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Abstract

In this paper, we consider how eigenspaces of a Hermitian matrix A
change when it is perturbed to A = D*AD and how singular values of
a (nonsquare) matrix B change when it is perturbed to B = DIBDs,
where ), D; and D; are assumed to be close to identity matrices of
suitable dimensions, or either )1 or Ds close to some unitary matrix. We
have been able to generalize well-known Davis-Kahan sin 6 theorems. As
applications, we obtained bounds for perturbations of graded matrices.

We will follow the notation introduced in Li [7].

1 Introduction

Let A and A be two n x n Hermitian matrices with eigendecompositions

A = UAU* = (U7, U3) ( M N ) ( g; ) (1.1)

i- ﬁKﬁ*:(ﬁl,ﬁz)(Kl . )(g) 12)

where U, Ue Uy, Uy, U, € Cnxk (1 <k<n)and

A= diag(/\la"'aAk)a Ay = diag(/\k-l-la"'a/\n)a (13)

Ay = diag(Xy, -, Ap), Ao = diag(Aggr, -, An). (1.4)

Suppose now that A and A are close. The question is: How close are the
eigenspaces spanned by U; and U;? This question has been well answered by
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four celebrated theorems so-called sin @, tan @, sin 26 and tan 26 due to Davis
and Kahan [2] for arbitrary perturbations in the sense that the perturbations
to A can be made arbitrary as long as A—Ais kept small. This paper, on the
other hand, will address the following question: How close are the eigenspaces
spanned by U; and U; under the assumption that A = D*AD for some D close
to 17 A similar question for singular value decompositions will be answered
also. We will deal with perturbations of the following kinds:

¢ Eigenvalue problems:

1. Aand A = D*AD for Hermitian case, where D is nonsingular and
close to I or more generally to a unitary matrix;

2. H=D*AD and H = D*AD for graded nonnegative Hermitian case,
where it is assumed that A and A are nonsingular and often that D
is a highly graded diagonal matrix (this assumption is not necessary
to our theorems below).

¢ Singular value problems:

1. Band B = D} BDas, where Dy and Ds are nonsingular and close to
I or more generally to two unitary matrices;

2. G =BD and G = BD for graded case, where it is assumed that B
and B are nonsingular and often that D) is a highly graded diagonal
matrix (this assumption is not necessary to our theorems below).

Recently, Eisenstat and Ipsen [4] launched an attack towards the above men-
tioned perturbations except graded cases. We will give a brief comparison among
their results and ours.

Notation: For X € C"** R(X) denotes the subspace spanned by the column
vectors of X.

Let both X, Y € C*** (n > k) have full column rank k, and define the
angle matrix ©(X,Y") between X and YV as

O(X,Y) def arCCOS((X*X)_%X*Y(Y*Y)”Y*X(X*X)—%)—%.

The canonical angles between the subspace X = R(X) and Y = R(Y) are
defined to be the singular values of the Hermitian matrix ©(X,Y). The following
lemma is well-known. For a proof of it, the reader is referred to, e.g, Li [6,
Lemma 2.1].

Lemma 1.1 Suppose that Y = (Y, Y1) € C**" is a nonsingular matriz with

}7_1:<g*), SE@Xk
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Then for any wnitarily invariant norm || - ||

lsin©(x, )l = [|(s150)~#s7X(x"x)

Taking X = U; and X =0 (Ref. (1.1) and (1.2)), one has

o(U,, [71) = arccos(UfﬁlﬁfUl)_%,
sine(Ul,ﬁl)m ﬁ;Ulm. (1.5)

For more discussions on angles between subspaces, the reader is referred to Davis
and Kahan [2] and Stewart and Sun [9, Chapters T and II].

This paper is organized as follows. We briefly review Davis-Kahan sinf
theorems and their generalizations—Wedin sin @ theorems—to singular value
decompositions in §2. In §3, we first define four indispensable relative gap
functions. We present our sin @ theorems for A and A = D*AD in §3.2, those
for graded nonnegative Hermitian matrices in §3.3. Theorems for B and B =
D} BDs and for graded matrices are given in §3.4 and in §3.5 respectively. We
discuss how to bound from below relative gaps, for example, between A; and
Ao by relative gaps between A; and As in §4. A word will be said regarding
Eisenstat-Ipsen’s Theorems in §5. Detailed proofs are saved for §§6, 7, 8 and 9.



2 Known Theorems

Let A and A be two Hermitian matrices whose eigendecompositions are given

by (1.1) and (1.2). Define

RE AU, — U Ay = (A - AU, (2.1)
In matrix language, The following two theorems are the matrix versions of two
sin @ theorems proved by Davis and Kahan [2].

Theorem 2.1 (Davis-Kahan) If

def

Ai = Apaj| > 0,

= min

1<i<k,1<j<n—k
then _
[Bllr _ [I(A=A)illF

o ol <
< =
Isin®(. D)llr < 45 -

(2.2)

In this theorem, the spectrum of A; and that of Kz are only required to be
disjoint. In the next theorem, they are required, more strongly, to be well-
separated.

Theorem 2.2 (Davis-Kahan) Assume there is an interval [, §] and a 6 > 0
such thatl the spectrum of Ay lies entirely in [o, 3] while that of Ay lies entirely

outside of (. — 8,3+ &) (or such that the spectrum of As lies entirely in [a, 3]
while that of Ay lies entirely outside of (o — 6,8+ 8)). Then for any unitarily
invariant norm || - ||

ri_ [lE-2m]
[ [ '

sin O(U,, ﬁl)m < (2.3)

Now, let us consider the perturbations of Singular Value Decompositions
(SVD). Let B and B be two m x n (m > n) complex matrices with SVDs

¥, 0 v

B = USV*=(U,U)| 0 3 ( v ) (2.4)
0 0 2
21 0 Trw

B = USV*=(U)| 0 %, ( “;1* ) (2.5)
0 0 E

where U, U € U,,, V, V €U,, Uy, Uy € "% vy, V; € 0%k (1 < k < n) and

Y= diag(01,~~~,ak), Yo = diag(0k+1a"'a0n)a (26)
21 = diag(&l, cey, 51@); 22 = diag(&k_H, . ,E'n) (27)



Define residuals

RE BV, —U1S = (B-B)Vi and S E B'U,-Vi%; = (B~ B*)Uy. (2.8)

Wedin [10] showed the following two theorems:

Theorem 2.3 (Wedin) If

§ X min{ min 0i — Op4jl, min O'Z'} > 0,
1<i<k,1<j<n—k 1<i<k
then
Vllsin®r, T2 + | sin©(V1, T2 (2.9)

JIRE TS VI = BVl + (B — B3

5 N 5 '
Similarly to above Davis-Kahan theorems, by imposing further restrictions, we
will have
Theorem 2.4 (Wedin) If there exist « > 0 and § > 0 such that

min o; > o+6 and max Op4j < «,
1<i<k = — 1<j<n—k -

then for any unilarily invariant norm || - |
sin O(U;, ﬁl)m ,

max{
max (g sy _ {8 - s [lB - Boea]}
- ) )

sin O(V1, %)H‘} (2.10)




3 Statement of Theorems

3.1 Relative Gap Functions

For two square diagonal matrices
D = diag(dy,di, -+, dy), D = diag(dy, d,, - do)

and an integer m > k + £, the functions RelGap, and R/ei\é;p are defined as:

min { min  RelDists(d;, c@) ,
1<i<k,1<j <4

~ def
RelGap, (D, D;m) = min RelDists(d;, 0)} . ifm> k4o,
min  RelDista(d;, d;), ifm=k+0,
1<i<k,1<j<t
RelGap, (D, 13) def RelGap, (D, 15; k+10),
and
min { min R/ei\]j/ist(di, c@) ,
1<i<k,1<j <L
= ~ def il
RelGap(D, D;m) = min, RelDist(d;, 0)} . ifm> k4,
min  RelDist(d;, d;), it m=k+ ¢,
1<i<k,1<j <L

R/ei\égp(D, 13) def R/ei\égp(D, Dik + ).
From these definitions, we can see that
RelGap, (D, 13) = RelGapz(ﬁ, D) and R/ei\égp(D, 13) = R/ei\égp(ﬁ, D),
but generally for m > k 4 ¢ we do not have
RelGap, (D, D:; m) = RelGapz(ﬁ, D;m) and R/ei\é;p(D, D:; m) = R/ei\é;p(ﬁ, D;m).

Our next two relative gap functions' RelGapp (for some 1 < p < o0) and R/ei\égp
take, besides two square diagonal matrix arguments, two more nonnegative
numbers as arguments. They have a very narrow domain. To be specific, we
say RelGapp(D, D:a, 3) and R/ei\égp(D, D;a, 3) are definable if 0 < o < /7 and
if either _ B

1Dl = s il < < 8 < min 31 = 157",

1We intentionally put underline to indicate that there are intervals containing the spectra

of D and D.



or
—1-1 __ . . ~' _ e
1D~ 5" = nin, |dil > 3> a> @%@Idyl =[IDl2

holds, and RelGapp(Dl, 52; a, §) and R/ei\é;p(D, 13; a, ) are defined to be

~ def . 08—«
RelGapp(D, D;«,3) = RelDisty(a,8) = W,
RelGap(D, D; o, ) %< RelDist(a, §) = p-a

Vo
We caution the reader to notice the inherent difference imposed on the sepa-
ration between 1D and D associated with the four above defined relative gap

functions RelGap,, R/ei\égp, RelGapp and R/ei\égp. It can be proved that

Proposition 3.1 If RelGapp(Dl, Dy a, 3) and R/ei\égp(D, D:a, 3) exist, then

. ) TN .
1§i§rllcl,l1n§jngelD1Stp(d“ d;) > RelDist, (e, 3),
19513{6171111&5Z RelDist(d;,d;) > RelDist(a, 8)

Using the fact that RelDist,(£,¢) < 2-1/p R/ei\]j/ist(g,C) for &, ¢ € C, one can

show

Proposition 3.2

o~ 1 TN o~
RelGaps(D, D;m) < ﬁRelGap(D, D;m),

o~ 1 TN o~
RelGap, (D, D;a, ) < mRelGap(D,D;a,ﬁ),

provided RelGap, (D, D;a, 3) exists.

3.2 Eigenspace Variations

Let A and A = D*AD be two Hermitian matrices whose eigendecompositions
are given by (1.1) and (1.2), where D is a nonsingular square matrix close to I.
Theorem 3.1 below handles the case when eigenvalues of Kz and A; are not so
well-separated, but disjoint.

Theorem 3.1 If RelGap, = RelGapz(Al,Kz) >0, then

DUE + 10 = D) Uil

Y VY5
< ' '
||sin©(Uy, Uy)||r < RelGap, oy




By imposing a stronger condition on the separation between the spectra of
Az and Ay, we have the following bound on any unitarily invariant norm of

sin@(Ul, Ul)

Theorem 3.2 Assume that there exist o > 0 and 6 > 0 such that the spectrum
of Ay lies entirely in [—a, o] while that of As lies entirely outside (—a— 6, a4 6)
( or such that the spectrum of Ay lies entirely outside (—ov — 6, w4+ &) while that
of Ay lies entirely in [—a, al). Then for any unitarily invariant norm || - ||

D=HULI* + I(1 — D*) UL ]|*
RelGapp ’

sme(Ul,ﬁl)m < VI~

(3.2)

where RelGapp = RelGapp(Al,Kz; a, a4+ 6).

3.3 [Eigenspace Variations for Graded Matrices

Consider a graded Hermitian matrix H = D*AD € C**" where Aisann x n
positive definite matrix. (Thus H is nonnegative definite.) Perturb H to H =
D*AD in such a way that

A7 2| AA]l2 < 1,

where B
AAY T 4.

The question we want to solve is by how much eigenspaces of H are changed.

Write the eigendecompositions of H and H as

H = UAU* =(U,Us) ( M A, ) ( gl ) (3.3)

7 o= ﬁKﬁ*:(ﬁl,ﬁz)(Kl . )(g) 5.4)

where U, Ue Uy, Uy, U, € Cxk (1 <k <n)and A;’s and Kj’s are as defined
in (1.3) and (1.4). In the present case, all A; > 0 and all A; > 0. We will prove

Theorem 3.3 Assume ||[A7Y|2||AAl2 < 1. If R/ei\é;p = R/ei\é;p(Al,Kz) > 0,
then

[Isin© (U1, U)llr
I+ AT PAAATE — (L4 ATPANAT) e
R/ei\égp .

1A= 1AAllr
T V= AT [lAA] RelGap




Theorem 3.4 Assume |[A7Y|2||AA||2 < 1, and assume that there exist o > 0
and & > 0 such that

max X\; < a  and min  Apg; > a+6
1<i<k 1<j<n—k -

or
min A; > o+6 and max  Ap4; < o
1<i<k 1<j<n—k -

Then for any wnitarily invariant norm || - ||

sin O(Uq, ﬁl)m
I+ A7 AN AT - (4 4 ATHADATH Y

R/ei\é;p
1A= ] lAA|

T VI AT 2IAA]l RelGap:

3.6)

where R/ei\égp = R/ei\égp(Al,Kz; a, a0+ 6).

3.4 Singular Space Variations

Let B and B = DiBDs be two m x n (complex) matrices whose SVDs are given
by (2.4) and (2.5), where m > n, Dy and Ds are two nonsingular matrices close
to identities. The following two theorems concern singular space perturbations.

Theorem 3.5 If RelGap, = RelGap, (X1, iz; m) > 0, then

Vllsin©(Uy, )12 + | sin ©(V2, T2

<\/||(I— D)5 + 11 = DY Y5 + (1 = D5)VAll3 + (1 = D3 )Vallz
- RelGap, '

(3.7)

Similarly to Theorem 3.2, by imposing a stronger condition on the separation
between the spectra of Y5 and X, we have the following bound on any unitarily
invariant norm of sin ©(Uy, Uy) and sin ©(V1, V7).

Theorem 3.6 If there exist « > 0 and 6 > 0 such that

min o; > a+8§ and max Op4j < «,
1<i<k = — 1<j<n—k -



then for any unilarily invariant norm || - |

ma ] }

sin O(U, 0)||, [|sin ©(Vi, ¥2)

1 —1 q *
< gy ™ VIOl wr oo
i/l = prow |7+ eos - 1)v1|||q}, (3.8)
sin ©(U;, Uy)
sin ©(V1, V1)
| (=D L a-pom !
(I- Dy (I - D3)Va
<
- RelGapp ’
(3.9)

where RelGapp = RelGapp(El, Yoo+ 8).

In both Theorems 3.5 and 3.6, we assumed that both Dy and D, are close to
identity matrices. But, intuitively D; should not affect U/; much as long as it is
close to a unitary matrix. The most extremal case is when Dy € U,,. In what
follows, we are going to explore this intuition. We will prove

Theorem 3.7 If?

N 1 ~ . ~
RelGap, = RelGap, (X, Xq; m) > mmaX{HDT - Dj 1||2, [|1D5 — D3 1||2},
(3.10)

then

VI = DT + 10 = DU 05— D3

sin O(U;, ﬁl)HF

RelGap, — €2 2 R/ei\dgp—a ’

(3.11)

~ * _ -1 I—D_1V2+ I - D5)Vill;

sno(, 7 < PPl +\/H( ol i PR,
P = Q[RelGap—gz] RelGap, — €;

(3.12)

2This implies, by Proposition 3.2,

o~ o~ ~ 1 _ _
RelGap = RelGap(X1, Xa;m) > 5 max{||D} — DY ||2, [|D3 — D7 Y2}

10



——

where R/ei\é;p = RelGap(Xy, iz; m) and
~ 1 * -1 ~ 1 * -1
@ = §||D1_D1 ll2, €2 = §||D2_D2 ll2,

€1 |D} — Dy s, €2 = |D5 — D3,

= | |
22 2/2
The inequality (3.11) clearly says that Dy contributes to sin ©(U, [71) with its

departure from some unitary matrix, and similar for (3.12).

Remark. When one of the Dy and D5 is I, the assumption (3.10) becomes
unnecessary in order for the conclusion of Theorem 3.7 to be true. In fact, if
either Dy or D5 is I, we only need to assume RelGap, (X1, Xo;m) > 0 which in

turn insure R/ei\égp(El, Y m) > 0.
Theorem 3.8 Suppose that there exist o > 0 and 6 > 0 such that

min o; > a+8§ and max Op4j < a.
1<i<k = — 1<j<n—k -

Assume that®

: 1 . _ . -
RelDisty, (o, « 4+ 8) > 21_|_—1/pmax{||D1 — D7 Yo, |1D5 — DT Y21 (3.13)

Then for any wnitarily invariant norm || - ||

Yl =Dyl + = DDod” o - o7

sin O(U;, ﬁl)m

RelGapp — €3 2 [R/ei\é;p - gl] ’
(3.14)
i} _ B _ —1 q _ *
awo il < Pi=pnll, YIU=DDORIP+Id - Dy
2 [RelGap — &) RelGap, —
(3.15)

——

where RelGapp = RelGapp(El, Yo a, a+é), R/ei\é;p = RelGap(Xy, Yo a, a+é),
and

~ 1 * -1 ~ 1 * -1
a = glID7 = D, &= llD2 = Dy |2,
1 * -1 1 * -1
= gy 101 = Drlle, €2 = gy 102 = Dyl

3This implies

—~ 1 _ _
RelDist(o, o + §) > EmaX{HDT - D] 1||27 [|D5 — D; 1||2}.

11



Remark. If either Dy or Ds is I, we only need to assume RelGap, (2, iz; m) >

0 which in turn insure RelGap(Xy, iz; m) > 0, instead of (3.13).

Now, Let’s briefly mention a possible application of Theorems 3.5, 3.6, 3.7
and 3.8. It has something to do with deflation in computing the singular value
systems of a bidiagonal matrix. Taking account of the remarks we have made,
we get

Corollary 3.1 Assume D1 = I and D5 takes the form

I X
D2:< I)’

where X is a matriz of suitable dimensions. If RelGap, = RelGap, (X1, iz; m) >
0, then

~ X
sin@(Ul,Ul)H < %a
F ﬁRelGap
. — . e V2| X
¢Sm@(U1’U1)HF+ s1n®(V1,V1)HF < %JLF,
2

where R/ei\é;p = R/ei\é;p(El, iz; m).

Corollary 3.2 Assume Ds = I and Dy takes the form

I X
D1:< I)a

where X is a matriz of suitable dimensions. If RelGap, = RelGap, (X1, iz; m) >
0, then

~ X
sin@(V1,V1)H < %’
F ﬂRelGap
. — . ~ 2 V2| X
¢Sm@(U1’U1)HF+ s1n®(V1,V1)HF < %a
2

where R/ei\égp = R/ei\égp(El, Y m).

Corollary 3.3 Assume D1 = I and D5 takes the form

I X
D2:< I)a

where X 1s a matriz of suttable dimensions. Suppose that there exist « > 0 and
6 > 0 such that

min o; > a+8§ and max Op4j < a.
1<i<k = — 1<j<n—k -

12



Then

~ X
Sin@(Ul,Ul)‘H < M,
RelGap
: = 29|l
< 2 020
sin ©(V1, Vl)m - RelGapp ’

where RelGap = RelGap (21, iz; o, a+8), R/ei\é;p = R/ei\é;p X, iz; o, a+0).
P P

Corollary 3.4 Assume Ds = I and Dy takes the form

I X
D1:< I)a

where X 1s a matriz of suttable dimensions. Suppose that there exist « > 0 and
6 > 0 such that

min o; > a+8§ and max Op4j < a.
1<i<k = — 1<j<n—k -

Then

29 |lx|

RelGapp
X

RelGap

sin (U, ﬁl)m

IN

sin OV fq)‘H

where RelGapp = RelGapp(El, Yo a, a+é), R/ei\égp = R/ei\égp(El, Yo a, a+é).

3.5 Singular Space Variations for Graded Matrices

Now, we consider perturbations of a graded singular value problem: ¢ = BD €

C**" and G = BD € """ where it is assumed that B is nonsingular and D
is an n X n matrix close to 1. Set

AB¥ B _ .

If |[(AB)B™ |5 < 1, then B = B+ AB = [I + (AB)B~!]B is nonsingular also.
Let G and G having the following SV Ds:

USV* = (U, Us) ( = 5, ) ( “;1 ) (3.16)
G = G0 = (G0 ( . ) ( b ) e

13
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where U, V, [7, Ve U,, Uy, V1, [71, Vi € C%* and X;’s and ij’s are given as
in (2.6) and (2.7). Write

G =BD=[l+(AB)B BD.

So applying Theorems 3.5, 3.6, 3.7 and 3.8 to G and G with D; = I+(AB)B~!

and Dy = I gives the following two theorems on graded singular value problems.

Theorem 3.9 Assume ||[(AB)B~Y|2 < 1. If RelGap, = RelGap, (X1, iz) >0,
then

/

~ 2 ~ 2
sin®(Uy, Ul)HF + |[sin©(17, VI)HF

VIAB) B~} + Il + B=*(AB)*]"'B=*(AB)~Ui[[}

< 3.18
- RelGap, ( )
_ 1 |AB||F
< ||B7! 1+ ,
= | W (=B LIABP RelGap,
in OV, V; H
sin ©(Vy, V1) -
I+ (AB)B~' — (I + (AB)B~1)~*
< W+@ABBT —(I+(AB)B) || (3.19)
2RelGap(Xq, X2)
(II(AB)B‘“rB‘*(AB)*IIF I(AB)B~ |2 ) I(AB)B~!||r
- I(AB)B~{|r L=I(AB)B~!2/ 2 RelGap(X1, 5)
-1
¢ (k) Il
L=IB=Y2I1ABll2/ 2 RelGap(1, 3»)

Theorem 3.10 Assume ||[(AB)B~Y||2 < 1. If there exist a« > 0 and 6§ > 0 such
that

min o; > a+6 and max Op4j <

1<i<k 1<j<n—k -
or, the other way around, i.c.,

max 0; < o and min  Gp4s; > a4+ 06,

1<i<k 1<j<n—k -

then for any unilarily invariant norm || - |

max{ sin ©(U7, ﬁl)m , |lsin ©(VA, (Z)H‘}
max { ||[(AB)B~*U: ||, ||lI + B~*(AB)*]"'B~*(AB)*U\|| }

- RelGap,,

1Bl N
= T= B LIAB]: RelGap.,’

(3.20)

14



sin©(Uy, U1) N
sin @(Vl, Vl)

YIAB)B=LU" + [ + B=*(AB)]='B=*(AB)* U1

- RelGapp (3:21)
_ 1 1AL
< IB7 Y2 g¢/1+ :
< | W (=[BT AB].)" RelGap,
sin (11, 7)||
I+ (AB)B~! — (I 4 (AB)B~1)~!
< ll7 +(aB) (L +( I (3.22)
2 RelGap(El, Ez)
I(AB)B~" + B=(AB)[| . I(AB)B~|ls llcaByB=1|
- I(AB)B=]| L={[(AB)B~!l2 ) 9 RelGap(S1, £-)
1
< <1+ _11 ) IB~l2 A B
L= 1B~ |2lABll2/ 2 RelGap(S1, £o)

where RelGapp = RelGapp(El, iz; a,a+ 8), (and thus RelGap,, = §/(a+8)).

Remark. The inequalities (3.19) and (3.22) may provide much tighter bounds
than (3.18) and (3.20), especially when I 4+ (AB)B~! is very close to a skew
Hermitian matrix.

15



4 More on Relative Gaps

In theorems of §3, relative gaps RelGap,, R/ei\égp, RelGapp and R/ei\é;p play

an indispensable role. Those gaps are imposed on either between A; and Kz or
between ¥y and X,. In some applications, 1t may be more convenient to have
theorems where only positive relative gaps between A; and Ay or between 3
and X, are assumed. Based on results of Ostrowski [5, pp. 224-225], Barlow
and Demmel [1], Demmel and Veseli¢ [3], Mathias [8], and Li [7], theorems in §3
can be modified to accommodate this need. In what follows, we list inequalities
for how to bound relative gaps between A; and A; or between X7 and X5 from
below for each theorem by their corresponding relative gaps between A; and As
or between Yy and X5. The derivations of these inequalities depends on the fact

that [7]
1. RelDisty, RelDists and RelDisto, are metrics on R;

2. RelDist, is a metric on Rxq; and

——

3. RelDist is a generalized metric on R»q.
For Theorem 3.1: If ||I — D* D||2 < RelGap, (A1, Ag),

RelGap, (A1, As) > RelGapy(A1, As) — [|I — D*D||s.

For Theorem 3.2: Assume that for some 0 < oy < 31, RelGapp (A1, A1, 1)

is definable. If [|[I—=D* D||2 < RelGapp(Al, As; e, 1), then RelGapp(Al,Kz; a, f)
is definable for some 0 < o < § and

RelGapp(Al,Kz; a,f) > RelGapp(Al,Az; ay, B1) — ||[I = D*D|a.

For Theorem 3.3: If ¢ < R/ei\é;p(Al,Az),

R/ei\é;p(Al, Kz) Z R/ei\é;p(Al, Az) — €,
A~ llaA).
Vi=llA= )l A4l
For Theorem 3.4: Assume that for some 0 < a1 < 31, R/ei\é;p(Al, Ass e, B1)

is definable. If ¢ < R/ei\é;p(Al,Az;al,ﬁl), then R/ei\é;p(Al,Kz;a,ﬁ) is
definable for some 0 < o < 3 and

where ¢ =

R/ei\G;P(Al,Kz; o, 3) > R/Gi\égp(Al,Az; ay, B1) — ¢,

A =lAAl

Vi=l[ATH || AAll

where ¢ =
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For Theorem 3.5: Let
€ = max{|l — omin(D1)0min (D2)], |1 = Omax(D1)Tmax(D2) |}
If € < RelGap,(Xq, Xo;m), then
RelGap,(S1, o3 m) > RelGap,(S1, Ba;m) — €.
For Theorems 3.6: Let
¢ = max{|l = omin(D1)0min(D2)], |1 = Omax(D1)omax(D2) |}

Assume that for some 0 < a; < 51, RelGapp(El, Yo; @, B1) is definable.

If e < RelGapp(El, Y95 @, 31) then RelGapp(El, Yo a, 3) is definable for
some 0 < o < 3 and

RelGapp(El, iz; a,f) > RelGapp(El, Yoj;a1, 1) — €.

For Theorems 3.7: Let €1, €5, €7 and ¢5 be as defined in the theorem. If
€ + & + max{e), &} < R/ei\é;p(El, Yo;m),
then
RelGap, (X1, Y m) > RelGap, (X1, X2;m) — €1 — €2,
R/ei\égp(El, iz; m) > R/ei\égp(El, Yo;m) — € — &.

For Theorems 3.8: Let €1, ¢5, ¢; and €5 be as defined in the theorem. Assume
that for some 0 < ay < 81, RelGap(X1, Xo; a1, 1) is definable. If

€1+ & + max{e, &} < @(21, Yoy aq, 1),
then @(El, iz; a, () is definable for some 0 < o < 3 and
Mp@hiz;aﬁ) > Mp@hxz;al,@)—ﬂ—w,
@(El,iz;a,ﬁ) > @(21,22;041,51)—5—?2

For Theorem 3.9: Let € = [|[B7!||2||AB||z and

1 B~Y|.]|AB
. <1+ ~ ) 1B~ [l2[[AB]|>
L= [IB=2[|AB]|2 2

If € < RelGap, (X1, %) and, €< R/ei\égp(El, ),

RelGap, (X, iz) > RelGap,(T1,X0) — ¢,
R/ei\égp(El, iz) > R/ei\égp(El, 22) — <
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For Theorem 3.10: Let ¢ = ||B~!|]2||AB||» and

1 B~1|s||AB
S (F— =
=[BT lIAB]: 2

Assume that for some 0 < oy < S, RelGapp(El,Ez;al,ﬁl) and
R/ei\é;p(El, Yo;aq, 1) are definable. If € < RelGapp(El, Y91, 51) and

€< R/ei\(i;p(El, Y95 @, 1), then RelGapp(El, iz; a, §) and R/ei\é;p(El, iz; a, f)
are definable for some 0 < « < 3 and

RelGapp(El,iz;a,ﬁ) > RelGapp(El,Ez;al,ﬁl)—ﬁ

R/ei\égp(xl, S, a,fB) > R/ei\égp(xl, Yoja1,01) — €
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5 A Word on Eisenstat-Ipsen’s Theorems

Eisenstat and Ipsen [4] have obtained a few bounds on eigenspace variations for
Aand A= D*AD and on singular space variations for B and = B = D} BDs.
Here we are not going to state their results for subspaces of dimension k& > 1
since their results contain a factor of v/k which makes their results uncompetitive
to ours.

Regarding to the problem related to Theorem 3.1, Eisenstat and Ipsen [4]
tried to bound the angle #; between @; (1 < j < k) and the R(U1), where

Uy, Us, -, Ug are the columns of Uy. They showed
) I-D D!
sinf; < u—|—||I—D||2, (5.1)
il
where B
: [Ai= Ayl o £0
R Y A 70,
o0 otherwise.

The inequality (5.1) does provide a nice bound. Generally,
sinﬁj S || sin@(Ul, [71)”2

and all of them may be strict. To make a fair comparison to our inequality
(3.1), let’s consider the case k = 1. One infers from our inequality (3.1) that*

VIIL= DY+ (17 - D7l

sin #p < =
min RelDista(A;, A1)
2<i<n

(5.2)

At the first sight, one might think (5.1) is potentially sharper because 1 may
be much larger than 2r<nl<n RelDist2(A;, A1). This is totally wrong! Yes, 1 may

be very large, but this is shadowed by the extra term [|I — Dz in (5.1) which
stays no matter how large 1, is. As a matter of fact®, we should really think of

4By treating A and A symmetrically, one can see Theorem 3.1 remains valid with
RelGap, (A1, A2) replaced by RelGap, (A1, A2).
5Going through our proof of Theorem 3.1, we can see that when & = 1 and A\; = 0 we have

sinf; < [|I = D|)2.
In fact, besides (6.1) one also has
MU, — Ut Ay = M UF(D™Y = DU, + UF(I — D*)U5A,.
When Kl = 0, this equation reduces to
—UFU, = UF(I — D*)Uy,
provided A\; #0for j =k +1,---,n.
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(5.1) as (at least for tiny || — D||2)

11 =D~ D~ lz + |11 = Dl2.

min RelDistos (A4, Xl)
2<i<n

sinf, < (5.3)

Well, still we cannot say definitely which one of (5.2) and (5.3) is always sharper
than the other. However asymptotically, (5.3) is less sharp by a factor 3/2. In
fact, if 7 — D is very tiny, then
. . ~ 1 . . ~
ernllsnn RelDista(A;, A1) ﬁ Zgliléln RelDist oo (As, A1),
L= DB+ 111 - D7} ~ V2L D,

11 = D™D |2 + |11 = Dl 31 = D2

X

X

X

So asymptotically, the inequalities (5.2) and (5.3) read, respectively,

. 21— D

sinf); < - I - : = +O(||I_D||§)a
min RelDisteo (A, A1)
2<i<n

. 3| —-D

sng, < —— =Pl o7 ppp).
,min RelDistoo (A, A1)

Eisenstat and Ipsen [4] treated singular value problems in a very similar way.
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6 Proofs of Theorems 3.1 and 3.2

Let R be as defined in (2.1). Notice

UiR = UIAU, — UiU Ay
= A UU, — U ULA,,
UsR = Uj(A— A,

Uf[A—D"A+ D*A— D*AD]U;
Us (- DA+ D*AD(D™' = )] U,
= AU (D™ = DUy + Us(I — D*)UL Ay
Thus, we have

A U3UL = U3 UL Ay = RoU2 (D™ = DUy + U3 (I — D*)Up A4 (6.1)

Proof of Theorem 3.1: Set

Q = ﬁz*U1=(qzj),
E = U3(D™' = DUy = (&),
E = Ui(I— DUy = ().

Then the equation (6.1) reads KQQ — QA = KQE + EAl, or componentwisely
Ak4ilij — €ijAj = Apticij + €5 A;, so

|Neti = A)aii [ < Mg + A0 (less | + 183517,

which yields, under the conditions of Theorem 3.1, that

leai | + [E1* _ leas” + 18

2
q; >
251 < D2 2(Xegi. ;) — RelGaps

So

o zl = (e + )
2 _ i=1lj=
CIENID IO DITIESSS e

|05 (D= = DUl + U5 (1 = D)7
RelGap3;

(II(D_ = DU 7 + 12 = DY) U |IF).

1
RelGap

This completes the proof of Theorem 3.1, since || sin ©(Uq, [71)||F =|Qlr. N
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Proof of Theorem 3.2: Tt follows from the perturbation equation (6.1) that
Usly — A;'USULA, = US(D™Y = DUy + A7 'U5 (I — D*)ULA,. (6.2)

By the assumptions of the theorem, we know that [|A;||]2 < « and ||K2_1||2 < a+—6'
Therefore

- 5) ||

o+ 271

7% 1 7%
S 0 B (2 B
< || @] - 0z || T 1
< [l -]
< ﬁ;Ul—Kglﬁ;UlAlm
- ﬁ;(D‘l—I)Ul—|—K2‘15;(I—D*)U1A1H‘ (by (6.2))
< ot = Do ||+ -2 1 = pHU
< ot = Do+ =S - ol

P
< 1+ =2 D= = UL + (T = DL
< {1+ o = e i = Dl
from which the inequality (3.2) follows. |
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7 Proofs of Theorems 3.5 and 3.6

Let R and S be defined as in (2.8).

7.1 The Square Case: m =n
When m = n, the SVDs (2.4) and (2.5) read

_ * E1 Vl*
B = UxV _(Ul,U2)< 22)<v2*)’
~ R B v
B = UXV*=(h,U ~ a0
( 1 2)( 22 ) ( Vz* )
Then
UR = UIBV, — Ui,
= VeV — USUh Yy,
U;R = U}(B—B)V, =U}(D!BDy— DB+ D;B—B)V

= U;|B(I-D7Y+ (D —D)B| W
= SV (I = Dy"YWVi + U5(Df — DU Y.

On the other hand, for the residual S, we have

VS = V¥BU, —VsViXy,
= S,U05U, — V5T,
VsS = Vi(B* = B)U, = V5 (D3B*Dy — DsB* + DsB* — B*)U;

= VS |B*(I-D7Y+ (D5 —D)B*| U,
= S,U5(I — DYV 4 Vi (Dy — DXy,

Therefore, we obtained two perturbation equations as follows.

S ViV —UShSy = SV (I— DyYWA+U3(DF — DL Sy, (7.1)
S 05U, — Vs = S,U3(1— DYYUL + V(D — DSy, (7.2)
Set
Q=U300 = (), Q=V5Vi = (i),
1

Wi = (eij), E=Us(Dr = DUy = (&), (7.3)

DU = (fy), F=VED5 =DV = (Jy).
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It is easy to see that for any unitarily invariant norm || - || (ref. (1.5))

smow. 0| =1e1.  [smei i =@l @
Iz < i - ol ||E]| < s = no, (75)
N la-othndl, | B < i - v (7.6)

Proof of Theorem 3.5: Componentwisely, with the assignments of (7.3), the
equations (7.1) and (7.2) read

Ok+idij — ¢ij0; = Ohti€ij + €05,

Oktidij — €ijo; = Ortifij + fijoj,

where 1 <i<n—#k, 1 <j<¥k, which yields

|k +iGij — Qij0j|2 < (Uk+z +0; )(|e”|2 + |e”| )
|0'k+qu QZ]U]|2

k+z+0

Gryigis — Gjo;)? < @Gl + o) fi P+ 1)

= eI + 18557 >

bl

2
s k+iqij — 4ij0

S Ul |l et il
k+z+0

Summingon ¢ and j for¢=1,2,--- n—k and for j = 1,2,--- k, we get

n—k k

|GG — @0 |* + |Thaiqis — Gijos]?
||E||F+||E||F+||F||F+||F||F> ZZ i9ij ijoj idij 91
i=1 j=1 Uk+i+0j

Since
GrtiGiy — 450 |* + 1Fhtiqi — @05
= Gipildil? + laijPof — 2R(GryiGijqijos)
+57 palais P + 1@ P07 — 2R(GraigijGijoy)
(Fryi — 05)° (gij I” + 13551%),

v

where R(+) takes the real part of a complex number, so

n—k k 2
jad jad Uk+z - ) ~
EIF + IEIF +IEIF+1E1E > >0 5 1ol (i I + 17 )
i=1 j=1 k+Z J
> RelGap([|QII7 + 1QII7),
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which, together with the equations (7.4), (7.5) and (7.6) for ||-|| = || - lIF,
complete the proof of the theorem. [ |

Proof of Theorem 3.6: Tt follows from the equations (7.1) and (7.2) that

ST UsU = SV (I — DIYWMET + U3 (D — DUy, (7.7)
S, ST = VeV = SU (I — DTYHYUL ST+ Vi (Ds — V. (7.8)
To prove the inequality (3.8), we consider first the case ‘ﬁ;Ul‘H > ‘Hf/;vlm
By the assumptions of the theorem, we know that ||§]2 < aand |72 < a+—6'
Now it follows from (7.7) that
o Tk
(153 s
Tk Tk 1
= vl =efo) 5
7% 1% 1
S L] B e P
<@ o] - i |7 vaf sz,
o J7so] - |
< ||SPrvas - Bu|
= SV - D3Yhywist + U307 - DUy H‘ (by (7.7))
< ||8:75 ¢ - ety || + |75 o1 - non|
1% — 1 I % *
< of[Fa -] o+ ||z 0r - o
« -1 *
< I DE WA+ D5~ Dol
af 4 — q *
<+ ey Ve =Dl + i - o
which produces that if Hﬁ;Ul‘H > ‘H%*Vlm,
o501 < il = 7l + i - Dol -
U= RelGapp ' '
Similarly, if Hﬁ; Uy H‘ < ‘H%* Vi H , one can prove, using (7.8), that
~ (=D Hu|* + ps — Dl
(e < VPO D

RelGapp
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The inequality (3.8) is now a simple consequence of (7.9), (7.10) and (7.4).

The inequality (3.9) is left unproved. Let the assignments of (7.3) hold. The
equations (7.1) and (7.2) are equivalent to the following single matrix equation
with dimensions doubled.

(iz 3)(@ Q)_<© Q)<21 El)

_ (iz iz)<F E)+(E ﬁ)(& 21).

-1
On post-multiplying by ( > X1 ) , we have
1

(iz iz)<© Q)<21 El)_1_<© Q)
(= 7)) G) ()

Under the conditions of Theorem 3.6, it is easy to verify that

~ -1
Y9 b))
~ <

2
Applying the similar trick we used so far, we can get

17 MmN 7)

Since @ and sin@(Vl,KZ) have the same singular values and so do @ and
sin©(Uy, Uy) (ref. (7.4)),

[GPSI G | R

Note also

(" e) - (ﬁ; %*)((I_Dfl)m - )
(E ~) _ (ﬁ; B )((D}‘—I)U1 )
F Vs (D5 =DV )

26
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q q

+ (7.11)




Thus, one has

(G| N Gy | BaE
[(F ) = I )|

The inequality (3.9) now follows from (7.11), (7.12), (7.13) and (7.14). N

IN

7.2 The Non-Square Case: m >n

Augment B and B by a zero block 0y, ym—rn as follows.
Ba=(B,0pmm_n) and B.=(B,0mm_n).

Since B = DYBD5, we get
By = D}‘Ba< Dy . ) D By Dao.

From the SVDs (2.4) and (2.5) of B and E, one can calculate the SVDs of B,
and B,:

B, = U Vy =(U;,Us) ( = S ) ( Ve ) (7.15)
a a2

Ba = US.VF = (0y,0) ( I ) ( Vot ) (7.16)
Eaz a2
where

by Vi V:
Ea2:< ’ 0, _ _ )ava1:<0_1k)ava2:< ’ I )a

similarly for iaz, I7a1 and I7a2. The following fact is easy to establish

sin ©(Var, 17a1)m -

sin ©(V7, 171) H‘ )

Applying the square case of Theorems 3.5 and 3.6 to m x m matrices B, and
B, defined above will complete the proofs. [ |
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8 Proofs of Theorems 3.7 and 3.8

We have seen in §7 how to deal with the nonsquare case by converting it to the
square case. So here we will only give proofs for the square case:

m=n.

Let B = DiB and B = BD, and their SVDs be

B = USV*= (Ul,Uz)(El S )(gl)
2 2
2

where ﬁ, Uel,, (7, VelU, Uy, U €k Vi, Vi € C*F and

Sy = diag(G1,--,0%), o = diag(Gra1, -, 0n),
Elzdiag(61,~~~,6k), Ezzdiag(6k+1,~~~,(7n).

Because the gap assumptions made in Theorem 3.7 and Theorem 3.8, we can

make [7]
—— R 1 —~— 1 ~
RelDist(o;, 7;) < §||DT — D72, RelDist(5;,5;) < §||D§ — D32,
—— 1 — N 1
RelDist(7i, 65) < S| D5 - D32, RelDist(d;,5;) < SI1D7 = DYl

By the fact RelDist,(€,¢) < 2_1/pR/ei\]j/ist(€, (), the above four inequalities im-
ply

. N 1 . - C o 1 . -
RelDist, (0;, ;) < 21+1/p||D D2, RelDist,(7;,5;) < 21_|_—1/p||D2 — D7V,
RelDiStp(Ui,é'l) 21+1/p ||D* 2—1”2’ Re]Distp(é'i,f&z) 21+1/p||D* _ D 1||2
Consider B and B = BDQ. We have

o~ PN 2 7%
BB* = USSU* =(U,0,) ( R ) ( b ) (8.1)
b3 Us
~ o~ ~ o~~~ 2 7%
BE = USSr = (00, ) ( > ) ( Ui ) (8.2)
b3 Us
Notice that
BB* - BB* = BD,B*— BD;'B*
F(BE - BB =SSO0 - 0SS
U*B(D5 — Dy )B*U = SV*(Dj—D;H)VEs
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Thus, we have 220+ — U*US? = EV*( D; 2_1)(7§] which gives
2050, — U057 = SV (D5 — Dy Sy (8.3)

Consider now B and B = DTB. We have

Notice that

B*B—-B*B = B*D;B-B*D{'B
B*(Df — DTHB,

VX(B*B—B*B)V = *SV*V -V*Vyr 2
V*B*(Di — DyH)BV = Y*US(D; - DiHUs

Thus, we have L2V*V — V*VX2 = EU*(D* DT YUY which gives
SEVS VL - Ve ViEE = 5,05 (D5 — DYYHUL S (8.6)

Two other useful eigendecompostions are

BB* = UXY*U* = (U, U,) w2 L), (8.7)
2 UZ
2 *

BB = vy =L T, . (8.8)
22 VZ

Proof of Theorems 3.7: Tt follows from (8.3) and (8.6) that

s - ]

Siﬂ@(ﬁl,ﬁﬁH IHﬁ;ﬁ1H < ——
F F RelGap(E2 ¥2)
),
sme(vl,vl)H - Hv;le <
P P

RelGap(E%, 22)

On the other hand, applying Theorem 3.1 to BB* and BB* = D} BB* D leads
to (ref. (8.7) and (8.1))

_ I = DT+ I = DU
RelGap, (X2, 22)

sin O(U;, (71)H

’
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Applying Theorem 3.1 to B*B and B*B = DjB* BD, leads to (ref. (8.8) and
(8.4))

VI = DIYVil + 11 - Do)Vl
RelGap, (X7, %2) .

[sin©(Vi, V1) » <

Notice that [7]

R/ei\égp@%a Y3 > QR/ei\G;P(il, $) > 2 [R/ei\é;p(xl, ) —’51] ;
R/ei\égp(i:%a £ > QR/ei\G;P(El, ) > 2 [R/ei\égp(xl, ) —’52] ;
RelGapz(E%, i%) > RelGap, (X, iz) > RelGap, (X1, iz) — €9,
RelGapz(E%, 2%) > RelGap, (X, 22) > RelGap, (X1, iz) — €1,
where
- 1, ., _ . 1 _
a =3lD — Dit|s, €= §||D2—Dzl||2,
1 1
61 = —=||D7 — DTY]2, €o = ——=|| D5 — D]
1 2\/§|| 1 —Dil 2 2\/§|| 2 — D52

The proof will be completed by employing [9]

sin O(U;, ﬁl)HF

IN

sin@(Ul,ﬁl)HF +

Sin@(ﬁl,ﬁl)HF,

IN

sme(vl,f/l)HF sin ©(V1, V)| +

sin @(Vl, 171)HF )

Proof of Theorems 3.8: Denote 3 = o+ 4. Let @ and & be the largest positive
numbers so that

— R 1 e~ 1
RelDist(or, &) < §||D§ — D3] and RelDist(a, &) < §||DT — D72
which guarantee that
Sell <@ and [[Ss]l> <

and

1 1
|D5—D5l2 and RelDist,(a, &) <

RelDistp(a, a) < 21+—1/p ) = 21+—1/p

D7 =D7 |25
and let B and  be the smallest numbers so that

—~ ~ 1 —— |
RelDist(ﬁ,ﬁ)g§||D1‘—D;1||2 and RelDist(3, 3) < §||D§—D2‘1||2
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which guarantee that
=Tt > 8 and ISTYET > 8
and

RelDist, (3, 3) < |Di—D7 ]2 and RelDist, (3, 3) < |D5—D3 .

21+1/p| 21+1/p|

Because of our gap assumptions, min{g, G} > « and § > max{a, a}.

It follows from (8.3) and (8.6) that

~ o~ ~ ‘72*(D§_D2_1)‘71
snai o -] < JECEL
RelGap(X?,%2; o2, 32)
s .. U3(D; — DyY0
ot |- 5]

R/ei\égp(i]%, i%, a? 52) .

On the other hand, applying Theorem 3.2 to BB* and BB* = D} BB* D leads
to (ref. (8.7) and (8.1))

i/l = oyl + 0 - oy
RelGapp(E%, i%, a?, §?) ’

sin O, ﬁl)m <

Applying Theorem 3.1 to B*B and B*B = DiB*BDs leads to (ref. (8.8) and
(8.4))

i/l = DY + T = DyWAl®

Il & Wl < G v 5 e, 7

Notice that [7]

RelGap( 25 aﬁz) Z QR/ei\G;p(ilaEZaaaB) Z 2 [R/ei\égp(xlai%aaﬁ) _g1:| ’
RelGap( ol 5% > 2 R/ei\é;p(ill, Yo a, B)>2 [R/ei\égp(El, Yo a, B)— ?2] ,
RelGap (El, E%, a? p? ) > RelGapp(El, iz; a,f) > RelGapp(El, iz; a, ) — e,
RelGap (El, E%, a?, 62) > RelGapp(El, Yo d, B3) > RelGapp(El, iz; a,f) — e,
where

~ 1 * -1 ~ 1 * -1

& = 5l1D7 = Dy ls, &= 5[0z = Dy |2,

& = g7 101 = D2, € = 2y 105 = D32
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The proof will be completed by employing [9]

sin O(U;, ﬁl)m

IN

sin O(U;, ﬁl)m +

sin @(ﬁl, ijl)m s

A

[|sin ©(v1, VO)||| +

sin O(V4, 171)‘H

sin©(V1, 1) ‘H .
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9 Proofs of Theorems 3.3 and 3.4

Notice that

H = D'AD=(AY?Dy AY?D < BB

H = D AY2(I4+ A7Y2(AA)A™Y2)AY2D

bl

= (T4 A 2@ A2 222D ) (14 472 (AA)A72) 412D

= BB

bl

B = DrAY?

B = D*Al/z(l—|—A_1/2(AA)A—1/2)1/2 def

D*AY2Dy = BD,.

Given the eigendecompositions of H and H asin (3.3) and (3.4), one easily see
that B and B admit the following SVDs.

AL? vy

_ 1/2y7% _ 1 1

B = UATV —(Ul,Uz)( A%”)(Vf‘)’

N U A ¢V i

B = UANV* =(1,,U L a0
( 1 2) Aé/z Vi

where U, U are the same as in (3.3) and (3.4), V1, Vi € © <k Notice that

H—H=BB"—BB* = BD;B*— BD;'B"*
= B(D; - D;Y)B",
U(H—-H)U = AU*U-U*UA,
U*B(D; — DyYB*U = AY2U*(Ds — Dy Y)VAY?,

Thus, AU*U — U*UA = AY2V*(D3 — D7)V A2 which yields
AoT2Uy — U UL Ay = MYV (Ds — Dy Y)ViAY 2. (9.1)
The following inequality will be very useful in the rest of our proofs.

|7 (5 = pztywa| < oz = o7

|7+ arzamyazizpsz — (14 azzaaya-z ||

IN

||(I—|—A_1/2(AA)A_1/2)_1/2||2 H‘A—I/Z(AA)A—UZH‘

Il gAAl
S VIS AT A AT
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Proof of Theorem 3.3: Tt follow from (9.1) that

. ~ ~ ‘7* D* _D—l V
s1n®(U1,U1)HF: HU5U1HF§ Ve (D5 — D7) 1IIF’
RelGap

as required. [ |

Proof of Theorem 3.4: Tt follow from (9.1) that

|7 (03 - prtywa|

R N ke
RelGap

as required. [ |
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