=1 hR̂elDist(�i; b�i)i2 � 12kD�2 �D�12 kF :49



Similarly for BD2 and D�1BD2, we havemax1�i�n R̂elDist(b�i; e�i) � 12kD�1 �D�11 k2;vuut nXi=1 hR̂elDist(b�i; e�i)i2 � 12kD�1 �D�11 kF :Since R̂elDist is a generalized metric on R�0, we getR̂elDist(�i; e�i) � R̂elDist(�i; b�i) + R̂elDist(b�i; e�i)� 12 �kD�1 �D�11 k2 + kD�2 �D�12 k2� ;vuut nXi=1 hR̂elDist(�i; e�i)i2 � vuut nXi=1 hR̂elDist(�i; b�i) + R̂elDist(b�i; e�i)i2� vuut nXi=1 hR̂elDist(�i; b�i)i2 +vuut nXi=1 hR̂elDist(b�i; e�i)i2� 12 �kD�1 �D�11 kF + kD�2 �D�12 kF � ;as expected.Proof of Theorem 5.3: WriteeG = (B +�B)D = (I + (�B)B�1)BD = bDG;where bD = I + (�B)B�1. Now applying Theorem 5.2 above to G and eG =bDG yields the �rst inequalities in both (5.9) and in (5.10). To get the secondinequalities, we notice(I +E)� � (I +E)�1 = I + E� � 1Xi=0(�1)iEi = E� + E + E 1Xi=2(�1)iEi�1;where E = (�B)B�1, and therefore for any unitarily invariant norm jjj � jjj������(I + E)� � (I +E)�1������ � jjjE +E�jjj+ jjjEjjj 1Xi=1 kEki2= � jjjE + E�jjjjjjEjjj + kEk21� kEk2� jjjEjjj :The rest is trivial. 50



Proof of Theorem 5.4: Rewrite H and eH asH = D�AD = (A1=2D)� A1=2D def= B�B;eH = D�A1=2�I + A�1=2(�A)A�1=2�A1=2D= � �I + A�1=2(�A)A�1=2�1=2A1=2D �� �I +A�1=2(�A)A�1=2�1=2A1=2Ddef= eB� eB;where B def= A1=2D;eB def= �I +A�1=2(�A)A�1=2�1=2A1=2D:Set bD = �I + A�1=2(�A)A�1=2�1=2. Thus eB = bDB. Notice that �(H) =�(B�B) = �(BB�) and �( eH) = �( eB� eB) = �( eB eB�) and eB eB� = bDBB� bD�. Soapplying Theorem 5.1 to BB� and eB eB� yields the �rst \�" in both (5.13) and(5.14).
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12 Proof of Theorem 6.6There is nothing to prove if e� 2 �(A). Assume that e� 62 �(A). Here we willprove the case when eA = DA only, since the proof for the case when eA = ADis very similar. Consider eA � e�I.eA� e�I = A � e�I + eA� A= X(� � e�I)X�1 + (D � I)X�X�1= X hI +X�1(D � I)X�(� � e�I)�1i (�� e�I)X�1:Since eA� e�I is singular, we have for any 1 � p � 1kX�1(D � I)X�(� � e�I)�1kp � 1which gives1 � kX�1(D � I)Xkpk�(�� e�I)�1kp = kX�1(D � I)Xkp max�2�(A) j�jje�� �jas was to be shown.
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A Is RelDistp a Metric?In this appendix, we will prove (2.22) under certain conditions. As a result, wewill see1. RelDistp is a metric on R�0;2. RelDist1, RelDist2 and RelDist1 are metrics on R.We strongly conjecture that RelDistp is a metric on C . Unfortunately, we areunable to prove it at this point.Lemma A.1 The following statements are equivalent:1. RelDistp(�; ) � RelDistp(�; �) + RelDistp(�; );2. RelDistp(��; �) � RelDistp(��; ��) + RelDistp(��; �) for some 0 6= � 2C ;3. RelDistp(��; �) � RelDistp(��; ��) + RelDistp(��; �) for all 0 6= � 2 C .The proof of this lemma is trivial, just by Property 3 of Proposition 2.1. WithLemma A.1 in mind and that swapping � and  does not lose any generality,we may assume from now on � � j�j � : (A.1)The inequality (2.22) is trivial when one of the �; �;  is zero or � = � or � = .So from now on, we may assume�; �;  6= 0 and � 6= � 6= : (A.2)Now there are three possible positions for �:� < � or � < � <  or  < �:When � < 0, we split the case � < � into two subcases:� < � or �  � � < �:Also in the case � < 0, without loss of generality, we may assume � = �1 byLemma A.1. We summarize the above cases we have to handle separately asfollows.1. � < � < ;2. � > 0, i.e., � and  are of the same sign;3. � = �1 < 1 �  < �; 53



4. � � � < � = �1 < 1 � ; and5. � � � � � = �1 < 1 � .Lemma A.2 (2.22) holds for � � � � , and the equality sign holds if andonly if � = � or � = .This lemma actually implies that (2.22) holds if � lies between � and  for all�;  2 R, not just these � and  satisfying (A.1).Proof: Assume � 6= � 6= . Because of (A.1), we have  � � =  � � + � � �and thus for 1 � p <1RelDistp(�; ) =  � �ppp + j�jp =  � �ppp + j�jp + � � �ppp + j�jp=  � �ppp + j�jp + � � �ppj�jp + j�jp+( � �) 1ppp + j�jp � 1ppp + j�jp!+(� � �) 1ppp + j�jp � 1ppj�jp + j�jp!= RelDistp(�; �) + RelDistp(�; )+ ( � �)(j�jp � j�jp)ppp + j�jp ppp + j�jp � ppp + j�jp � ppp + j�jpj�jp � j�jp+ (� � �)(j�jp � p)ppp + j�jp ppj�jp + j�jp � ppj�jp + j�jp � ppp + j�jpj�jp � p :Now if � < � � j�j � , then j�jp � j�jp � 0 and j�jp � p < 0, and thus( � �)(j�jp � j�jp)ppp + j�jp ppp + j�jp � ppp + j�jp � ppp + j�jpj�jp � j�jp+ (� � �)(j�jp � p)ppp + j�jp ppj�jp + j�jp � ppj�jp + j�jp � ppp + j�jpj�jp � p < 0:Hence RelDistp(�; ) < RelDistp(�; �) + RelDistp(�; ). Consider now j�j <� < . Then( � �)(j�jp � j�jp)ppp + j�jp ppp + j�jp � ppp + j�jp � ppp + j�jpj�jp � j�jp+ (� � �)(j�jp � p)ppp + j�jp ppj�jp + j�jp � ppj�jp + j�jp � ppp + j�jpj�jp � p54



� ( � �)(� � j�j)ppp + j�jp  1ppp + �p � �p � j�jp� � j�j � ppp + �p � ppp + j�jp�p � j�jp� 1ppj�jp + �p � p � �p � � � ppj�jp + �p � ppp + j�jp�p � p !< 0:The last \<" is true because ppp + �p > ppj�jp + �p and0 < �p � j�jp� � j�j � p � �p � � ;0 < ppp + �p � ppp + j�jp�p � j�jp � ppj�jp + �p � ppp + j�jp�p � p :So we also have RelDistp(�; ) < RelDistp(�; �)+RelDistp(�; ) for j�j < � < .The proof for the case p <1 is completed.When p =1,RelDist1(�; ) =  � � =  � � + � � �=  � � + � � �maxfj�j; j�jg+(� � �)�1 � 1maxfj�j; j�jg�< RelDist1(�; �) + RelDist1(�; );as was to be shown.Lemma A.3 (2.22) holds for � � 0.Proof: Lemma A.2 shows that (2.22) is true if � � � � . If either � < � or < �, (2.22) follows from Property 8 of Proposition 2.1.As an immediate consequence of Lemma A.3, we haveProposition A.1 RelDistp is a metric on R�0.Lemma A.4 (2.22) holds for � � � � � < 0 < j�j � , and the equality signholds if and only if � = �.Proof: Assume � 6= �. De�nef(�) def=  + �ppp + �p for j�j � � � :55



Clearly if p =1, f(�) = +� increases in j�j � � � ; if 0 � p <1, we havef 0(�) = (p�1 � �p�1)(p + �p)1+1=p > 0; for j�j � � < .So f(�) is an increasing function for all p. HenceRelDistp(�; ) = f(��) < f(��) = RelDistp(�; ) < RelDistp(�; �)+RelDistp(�; );as was to be proved.Proposition A.2 RelDist1, RelDist2 and RelDist1 are metrics on R.Proof: We have to prove (2.22) with p = 1; 2 and 1 for all 5 cases listed at thebeginning of this appendix. But Case 1 has been covered by Lemma A.2, Case2 by Lemma A.3, and Case 4 by Lemma A.4. Cases 3 and 5 are to be dealtwith by Lemmas A.5 and A.6 below.Lemma A.5 (2.22) with p = 1; 2 or 1 holds for � = �1 < 1 �  � �. Whenp = 1; 2, the equality sign holds if and only if � = ; when p =1, the equalitysign holds if and only if either � =  or  = 1.Proof: Assume � 6= . First consider the case p = 2. De�nef(�) def= � + 1p�2 + 1 + � � p�2 + 2 :We are going to show that f 0(�) > 0 for � >  and thusRelDist2(�1; �) + RelDist2(�; ) = f(�) > f() =  + 1p2 + 1 = RelDist2(�1; )which concludes the proof for the present case. Sincef 0(�) = � � � 1(�2 + 1)3=2 + (� + )(�2 + 2)3=2 :So to show f 0(�) > 0, it su�ces for us to show for � >  � 1(� + )(�2 + 1)3=2 > (� � 1)(�2 + 2)3=2;or equivalently, to show for � >  � 1(� � 1)2(�2 + 2)3 � 2(� + )2(�2 + 1)3 < 0:56



But tedious algebraic manipulations yield the following(� � 1)2(�2 + 2)3 � 2(� + )2(�2 + 1)3= �4 + 6 � 23(1 + 3)� + 2(4 � 1)�2 � 63(1 + )�3�62(1 + )�5 + (1� 4)�6 � 2(1 + 3)�7 + (1� 2)�8= �4 + 3(3 � 6�3)� 23(1 + 3)� � 2�2 + 3�2(3 � 6�3)�64�3 � 62�5 + (1� 4)�6 � 2(1 + 3)�7 + (1� 2)�8< 0;as required. This completes the proof for p = 2.We have to show (2.22) for p = 1 or 1. For the moment, let's see whatis the implication of (2.22) for any 1 � p � 1 for this particular case. Notice + 1 = � + 1� (� � ) andRelDistp(�1; ) =  + 1ppp + 1 = � + 1ppp + 1 � � � ppp + 1= � + 1pp�p + 1 + � � pp�p + p+(� + 1)� 1ppp + 1 � 1pp�p + 1�� (� � )� 1ppp + 1 + 1pp�p + p�= RelDistp(�1; �) + RelDistp(�; )+(� + 1) pp�p + 1� ppp + 1ppp + 1 pp�p + 1 � (� � ) pp�p + p + ppp + 1ppp + 1 pp�p + p :So (2.22) holds if and only if(� + 1)� pp�p + 1� ppp + 1� pp�p + p� (� � )� pp�p + p + ppp + 1� pp�p + 1;or equivalentlypp�p + p �( + 1) pp�p + 1� (� + 1) ppp + 1� � (� � ) pp�p + p pp�p + 1which is true if and only ifpp�p + p �  + 1ppp + 1 � � + 1pp�p + 1� � � � : (A.3)Our proof will be completed if we can prove (A.3) for p = 1 or1. When p = 1,the left-hand side of (A.3) is zero and its right-hand side is � �  � 0. Whenp =1,the left-hand side of (A.3) = �� + 1 � � + 1� � = � �  � � � :Hence (A.3) holds for both p = 1 and 1.57



Lemma A.6 (2.22) with p = 1; 2 or 1 holds for � < � � � = �1 < 1 � ,and is strict, unless p =1 and  = 1.Proof: We want to prove for p = 1; 2 and 1RelDistp(�1; ) < RelDistp(�1; �) + RelDistp(�; );which, by Lemma A.1, is equivalent toRelDistp(1;�) < RelDistp(1;��) + RelDistp(��;�):Set � = ��. Then � >  > 1. For the moment, let's see what is the implicationof (2.22) for any 1 � p � 1 for this particular case. Notice that  + 1 =� +  � (� � 1), and thusRelDistp(1;�) =  + 1ppp + 1 = � + ppp + 1 � � � 1ppp + 1= � + pp�p + p + � � 1pp�p + 1+(� + )� 1ppp + 1 � 1pp�p + p�� (� � 1)� 1ppp + 1 + 1pp�p + 1�+(� + ) pp�p + p � ppp + 1ppp + 1 pp�p + p � (� � 1) pp�p + 1 + ppp + 1ppp + 1 pp�p + 1 :So (2.22) holds if and only if(� + ) pp�p + p � ppp + 1ppp + 1 pp�p + p � (� � 1) pp�p + 1 + ppp + 1ppp + 1 pp�p + 1 � 0; (A.4)or equivalently(+�) pp�p + 1� ppp + �p � ppp + 1� � (��1) ppp + �p � pp�p + 1+ ppp + 1� ;or equivalentlyppp + �p �( + 1) pp�p + 1� (� � 1) ppp + 1� � ( + �) ppp + 1 pp�p + 1which holds if and only ifppp + �p �  + 1ppp + 1 � � � 1pp�p + 1� �  + �: (A.5)We have to show (A.5) (or (A.4)) for p = 1; 2 and 1. When p = 2, We willprove (A.4) by showing for � > (� + )(�2 � 1)p2 + 1p�2 + 2 �p2 + 1 +p�2 + 2��(��1) 1p2 + 1 + 1p�2 + 1! < 0(A.6)58



and thus our proof is completed. To show our claim, �rst, we notice that theinequality (A.6) is equivalent to(� + )(� + 1)p2 + 1p�2 + 2 �p2 + 1 +p�2 + 2� < 1p2 + 1 + 1p�2 + 1 ;or equivalently(� + )(� + 1)p�2 + 1p�2 + 2 � �p2 + 1 +p�2 + 2��p�2 + 1 +p2 + 1� :(A.7)Notice thatThe left-hand side of (A.7) � (� + )(� + 1);The right-hand side of (A.7) � �p�2 + 1 +p2 + 1�2 ;and �p�2 + 1 +p2 + 1�2 � (� + )(� + 1)= �2 + 1 + 2 + 1 + 2p�2 + 1p2 + 1� �2 � ( + 1)� � > 2p�2 + 1p2 + 1� ( + 1)�> 0;because ( + 1)2�2 = �22 + 2�2 + �2� 3�22 + �2;4(�2 + 1)(2 + 1) = 4�22 + 4�2 + 42 + 4:Next, we are going to show (A.5) for p = 1 and 1. When p = 1,the left-hand side of (A.5) = ( + �) 2� + 1 <  + �;When p =1, the left-hand side of (A.5) = � +  � � + ;and the equality sign holds if and only if  = 1.By now the proof of that RelDist1, RelDist2 and RelDist1 are metrics on R iscompleted.We briey summarize what we have proved in this appendix.59



1. When p = 1; 2 or 1, (2.22) is true for all �; �;  2 R, and thus RelDist1,RelDist2 and RelDist1 are metrics on R;2. (2.22) is true for all �; �;  � 0 and for all 1 � p � 1, and thus RelDistpfor any 1 � p � 1 is a metric on R�0;3. (2.22) for 1 � p � 1 survives to Case 1, Case 2 and Case 4. But wedo not know whether it survives to Case 3 and/or Case 5. We believe itwould. Showing (2.22) survives to Case 3 is equivalent to showing (A.3)for 1 �  < �; and showing (2.22) survives to Case 5 is equivalent toshowing (A.5) for 1 �  � �.
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B Is R̂elDist a Generalized Metric?In this appendix, we will prove (2.23) under certain conditions. As a result, wewill see1. R̂elDist is a generalized metric on R�0, and a metric on R+;2. R̂elDist is not a generalized metric on R (nor on C , of course).Similarly to Lemma A.1, we also haveLemma B.1 The following statements are equivalent:1. R̂elDist(�; ) � R̂elDist(�; �) + R̂elDist(�; );2. R̂elDist(��; �) � R̂elDist(��; ��) + R̂elDist(��; �) for some 0 6= � 2 C ;3. R̂elDist(��; �) � R̂elDist(��; ��) + R̂elDist(��; �) for all 0 6= � 2 C .This lemma follows from Property 3 of Proposition 2.8. Again, now withLemma B.1 in mind and that swapping � and  does not lose any generality,we may assume (A.1) holds, and also only cases (A.2) are interesting. Followingthe similar arguments, we see nontrivial cases are exactly the same 5 cases aswe summarized in xA.Lemma B.2 The inequality (2.23) holds for � � � � , and the equality signholds if and only if � = � or � = .This lemma actually implies that (2.23) holds if � lies between � and  for all�;  2 R, not just these � and  satisfying (A.1).Proof: Assume � 6= � 6= . Because of (A.1), we have  � � =  � � + � � �,and thuŝRelDist(�; ) =  � �pj�j =  � �pj�j + � � �pj�j=  � �pj�j + � � �pj��j+( � �) 1pj�j � 1pj�j!+ (� � �) 1pj�j � 1pj��j!= R̂elDist(�; �) + R̂elDist(�; )+( � �)pj�j �pj�jpj��j � (� � �)p �pj�jpj��j :61



Now if � < � � j�j � , then pj�j �pj�j � 0 and pj�j � p < 0, and thus( � �)pj�j �pj�jpj��j � (� � �)p �pj�jpj��j < 0:Hence R̂elDist(�; ) < R̂elDist(�; �)+R̂elDist(�; ). Consider now j�j < � < .Then ( � �)pj�j �pj�jpj��j � (� � �)pjj �pj�jpj��j� ( � �)p� �pj�jpj��j � (� � j�j)p �p�pj��j= � (p �p�)(p� �pj�j)(p �pj�j)p��< 0;as required.Lemma B.3 (2.23) holds for � � 0.Proof: Lemma B.2 shows that (2.23) is true if � � � � . If either � < � or < �, (2.23) follows from Property 6 of Proposition 2.8.As a immediate consequence of Lemma B.3, we haveProposition B.1 R̂elDist is a metric on R�0.Lemma B.4 If � < 0 < �� �  � �, then the inequality (2.23) holds, and theequality sign holds if and only if � = .Proof: Assume � 6= . By Lemma B.1, we may assume � = �1. Then we wantto have  + 1p < � + 1p� + � � p� ;or equivalently, ( + 1)p� � (� + 1)p + (� � ) < 0:Since( + 1)p� � (� + 1)p � (� � ) = p� +p� � �p �p + ( � �)= p�(p �p�) +p� �p + ( � �)= (p �p�)(p� � 1 +p +p�)< 0;as was to be shown. 62



Lemma B.5 When � = �1 < 0 < �� � , the inequality (2.23) holds for all� � � = �1 if and only if  � 3 + 2p2. If, however,  > 3 + 2p2, then (2.23)holds for � � �pp�1p+1 .Proof: The inequality  + 1p � �1� �p�� +  � �p��is equivalent to ( + 1)p�� � (�1� �)p � ( � �) � 0:Write �� = �2, so the above inequality reads� �2(p + 1) + ( + 1)� + (p � ) � 0: (B.1)So that (2.23) holds for all � � � = �1 requires the inequality (B.1) is true forall � � 1. Since the two zeros of ��2(p + 1) + ( + 1)� + (p � ) are � = 1and � = �pp+1 , and  �pp + 1 � 1gives  � 3 + 2p2, we know that (2.23) holds for all � � � = �1 if andonly if  � 3 + 2p2. If, however,  > 3 + 2p2, then (2.23) is violated for�pp�1p+1 < � < �1.We may summarize how (2.23) is doing under the 5 distinguished cases.1. (2.23) survives to Case 1 by Lemma B.2;2. (2.23) survives to Case 2 by Lemma B.3;3. (2.23) survives to Case 3 by Lemma B.4;4. (2.23) dies at Cases 4 and/or 5 , unless  � 3 + 2p2 by Lemma B.5.Acknowledgement: I thank Professor W. Kahan for his consistent encourage-ment and support, Professor J. Demmel for helpful discussions on open problemsin this research area and Professor B. N. Parlett for drawing my attention toOstrowski theorem. I also thank Drs. Ming Gu, Huan Ren and Yuhua Wu forhelping me to prove whether RelDist2 is a metric onR. The proof of LemmaA.2was discovered only after Drs. Ming Gu and Yuhua Wu showing me their prooffor RelDist2. 63
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