
The Performance of Finding Eigenvalues and Eigenvectorsof Dense Symmetric Matrices on Distributed MemoryComputersJ. Demmel� K. StanleyyAbstractWe discuss timing and performance modeling of a routine to �nd all the eigenvaluesand eigenvectors of a dense symmetric matrix on distributed memory computers. Theroutine, PDSYEVX, is part of the ScaLAPACK library. It is based on bisection andinverse iteration, but is not designed to guarantee orthogonality of eigenvectors in thepresence of clustered eigenvalues. We use our validated performance model to concludethat PDSYEVX is very e�cient for large enough problem sizes, nearly independentlyof input and output data layouts. However, e�ciency will be low if interprocessorcommunication is too slow, such as on conventional workstation networks, or if perprocessor memory is too small, such as on the Intel Gamma. Modeling also helps uschoose the appropriate algorithm to deal with clusters.1 SummaryThere are many algorithms for solving the dense symmetric eigenproblem[11]. Most of themconsist of 3 steps: 1) reduce the dense matrix to tridiagonal form, 2) �nd the eigenvaluesand eigenvectors of the tridiagonal matrix, and 3) back-transform the eigenvectors TheScaLAPACK[9] routine, PDSYEVX, uses bisection and inverse iteration for step 2).Our ultimate goal is not just to produce a scalable routine, but one where step 2) isnot the bottleneck. Among the many designs possibilities for step 2), we have so far chosentwo. The choice in PDSYEVX is fast, but will not guarantee orthogonal eigenvectors if thereare large clusters of narrowly separated eigenvalues. The choice in PDSYEV, which we donot discuss in detail, guarantees orthogonality but is slower than steps 1 and 3. One goalof performance modeling is to predict the performance of these and other step 2 designs,to help design an algorithm which is simultaneously fast and guarantees orthogonality. Wediscuss these design alternatives briey at the end.In addition, we use our performance modeling of PDSYEVX to understand its performanceon existing computers, �nd bottlenecks and improve its performance, and predict itsperformance on new platforms. Our model, which depends on 6 machine parameters andthe problem size n, predicts the performance on the CM-5 without vector units and IntelGamma to within 10%-30% for all but very small n. It correctly predicts that we will reachnear perfect parallel e�ciency for large enough problems, which happens on the CM-5,�Computer Science Division and Mathematics Dept, University of California, Berkeley CA 94708. Theauthors acknowledge NSF Infrastructure Grant CDA-8722788 as well as NSF grant ASC 9005933, ARPAGrant DM28E04120 via a subcontract from Argonne National Labs, and ARPA Grant DAAL003-91-C-0047via a subcontract from the University of Tennessee.yComputer Science Division, University of California, Berkeley CA 94708. The author acknowledges theNational Science Foundation for his graduate student fellowship1

2 Demmel and StanleyModel Performance measured values �s measuredParameter Description limited by CM5 w/o VUs Gamma by�DGEMM BLAS3 peak op rate 1/3.0 35. Stanley�DGEMV BLAS2 main memory 1/2.0 25. Stanley�� Divide 5.2 1.3 Stanley�lat message latency comm. software 150 173 Whaley[13]�band bandwidth�1 comm. hardware 1.62 2.86 Whaley[13]Table 1Machine parameters used to model PDSYEVXbut that the Gamma memory is not large enough to solve such large problems. It alsopredicts low e�ciency when running on a workstation network with high latency and lowbandwidth. Finally, the model helped identify bottlenecks on the Gamma from using a slowdivide instruction and slow random number generation, which let us speedup bisection andinverse iteration by a factor of nearly 4.2 PDSYEVXPDSYEVX is built using the BLAS[8] Basic Linear Algebra Subroutines, the PBBLAS[4]Parallel Block Basic Linear Algebra Subroutines, and the BLACS[13], Basic Linear AlgebraCommunication Subroutines. The tridiagonal reduction was written by Jaeyoung Choi [3].Step 2 is broken into two parts, bisection and inverse iteration, parts of which were writtenby Inderjit Dhillon [5]. Both bisection and inverse iteration do O(1) communication, witheach processor responsible for a subset of eigenvalues and eigenvectors. Gram-Schmidtreorthogonalization of the eigenvectors is only performed within a single processor. Hence,if a cluster of eigenvalues is too large to �t on a single processor, orthogonal eigenvectorsare not guaranteed. Details of PDSYEVX will appear in a future report.3 MethodThe performance depends on how much of the spectrum is required, whether eigenvectorsare desired, how much accuracy is required, the matrix size n and distribution of eigenvalues,the machine load, the algorithm and its implementation, the number of processors p, thedata layout, and performance characteristics of the underlying hardware and software.Here we assume that all eigenvalues and all eigenvectors are needed to full accuracy,and that the machine is lightly loaded. Except for the discussion in section 5, we assumethat clusters are relatively small, i.e. < (n2p). As discussed in section 5, we expect the costof redistributing the data upon input and output to be less than 5% of the total time spent.Therefore, we model only the data layout which obtains the best performance, i.e. squareor nearly square, with a block size just large enough to allow acceptable DGEMM (BLAS 3matrix-matrix multiply) and DGEMV (BLAS 2 matrix-vector multiply) performance.This allows us to model the performance of PDSYEVX using just �ve measured machineparameters, listed in table 1, counting the operations corresponding to each parameter.The BLACS timings were performed by Whaley[13]. The rest we performed ourselves. Wevalidate the model against the actual running time, both of the subparts and the end toend running time. Our method is iterative. We learn the most when our predictions do notmatch measured times.The performance of tridiagonalization and back-transformation is limited by the cost of

Performance of the Symmetric Eigenproblem 3Computation Costs Communication CostsTask DGEMM DGEMV dividecost latency bandwidth�1Reduction to Tridi-agonal Form 23 n3p �DGEMM 23 n3p �DGEMV 21n�latlg p 5 n2pp�bandlg pBisection 120n2p �DGEMV 60n2p ��Inverse Iteration 400n2p �DGEMV 11n2p �� 4n2p �bandBack-transformation 2n3p �DGEMM 2 n2pp�bandlg pTotal: 83 n3p �DGEMM+ (23 n3p + 520n2p)�DGEMV+ 71n2p �� + 21n�latlg p+ 7n2 lgppp �band + 4n2p �bandTable 2PDSYEVX performance model based on operation countsthe calls to the BLAS and BLACS. The time for DGEMM will be modeled as �DGEMMmnk wherem;n and k are the input matrix dimensions. Likewise, DGEMV time is modeled as �DGEMVmn.The cost of a BLACS broadcast is modeled as (�lat +msg size�band) lg pOther models[7] include an O(n) initiation cost for DGEMM and DGEMV, and a O(n2pp) termrepresenting the number of extra ops that are performed because of blocking. We do notinclude the O(n) initiation cost for DGEMM and DGEMV because we believe that this cost willalways be substantially smaller than the message latency cost. Likewise we omit the O(n2pp)term representing the extra ops because we believe that it will always be substantiallysmaller than the communication bandwidth cost.We are not yet able to predict the performance of bisection and inverse iterationsatisfactorily, because it is very compiler dependent. So, the numbers in table 2 areempirical, we do not expect this model to predict bisection and inverse iteration well onother architectures.4 ValidationOur con�dence in our models for reduction to tridiagonal form and back-transformationis based both on careful counting of ops and communication in the critical path, andon comparisons with measured data. Figure 1 presents our validation data. An ellipselocated at coordinates (p; n) in the �gure indicates a test with matrix dimension n run on pprocessors. The size of the ellipse is proportional to the error in the running time prediction.More precisely, it is proportional to the sum of the absolute values of the prediction errorsin each of the four parts of PDSYEVX, divided by the actual end-to-end running time. Thisshows that not only is the full model accurately predict the total running time, but it alsoaccurately predicts each of the four parts. The actual end-to-end prediction error is smallerin most cases because the errors in the four parts tend to cancel.Figure 2 shows how time is distributed among computation, latency and bandwidth forall 4 parts of PDSYEVX, for varying n and p. The 4 vertical bars for each (p; n) correspond totridiagonalization, bisection, inverse iteration, and back-transformation, respectively, andtheir heights add up to 1 unit, representing the total running time for that (p; n).5 ConclusionsHigh E�ciency for high n2=p. The largest terms in the timing formula in Table 2are proportional to n3=p, and represent the time of the serial algorithm for steps 1 and 3,

4 Demmel and Stanley
0 5 10 15 20 25 30 35

0

500

1000

1500

2000

2500

3000

3500

4000

Error = 10%
Error = 20%
Error = 30%

M
at

rix
 s

iz
e,

 n

Number of processors, p

CM5

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500
Error = 10%
Error = 20%
Error = 30%

M
at

rix
 s

iz
e,

 n

Number of processors, p

Gamma

Fig. 1. Sum of the absolute errors of the four parts of PDSYEVX/ total time
10

0
10

1
10

2

0

500

1000

1500

2000

2500

3000

computation (modeled)
bandwidth (modeled)
latency (modeled)

trd − reduction to tridiagonal form (measured)
bis − bisection (measured)
ii − inverse iteration (measured)
bck − back−transformation (measured)

M
at

rix
 s

iz
e,

 n

Number of processors, p

trd
bis ii bck

trd
bis

ii
bck

trd
bis

ii
bck

Execution time breakdown for PDSYEVX on the CM−5

10
0

10
1

10
2

0

500

1000

1500

2000

2500

computation (modeled)
bandwidth (modeled)
latency (modeled)

trd − reduction to tridiagonal form (measured)
bis − bisection (measured)
ii − inverse iteration (measured)
bck − back−transformation (measured)

M
at

rix
 s

iz
e,

 n

Number of processors, p

trd
bis

ii
bck

trd
bis

ii
bck

trd

bis
ii

bck

Execution time breakdown for PDSYEVX on the Intel Gamma

Fig. 2. PDSYEVX execution time breakdowndivided by p. Since these dominate the other terms for large n2=p (the data stored perprocessor), the algorithm is scalable, provided memory per processor is kept large. Thelargest problem that �ts on the 32 processor CM-5 with 32 Megabytes of memory per nodewas n = 2800, which ran at 2.2 Mops per node, an e�ciency of 80%.PDSYEVX will not tolerate existing network of workstations latency. Thecombination of high latency and a ring topology means that PDSYEVX will not worke�ciently on existing implementations of PVM[1] on FDDI or Ethernetnetworks. Existingimplementations of PVM have latencies around 1 to 5 milliseconds, 6 to 50 times higherthan the latencies of the Gamma and CM-5. The ring topology changes the latency costfrom O(n lg p) to O(np) because concurrency between messages is not supported. Thecombination of these two factors will make the latency cost the dominant cost unless newworkstations have hundreds of Megabytes of memory.Need new algorithms to deal with large clusters. There are a large number ofalternative algorithms for this problem [6]. We wish to avoid including full reorthogonal-ization, as in the serial LAPACK code DSTEIN, because this could increase both oating pointand communication from O(n2) to O(n3) in the presense of large clusters. An alterna-tive is PDSYEV in which QR is performed by each processor redundantly performing the

Performance of the Symmetric Eigenproblem 5O(n2) e�ort of �nding the shifts and performing 1=pth of the O(n3) work of updating Q.PDSYEV will guarantee orthogonality and because it has O(1) communication, it will scalewell though it will be several times slower than PDSYEVX. Another possibility, which is muchharder to program on a parallel machine, is Cuppen's divide and conquer routine, as mod-i�ed by Eisenstat, Gu, Li and Rutter [12]. One attractive possibility is \intelligent bruteforce", or using simulated multiple precision arithmetic on clusters, which may require nonew communication. Another possibility is spectral divide and conquer as in Tsao et al.[2]We are still studying the tradeo�s.We are not reaching asymptotic speed on the Intel Gamma. Using a simpleasymptotic model, we �nd that we would need 168 Mbytes per node to achieve 50% ofthe asymptotic speed, limn!1 timePDSYEVXn3=p , on a 32 processor Gamma. By contrast, weachieve 50% of the asymptotic speed with only 4.25 Mbytes per node on the CM-5. Thisis illustrated in �gure 2. For n = 2800 on 32 processors of the CM-5, the vast majorityof the time is spent in the computational parts of reduction to tridiagonal form and back-transformation, i.e. the asymptotically important terms. By contrast, for n=2000 on a64 processor Gamma, less than 10% of the time is spent on the asymptotically importantterms. Latency, bandwidth and bisection all consume signi�cant amounts of time. TheO(n) latency cost becomes less signi�cant rapidly for �xed p as n increases. And, we haveshown how to reduce the cost of bisection and inverse iteration on the Gamma by a factorof nearly 4. However, the bandwidth cost remains a problem.The Basic Linear Algebra Communication Subroutines, BLACS, are designed to make itpossible to greatly reduce the communication cost by coding architecture speci�c versionsof the BLACS. At present the BLACS are built on top of vendor supplied communicationlibraries. If they were coded at a lower level, they could achieve substantial performanceimprovements at least for their collective communications routines. As shown by Karpet al.[10], collective communications can be performed in n�band + �lat lg p whereas atpresent they require n�band lg p + �lat lg p. Although this lg p factor appears small it isquite signi�cant for the total running time of PDSYEVX.Input and output data layout appears to be unimportant. Assuming thatevery processor owns roughly n2=p elements of the input and output arrays, the cost ofredistributing the data on input and/or on output is O(n2=p�band). This is signi�cantly lessthan the 5n2=pp�band cost in reduction to tridiagonal form. Although we do not simulatedi�erent input and output data layouts, PDSYEVX performs an internal data redistributionwhich results in nearly every piece of an n2 matrix being moved to another processor. Thisinternal data redistribution never took more than 2.5% of the total time, which is strongevidence that redistributing most input or output layouts would also be relatively cheap.Judging an algorithm by its implementation is dangerous. Our modeling ledus to discover two simple performance improvements for bisection and inverse iteration.Initially, our model predicted much faster performance on the Intel Gamma than weactually obtained. This was traced to two factors. First, the default arithmetic on theGamma includes a IEEE standard conforming divide operation which takes at least 50times as long as multiply or add. We replaced this by a much faster, but less accuratedivide. This requires a modi�cation in the simple bisection algorithm to guarantee logicalcorrectness despite possibly nonmonotonic arithmetic[5]. Second, a great deal of timewas spent generating random numbers for inverse iteration. We changed from computingnormally distributed random numbers, which require expensive transcendental functionevaluations, to uniform random numbers. Together, these improvements sped up bisectionand inverse iteration by a factor of nearly 4 on the Gamma.

6 Demmel and StanleyReferences[1] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. A users' guide to PVMparallel virtual machine. Technical Report ORNL/TM-11826, Oak Ridge National Laboratory,Oak Ridge, TN, July 1991.[2] C. Bischof, S. Huss-Lederman, X. Sun, A. Tsao, and T. Turnbull. Parallel performance of a sym-metric eigensolver based on the invariant subspace decomposition approach. Technical report,Supercomputing Research Center, 1993. (Prism Working Note #15 ftp.super.org:pub/prism).[3] J. Choi, J. Dongarra, R. Pozo, and D. Walker. ScaLAPACK: A scalable linear algebra libraryfor distributed memory concurrent computers. In Proceedings of the Fourth Symposium on theFrontiers of Massively Parallel Computation, pages 120{127. IEEE Computer Society Press,1992. (LAPACK Working Note #55).[4] J. Choi, J. Dongarra, and D. Walker. PB-BLAS: A set of Parallel Block Basic Linear AlgebraSubprograms. University of Tennessee, Knoxville, TN, 1993. available in postscript fromnetlib/scalapack.[5] J. Demmel, I. Dhillon, and H. Ren. On the correctness of parallel bisection in oatingpoint. Tech Report UCB//CSD-94-805, UC Berkeley Computer Science Division, March 1994.available via anonymous ftp from tr-ftp.cs.berkeley.edu, in directory pub/tech-reports/cs/csd-94-805, �le all.ps.[6] J. Demmel, M. Heath, and H. van der Vorst. Parallel numerical linear algebra. In A. Iserles,editor, Acta Numerica, volume 2. Cambridge University Press, 1993.[7] F. Desprez, B. Tourancheau, and J. J. Dongarra. Performance complexity of lu factorizationwith e�cient pipelining and overlap on a multiprocessor. Technical report, University ofTennessee, Knoxville, Feb 1994. (LAPACK Working Note #67).[8] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. A set of Level 3 Basic Linear AlgebraSubprograms. ACM Trans. Math. Soft., 16(1):1{17, March 1990.[9] J. Dongarra, R. van de Geijn, and D. Walker. A look at scalable dense linear algebra libraries.In Scalable High-Performance Computing Conference. IEEE Computer Society Press, April1992.[10] R.M. Karp, A. Sahay, E. Santos, and K.E. Schauser. Optimal broadcast and summation in theLogP model. In Proc. 5th ACM Symposium on Parallel Algorithms and Architectures, pages142{153, 1993.[11] B. Parlett. The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cli�s, NJ, 1980.[12] J. Rutter. A serical implementation of Cuppen's divide and conquer algorithm for thesymmetric eigenvalue problem. Mathematics Dept. Master's Thesis available by anonymousftp to tr-ftp.cs.berkeley.edu, directory pub/tech-reports/cs/csd-94-799, �le all.ps, University ofCalifornia, 1994.[13] R. Clint Whaley. Basic linear algebra communication subroutines: Analysis and implementa-tion across multiple parallel architectures. Technical report, University of Tennessee, Knoxville,June 1994. (LAPACK Working Note #73).

