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1 IntroductionGiven a matrix pair (A;B), where A and B are general n�n matrices with real or complexentries. In the generalized eigenvalue problem (GEP) we are interested to �nd a few orall eigenvalues �i and eigenvectors xi 6= 0 such that Axi = �iBxi. Mathematically, theeigenvalues are the roots of the characteristic equation det(A� �B) = 0. If B = In, GEPreduces to the standard eigenvalue problem (SEP). Moreover, if det(B) 6= 0, the problemcan in theory be transformed to Cx = �x, with C = B�1A. If det(B) = 0 and x 6= 0is a null vector of B, then Bx = 0Ax, i.e. x is an eigenvector of the reciprocal problemBx = �Ax, with � = ��1 = 0. In other words, � = 1 is an eigenvalue of Ax = �Bx.By restricting the matrix pencil A � �B (a family of matrices parameterized by �) suchthat det(A � �B) = 0 if and only if � is an eigenvalue, (A;B) is a regular matrix pair, orsimilarly, A � �B is a regular matrix pencil. If det(A � �B) � 0 for all �, A � �B is asingular pencil and (A;B) is a singular matrix pair [12].From a computational point of view it is more natural to de�ne GEP in cross{productform �Ax = �Bx with � = �=�. An eigenvalue is represented as a pair (�; �), where a�nite eigenvalue has � 6= 0 and an in�nite eigenvalue has � = 0. In this representation anin�nite eigenvalue (�; 0) is not essentially di�erent from a zero eigenvalue (0; �). As in SEPwe both have right and left eigenvectors x 6= 0 and y 6= 0, respectively, de�ned as�Ax = �Bx; �yHA = �yHB: (1.1)In several applications (e.g., in control theory [22], [29], [20]) it is not necessary to computethe eigenvectors, but merely to �nd eigenspaces associated with a speci�ed set of eigenvalues.L andR are a pair (left and right) of deating subspaces of a regular A��B, if L = AR+BRand dimL = dimR [25, 26]. One way of computing a pair of deating subspaces (withorthogonal bases) is via the generalized Schur decomposition. As in the standard eigenvalueproblem we distinguish two cases.The complex case: let A and B be n�n with complex entries. Then there exist unitaryU 2 Cn�n and V 2 Cn�n: UH(A� �B)V = S � �T; (1.2)where S and T are upper triangular. The eigenvalues are given by the pairs (sii; tii) 6= (0; 0).The �nite eigenvalues are sii=tii, where tii 6= 0. If (sii; tii) = (0; 0) for some i, then (A;B)is singular.The real case: let A and B be n � n with real entries. Then there exist orthogonalU 2 Rn�n and V 2 Rn�n: UT (A� �B)V = S � �T; (1.3)where S is upper quasi{triangular and T is upper triangular. A quasi{triangular matrix isblock upper triangular with 1� 1 or 2� 2 blocks on the diagonal. The 2� 2 blocks on thediagonal of S � �T correspond to pairs of complex conjugate eigenvalues.The columns of U and V , ui and vi; i = 1 : n, are left and right generalized Schurvectors and the �rst k columns of U and V span a k{dimensional pair of deating subspacesassociated with the k � k (1; 1){block of (S; T ) in generalized Schur form. U and V can bechosen so that the eigenvalues appear in any order along the (block) diagonals of S and T .4



More formally, let U = [U1; U2] and V = [V1; V2] be a conformal partitioning with respectto the cluster of k eigenvalues in the (1; 1){block of (S; T ):" UT1UT2 # (A� �B) h V1 V2 i = S � �T � " S11 S120 S22 # � � " T11 T120 T22 # : (1.4)Now, L = span(U1) and R = span(V1) form a pair of deating subspaces associated withthe cluster of (S11; T11). Moreover, span(V1) is a right eigenspace of (A;B), and span(U2)is a left eigenspace of (A;B) associated with (S22; T22) [26]. Indeed, we can retrieve a lefteigenspace associated with (S11; T11) and a right eigenspace associated with (S22; T22) bya second reordering of the eigenvalues of (S; T ) such that, now, the \new" (S22; T22) willcorrespond to the speci�ed cluster. Moreover, by combining the Ui's and Vi's from the tworeorderings it is possible to construct a block{diagonalizing equivalence transformation [20].Let X�1 = 24 U (2)2 TU (1)2 T 35 ; Y = h V (1)1 V (2)1 i ; (1.5)where U (j)i and V (j)i are blocks i(= 1; 2) of U and V from the reordering j(= 1; 2). ThenX�1(A � �B)Y is block{diagonal with the speci�ed cluster in the (1; 1){block [20]. Byconstruction the two block columns of Y and the two block rows of X�1 have orthonormalbases which ensure transformation matrices with optimal condition numbers [4]. Alterna-tively, we can block{diagonalize (S; T ) in (1.4) in terms of a non{orthogonal equivalencetransformation directly by solving a generalized Sylvester equation (see Section 4.2.1).In this paper we present underlying theory, algorithms and LAPACK{style softwarefor computing a pair of deating subspaces with speci�ed eigenvalues of a regular matrixpair (A;B) and error bounds for computed quantities (eigenvalues and eigenspaces). Theerror bounds are based on estimates of condition numbers for eigenvalues and eigenspaces.Typically, the algorithm for computing a pair of deating subspaces is a two{step process.First, compute a generalized Schur form of a matrix pair (A;B) using the QZ algorithm[23]. Second, reorder the speci�ed eigenvalues to appear in the (1; 1){block of the general-ized Schur form. The focus here is to perform the reordering (also in the real case) with adirect method [18]. A reordering method based on the periodic Schur decomposition hasbeen proposed recently [5]. The rest of the paper is outlined as follows. In Section 1.1we collect our notation. Section 2 gives an overview of the direct method for reorderingeigenvalues in the generalized real Schur form. In Section 3 we discuss direct reorderingalgorithms with guaranteed backward stability. Section 4 collects theory and algorithms forcomputing condition numbers and error bounds for eigenvalues and deating subspaces ofa regular (A;B). In Section 5 we present our Fortran 77 software for computing deatingsubspaces with speci�ed eigenvalues, condition numbers and error bounds. Some computa-tional experiments that illustrate the accuracy and reliability of our software are presentedin section 6. Finally, some conclusions are summarized in Section 7.1.1 NotationThe following notation is used in the paper. In denotes an identity matrix of size n � n.�(A;B) denotes the spectrum of a regular matrix pair (A;B) or pencil A � �B. kAk25



denotes the spectral norm (2-norm) of a matrix A induced by the Euclidean vector norm.kAkF denotes the Frobenius (or Euclidean) matrix norm. kAkM = maxi;j jaij j, i.e. themaximum of the absolute values of the matrix entries. �max(A) and �min(A) denote thelargest and smallest singular values of A, respectively. For a square matrix A we have thatkAk2 = �max(A) and kA�1k2 = �min(A)�1. A 
 B denotes the Kronecker product of twomatrices A and B whose (i; j)-th block element is aijB. The column vector col(A) denotesan ordered stack of the columns of A from left to right starting with the �rst column. ATdenotes the transpose of A. AH denotes the conjugate transpose of A. jAj and jxj denotethe matrix and the vector whose elements are jaij j and jxij, respectively. Inequalities suchas jAj � jBj; jxj � jyj are interpreted componentwise. D = diag(x) denotes a diagonalmatrix with dii = xi.We frequently measure distances between subspaces as their angular distances. �(x; y)is the (acute) angle between two 1-dimensional subspaces spanned by the vectors x and y:cos �(x; y) = jxTyjkxk2kyk2 :Generalized to the (maximum) angle between two subspaces X and Y of equal dimensionk � 2 we have: �max(X ;Y) = maxx2X miny2Y �(x; y):For computational purposes we use the following de�nition [13]:�max(X ;Y) = arccos�min(XTY );where the columns of X and Y (of size n � k) span orthonormal bases for X and Y ,respectively.2 Direct Method for Reordering Eigenvalues in the Gener-alized Real Schur FormA direct reordering method for the A��B problem is presented in [18], which extends andgeneralizes the direct SEP method in [2] to regular matrix pairs with real entries. Belowwe give an overview of the direct method and its numerical properties.Without loss of generality we consider the problem of reordering the diagonal blocks ofa matrix pair (A;B) in the block form,A = " A11 A120 A22 # ; B = " B11 B120 B22 # ; (2.1)where (A11; B11) and (A22; B22) are of size n1�n1 and n2�n2, respectively, and n1; n2 = 1or 2. Throughout the paper we assume that (A11; B11) and (A22; B22) have no eigenvaluesin common, otherwise, the diagonal blocks need not be swapped.We want to �nd orthonormal Q and Z of size (n1 + n2)� (n1 + n2) such thatQT  " A11 A120 A22 # ; " B11 B120 B22 #!Z =  " Â22 Â120 Â11 # ; " B̂22 B̂120 B̂11 #! � (Â; B̂);(2.2)6



where (Aii; Bii) and (Âii; B̂ii) for i = 1; 2 are equivalent matrix pairs with the same eigen-values but their positions are exchanged (swapped) along the block diagonal of (A;B).The direct method for constructing Q and Z and swapping two diagonal blocks in thegeneralized real Schur form of (A;B) is outlined below [18]:� Solve for L and R of size n1 � n2 in the generalized Sylvester equation:A11R� LA22 = �A12;B11R� LB22 = �B12: (2.3)� Compute an orthogonal matrix Q:QT " LIn2 # = " TL0 # : (2.4)� Compute an orthogonal matrix Z:h In1 �R iZ = h 0 TR i : (2.5)� Apply Q and Z to (A;B) in an orthogonal equivalence transformation (2.2): " Â22 Â120 Â11 # ; " B̂22 B̂120 B̂11 #! � " TLA22Z21 TLA22Z22 +QT11A11TR0 QT12A11TR # ; " TLB22Z21 TLB22Z22 + QT11B11TR0 QT12B11TR #! ;(2.6)where Q and Z are partitioned conformally withX = " L In1In2 0 # ; and Y = " 0 In2In1 �R # ; respectively:Notice that X and Y above are non{orthogonal transformation matrices that perform therequired swapping: " A11 A120 A22 # ; " B11 B120 B22 #! = X  " A22 00 A11 # ; " B22 00 B11 #!Y: (2.7)To solve (2.3) we can use the generalized Schur method [21, 19]. In our case, (Aii; Bii); i =1; 2 are already in generalized Schur form and we end up solving a 2n1n2 � 2n1n2 linearsystem Zx = b, whereZ = " In2 
 A11 �AT22 
 In1In2 
B11 �BT22 
 In1 # ; x = " col(R)col(L) # ; b = " �col(A12)�col(B12) # : (2.8)Since n1; n2 = 1 or 2 the linear system (2.8) will be of size 2� 2; 4� 4 or 8� 8 (only 2� 2systems in the complex case). Q in (2.4) and Z in (2.5) can be found by using Householder7



or Givens transformations to compute a QR factorization and an RQ factorization, respec-tively. Finally, the equivalence transformation (2.6) is just matrix{matrix multiplicationand add operations on A and B.In the presence of rounding errors the conditioning and the solution of the generalizedSylvester equation will have the greatest impact on the stability of the direct swappingmethod [17]. Let (�L; �R) denote the computed solution of the generalized Sylvester equation(2.3), where �L = L+ �L, �R = R+ �R and (L;R) is the exact solution. The residuals ofthe computed solution are R1 � A11 �R� �LA22 +A12;R2 � B11 �R� �LB22 +B12: (2.9)Moreover, let �Q and �Z be the computed transformation matrices in (2.4) and (2.5). Thefollowing theorem shows how the errors in these quantities propagate to the results of thedirect reordering method for swapping two 2� 2 diagonal matrix pairs.Theorem 2.1 [18] By applying the computed transformation matrices �Q and �Z in an equiv-alence transformation of (A;B) we get�QTA �Z = " Â22 Â120 Â11 # + " �A22 �A12�A21 �A11 # � Â+�A (2.10)and �QTB �Z = " B̂22 B̂120 B̂11 #+ " �B22 �B12�B21 �B11 # � B̂ +�B; (2.11)where (Aii; Bii) and (Âii; B̂ii) for i = 1; 2 are equivalent matrix pairs as in (2.2) and up to�rst order perturbations O(k(�A;�B)k2):k�A11k2 � 1(1 + �min2(L))1=2 � �max(R)(1 + �max2(R))1=2 � kR1kF ; (2.12)k�A21k2 � 1(1 + �min2(L))1=2 � 1(1 + �min2(R))1=2 � kR1kF ; (2.13)k�A22k2 � �max(L)(1 + �max2(L))1=2 � 1(1 + �min2(R))1=2 � kR1kF : (2.14)Similar bounds hold for k�B11k2; k�B21k2; k�B22k2 with R1 replaced by R2.What can we say about the size of the errors (�A;�B) in Theorem 2.1? First of all,k�Aijk2 and k�Bijk2 depend on kR1kF ; kR2kF , the norms of the residuals of the computedsolution (�L; �R) to the generalized Sylvester equation, and on the conditioning of the exactsolution (L;R). If �min(L) and �min(R) are small, the error can be as large as the norms ofthe residuals.In [17] a perturbation analysis of the generalized Sylvester equation is presented thattakes full account to the structure of the matrix equation, derives expressions for the back-ward error of an approximate solution (�L; �R), and derives condition numbers that measurethe sensitivity of a solution to perturbations in A11; A12; A22 and B11; B12; B22, respectively.Due to the special structure of the (generalized) Sylvester equation the relation for linear8



systems \relative backward error = relative residual" [24] does not hold in general [16],[17]. Small relative backward errors will always result in small relative residuals. However,the analysis shows that for very ill{conditioned cases the norm of the relative backwarderrors can greatly exceed the norm of the relative residuals (in fact, by an arbitrary factor[16]). This situation appears when (�L; �R) is an ill{conditioned (i.e., �min(�L) and �min( �R)small) and large{normed (i.e., k(�L; �R)kF large) solution to the generalized Sylvester equa-tion. However, as we will see later, these situations correspond to extremely ill{conditionedeigenproblems.3 Direct Reordering Algorithms with Guaranteed Back-ward StabilityThe error analysis of the direct method (summarized in Theorem 2.1) and numerical exper-iments suggest that a practical implementation should reject a swap if it would result in toolarge backward errors (i.e. instability). The test for stability can be performed directly andto a small extra cost. A direct algorithm with controlled backward error for swapping twodiagonal blocks of a regular matrix pair (A;B) in generalized real Schur form is outlinedbelow [18]. In this section all quantities denote \computed" quantities.Direct Swapping AlgorithmStep 1 Copy A and B to S and T , respectively.S  A; T  B:Step 2 Solve for (L;R) in the generalized Sylvester equation:S11R� LS22 = �S12;T11R� LT22 = �T12:Use Gaussian elimination with complete pivoting to solve the corresponding linearsystem and a scaling factor  to prevent against overow [19].Step 3 Compute an orthogonal matrix Q:QT " LIn2 # = " TL0 # :Use Householder transformations to compute a QR factorization [13], [1].Step 4 Compute an orthogonal matrix Z:h In1 �R iZ = h 0 TR i :Use Householder transformations to compute an RQ factorization [13], [1].9



Step 5 Perform the swapping tentatively with backward stability test:S  QTSZ � " S11 S12S21 S22 # ; T  QTTZ � " T11 T12T21 T22 # :Step 6 If the swap is accepted, apply the equivalence transformation to (A;B):A S; B  T:Set the (2; 1){blocks to zero.Step 7 Standardize existing 2� 2 blocks.Use the LAPACK routine HGEQZ to standardize and (possibly) separate 2� 2 blocksfurther [1].The backward stability test in step 5 is split in two parts:Weak stability test: Check if k(S21; T21)kF � tol1 .Strong stability test: Check if k(A� QSZT ; B � QTZT )kF � tol2.The size of the (2; 1)-blocks are most crucial since their norms immediately reect the stabil-ity of the swapping. Indeed, k(S21; T21)kF is the size of the optimal backward perturbation(E; F ) of the reordered (S; T ) such that (S + E; T + F ) has the n2 �rst columns of Qand Z as an exact pair of deating subspaces (see Section 4.2.4 and [28]). The size of the(2; 1)-blocks are controlled by tol1 in the weak stability test and they should not exceedO(�k(S; T )kF), where � is the relative machine precision. The strong stability test takes allbackward errors into account and by choosing tol2 of the size O(�k(A;B)kF ) and rejectingthe swap if the error is larger than tol2, we obtain guaranteed backward stability. If boththe weak and the strong stability tests hold then the swap is accepted, otherwise rejected.We have used 10�k(A;B)kF for both tol1 and tol2.One could argue that it is enough with the weak stability test and in fact we have (sofar) not been able to construct any example where the strong test fails while the weak testdoes not. However, since the extra cost of the strong stability test is only marginal it isincluded in our software.After step 2 it would be possible to compute an optimal block{diagonalizing equivalencetransformation that minimizes the condition numbers of the transformationmatrices [6],[20].Since the scaling factors (which possibly are large numbers) will show up in the Sij and Tijblocks, we do not expect any substantial improvements in performing this block{diagonalscaling. Computational experiments in Matlab con�rm this statement too.The swapping of a 2� 2 block and a 1� 1 block (or vice versa) is performed similarly asswapping two 2� 2 blocks. However, the swapping of two 1 � 1 blocks is performed usingorthogonal (unitary) Givens rotations [30]. In the complex case we perform all reorderingwith unitary Givens rotations. 10



3.1 Justi�cation for Rejecting a SwapIt is well{known that the generalized eigenvalue problem (as well as the standard unsym-metric problem) is potentially ill{conditioned in the sense that eigenvalues and eigenspacesmay change drastically even under small perturbations of the data (e.g., see [26], [9]). If weinsist on performing a reordering of (S11; T11) and (S22; T22) for an ill{conditioned problem,we may destroy any spectral information in A� �B. Our computational experiments showthat close eigenvalues or small separation between (S11; T11) and (S22; T22) are not enoughfor rejecting a swap. It is the sensitivity of the eigenspaces that matters most, which inturn is perfectly signaled by the norm of the solutions L and R to the associated generalizedSylvester equation. As before, we illustrate with the case n1 = n2 = 2. From (2.7) we getthat after the reorderingL1 = span(" I20 #); R1 = span(" I20 #);and L2 = span(" LI2 #); R2 = span(" RI2 #);are pairs of deating subspaces associated with the spectrum of the reordered blocks(S11; T11) and (S22; T22), respectively. Informally, we see that when kLk and kRk are largeenough Li for i = 1; 2 and Ri for i = 1; 2 are almost linearly dependent. More formally; bypartitioning Q in (2.4) appropriately and using properties of the CS decomposition of Q,we can show that cos�max(L1;L2) = kQ11k2 = �max(L)(1 + �max2(L))1=2 :Now, �max(L1;L2) is close to zero if and only if kLk2 is large. A small largest angle betweenL1 and L2, means that the left deating subspaces associated with (S11; T11) and (S22; T22)are almost linearly dependent. Similarly, it can be shown that kRk2 is large if and only if�max(R1;R2) is close to zero.3.2 Algorithm Variants for the Stability TestsIn the following we present some di�erent variants to perform the stability tests for acceptingor rejecting a swap of two 2� 2 diagonal matrix pairs.Method 1: Perform the weak and strong stability tests on (S; T ) as computed in step5. Here S21 and T21 are full 2 � 2 blocks with possibly non{zero entries. If the swap isaccepted then set S21 and T21 to zero.Method 2: Triangularize T (from step 5) with an orthogonal U from the left and applythe transformation to S, i.e.S  UTS � " S11 S12S21 S22 # ; T  UTT � " T11 T120 T22 # :Now T is upper triangular and T21 is a zero 2�2 block, while S21 is still a full matrix block.We also have the freedom to triangularize T (from step 5) with an orthogonal V from the11



right and apply the transformation to S similarly. The triangularization method (from leftor right) that produces the (2; 1){block of S with smallest (Frobenius) norm is chosen andchecked for stability. If the swap is accepted, then S21 is set to zero.Method 3: Transform (S; T ) (from step 5) to generalized Hessenberg form:(S; T ) QTH(S; T )ZH �  " S11 S12S21 S22 # ; " T11 T120 T22 #! ;where S21 only has one non{zero element, namely in its (1; 2) position. Notice that wecannot guarantee that this element is small, even if the original S21 is small. We apply theQZ algorithm to (S; T ) in generalized Hessenberg form giving(S; T ) QTQZ(S; T )ZQZ �  " S11 S120 S22 # ; " T11 T120 T22 #! :If the strong stability test holds, then the swap is accepted, otherwise rejected.Methods 1{2 are direct methods and they di�er in the way we transform the matrixpair (S; T ) before we apply the stability tests. Our aim is to discard as little information aspossible in the reordered matrix pair when we impose the (2; 1){blocks to be zero. Method1 is the generic variant and we discard information in both S and T . In method 2 we onlydiscard information in the S{part. Let ~Sij and ~Tij denote the (i; j){blocks of S and T beforethe triangularization of T and Uij(Vij) the corresponding blocks of the orthogonal (unitary)transformation U (or V ) used to triangularize from left (or right). The triangularization ofT from left results in T21 = 0 and S21 = UT22( ~S21 � ~T21 ~T�111 ~S11), withkS21k2 � k ~S21 � ~T21 ~T�111 ~S11kF : (3.1)Similarly, the triangularization from right results in T21 = 0 and S21 = (~S21� ~S22 ~T�122 ~T21)V T11,with kS21k2 � k ~S21 � ~S22 ~T�122 ~T21kF : (3.2)Roughly speaking, if the bound (3.1) is smaller than the bound (3.2), then triangularizationfrom the left is to prefer, otherwise from the right. We have computational evidence thatthe exact expressions for kS21k in (3.1) and (3.2) (and the bounds) can be smaller than theinformation we discard in method 1 (see bounds for �A21 and �B21 in Theorem 2.1).The expressions for S21 above can be traced back to expressions involving blocks of Sand T before the reordering (i.e. the original Aij and Bij (2.1)) and the residuals of thegeneralized Sylvester equation in step 2 (R1 = A11R�LA22+A12 and R2 = B11R�LB22+B12), resulting in the following bounds on the block S21 of S after the triangularization inmethod 2:Corollary 3.1 (i) Let S  UTS, where U is the exact orthogonal transformation thattriangularizes T from the left. Then (up to �rst order perturbations)k�A21k2 � kS21k2 � kR1 � R2B22�1A22kF(1 + �min2(L))1=2(1 + �2min(R))1=2 : (3.3)12



(ii) Similarly, let S  SV , where V is the exact orthogonal transformation that triangular-izes T from the right. Then (up to �rst order perturbations)k�A21k2 � kS21k2 � kR1 � A11B11�1R2kF(1 + �2min(L))1=2(1 + �2min(R))1=2 : (3.4)In both cases �B21 � T21 = 0.Proof From the proof of Theorem 2.1 [18], we have (up to �rst order perturbations)~S21 = QT12R1Z21 and ~T21 = QT12R2Z21, where Qij and Zij are blocks of Q and Z inthe orthogonal equivalence transformation (2.2) that performs the reordering of two di-agonal blocks. Moreover, kZ21k2 = 1=(1 + �2min(R))1=2 and kQT12k2 = 1=(1 + �2min(L))1=2[18]. From (2.6) we get ~S11 = TLA22Z21 and ~T11 = TLB22Z21. Using these expressions inS21 = UT22( ~S21 � ~T21 ~T�111 ~S11) we get S21 = UT22QT12(R1 �R2B22�1A22)Z21, and (3.3) followsfrom well{known inequalities for matrix norms. The bound (3.4) can be proved similarly.2 Besides backward stability of the reordering we strive to a�ect the eigenvalues as littleas possible. We have constructed examples where the triangularization (from left or right)of S has great impact on the reordered eigenvalues.In method 3 we let the QZ algorithm decide what information to discard, and hopefullythis should give us accurate eigenvalues after the swapping of two diagonal blocks. However,applying the QZ algorithm also means that the method may be iterative in the last step.In the worst case, already ordered eigenvalues may be reordered again. We use this variantmainly for comparing results between our direct methods and a \best possible" hybridmethod.4 Condition Numbers and Error Bounds for Eigenvaluesand Eigenspaces of a Regular (A;B)A condition number of a problem measures the sensitivity of the solution to small changesin the problem data. The problem is ill{conditioned if the condition number is large, andill{posed if the condition number is in�nite. Condition numbers can be used to bounderrors in computed quantities (e.g., eigenvalues, eigenvectors and deating subspaces). Weconstruct error bounds from forward perturbation bounds for the problem (that de�ne ourcondition numbers) and the knowledge of the backward error corresponding to the computedsolution. The best we can ask for is to have an explicit expression for the optimal backwarderror related to the residual of the computed solution. A residual{based expression of theoptimal backward error is algorithm{independent, i.e. it can be applied to an approximatesolution resulting from any algorithm used to solve the problem. Otherwise, we have to relyto an upper bound on the backward error, resulting from a backward error analysis of thealgorithm used to compute the solution. If we use backward stable methods to compute aneigendecomposition of a regular (A;B), then we know that the norm of the backward errorin (A+E;B + F ) is k(E; F )k= O(�k(A;B)k), where � is the relative machine accuracy.Condition numbers may be very expensive to compute and therefore we will use inex-pensive estimates. In the extreme case the exact condition number (separation between two13



matrix pairs) is an O(n6) operation while the estimate is computed in only O(n3) operations[19]. Condition estimators are by de�nition approximations or bounds to the exact valuesthey try to estimate, and may therefore occasionally overestimate or underestimate thetrue condition number by a large factor. Extensive computational experiments (on moder-ately sized problems) show that this seldom happens, but it is of course always possible toconstruct counter examples.The condition numbers and estimates computed by our software and discussed hereare reciprocal values of a condition number for an individual eigenvalue (or a cluster ofeigenvalues), a condition number for an eigenvector (or eigenspace), and spectral projectorsonto a selected cluster. By computing reciprocal values we avoid overow. An in�nitevalue or a condition number that would overow are reported by the reciprocal value zero.This is in agreement with the condition estimation for the standard eigenvalue problem inLAPACK [3].These quantities appear in error bounds for eigenvalues and eigenspaces of a regular(A;B), which we also review here. In agreement with the standard eigenvalue problem inLAPACK we measure changes in eigenvectors or eigenspaces by their change in angle.Moreover, our condition numbers yield both asymptotic and global error bounds. Theasymptotic bounds are only accurate for small perturbations (E; F ) of (A;B), while theglobal bounds work for all k(E; F )k up to a certain bound. The size of this bound isdetermined by the conditioning of the problem and may therefore be large (for a well{conditioned problem) or small (for an ill{conditioned problem). We also show how theseupper bounds can be estimated. Finally, we present some new results (due to Sun [28])that give us explicit expressions for the optimal backward error related to the residual of acomputed eigenspace, and which also lead to an residual{based global angular error boundfor computed left and right deating subspaces.4.1 A Condition Number and Error Bounds for Simple EigenvaluesAssume that (�; �) 6= (0; 0) is a simple eigenvalue of a regular matrix pair (A;B) with leftand right eigenvectors y and x, respectively, satisfying (1.1). Notice that all non{zero scalarmultiples of (�; �) is also an eigenvalue of (A;B). Therefore, it is natural to regard thesubspace spanned by the vector (�; �)T as the generalized eigenvalue of (A;B) [26]:< �; � >= f�(�; �)T : � 2 C; (�; �) 6= (0; 0)g: (4.1)In the perturbation theory for generalized eigenvalues we consider the distance betweenpairs (�; �) and (�0; �0). A useful metric is the chordal distance of two pairs de�ned asX ((�; �); (�0; �0)) = j��0 � ��0jpj�j2 + j�j2pj�0j2 + j�0j2 : (4.2)If we set � = �=� and �0 = �0=�0, then we haveX (�; �0) = j�� �0jp1 + j�j2p1 + j�0j2 :Some characteristics of the chordal metric are summarized below [26]: The point at in�nity isno more than unit distance from any other point (X (�;1) = 1=p1 + j�j2 � 1). If j�j; j�0j �14



1, then X (�; �0) behaves essentially like the Euclidean metric. The chordal distance betweentwo large numbers can be small (e.g., X (�; 2�) � 1=j�j, when � ! 1). Accordingly, largenumbers can have very small chordal distances, even when they have large relative errors.In the following we review how to measure the sensitivity of simple eigenvalues of a reg-ular matrix pair. Let (�; �) be a simple eigenvalue of (A;B) with left and right eigenvectorsy and x, respectively. Let (E; F ) be a perturbation of (A;B), and k(E; F )k2 = �2. Thenthere is an eigenvalue (�0; �0) of (A+ E;B + F ) such that the following �rst order boundholds [26]: X ((�; �); (�0; �0)) � � � �2 +O(�22); (4.3)where � is the condition number for a simple generalized eigenvalue:� = kxk2kyk2qjyHAxj2 + jyHBxj2 : (4.4)Notice that yHAx=yHBx is equal to � = �=�. By using yHAx and yHBx in (4.4), thecondition number is independent of the normalization of the eigenvectors and the corre-sponding eigenvalue pair. Deleting higher order terms in (4.3) we get an asymptotic errorbound for a simple eigenvalue:X ((�; �); (�0; �0)) <� �k(E; F )k2: (4.5)By replacing k(E; F )k2 by k(E; F )kF in (4.5) we get a somewhat weaker but a more com-putationally attractive bound.The following example illustrates the de�nition of �. LetY H = " 1 2��10 1 # ; X = " 1 ��10 1 # ; andY HAX = " � 00 �2� # ; Y HBX = " � 00 � # ; i:e:A = " � 3���10 �2� # ; B = " � �3���10 � # :By choosing � > 0 and � > 0 small we get �i = O(��1��1) for i = 1; 2 from (4.4) and X andY H above.The eigenvalues of (A;B) are 1 (= �=�) and �2 (= �2�=�). Now, we consider theequivalent pencil (D�1A;D�1B) =  " 1 3��10 �2 # ; " 1 3��10 1 #! ;where D = " ��1 00 ��1 # :15



It has the same eigenvalues (and eigenvectors too!), but their individual condition numbersare only �i = O(��1) for � � � > 0, showing that the eigenvalues 1 and �2 are betterconditioned for the equivalent pencil.There also exist global error bounds which are not limited by the size of k(E; F )k (e.g.,Bauer{Fike{style error bounds). In the following we assume that (A;B) is a diagonalizablematrix pair such that Y H(A;B)X = (diag(�i); diag(�i)): (4.6)Let Y H and X be normalized such that j�ij2 + j�ij2 = 1 and kyik2 = 1, i.e. we overwriteyi with yi=kyik2, (�i; �i) with (�i; �i)=(j�ij2+ j�ij2)1=2 and, �nally, xi with xikyik2=(j�ij2+j�ij2)1=2. With this normalization the individual condition number for (�i; �i) is �i = kxik2.Let (�0; �0) with j�0j2+ j�0j2 = 1 be an eigenvalue of (A+E;B+F ). Then we have thefollowing Bauer{Fike{style bound [8]:mini X ((�0; �0); (�i; �i)) � mini j�i�0 � �i�0j � kY Hk2kXk2k(E; F )kF : (4.7)If X and Y are normalized as above, then kY Hk2 � pn and kXk2 � pnmaxi �i, which in(4.7) give us a Bauer{Fike{style bound for the generalized eigenvalue problem:mini X ((�0; �0); (�i; �i)) � nmaxi �ik(E; F )kF : (4.8)As for the standard eigenvalue problem, it is the most ill{conditioned eigenvalue that de-termines the size of the error bound. In words, (4.7) and (4.8) bound the smallest distance(measured in the chordal metric) between an eigenvalue of the perturbed and unperturbedmatrix pairs.It is possible to strengthen the classical Bauer{Fike bound (for the standard problem)giving a bound for each individual eigenvalue [7, 3], whose size is determined by the con-ditioning of the individual eigenvalue. By applying the same technique (under the sameassumptions as for (4.8) ) we can prove that any eigenvalue (�0; �0) with j�0j2+ j�0j2 = 1 of(A+E;B + F ) must lie in one of the regions (\balls")f(�; �); j�j2+ j�j2 = 1 : X ((�; �); (�i; �i)) � n�ik(E; F )k2g: (4.9)Notice that the sizes of the regions (bounds) are only a factor n larger than the �rst ordererror bound (4.5). Moreover, the global error bound (4.9) with respect to an eigenvalue(�i; �i) is only useful if it de�nes a region that does not intersect with regions correspondingto other eigenvalues. If two or more regions intersect, then we can only say that an eigenvalueof the perturbed matrix pair lies in the union of the overlapping regions.There also exist other Bauer{Fike{style bounds for the generalized eigenvalue problemand other generalizations (see [26] for a review and further references).4.2 Conditioning and Error Bounds for Left and Right Deating Sub-spaces Associated with a Cluster of EigenvaluesIf (A;B) has n distinct eigenvalues, then there exist non{singular matrices Y and X thattransform (A;B) to diagonal form (4.6). Moreover, their columns yi and xi are left andright eigenvectors associated with the eigenvalues (�i; �i) (i = 1 : n). Let Y H � P�1 and16



from (4.6) we have that AX+BX = Pdiag(�i+�i), i.e. the columns pi and xi of P and X ,respectively, span pairs of one{dimensional left and right deating subspaces. Accordingly,conditioning and error bounds for individual eigenvectors can be regarded as a special caseof error bounds for left and right deating subspaces.Without loss of generality we assume that (A;B) is in generalized Schur formA = " A11 A120 A22 # ; B = " B11 B120 B22 # : (4.10)In the following we review condition numbers and error bounds for left and right deat-ing subspaces associated with the cluster of m (1 � m � n � 1) eigenvalues (countingmultiplicities) of (A11; B11). To explain the bounds we need to introduce some de�nitions.4.2.1 Block{diagonalization and Separation of Two Matrix PairsAn equivalence transformation that block{diagonalizes (A;B) in generalized Schur form(4.10) can be expressed as" Im �L0 In�m # " A11 A120 A22 # ; " B11 B120 B22 #!" Im R0 In�m # = " A11 00 A22 # ; " B11 00 B22 #! : (4.11)Solving for (L;R) in (4.11) is equivalent to solve the generalized Sylvester equationA11R� LA22 = �A12;B11R� LB22 = �B12; (4.12)which can be rewritten as a 2m(n�m)� 2m(n�m) linear system Zux = b, whereZu = " In�m 
A11 �AT22 
 ImIn�m 
B11 �BT22 
 Im # (4.13)and x = " col(R)col(L) # ; b = " �col(A12)�col(B12) # :Moreover, let p = (1 + kLk2F )1=2; q = (1 + kRk2F )1=2: (4.14)In the perturbation theory for the generalized eigenvalue problem, p and q play the samerole as the norm of the spectral projector does for the standard eigenvalue problem [9].Indeed, if B = I , then p = q and p equals the norm of the projection onto an invariantsubspace of A. For the generalized eigenvalue problem we need both a left and a rightprojection norm since the left and right deating subspaces are (normally) di�erent.17



Another important quantity involved in the sensitivity analysis of deating subspaces(and eigenvalues) is the separation of two matrix pairs (A11; B11) and (A22; B22) [25]:Difu[(A11; B11); (A22; B22)] = infk(L;R)kF=1 k(A11R� LA22; B11R� LB22)kF : (4.15)The generalized Sylvester operator (A11R�LA22; B11R�LB22) in the de�nition of Difu isobtained from block{diagonalizing a regular matrix pair in upper block triangular form. Difuis a generalization of the separation between two matrices (Sep(A11; A22) = �min(In�m 
A11 � AT22 
 Im) [25]) to two matrix pairs and it measures the separation of their spectrain the following sense. If (A11; B11) and (A22; B22) have a common eigenvalue, then Difu iszero and it is small if there is a small perturbation of either (A11; B11) or (A22; B22) thatmakes them have a common eigenvalue.From the matrix representation (4.13) of the generalized Sylvester operator it can beshown [9] that Difu[(A11; B11); (A22; B22)] = �min(Zu): (4.16)Moreover, it follows that the generalized Sylvester equation has a unique solution if andonly if Difu > 0 and we can bound the norm of (L;R) ask(L;R)kF � k(A12; B12)kFDifu : (4.17)Notice that Difu[(A22; B22); (A11; B11)] does not generally equal Difu[(A11; B11); (A22; B22)](unless Aii and Bii are symmetric for i = 1; 2). Accordingly, the ordering of the argumentsplays a role for the separation of two matrix pairs, while it does not for the separation oftwo matrices (Sep(A11; A22) = Sep(A22; A11)). Therefore, we introduce the notationDifl[(A11; B11); (A22; B22)] = Difu[(A22; B22); (A11; B11)]: (4.18)An associated generalized Sylvester operator (A22R�LA11; B22R�LB11) in the de�nitionof Dif l is obtained from block{diagonalizing a regular matrix pair in lower block triangularform: " Im 0�L In�m # " A11 0A21 A22 # ; " B11 0B21 B22 #! " Im 0R In�m # = " A11 00 A22 # ; " B11 00 B22 #! :4.2.2 Conditioning of Left and Right Deating SubspacesAssume that (A;B) is in generalized Schur form (4.10) and that (A11; B11) contains thecluster of m eigenvalues with left and right deating subspaces L and R, respectively.Typically, L = spanfU1g and R = spanfV1g where U1 and V1 are the leading m columns ofthe unitary (orthogonal) U and V in (1.2) that transform (A;B) to generalized Schur form.Furthermore, let L0 = spanfU 01g and R0 = spanfV 01g be left and right deating subspaces18



of the perturbed matrix pair (A+E;B+F ). Then using the technique of Sun [27] one canprove the following �rst order bounds:sin�max(L;L0) � kU1 � U 01kF � k(E; F )kFDif l[(A11; B11); (A22; B22)] +O(k(E; F )k2F);sin�max(R;R0) � kV1 � V 01kF � k(E; F )kFDif l[(A11; B11); (A22; B22)] + O(k(E; F )k2F):From the series expansion of the arcsine function we can simplify these bounds further,giving the asymptotic angular bounds�max(L;L0) <� k(E; F )kFDif l[(A11; B11); (A22; B22)] ; (4.19)�max(R;R0) <� k(E; F )kFDif l[(A11; B11); (A22; B22)] : (4.20)These bounds imply that Dif l is the reciprocal of the condition number for eigenvectors(m = 1) and deating subspaces (m > 1) of a regular (A;B).4.2.3 Upper Bound on Perturbations and Global Error Bounds for DeatingSubspaces and Clustered EigenvaluesIn order to guarantee that the clusters in the (1; 1){blocks of (A;B) and the perturbedmatrix pair (A + E;B + F ) are of the same size m and uniquely de�ned, we have to putrestrictions on k(E; F )kF [9]:k(E; F )kF � min(Difu;Difl)(p2 + q2)1=2 + 2max(p; q):By imposing a somewhat stronger condition on k(E; F )kF , namelyk(E; F )kF � min(Difu;Difl)4max(p; q) � �; (4.21)� in (4.21) conform to the corresponding restriction for the standard eigenvalue problem(Sep(A11; A22)=4p) [3].We see that � may be small if the separation between the two matrix pairs is smallor the left and right projection norms are large, indicating that the (deating subspace)problem is ill{conditioned. A larger k(E; F )kF (> �) may imply that one eigenvalue inthe cluster moves and coalesces with another eigenvalue (outside the cluster). Indeed, �is a lower bound on the smallest k(E; F )kF such that an eigenvalue of (A11; B11) coalesceswith an eigenvalue of (A22; B22) under perturbation (E; F ). The bound � can be quiteconservative but is almost exact in some cases and a good estimate in many others. Inparticular, the following global error bounds for a pair of deating subspaces is guaranteedvalid for k(E; F )kF � � [9].As before, we assume that (A;B) is in generalized Schur form (4.10) and that (A11; B11)contains the cluster of m eigenvalues with left and right deating subspaces L and R,19



respectively. Further, let L0 and R0 be left and right deating subspaces of (A+E;B+F ).Then we have the following angle bounds for left and right deating subspaces of theunperturbed and perturbed matrix pairs [9]:If � � k(E; F )kF=� < 1, then�max(L;L0) � arctan� �p� �(p2 � 1)1=2� ; (4.22)�max(R;R0) � arctan� �q � �(q2 � 1)1=2� : (4.23)In other words, if � is small, then the perturbed pair of left and right deating subspacesare small perturbations of the exact pair of deating subspaces.The bounds (4.22), (4.23) are generalized and extended to pairs of reducing subspacesfor singular (A;B) [9, 10, 11].We are also interested to bound the error in the average of the eigenvalues of the clusterin (A11; B11). However, since we are faced with both �nite and in�nite eigenvalues it is notclear how to de�ne the average of the m eigenvalues �i = �i=�i. Only if we require that(A11; B11) contains a (proper) subset of the �nite eigenvalues or all in�nite eigenvalues (andno �nite eigenvalues) does the average of the cluster make sense. In the following theoremwe distinguish these two cases and formulate error bounds for the average of the clusteredeigenvalues.Theorem 4.1 Let (A11; B11) denote the block of the generalized Schur form of (A;B) thatcorrespond to the unperturbed cluster of eigenvalues, withDifx[(A11; B11); (A22; B22)] > 0 for x = l; u:Similarly, let (A011; B011) denote the corresponding block with perturbed eigenvalues associ-ated with (A+E;B + F ), where k(E; F )kF � � (4.21).Case 1. (A11; B11) contains a (proper) subset of the �nite eigenvalues, i.e. B11 is non{singular. Let �� denote the average of the m unperturbed eigenvalues of (A11; B11) and let��0 be the corresponding average of the perturbed eigenvalues of (A011; B011). Thenj��� ��0j � 1�min(B11) �1 + �max(A011)�min(B011)� 3pk(E; F )kF : (4.24)Case 2. (A11; B11) contains all in�nite eigenvalues and no �nite eigenvalues, i.e. A11 isnon{singular. Let �� = 0 denote the average of the m unperturbed eigenvalues of the recip-rocal problem (B11; A11) and, similarly, let ��0 be the corresponding average of the perturbedeigenvalues of (B011; A011). Thenj�� � ��0j � 1�min(A11) �1 + �max(B011)�min(A011)� 3pk(E; F )kF : (4.25)Proof In general, we can bound the average �� of the eigenvalues of an m�m matrix C asj��j � 1m mXi=1 j�ij � maxi j�ij � kCk2 � kCkF :20



In case 1 we havej��� ��0j � kB�111 A11 �B0�111 A011kF � kB�111 k2kA11 �A011kF + kB�111 �B0�111 kF kA011k2:Since B�111 �B0�111 = �B0�111 (B11 �B011)B�111 we have thatj��� ��0j � kB�111 k2(kA11 �A011kF + kB11 �B011kF kB0�111 k2kA011k2): (4.26)With the assumptions in the theorem we can apply the technique of Stewart [25] andprove that kA11 �A011kF � 3pk(E; F )kF ; kB11 �B011kF � 3pk(E; F )kF ;where p (4.14) is the norm of the left spectral projector.Using these bounds in (4.26) give us the error bound (4.24).In case 2 we have j��� ��0j � kA�111 B11 � A0�111 B011kF ;and the error bound (4.25) can be proved similarly. 2In the following we make some comments to the error bounds in Theorem 4.1. If B11 (incase 1) and A11 (in case 2) are well{conditioned with respect to inversion (i.e. �min(B11)� 0and �min(A11)� 0, respectively) then the error bounds can be expressed asj��� ��0j � c1pk(E; F )kF ; j��� ��0j � c2pk(E; F )kF ;where c1 and c2 are modest constants. These bounds conform with the correspondingerror bound for the average of a cluster of eigenvalues to the standard eigenvalue problem(2pkEkF). However, if �min(B11) (and �min(B011)) are small in case 1, or if �min(A11) (and�min(A011)) are small in case 2, then the average of the clustered eigenvalues can be quitesensitive to perturbations in (A;B), which is signaled by the quantities1�min(B11) �1 + �max(A011)�min(B011)� ;and 1�min(A11) �1 + �max(B011)�min(A011)� ;respectively, in the bounds (4.24) and (4.25). In case 1 this means that (A11; B11) is nearbya pencil with an in�nite eigenvalue and in case 2 (A11; B11) is nearby a singular pencil.Both cases represent ill{conditioned clustering problems. One way to tackle the most ill{conditioned cases with multiple in�nite eigenvalues and an almost singular A11 is to computeand separate the Jordan structure of the in�nite eigenvalue before any clustering takes place[10, 11]. It is well{known that the QZ algorithm applied to defective in�nite eigenvaluescan a�ect otherwise well-conditioned eigenvalues of (A;B) [32]. By separating the in�nitestructure from the rest of the spectrum before applying the QZ algorithm we circumventthis problem. 21



4.2.4 Optimal Backward Perturbation of Approximate Left and Right Deat-ing SubspacesSuppose that �L = span( �V1) and �R = span( �U1), with �U1H �U1 = �V1H �V1 = Im are approx-imate left and right deating subspaces of (A;B). We are interested to �nd (backward)perturbations of (A;B) such that the perturbed matrix pair has �L and �R as exact left andright deating subspaces. LetH � fH = (E; F ); E; F 2 Cn�n : (A+E) �R� �L; (B + F ) �R � �Lg;i.e. H de�nes the set of perturbations H = (E; F ) such that (A+E;B + F ) has �L and �Ras exact left and right deating subspaces. Moreover, let the right residuals with respect tothe approximate deating subspaces beRres � (RAres; RBres) = (A �U1 � �V1 �A11; B �U1 � �V1 �B11);where �A11 = �V1HA �U1 and �B11 = �V1HB �U1. Then there exist a unique optimal backwardperturbation Hopt = �Rres �U1H 2 H [28]:kHoptk = minH2H kHk = kRresk; (4.27)for any unitarily invariant norm.4.2.5 Residual{based Error Bound for Approximate Left and Right DeatingSubspacesAssume that �U = [ �U1; �U2] and �V = [ �V1; �V2] are computed transformations that take (A;B)to generalized Schur form:�V HA �U = " �A11 �A12�A21 �A22 # ; �V HB �U = " �B11 �B12�B21 �B22 # ;where the entries of �A21 and �B21 are small and �U; �V unitary (orthogonal) to machineprecision accuracy.Then �L = span( �V1) and �R = span( �U1) are approximate left and right deating subspacesof (A;B) and we compute their left and right residuals:Lres � (LAres; LBres) = ( �V1HA� �A11 �U1H ; �V1HB � �B11 �U1H);Rres � (RAres; RBres) = (A �U1 � �V1 �A11; B �U1 � �V1 �B11):It is straightforward to show thatkLAreskF = k �A12kF ; kLBreskF = k �B12kF ; kRAreskF = k �A21kF ; kRBreskF = k �B21kF :(4.28)We see that the norm of the right residuals are always small, while in general we cannotexpect the norm of the left residuals to be small. However, knowing that there exist an op-timal backward perturbation of approximate left and right deating subspaces it is possible22



to derive a residual{based error bound. We can rewrite the residual{based error bound fordeating subspaces in [28] as the following angular error bounds:If � � 4kLreskF kRreskF =Dif l2 < 1, then�max(L; �L) � arctan�2kRreskFDif l � ; (4.29)�max(R; �R) � arctan�2kRreskFDif l � : (4.30)Notice that the bounds (4.29) and (4.30) are approximate in the sense that the theoryassumes that �U; �V are exactly unitary (orthogonal), while we can only guarantee that theyare unitary (orthogonal) to machine precision accuracy.From the de�nition of � we also get a bound on k(E; F )kF similar to (4.21) that guar-antees that the residual{based bounds are valid for perturbations (E; F ) ful�llingk(E; F )kF � kRreskF � Dif l24kLreskF � �r: (4.31)4.3 Summary of Error Bounds for Eigenvalues and EigenspacesIn Table 4.1 and Table 4.2 we summarize the error bounds presented in Section 4 (see earliersubsections for de�nitions and notation used). Table 4.1 shows the asymptotic bounds for asimple eigenvalue (�; �) where � = �=�, the average of a cluster of eigenvalues �� (or �� = 0for the in�nite eigenvalues, i.e. �� = 1=��), a left and right eigenvector pair y and x, and apair (left and right) of deating subspaces L and R.Table 4.1: Asymptotic error bounds for the generalized eigenvalue problemBounds for Error bound CommentSimple eigenvalue: X ((�; �); (�0; �0)) <� �k(E; F )kF � = �=�Eigenvalue cluster:Average of �nite �i j��� ��0j <� c1pk(E; F )kF See also global boundsAverage of in�nite �i = 1=�i j��� ��0j <� c2pk(E; F )kF (c1 and c2 are constants)Eigenvector pair:Left �max(y ; y 0) <� k(E; F )kF=Dif l m = 1Right �max(x ; x 0) <� k(E; F )kF=Difl m = 1Deating subspace pair:Left �max(L;L0) <� k(E; F )kF=Difl 1 < m � n � 1Right �max(R;R0) <� k(E; F )kF=Difl 1 < m � n � 1The asymptotic bounds are only valid for su�ciently small perturbations. If the prob-lem is ill{conditioned, the asymptotic bounds may only hold for extremely small valuesof k(E; F )k. Therefore, we also provide similar global error bounds (displayed in Table23



4.2), which are valid for all perturbations that satisfy an upper bound on k(E; F )k. Theserestrictions are � (4.21) and �r (4.31), where �r is associated with residual{based errorbounds. For ill{conditioned problems these restrictions will also be small. Indeed, a smallvalue of � (or �r) shows that the cluster of eigenvalues in the leading m � m blocks of(A;B) is ill{conditioned in the sense that small perturbations of (A;B) may imply that oneeigenvalue in the cluster moves and coalesces with another eigenvalue (outside the cluster).Accordingly, this also means that the associated (left and right) deating subspaces aresensitive for small perturbations, since the size of the perturbed subspaces may change forsmall perturbations of (A;B).Table 4.2: Global error bounds for the generalized eigenvalue problemBounds for Error bound Restriction on k(E; F )kFSimple eigenvalue: Bound (4.8) None (holds for all (E; F ))(� = �=�; j�j2+ j�j2 = 1) Bound (4.9) None (holds for all (E; F ))Eigenvalue cluster:Average of �nite �i Bound (4.24) � � � min(Difu;Difl)=4max(p; q)Average of in�nite �i = 1=�i Bound (4.25) � � � min(Difu;Difl)=4max(p; q)Eigenvector pair:Left Bound (4.22) � � � min(Difu;Difl)=4max(p; q)Right Bound (4.23) � � � min(Difu;Difl)=4max(p; q)Left (residual{based) Bound (4.29) � �r � Dif l2=4kLreskFRight (residual{based) Bound (4.30) � �r � Dif l2=4kLreskFDeating subspace pair:Left Bound (4.22) � � � min(Difu;Difl)=4max(p; q)Right Bound (4.23) � � � min(Difu;Difl)=4max(p; q)Left (residual{based) Bound (4.29) � �r � Dif l2=4kLreskFRight (residual{based) Bound (4.30) � �r � Dif l2=4kLreskFIt is interesting to compare the sizes of � and �r. We focus on ill{conditioned problemswhere the separation between the two clusters are small (i.e. both Difl and Difu are small)and the deating subspaces are sensitive (i.e. the associated generalized Sylvester equationhas large{normed solutions (L;R)). Since Dif l2 appears in the nominator of �r while weonly have min(Difu;Difl) in the nominator of � it seems as if �r puts harder restrictionson the perturbations. However, if we use the expressions (4.28) in �r, the bound (4.17)on (L;R) to bound p and q giving that they are of size O(k( �A12; �B12)kF=Difu), then wesee that � and �r are qualitatively of the same size. It is of course possible to constructexamples where � is smaller than �r and vice versa.4.4 Condition Estimates and Error Bounds ComputedOur software (described in more detail in Section 5) compute estimates of the followingquantities that appear in the condition numbers and error bounds summarized in tables 4.1and 4.2. 24



� S(�) = ��1, the reciprocal value of the condition number � (4.4) for an individualeigenvalue � = �=�.Given the left and right eigenvectors y and x corresponding to �, the reciprocal con-dition number is computed in O(n2) ops (oating point operations) asS(�) = qjyHAxj2 + jyHBxj2kxk2kyk2 : (4.32)If both � and � are zero, then (A;B) is singular and S(�) = �1 is reported.The (left and right) eigenvectors computed by LAPACK are normalized such that thelargest component will have the sum of the modulus of the real and imaginary partsequal to one (e.g., see GEGV).� Difu (4.16) and Dif l (4.18), i.e. the separation(s) between two matrix pairs.Difl is a reciprocal condition number for an individual (left or right) eigenvector or a(left or right) deating subspace (see Section 4.2.2). Both Difu and Difl appear in �.Our algorithms for estimating Difu and Dif l are discussed in Section 4.4.1.� p�1 and q�1, the reciprocal values of the left and right projector norms as de�ned in(4.14).These values are computed straightforwardly using L and R from the generalizedSylvester equation (4.12). The cost for solving (4.12) is 2m2(n � m) + 2m(n � m)2ops, where m � 1 is the dimension of the deating subspace(s) corresponding tothe selected eigenvalues. Given L and R the cost for computing p�1 and q�1 is onlyO(m(n�m)) ops.By using the estimates of these quantities in the error bounds, the user gets enoughinformation for assessing the accuracy of computed eigenvalues (or the average of clusteredeigenvalues), eigenvectors or deating subspaces.We also compute the algorithm{independent residual{based error bound(s) (4.29), (4.30)and �, the condition that guarantees the validity of the bound(s). The residual{basederror bound and � are computed using a Frobenius normed{based estimate of Dif l (seeSection 4.4.1). The residuals (4.28) associated with the approximate deating subspacesare computed straightforwardly.4.4.1 Estimating Difu and DiflLAPACK{style algorithms and software for estimating Difu (4.16) are presented in [19]. Thebasic problem is to �nd a lower bound on Dif�1u [(A11; B11); (A22; B22)] � kZ�1u k2, whereZu is the matrix representation (4.13) of the generalized Sylvester operator. It is possibleto compute lower bounds on Dif�1u by solving generalized Sylvester equations in triangularform. Both Frobenius norm{based and one{norm{based Difu{estimators are discussed andevaluated in [19]. The one{norm{based estimator makes the condition estimation uniformwith other parts of LAPACK (e.g., the standard eigenvalue problem). The Frobenius norm-based estimator o�ers a low{cost and equally reliable estimator. The one{norm{basedestimator is a factor 3-10 times more expensive.25



By knowing a lower bound DIFINV on kZ�1u k2 we also have an upper bound DIF =1=DIFINV on the separation between two regular matrix pairs. Since we use blocked al-gorithms to solve the generalized Sylvester equations involved in computing DIFINV, ourestimators will mainly execute Level 3 operations. In the following we outline the algorithmsfor the Difu{estimators. From the de�nition of Difl (4.18) we see that Dif l{estimators canbe computed by using our algorithms for estimating Difu. Our software provide (optionally)both Frobenius norm{based and one{normed{based estimators for Difu and Dif l, respec-tively (see Section 5).A Frobenius Norm-Based Estimator From the Zux = b representation (4.13) of thegeneralized Sylvester equation (4.12) we get a lower bound on Dif�1u :k(L;R)kF =k(C; F )kF = kxk2=kbk2 � kZ�1u k2: (4.33)To get an improved estimate we want to choose right hand sides (C�; F �) such that theassociated solution (L�; R�) has as large norm as possible. Then the quantity�F � k(L�; R�)kF =k(C�; F �)kF ; (4.34)is our lower bound on kZ�1u k2. The work to compute �F is comparable to solve a generalizedSylvester equation, which costs O(m3 + m2(n � m) + m(n � m)2 + (n � m)3) ops (only2m2(n � m) + 2m(n � m)2 if the matrix pairs are in generalized Schur form) [21]. Thisis a very modest cost compared to compute the exact value of �min(Zu), which requiresO(m3(n�m)3) ops.Two Frobenius norm{based estimators TDIFE and TDIFD are discussed in [19], whichare modi�cations of estimators BSOLVE and BSOLVD in [21]. The main di�erences concernhow contributions to �F from di�erent subsystems are computed and the look ahead strate-gies of the estimators. TDIFE is the default Frobenius norm-based estimator in our software(see Section 5).An One{Norm{Based Estimator From the relationship1p2m(n�m)kZ�1u k1 � kZ�1u k2 � q2m(n�m)kZ�1u k1; (4.35)we know that kZ�1u k1 can never di�er more than a factor p2m(n�m) from kZ�1u k2. So itmakes sense to compute an one{norm{based estimator of Dif�1u .The LAPACK routine LACON implements a method for estimating the one{norm of asquare matrix, using reverse communication for evaluating matrix{vector products [14, 15].We apply this method to kZ�1u k1 by providing the solution vectors x and y of Zux = z anda transposed system ZTu y = z, where z is determined by LACON. In each step only one ofthese generalized Sylvester equations is solved using blocked algorithms [19]. The cost forcomputing this bound is roughly equal to the number of steps in the reverse communicationtimes the cost for one generalized Sylvester solve.Notice, kZ�1u k1 also satisfy (4.35), i.e. can never di�er more than a factorp2m(n�m)from kZ�1u k2. Moreover, since kBk1 = kBT k1 the same method can be used to computean in�nity{norm{based estimate of Dif�1u . 26



4.4.2 Estimating Dif l for Individual Eigenvectors Associated with a ComplexConjugate Pair of EigenvaluesThe estimation of Difl discussed in the preceding subsection is applicable to pairs of deatingsubspaces (m � 2) as well as to individual eigenvector pairs (m = 1). As before we assumethat (A;B) is transformed to generalized Schur formQHAZ = S � " S11 S120 S22 # ; QHBZ = T � " T11 T120 T22 # : (4.36)In complex arithmetic we can always choose (S11; T11) to be the individual eigenvalue �1 =�1=�1 = S11=T11 (real or complex) we want to consider. Moreover, the �rst column of Qand Z form a pair of deating subspaces, where q1 also is a right eigenvector correspondingto �1. In this case we can, for example, apply the one{normed{based estimator to estimateDif l.What is said above also applies in real arithmetic to real eigenvalues of (A;B). However,there is an extra complication to estimate Difl for the individual eigenvectors correspondingto a complex conjugate pair of eigenvalues. For a real matrix pair, Q and Z in (4.36) areorthogonal and (S11; T11) is a 2 � 2 matrix pair corresponding to the complex conjugatepair of eigenvalues �1 and ��1. It exits unitary U1 and V1 such thatUH1 S11V1 = " �1 x0 �2 # ; UH1 T11V1 = " �1 y0 �2 # ; (4.37)where �1 = 1 + i�1, �2 = 2 + i�2 and �1; �2 are real numbers. Now, the complexconjugate pair of eigenvalues is given by �1 = �1=�1 and ��1 = �2=�2 (i.e. 1=�1 = 2=�2and �1=�1 = �2=�2).If we are interested to estimate Dif l associated with �1, then we can chooseU = " U1 00 In�2 # ; V = " V1 00 In�2 # ;and we get UHSV = " �1 S 0120 S 022 # ; UHTV = " �1 T 0120 T 022 # : (4.38)Notice that only (S012; T 012) and the �rst row of (S022; T 022) have complex entries. Moreover,��1 = �2=�2 belongs to the spectrum of (S 022; T 022).From [9] we have the following explicit expression for Dif l:Dif l[(�1; �1); (S 022; T 022)] = �min(Zl); (4.39)where Zl = " �1 
 In�1 �1
 S 022�1 
 In�1 �1
 T 022 # ; (4.40)and Zl is a 2(n � 1) � 2(n � 1) matrix. Dif l associated with (�1; �1) and its conjugate(�2; �2) have the same value. 27



In contrary to the standard eigenvalue problem [3], there is no simple and inexpensivetrick to stay in real arithmetic and perform a one{normed{based estimate of kZl�1k2. TheLU factorization of Zl may give L and U with all entries having non{zero imaginary parts.Accordingly, the cost for doing the estimation of Difl (in real arithmetic) is similar to thecost for doing it entirely in complex arithmetic. From the de�nition of Dif l it is possible toshow the following two inequalities:�min(Zl) � Dif l[(�1; �1); (�2; �2)] = �min " �1 ��2�1 ��2 #! � d1; (4.41)and �min(Zl) � max(1; ����12 ����)Difl[(S11; T11); (S22; T22)] � d2; (4.42)where the Sii and Tii blocks are from the generalized real Schur form. Now, we choosemin(d1; d2) as our estimate for Difl = �min(Zl). This estimate can be weaker than theestimate computed in complex arithmetic, but is normally a su�ciently good estimate. Wereport results for both the real and complex estimators in Section 6.1.3 for a selection ofproblems. If �1 and ��1 are close but well{separated from the rest of the spectrum, thend1 is a good estimate of �min(Zl). Whether d2 is a good estimate to �min(Zl) will mainlydepend on the size of (S012; T 012) in (4.38) (i.e. the \departure from block{diagonality" ofthe generalized Schur form).5 Outline of the SoftwareFollowing the LAPACK conventions and standards [1], we have developed Fortran 77 rou-tines that perform the following computations for a regular matrix pair (A;B)(in generalizedSchur form):� reorder eigenvalues (diagonal blocks) in the generalized Schur form (routines TGEXCand TGEX2),� compute (left and right) deating subspaces with speci�ed eigenvalues (routine TGSEN),� estimate condition numbers for speci�ed eigenvalues (or a cluster of eigenvalues) andassociated eigenvectors or deating subspaces (routines TGSNA, TGSEN), and computeresidual{based approximate error bounds for a pair of deating subspaces (routineGSRBB).Following the LAPACK conventions for naming, in YYZZZ stands for S(ingle), D(ouble),C(omplex) or Z (Double complex). Routines for all four data types are available. In thefollowing, we describe these top{level computational routines in some detail, while the aux-iliary routines are just mentioned briey. The software uses LAPACK routines to computemachine dependent thresholds, generalized Schur forms of matrix pairs, eigenvalues andeigenvectors, matrix factorizations (QR and RQ), matrix norms, and to copy matrices,perform column{ and row{swapping and so on. BLAS routines are used to perform ba-sic linear algebra operations such as matrix{matrix (Level 3), matrix{vector (Level 2) andvector (Level 1) operations. 28



5.1 Reordering of Diagonal BlocksTGEXC reorders the diagonal blocks of (A;B) in generalized Schur form. The reorderingis speci�ed by the parameters IFST and ILST. The diagonal block with row index IFST ismoved to row ILST by a sequence of transpositions of adjacent blocks. If IFST (on entry)pointed to the second row of a 2 � 2 block, it is changed to point to the �rst row. ILSTalways points to the �rst row of the block in its �nal position, which may di�er from itsinput value by +1 or �1. Each swap in the reordering is performed with a call to TGEX2(see below), and optionally, the matrices of generalized Schur vectors Q and Z are updatedwith the orthogonal (unitary) equivalence transformations performed. INFO reports if thereordering was successful or if any swap was rejected due to ill-conditioning. The callingsequence and the leading comment lines of DTGEXC are listed in Appendix A.TGEX2 implements a direct algorithm with guaranteed backward stability for swappingtwo adjacent diagonal blocks (A11; B11) and (A22; B22) of a matrix pair (A;B) in generalizedSchur form, where the diagonal blocks are of size N1� N1 and N2� N2, respectively. In thereal case N1 and N2 are 1 or 2. If at least one of them is 2, method 2 in Section 3.2 isused to perform the swapping and stability tests. If both eigenvalues are real, N1 = N2 = 1and the swapping is performed using (orthogonal) Givens rotations [30]. In the complexcase we perform all reordering with (unitary) Givens rotations. If the problem is too ill{conditioned (i.e. the swap does not pass the stability tests), the swap is rejected. As forTGEXC, this information is reported on exit by the parameter INFO. The user speci�es theindex of the �rst block (A11; B11) in parameter J1. Optionally, the routine also accumulatesthe orthogonal (unitary) equivalence transformation in Q and Z. The calling sequence andthe leading comment lines of DTGEX2 are listed in Appendix B.5.2 Computing Deating Subspaces with Speci�ed EigenvaluesTGSEN computes (left and right) deating subspaces associated with some speci�ed eigen-values of (A;B) in generalized Schur form. Using TGEXC, (A;B) is reordered so that aselected cluster of M eigenvalues appears in the leading M � M diagonal blocks of A and B.The logical array SELECT speci�es the eigenvalues in the cluster, and thereby the value ofM. In the real case, if an eigenvalue that belongs to a complex conjugate pair is selected,then by default its conjugate will also belong to the selected cluster (which conforms to thestandard eigenvalue problem in LAPACK). Optionally, the matrices of generalized Schurvectors Q and Z are updated with the orthogonal (unitary) equivalence transformationsperformed. Then, the leading M columns of Q and Z form orthonormal (unitary) bases ofthe associated left and right deating subspaces. By calling the LAPACK routine GEGV,TGSEN also computes the generalized eigenvalue pairs (�i; �i) for i = 1 : n , where �i is acomplex number and �i is a real number. In the real case, real and imaginary parts of �i arereported in ALPHAR(i) and ALPHAI(i), respectively, and �i in BETA(i). In the complex case,they are reported in the complex arrays ALPHA and BETA. INFO reports if the reordering wassuccessful or if any swap was rejected due to ill-conditioning. The calling sequence and theleading comment lines of DTGSEN are listed in Appendix C.29



5.3 Condition Estimation and Approximate Error BoundsOptionally, TGSEN also computes estimates of quantities (condition numbers) that ap-pear in the error bounds summarized in tables 4.1 and 4.2. These are the reciprocalvalues of the left and right projection norms p and q (de�ned in (4.14)), and estimatesof the separation between two matrix pairs de�ned by Difu[(A11; B11); (A22; B22)] (4.16)and Dif l[(A11; B11); (A22; B22)] (4.17). The reciprocal values of p and q are reported inPL and PR, respectively, and estimates of Difu and Dif l in DIF(1) and DIF(2), respec-tively. The functionality obtained from TGSEN is speci�ed by setting the parameter IJOB,which includes the choice of estimator for Difu and Dif l (one{normed{based or Frobeniusnormed{based).TGSNA estimates the reciprocal condition numbers for speci�ed eigenvalues and eigen-vectors of a matrix pair (A;B) in generalized Schur form. The logical array SELECT speci�esthe M eigenpairs (all or a subset) for which condition numbers are required. The reciprocalvalues of estimates for the eigenvalue condition numbers S(�) (4.32) are reported in thearray S and the corresponding reciprocal values of (Frobenius normed{based) estimates forthe eigenvector condition numbers Dif l are reported in the array DIF. The calling sequenceand the leading comment lines of DTGSNA are listed in Appendix D.GSRBB computes an algorithm{independent residual{based error bound for a pair (leftand right) deating subspaces of a matrix pair (C;D) = QH(A;B)Z, where Q and Ztransform the original matrix pair (A;B) to generalized Schur canonical form such that theM-by-M (1,1){block of (C;D) holds a selected cluster of eigenvalues. Optionally, a (Frobeniusnormed{based) estimate of Dif l[(C11; C11); (D22; D22)] is reported in DIF. An estimate ofthe bound(s) (4.29), (4.30) is reported in RBB, and an estimate on �, which should be lessthan 1, is reported in CNDTN. RRES is the norm of the backward perturbation kHoptk (4.27)associated with the computed pair of deating subspaces (i.e. the �rst M columns of Q andZ). INFO is set to 1 if CNDTN � 1. The calling sequence and the leading comment lines ofDGSRBB are listed in Appendix E.Notice, that it is only in TGSEN where the user has the option to choose between one{normed{based or Frobenius normed{based estimates of Difu and Dif l. The estimation ofDif l for eigenvectors in TGSNA and for deating subspaces in GSRBB make use of the lessexpensive but equally reliable Frobenius normed{based estimator (see Section 4.4).6 Computational ExperimentsWe have performed an extensive testing of our software on problems ranging from well{conditioned to extremely ill{conditioned. In the following we report detailed results froma selection of test problems as well as a summary of results from the test programs. Allresults presented in the coming sections are computed on a Sun SPARC station 2 in doubleprecision real (and complex) arithmetic with unit roundo� � = EPS � 2.2D-16.6.1 Accuracy and Reliability ResultsWe have chosen to illustrate the stability and accuracy of our software for a selection ofproblems \tagged" from 1 to 23, where the basic operation is a swapping of two 2�2 blocks30



in a 4� 4 matrix pair (A;B) in generalized real Schur formA = " A11 A120 A22 # ; B = " B11 B120 B22 # :The stability tests guarantees that the swapping of two diagonal blocks at most results inO(�k(A;B)kF) changes in the original matrix pair. In certain (ill{conditioned) cases thisperturbation is enough to change individual eigenvalues a lot (e.g., a real multiple eigenvalue� of multiplicity k might spread around in a circle in the complex plane with center � andradius O(�1=k)). However, for well{conditioned or only moderately ill{conditioned casesthe change of the eigenvalues is an adequate measure on the reliability and accuracy of areordering method. Besides, comparing di�erent reordering methods (including the variantsdiscussed in Section 3.2 and the QZ{based method in [30]), we also report estimates ofcondition numbers and error bounds for eigenvalues and eigenspaces.6.1.1 Test ProblemsThe �rst group of problems (1, 6 and 11) are adopted from [2], and here we treat a standardeigenvalue problem as a generalized one, making it more ill-conditioned. We choose A in(A;B) as0BBB@ 2 �87 �20000 10005 2 �20000 �10001 �1137 1 1CCCA ;0BBB@ 1 �3 3576 48881 1 �88 �14401:0001 �31:0001 1:0001 1CCCA ;0BBB@ 1 �100 400 �10000:001 1 1200 �101:0001 �3100 1:0001 1CCCA ;for problems 1, 6 and 11, respectively, and B = I4. Notice that all (1; 2){blocks of A havequite large norm.The following matrix pair (A;B) de�nes the second group of problems (2, 7 and 12):A = 0BBB@ 1 1 7 5�1 1 5 91 1�1 1 1CCCA ; B = 0BBB@ � � 1 1 1CCCA ; (6.1)with the eigenvalues �1;2 = ��1�i��1 and �3;4 = 1�i, which move along the lines starting atorigin and passing (1; i) and (1;�i), respectively. When 0 < � < 1 decreases, the eigenvalues�1;2 move away from �3;4 along these lines. Notice that Difl = Difu is constant � 0:7E � 2for problems 2, 7 and 12 corresponding to � = 1E�3, 1E�9 and 1E�15, respectively.The following matrix pair (A;B) de�nes the third to �fth group of problems ((3, 8, 13),(4, 9, 14) and (5, 10, 15)):A = 0BBB@ 1 � x x�� 1 0 x1 + � ��� 1 + � 1CCCA ; B = 0BBB@ 1 0 x x0 1 0 x1 00 1 1CCCA ;31



Table 6.1: Problem characteristics, chordal distances and reciprocal condition numbersTag � � x X (�1; �2) X (�1; �3) S(�1;2) S(�3;4) p�1 q�1 Difl1 - - - 1E�1 3E�3 6E�4 6E�4 2E�05 2E�05 1E�026 - - - 7E�1 3E�4 1E�6 1E�6 4E�07 4E�07 3E�0411 - - - 7E�1 3E�4 3E�8 3E�8 2E�08 2E�08 1E�072 1E�3 - - 1E�3 6E�1 1E+0 3E�1 1E�01 1E+00 7E�017 1E�9 - - 1E�9 6E�1 1E+0 3E�1 1E�01 1E+00 7E�0112 1E�15 - - 1E�15 6E�1 1E+0 3E�1 1E�01 1E+00 7E�013 1E�3 1E+0 5E�1 7E�1 3E�4 4E�3 4E�3 2E�03 2E�03 4E�048 1E�3 1E+3 5E�1 2E�3 1E�9 5E�3 5E�3 4E�06 4E�06 7E�0713 1E�3 1E+9 5E�1 2E�9 1E�21 5E�3 5E�3 8E�07 8E�07 8E�094 1E�1 1E�1 5E�1 1E�1 5E�2 3E�1 3E�1 2E�01 2E�01 5E�029 1E�4 1E�4 5E�1 1E�4 5E�5 3E�4 3E�4 2E�04 2E�04 5E�0514 1E�9 1E�9 5E�1 1E�9 5E�10 3E�9 3E�9 2E�09 2E�09 5E�105 1E�5 1E�5 0 1E�5 5E�6 1E+0 1E+0 1E+00 1E+00 5E�0610 1E�5 1E�5 1E+2 1E�5 5E�6 2E�7 2E�7 8E�08 8E�08 5E�0615 1E�5 1E�5 1E+4 1E�5 5E�6 2E�9 2E�9 8E�10 8E�10 5E�0616 1E�3 - - 0 1E�3 3E�22 1E�9 5E�10 5E�10 4E�1017 1E�6 - - 0 1E�6 2E�29 1E�18 5E�19 5E�19 2E�1618 1E�3 - - 2E�7 1E�3 1E�13 1E�9 5E�10 5E�10 4E�1019 1E�6 - - 1E�7 1E�6 8E�20 1E�18 9E�16 9E�16 5E�1820 1E�3 - - 0 1E�3 3E�16 3E�16 2E�06 2E�06 4E�1021 1E�6 - - 0 1E�6 3E�16 3E�12 2E�12 2E�12 2E�1622 1E�3 - - 1E�7 1E�3 7E�8 3E�6 2E�06 2E�06 4E�1023 1E�6 - - 2E�7 1E�6 5E�16 3E�12 7E�12 7E�12 2E�16
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where x represents a uniformly distributed random number 2 (�x; x). The eigenvaluesof (A;B) are �1;2 = 1 � i� and �3;4 = 1 + � � i�. For problems 3, 8 and 13 we keep �(= 1E�3) and x (= 0.5) constant and vary � (= 1, 1E+3 and 1E+9, respectively). Thisimplies that the eigenvalues move along the vertical lines through 1 and 1 + � and formtwo separated clusters. For problems 4, 9 and 14 we keep x (= 0.5) constant and varies� = � (= 1E�1, 1E�4 and 1E�9, respectively). For � small enough we just have one clusterof close eigenvalues. For problems 5, 10 and 15 we keep � = � (= 1E�5) constant andvary x (= 0, 1E+2 and 1E+4, respectively). Problem 5 corresponds to a homogeneousgeneralized Sylvester equation and in this group of problems we only increase the departurefrom "block-diagonality", while keeping one cluster of close eigenvalues.Problems 16{23 are all modi�cations of a problem in [16], where (A;B) is de�ned as[18]: A11 =  1 �11 �1 ! ; A22 = A11 � � 1 + � 00 �1 ! ; B11 = B22 = I2:For problems 16 � 19, col(A12) is equal to the left singular vector corresponding to �min(I2
A11�AT22
I2) and B12 = I2. For problems 20 � 23, col(A12; B12) is equal to the left singularvector corresponding to �min(Zu), where Zu is de�ned in (4.13). The parameter � = 1E�3for problems 16, 18, 20 and 22 and � = 1E�6 for problems 17, 19, 21 and 23. The last twoproblems in each group (i.e. 18, 19 and 22, 23) are orthogonally equivalent to the �rst two(i.e. 16, 17 and 20, 21, respectively).Table 6.1 shows problem characteristics, including the chordal distance between �1 and�2 and �1 and �3, reciprocal values of the individual condition numbers for the two complexconjugate pairs (computed by DTGSNA), reciprocal values of (left and right) projector norms(computed by DTGSEN) and exact values of Difl (computed as �min(Zl)). Several of theseproblems represent ill{conditioned eigenvalue problems, where both individual eigenvalues,the cluster of eigenvalues in the (1; 1){block and associated pair of deating subspaces havelarge condition numbers.6.1.2 Comparing Di�erent Reordering MethodsWe report results from the three method variants discussed in Section 3.2 and the QZ{based Algorithm 590 [30]. Results from a prototype implementation in Matlab of Method1 in Section 3.2 (the generic method) has been reported earlier [18]. Besides, the �rst andthe last two groups of problems above, results were reported for problems with �nite andin�nite eigenvalues (simple as well as defective).Let ( �A; �B) denote the computed matrix pair after the swapping of two diagonal blocksand �Q; �Z be the computed transformation matrices that perform the requested reordering.Now, we consider the following questions:� How close is ( �Q �A �ZT ; �Q �B �ZT ) to the original matrix pair (A;B)?� How nearly orthogonal are the computed transformation matrices �Q and �Z?� How close are the eigenvalues of (Aii; Bii) (before the swapping) and ( �Aii; �Bii) (afterthe swapping)? 33



To answer the �rst two questions we measure the quantitiesEA;B = k(A� �Q �A �ZT ; B � �Q �B �ZT )kF�k(A;B)kF ; (6.2)k( �A21; �B21)kF ; (6.3)EQ = kIn � �QT �QkF� ; EZ = kIn � �ZT �ZkF� ; (6.4)where � is the relative machine precision. Ideally, EA;B and EQ; EZ should be of size O(1)and the norms of the (2; 1)-blocks (6.3) should be of size O(�).In tables 7.1, 7.2, 7.4 and 7.5 we display these quantities and the absolute backward errork(E; F )kF � k(A� �Q �A �ZT ; B� �Q �B �ZT )kF for Method 1, Method 2, Method 3 and Algorithm590, respectively. In summary, Method 3 and Algorithm 590 (which both are based on QZiterations) perform the swapping in all cases with small backward errors in (A;B). Thedirect methods 1 and 2 reject the swaps for problems 18, 19, 22 and 23. Moreover, Method2 rejects the swap for problem 13. In Table 7.3 we show computed stability test values andtolerances. We accept a swap if and only if both the weak and the strong stability testvalues are smaller than tol1 = tol2 (see Section 3.2). If a swap is rejected due to (severe)ill{conditioning we can still impose a swap by increasing the tolerances in the stability tests,which is done for methods 1 and 2 to get the results for the \rejected swaps" in tables 7.1and 7.2.To answer the last question we display computed eigenvalues after the reordering. Num-bers in bold font show the absolute error in computed eigenvalues. Table 6.2 and Table6.3 illustrate the well{known fact that small backward errors do not necessarily imply smallerrors in the computed eigenvalues. Here the direct Method 2 produces much more accu-rate eigenvalues than Algorithm 590. For these examples Method 1 and Method 2 produceexactly the same eigenvalues but this is not always the case as we will see later.Table 6.2: Eigenvalues after reordering for problems 1, 6 and 11Tag Alg. 590 { Real parts Alg. 590 { Imaginary parts1 0.1000000000637105E+01 � 0.2017424100339241E+020.1999999999360595E+01 � 0.2085665361375716E+026 0.1000999999900501E+01 � 0.1732916616366925E+010.1000000000099329E+01 � 0.1732050807522568E+0111 0.1000998004480817E+01 � 0.1000004238589241E+010.1000001995519146E+01 �0.9999957594733729E+00Tag Method 2 { Real parts Method 2 { Imaginary parts1 0.1000000000000001E+01 � 0.2017424100183201E+020.2000000000000000E+01 � 0.2085665361461420E+026 0.1001000000000000E+01 � 0.1732916616574496E+010.9999999999999999E+00 � 0.1732050807568877E+0111 0.1000999999999995E+01 � 0.1000000000000186E+010.9999999999999991E+00 � 0.9999999999999453E+0034



Table 6.3: Eigenvalues after reordering for problems 5, 10 and 15Tag Alg. 590 { Real parts Alg. 590 { Imaginary parts5 0.1000010000000000E+01 � 0.1000000000006551E-040.1000000000000001E+01 � 0.9999999999996121E-0510 0.1000010015362113E+01 � 0.9986863986519929E-050.9999999846379060E+00 � 0.1002579812190853E-0415 0.1000063691043548E+01 �0.0000000000000000E+000.1000011414827676E+01 � 0.1394322538135408E-04Tag Method 2 { Real parts Method 2 { Imaginary parts5 0.1000010000000000E+01 � 0.1000000000000000E-040.1000000000000000E+01 � 0.1000000000000000E-0410 0.1000010000000000E+01 � 0.9999999999295905E-050.9999999999999998E+00 � 0.1000000000003913E-0415 0.1000010000000000E+01 � 0.9999999999775261E-050.1000000000000001E+01 � 0.1000000000094131E-04
Table 6.4: Eigenvalues after reordering for problem 12Method Real part Imaginary part590 0.9999999999999998E+00 � 0.9999999999999994E+000.1000005074603372E+11 � 0.9999999999642134E+103 0.9999999999998981E+00 � 0.9999999999999978E+000.1000000000000006E+11 � 0.9999999999999947E+102 0.9999999999998981E+00 � 0.9999999999999993E+00B = QR 0.1000000000000003E+11 � 0.9999999999999968E+101 0.9999999999998976E+00 � 0.9999999999999988E+000.9999917788454498E+10 � 0.1000004769348030E+1135



In Table 6.4 we show that Method 2 and Method 3 compute the most accurate eigenval-ues for problem 12, and are superior to Method 1 and Algorithm 590. Moreover, we havenot found any example where Method 1 preserves eigenvalues better than Method 2.Notice that in all cases where Method 2 rejected a swap (except problem 13), Algorithm590 produced eigenvalues with no accuracy at all (as all methods did when a rejectedswap was imposed!). For problem 13, Algorithm 590 produced eigenvalues to half machineprecision after the reordering. On the other hand, if SMIN, the threshold for checking non{zero diagonal entries in the LU factorization routine DGELUF in the generalized Sylvestersolver (see [19]) is set to the relative machine precision � instead of �kZkM (where kZkMis the modulus of the largest element in the matrix to factorize), Methods 1{3 perform theswap of the eigenvalues to almost full machine precision. These results are \tagged" 13* intables 7.1, 7.2, 7.3 and 7.6.6.1.3 Results from Condition Estimation and Error BoundsIn Table 6.1 we reported some condition estimation results, namely reciprocal values of theindividual condition numbers for the two complex conjugate pairs (computed by DTGSNA)and reciprocal values of (left and right) projector norms (computed by DTGSEN). The exactvalues of Dif l = Difu (computed as �min(Zl)) were also displayed. In Table 7.6 we displayDifu before and after the reordering for our selection of problems. Moreover, we show theratios Difu/DIF(1)-F and Difu/DIF(1)-1, where DIF(1)-F and DIF(1)-1 are the Frobeniusnormed{based and one{normed{based estimates of Difu, respectively. We see that 20 ex-amples are within a factor 10 and the remaining 3 examples are within a factor 100 of theexact value of Difu. In the last two columns we report estimates of the reciprocal valuesof Dif l, the condition number for the individual eigenvectors corresponding to the complexconjugate pair �1;2 computed by DTGSNA and ZTGSNA, respectively.For a more complete comparison between our Difx-estimators (x = l; u) including accu-racy, performance and reliability results we refer to [19]. Moreover, estimates of conditionnumbers and error bounds are also checked by the test programs discussed in the nextsection.6.2 A Summary of the Results from the Test ProgramsWe have developed two test programs CHK3 and CHK4 for testing and veri�cation of TGSENand GSRBB, and TGSNA, respectively.The test program CHK3 veri�es that the backward error is small, the transformationmatrices �Q and �Z that performed the reordering are orthogonal (unitary), the estimatedvalues DIF(1:2) do not di�er too much from the true values of Difu and Dif l, respectively,the chordal distance between \the same" eigenvalues before and after the reordering is small,and that the norm of the (2; 1){blocks of the reordered pencil is small. The scheme is toinitialize A11; A22; B11; B22; R and L and they de�ne the (1; 2){blocks A12 and B12 (as in(4.12)). The program reorders all eigenvalues in (A22; B22) to the (1; 1){block of the matrixpair and checks if everything went well.The test program CHK4 veri�es that the computed eigenvalue and eigenvector errorbounds hold. This is accomplished by using pencils for which the exact eigenvalues andeigenvectors are known. 36



6.2.1 Test problems for CHK3The test problems for CHK3 are chosen from �ve di�erent types, generated as follows. Thesize n of a problem is chosen � 10 and m = 1; 2; : : : ; 9;n � m = 1; : : : ; 10 � m), where(A11; B11) are m�m and (A22; B22) are (n�m)� (n�m). Note that Type 1 correspondsto a standard eigenvalue problem but the others are regular generalized eigenvalue problems.Type 1: Upper triangular problem adapted from [31]: A11 = Jm(1;�1); B11 = Im andA22 = Jn�m(1 � �; 1); B22 = In�m, where Jk(d; s) denotes a Jordan block of dimensionk with d and s as diagonal and superdiagonal elements, respectively. In our tests we use� = pEPS, and 1=pEPS. For 0 < � < 1, the size of Dif is O(�n�1). The entries in L = Rare chosen as rij = 20(0:5� sin(i=j)); where i = 1; : : : ; m and j = 1; : : : ; n.Type 2: Upper triangular problem withaij = 2(0:5� sin(i)); bij = 2(0:5� sin(i � j)); i = 1; : : : ; m; j = i; : : : ; m:aij = 2(0:5� sin(i+ j)); bij = 2(0:5� sin(j)); i = m+ 1; : : : ; n�m; j = i; : : : ; n�m:rij = 20(0:5� sin(i � j)); lij = 20(0:5� sin(i+ j)); i = 1; : : : ; m; j = 1; : : : ; n�m:Type 3: Quasi upper triangular problem, where the entries in A;B;R and L at �rst arechosen as for Type 2. Then each second diagonal block in A11 and each third diagonal blockin A22 are made 2� 2 by setting ak+1;k+1 = akk and ak+1;k = � sin(ak;k+1) for appropriatevalues of k.Type 4: Dense problem at block level, withaij = 20(0:5� sin(i � j)); bij = 2(0:5� sin(i+ j)); i = 1; : : : ; m; j = 1; : : : ; m:aij = 20(0:5�sin(i+j)); bij = 2(0:5�sin(i�j)); i = m+1; : : : ; n�m; j = m+1; : : : ; n�m:rij = 2(0:5� sin(i=j)); lij = 20(0:5� sin(i � j)); i = 1; : : : ; m; j = 1; : : : ; n�m:Type 5: (A;B) has potentially close or common eigenvalues, and large or very largedeparture from block diagonality. First A11 is chosen as the m � m leading submatrix ofA1, where A1 = 0BBBBBBBBBBBBBB@ 1 ��� 1 1 + � ��� 1 + � � 1�1 � �� 1�1 �� 1 1CCCCCCCCCCCCCCA ;
37



then A22 is chosen as the (n�m)� (n�m) leading submatrix of A2, whereA2 = 0BBBBBBBBBBBBBB@ �1 ��� �1 1� � ��� 1� � � 1 + ��1� � � �� 1 + ��1� � �� 1� � 1CCCCCCCCCCCCCCA :B11 and B22 are chosen as the identity matrices Im and In�m, respectively. The valuesof � = 20=� and � = �1:5=� are used for � = pEPS and 1=pEPS. The entries in R andL are chosen as rij = �(0:5 � sin(i � j))=20 and lij = �(0:5 � sin(i + j))=20; where i =1; : : : ; m and j = 1; : : : ; n �m. All integer values m;n�m � 0 such that 2 � n � 10 arechosen.6.2.2 A Summary of the Results from CHK3The results from the real and complex test runs were similar, only that 60 of the 2700problems had to be omitted in the complex case because the LAPACK routine CGEGSdid not manage to compute the generalized Schur form for these examples. We run bothprograms on two di�erent target machines, both supporting IEEE oating point standards.A Sun SPARC station only using non{optimized BLAS, and an IBM RS6000/530, wherewe used the ESSL library for BLAS calls. All programs were compiled with the -O option.The relative machine precision EPS is � 2:22D � 16 for both machines. In the following,we always start to list a number for Sun SPARC followed by the corresponding number (inparentheses) for IBM RS6000/530.A total number of 2700 test con�gurations (including di�erent functionality tests forsome problems) are generated in DCHK3 and in total we do around 20790 adjacent swaps.The minimum and maximum values of the backward error were 0.458D-19 (0.458D-19)and 0.193D-14 (0.169D-14), respectively. Minimum and maximum values of kIn � �QT �QkFwere 0.0 (0.0) and 0.375D-14 (0.326D-14), respectively. Minimum and maximum valuesof kIn � �ZT �ZkF were 0.0 (0.0) and 0.335D-14 (0.289D-14), respectively. These residualswere larger than 10 � EPS in 120 (114) and 144 (78) cases out of 2700, respectively. Theestimates of Difu and Dif l di�ered more than a factor 100 from true values in 170 (184)cases out of 1800, respectively. The maximum value of Difx is 1.41 and the correspondingestimate DIF(*) was 1.00 for both machines. The minimum value of Difx is 0.210D-19(0.480D-19) and corresponding estimate DIF(*) was computed as 0.774D-19 (0.774D-19).However, if Difx is close to machine epsilon there exists cases where DIF(*) reports an evensmaller value (but signals the ill{conditioning correctly). The minimum and maximumvalues of k(A21; B21kF (i.e. RRES) were 0.0 and 0.360D-6 for both machines and for thesame problem. RRES was larger than EPSk(A;B)kF in 18 (0) cases out of 1350, respectively.The chordal distance, X (�before; �after) was larger than EPSk(A;B)kF in 192 (192) casesout of 39600 but never larger than 0.226D-6 (0.266D-6), for the two machines. Minimum38



and maximum values of the residual based bound on the acute angle between exact andcomputed deating subspaces, RBB, were 0.0 (0.0) and 0.184D-6 (0.184D-6), respectively.The maximum value occurred for the very last problem (i.e. Type 5 with m = 9, n�m = 1and � = 1=p(EPS)). Notice that the condition � < 1 in (4.29) was not ful�lled in 794 (794)cases out of 1350, showing that it is stronger than necessary (since all error bounds gavemeaningful information).We also substituted the sin-function in all problems and � and � in problems of Type 5with a uniformly random number 2 (0; 1), giving similar results as reported above.6.2.3 Test Problems and a Summary of the Results from CHK4The program CHK4 for testing TGSNA checks how much the estimates S of the reciprocalvalue for the eigenvalue condition number S(�) (4.32) di�er from the ones computed byusing the exact (known) eigenvectors. The program also checks how much the estimatesDIF of the reciprocal value for the eigenvector condition number Dif l di�er from the exactcomputed values �min(Zl). In the tests two types of matrix pairs (A;B) � Y �H(Da; Db)X�1are used:Type 1: Da = 0BBBBB@ 1 + � 2 + � 3 + � 4 + � 5 + � 1CCCCCA :Type 2: Da = 0BBBBB@ 1 �11 1 1 1 + � 1 + ��1� � 1 + � 1CCCCCA :For both types Db = I5 and the exact left and right eigenvectors of (A;B) are the rows andcolumns ofY H = 0BBBBB@ 1 �y y �y1 �y y �y1 1 1 1CCCCCA ; and X = 0BBBBB@ 1 �x �x x1 x �x �x1 1 1 1CCCCCA ;respectively, where �; �; x and y are given all values independently of each other fromfEPS1=4; 0:1; 1; 10;EPS�1=4g. So, a total of 1250 di�erent pencils (A;B) are generated in thetests. Note that B 6= I5 in (A;B) = Y �H(Da; Db)X�1.In summary, the test results are good. The ratio between S and the correspondingS(�) computed by using the exact (known) eigenvectors is 1.0 up to 8 decimal digits for all39



examples. The reciprocal values for the eigenvector condition numbers Difl di�er less thana factor 100 from the exact computed value �min(Zl) in about 90%; 94%; 99% and 100% ofthe 2500 cases for the four di�erent data types D, S, Z and C, respectively. This veri�es thatin real arithmetic TGSNA more often computes a weaker estimate of Difl associated withcomplex conjugate pairs of eigenvalues than in complex arithmetic (see Section 4.4.2).7 Some ConclusionsOur error analysis of the direct methods and computational experiments (presented inSection 6) give us support to state the following conclusions about our algorithms andsoftware.� Accuracy and reliability results comparing di�erent reordering methods (Method 1,Method 2 and Method 3 discussed in Section 3.2 and Algorithm 590 [30]) show thatMethod 2 is to prefer. It is a direct method which is very reliable and it also computesthe most accurate eigenvalues of the four methods. Method 2 is implemented in thesoftware presented in Section 5.� The numerical stability is guaranteed and controlled by computing the size of thebackward error and rejecting the swap if it exceeds a certain threshold.As mentioned earlier, the generalized eigenvalue problem (as well as the standardunsymmetric problem) is potentially ill{conditioned in the sense that eigenvalues andeigenspaces may change drastically even under small perturbations of the data. Ifwe insist on performing a reordering of (S11; T11) and (S22; T22) for an ill{conditionedproblem, we may destroy any spectral information in A � �B. Close eigenvalues orsmall separation between (S11; T11) and (S22; T22) are not enough for rejecting a swap.It is the sensitivity of the eigenspaces that matters most, which in turn is perfectlysignaled by the norm of the solutions L and R to the associated generalized Sylvesterequation for the direct methods discussed here.� Qualitative results from our test software on both well{conditioned and ill{conditionedproblems, including estimates of reciprocal values of condition numbers for individualeigenvalues, a cluster of eigenvalues, (left and right) eigenvectors, and a pair of (leftand right) deating subspaces, show the reliability and robustness of the algorithmsand software presented.AcknowledgementsWe are grateful to Zhaojun Bai and Jim Demmel for fruitful discussions on this work. A spe-cial thank to Ji{guang Sun for constructive discussions on error bounds for the generalizedeigenvalue problem and comments on an early version of the manuscript.Financial support has been received from the Swedish National Board of Industrial andTechnical Development under grant NUTEK 89-02578P.40
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[30] P. Van Dooren. ALGORITHM 590: DSUBSP and EXCHQZ: Fortran routines forcomputing deating subspaces with speci�ed spectrum. ACM Trans. Math. Software,8:376{382, 1982. and (Corrections) Vol. 4, No. 4, p 787, 1983.[31] J. Varah. On the separation of two matrices. SIAM J. Numer. Anal., 16:216{222,1979.[32] J. H. Wilkinson. Kronecker's canonical form and the QZ algorithm. Lin. Alg. Appl.,28:285{303, 1979.Table 7.1: Computed errors after the reordering using Method 1Tag kA21; B21kF EA;B EQ EZ k(E;F )kF1 2E�18 4E+00 4E+00 3E+00 3E�116 1E�21 3E+00 3E+00 5E+00 4E�1211 4E�19 2E+00 2E+00 2E+00 5E�132 4E�16 2E+00 8E+00 3E+00 7E�157 5E�16 2E+00 3E+00 2E+00 5E�1512 2E�15 3E+00 7E+00 5E+00 7E�143 2E�18 3E+00 5E+00 3E+00 2E�158 2E�18 3E+00 4E+00 5E+00 2E�1213 2E�13 3E+00 5E+00 2E+00 1E�0613* 1E�18 2E+00 2E+00 3E+00 9E�074 8E�16 3E+00 5E+00 4E+00 2E�159 7E�19 3E+00 6E+00 2E+00 2E�1514 8E�24 2E+00 3E+00 4E+00 1E�155 0E+00 0E+00 0E+00 0E+00 0E+0010 4E�22 1E+00 3E+00 2E+00 5E�1415 5E�24 3E+00 7E+00 3E+00 1E�1116 5E�19 3E+00 6E+00 2E+00 2E�1517 1E�21 1E+00 2E+00 2E+00 1E�1518 5E�14 6E+01 4E+00 2E+00 5E�1419 3E�06 4E+09 6E+00 2E+00 3E�0620 3E�16 3E+00 7E+00 3E+00 2E�1521 3E�16 3E+00 2E+00 4E+00 2E�1522 3E�11 4E+04 4E+00 2E+00 3E�1123 2E�10 3E+05 4E+00 2E+00 2E�10
43



Table 7.2: Computed errors after the reordering using Method 2Tag kA21; B21kF EA;B EQ EZ k(E;F )kF1 3E�19 1E+00 3E+00 3E+00 1E�116 6E�22 3E+00 3E+00 5E+00 4E�1211 2E�20 2E+00 3E+00 4E+00 6E�132 1E�15 2E+00 8E+00 2E+00 7E�157 5E�16 2E+00 9E�01 1E+00 6E�1512 1E�15 3E+00 6E+00 3E+00 7E�143 2E�18 3E+00 5E+00 3E+00 2E�158 1E�18 3E+00 4E+00 5E+00 2E�1213 1E�04 3E+02 4E+00 2E+00 1E�0413* 1E�18 2E+00 2E+00 3E+00 9E�074 3E�16 3E+00 4E+00 4E+00 2E�159 7E�19 2E+00 4E+00 2E+00 2E�1514 6E�24 2E+00 3E+00 4E+00 1E�155 0E+00 0E+00 0E+00 0E+00 0E+0010 4E�22 1E+00 3E+00 2E+00 5E�1415 2E�24 3E+00 7E+00 3E+00 1E�1116 6E�19 4E+00 6E+00 2E+00 3E�1517 9E�22 1E+00 2E+00 2E+00 1E�1518 5E�14 6E+01 3E+00 2E+00 5E�1419 3E�06 4E+09 5E+00 1E+00 3E�0620 1E�16 3E+00 6E+00 4E+00 2E�1521 2E�16 3E+00 2E+00 5E+00 3E�1522 6E�12 7E+03 3E+00 3E+00 6E�1223 2E�10 3E+05 2E+00 2E+00 2E�10
44



Table 7.3: Method 2 { Computed stability test values and tolerancesTag Weak(B = QR) Weak(B = RQ) Strong tol1;21 8.17E�19 3.16E�19 8.53E�12 7.02E�116 7.03E�22 1.05E�21 3.03E�12 1.38E�1111 2.41E�19 2.55E�21 6.544E�13 3.59E�122 9.75E�16 3.88E�13 6.56E�15 3.06E�147 3.19E�16 4.75E�08 3.57E�15 3.06E�1412 1.58E�15 3.99E�6 4.92E�14 3.06E�143 6.97E�19 7.27E�19 1.60E�15 7.94E�158 5.26E�19 8.56E�19 9.49E�13 4.44E�1213 1.20E�04 1.20E�04 1.20E�04 4.44E�0613* 6.09E�19 9.02E�19 7.64E�07 4.44E�064 1.41E�16 2.20E�16 1.45E�15 6.75E�159 1.33E�19 1.33E�19 1.36E�15 6.58E�1514 5.91E�25 5.91E�25 8.83E�16 6.58E�155 0.00E+00 0.00E+00 0.00E+00 6.28E�1510 2.38E�22 2.38E�22 5.97E�14 3.93E�1315 1.41E�24 1.41E�24 1.09E�11 3.93E�1116 7.82E�17 7.85E�17 1.25E�15 6.28E�1517 7.85E�17 7.85E�17 7.71E�16 6.28E�1518 4.62E�14 4.62E�14 4.62E�14 8.01E�1519 3.05E�06 3.05E�06 3.05E�06 8.01E�1520 2.94E�16 4.14E�16 1.88E�15 5.91E�1521 1.95E�16 4.22E�18 1.17E�15 5.88E�1522 5.73E�12 5.79E�12 5.73E�12 8.01E�1523 2.38E�10 2.38E�10 2.38E�10 8.01E�15
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Table 7.4: Computed errors after the reordering using Method 3Tag kA21; B21kF EA;B EQ EZ k(E;F )kF1 7E�19 5E+00 5E+00 3E+00 3E�116 4E�22 1E+00 6E+00 3E+00 1E�1211 3E�20 3E+00 4E+00 3E+00 9E�132 5E�16 4E+00 8E+00 5E+00 1E�147 5E�16 9E�01 4E+00 1E+00 3E�1512 1E�15 4E+00 4E+00 3E+00 1E�143 9E�19 3E+00 2E+00 5E+00 3E�158 9E�19 5E+00 6E+00 4E+00 2E�1213 1E�07 4E+00 1E+01 4E+00 2E�064 2E�16 4E+00 7E+00 4E+00 3E�159 1E�18 2E+00 6E+00 3E+00 1E�1514 5E�24 3E+00 5E+00 2E+00 2E�155 0E+00 0E+00 0E+00 0E+00 0E+0010 5E�22 2E+00 4E+00 1E+00 8E�1415 3E�24 4E+00 5E+00 2E+00 2E�1116 1E�18 4E+00 7E+00 1E+00 3E�1517 2E�16 2E+00 2E+00 3E+00 2E�1518 3E�16 2E+00 2E+00 3E+00 2E�1519 2E�18 5E+00 8E+00 1E+01 4E�1520 9E�17 4E+00 5E+00 5E+00 3E�1521 2E�16 3E+00 4E+00 5E+00 3E�1522 2E�16 3E+00 5E+00 2E+00 2E�1523 4E�16 1E+01 2E+01 8E+00 8E�15
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Table 7.5: Computed errors after the reordering using Algorithm 590Tag kA21; B21kF EA;B EQ EZ k(E;F )kF1 2E�12 3E+00 5E+00 2E+00 2E�116 2E�13 2E+00 5E+00 3E+00 2E�1211 2E�13 6E+00 1E+01 8E+00 2E�122 8E�16 5E+00 6E+00 4E+00 2E�147 1E�15 6E+00 5E+00 5E+00 2E�1412 3E�15 7E+00 7E+00 3E+00 2E�143 2E�16 3E+00 4E+00 4E+00 2E�158 1E�13 2E+00 3E+00 3E+00 7E�1313 4E�07 7E+00 6E+00 1E+01 3E�064 5E�16 3E+00 3E+00 4E+00 2E�159 3E�16 3E+00 4E+00 4E+00 2E�1514 6E�16 3E+00 3E+00 3E+00 2E�155 3E�16 4E+00 6E+00 4E+00 2E�1510 1E�14 3E+00 6E+00 4E+00 1E�1315 2E�12 2E+00 1E+00 2E+00 8E�1216 3E�19 2E+00 2E+00 3E+00 2E�1517 3E�22 3E+00 3E+00 3E+00 2E�1518 5E�16 4E+00 5E+00 5E+00 3E�1519 5E�16 4E+00 6E+00 5E+00 3E�1520 2E�16 1E+00 2E+00 1E+00 1E�1521 1E�16 1E+00 2E+00 2E+00 1E�1522 2E�16 3E+00 4E+00 3E+00 2E�1523 4E�16 4E+01 4E+01 4E+01 3E�14
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Table 7.6: Method 2 { Some computed quantities before and after the reorderingTag Difu-before Difu-after Difu/DIF(1)-F Difu/DIF(1)-1 Difl(DTGSNA) Difl(ZTGSNA)1 1E�02 1E�02 0.57 1.90 3E�2 3E�46 3E�04 3E�06 0.63 1.30 4E�4 1E�611 1E�07 1E�07 0.96 1.20 2E�7 3E�62 7E�01 1E�01 0.52 1.00 1E�3 2E�37 7E�01 1E�01 0.52 1.00 1E�9 2E�912 7E�01 1E�02 0.52 1.00 1E�15 2E�153 4E�04 4E�04 0.87 1.60 7E�4 7E�48 7E�07 7E�07 0.71 1.40 1E�6 2E�613 8E�09 2E�07 0.73 1.50 1E�7 4E�713* 8E�09 2E�10 2E+02 4E+02 - -4 5E�02 4E�03 0.35 1.30 9E�2 2E�29 5E�05 2E�06 0.19 1.10 9E�5 2E�814 5E�10 2E�10 0.19 1.10 0 05 5E�06 5E�06 0.55 1.40 9E�6 7E�610 5E�06 2E�07 0.19 1.10 9E�6 1E�1215 5E�06 2E�07 0.19 1.10 9E�6 1E�1416 4E�10 4E�10 0.35 1.40 3E�22 4E�2217 2E�16 2E�17 20.00 79.00 3E�28 4E�2818 4E�10 4E�10 0.42 1.60 6E�10 3E�1319 5E�18 6E�16 0.35 1.40 8E�16 3E�1920 4E�10 3E�06 0.71 1.50 3E�16 3E�1621 2E�16 3E�12 0.71 1.50 3E�16 3E�1622 4E�10 3E�06 0.71 1.50 2E�8 2E�723 2E�16 4E�17 44.00 100.00 1E�16 3E�16
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A Calling sequence DTGEXCHere we display the parameter list and the leading comment lines of the double precisionroutine DTGEXC.SUBROUTINE DTGEXC(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,$ LDZ, IFST, ILST, WORK, LWORK, INFO )* IMPLICIT NONE** --- (preliminary version) ---* Bo Kagstrom and Peter Poromaa, Institute of Information Processing,* Univ. of Umea, S-901 87 Sweden.* Jan. 1994** .. Scalar Arguments ..LOGICAL WANTQ, WANTZINTEGER INFO, LDA, LDB, LDZ, LDQ, N, IFST, ILST,$ LWORK* ..* .. Array Arguments ..DOUBLE PRECISION Q( LDQ, * ), A( LDA, * ), B(LDB, *),$ Z(LDZ, *), WORK( * )* ..** Purpose* =======** DTGEXC reorders the generalized real Schur decomposition of a real matrix pair,* using an orthogonal equivalence transformation (A, B) = Q * (A, B) * Z',* so that the diagonal block of (A, B) with row index IFST is moved* to row ILST.** (A, B) must be in generalized real Schur canonical form (as returned by* DGEGS), i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal* blocks. B is upper triangular.** Optionally, the matrices Q and Z of generalized Schur vectors are updated.** Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'** References* ==========** [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in* M.S. Moonen et al (eds), Linear Algebra for Large Scale and* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.** [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified49



* Eigenvalues of a Regular Matrix Pair (A, B) and Condition* Estimation: Theory, Algorithms and Software, Report UMINF - 94.04,* Inst. of Information Processing, University of Umea, S-901 87 Umea,* Sweden, Febrauary 1994. (also published as LAPACK Working Note xx)** [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for* Solving the Generalized Sylvester Equation and Estimating the Separa-* tion between Regular Matrix Pairs, Report UMINF - 93.23, Inst. of* Information Processing, University of Umea, S-901 87 Umea, Sweden,* November 1993.(also published as LAPACK Working Note xx)** Arguments* =========** WANTQ (input) LOGICAL* .TRUE. : update the left transformation matrix Q;* .FALSE.: do not update Q.** WANTZ (input) LOGICAL* .TRUE. : update the right transformation matrix Z;* .FALSE.: do not update Z.** N (input) INTEGER* The order of the matrices A and B. N >= 0.** A, B (input/output) DOUBLE PRECISION arrays, dimensions (LDA(B),N)* On entry, the matrix pair (A, B), in generalized real Schur* canonical form.* On exit, the updated matrix pair (A, B), again in generalized* real Schur canonical form.** LDA (input) INTEGER* The leading dimension of the array A. LDA >= max(1,N).** LDB (input) INTEGER* The leading dimension of the array B. LDB >= max(1,N).** Q (input/output) DOUBLE PRECISION array, dimension (LDZ,N)* On entry, if WANTQ is .TRUE., the orthogonal matrix Q.* On exit, if WANTQ is .TRUE., the updated matrix Q.* If WANTQ is .FALSE., Q is not referenced.** LDQ (input) INTEGER* The leading dimension of the array Q.* LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N.** Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)* On entry, if WANTZ is .TRUE., the orthogonal matrix Z.* On exit, if WANTZ is .TRUE., the updated matrix Z.* If WANTZ is .FALSE., Z is not referenced.* 50



* LDZ (input) INTEGER* The leading dimension of the array Z.* LDZ >= 1; and if WANTZ is .TRUE., LDZ >= N.** IFST (input/output) INTEGER* ILST (input/output) INTEGER* Specify the reordering of the diagonal blocks of (A, B).* The block with row index IFST is moved to row ILST, by a* sequence of transpositions between adjacent blocks.* On exit, if IFST pointed on entry to the second row of* a 2-by-2 block, it is changed to point to the first row;* ILST always points to the first row of the block in its* final position (which may differ from its input value by* +1 or -1). 1 <= IFST, ILST <= N.** WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)** LWORK (input) INTEGER* The dimension of the array WORK. LWORK >= 4*N + 16.** INFO (output) INTEGER* 0: Successful exit.* 1: The transformed matrix pair (A, B) would be too far from* generalized Schur form; the problem is ill-conditioned.* (A, B) may have been partially reordered, and ILST points* to the first row of the current position of the block* being moved.* -k: The k:th argument had an illegal value. If k = 14* WORK(1) will hold an appropriate value of LWORK.*B Calling sequence DTGEX2Here we display the parameter list and the leading comment lines of the double precisionroutine DTGEX2.SUBROUTINE DTGEX2(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,$ LDZ, J1, N1, N2, WORK, LWORK, INFO )* IMPLICIT NONE** --- (preliminary version) ---* Bo Kagstrom and Peter Poromaa, Institute of Information Processing,* Univ. of Umea, S-901 87 Sweden.* Apr. 1994** .. Scalar Arguments ..LOGICAL WANTQ, WANTZINTEGER INFO, LDA, LDB, LDZ, LDQ, N, N1, N2,$ LWORK, J1 51



* ..* .. Array Arguments ..DOUBLE PRECISION Q( LDQ, * ), A( LDA, * ), B(LDB, *),$ Z(LDZ, *), WORK( * )* ..** Purpose* =======** DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)* of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair* (A, B) by an orthogonal equivalence transformation.** (A, B) must be in generalized real Schur canonical form (as returned by* DGEGS), i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal* blocks. B is upper triangular.** Optionally, the matrices Q and Z of generalized Schur vectors are updated.** Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'** References* ==========** [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in* M.S. Moonen et al (eds), Linear Algebra for Large Scale and* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.** [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified* Eigenvalues of a Regular Matrix Pair (A, B) and Condition* Estimation: Theory, Algorithms and Software, Report UMINF - 94.04,* Inst. of Information Processing, University of Umea, S-901 87 Umea,* Sweden, Febrauary 1994. (also published as LAPACK Working Note xx)** Arguments* =========** WANTQ (input) LOGICAL* .TRUE. : update the left transformation matrix Q;* .FALSE.: do not update Q.** WANTZ (input) LOGICAL* .TRUE. : update the right transformation matrix Z;* .FALSE.: do not update Z.** N (input) INTEGER* The order of the matrices A and B. N >= 0.** A, B (input/output) DOUBLE PRECISION arrays, dimensions (LDA(B),N)52



* On entry, the matrix pair (A, B), in generalized real Schur* canonical form.* On exit, the updated matrix pair (A, B), again in generalized* real Schur canonical form.** LDA (input) INTEGER* The leading dimension of the array A. LDA >= max(1,N).** LDB (input) INTEGER* The leading dimension of the array B. LDB >= max(1,N).** Q (input/output) DOUBLE PRECISION array, dimension (LDZ,N)* On entry, if WANTQ is .TRUE., the orthogonal matrix Q.* On exit, if WANTQ is .TRUE., the updated matrix Q.* If WANTQ is .FALSE., Q is not referenced.** LDQ (input) INTEGER* The leading dimension of the array Q.* LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N.** Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)* On entry, if WANTZ is .TRUE., the orthogonal matrix Z.* On exit, if WANTZ is .TRUE., the updated matrix Z.* If WANTZ is .FALSE., Z is not referenced.** LDZ (input) INTEGER* The leading dimension of the array Z.* LDZ >= 1; and if WANTZ is .TRUE., LDZ >= N.** J1 (input) INTEGER* The index to the first block (A11, B11). 1 <= J1 <= N.** N1 (input) INTEGER* The order of the first block (A11, B11). N1 = 0, 1 or 2.** N2 (input) INTEGER* The order of the second block (A22, B22). N2 = 0, 1 or 2.** WORK (workspace) DOUBLE PRECISION array, dimension LWORK.** LWORK (input) INTEGER* The dimension of the array WORK.* LWORK >= MAX((N * (N2 + N1)), ((N2 + N1) * (N2 + N1) * 2))** INFO (output) INTEGER* 0: Successful exit* 1: The transformed matrix (A, B) would be too far from* Generalized Schur form; the blocks are not swapped* and (A, B) and (Q, Z) are unchanged. Problem too* ill-conditioned.* -14: LWORK is to small. Appropriate value for LWORK is53



* returned in WORK(1).*C Calling sequence DTGSENHere we display the parameter list and the leading comment lines of the double precisionroutine DTGSEN.SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,$ ALPHAR, ALPHAI, BETA,$ Q, LDQ, Z, LDZ, M, PL, PR, DIF, WORK,$ LWORK, IWORK, LIWORK, INFO )* IMPLICIT NONE** --- (preliminary version) ---* Bo Kagstrom and Peter Poromaa, Institute of Information Processing,* Univ. of Umea, S-901 87 Sweden.* Jan. 1994** .. Scalar Arguments ..LOGICAL WANTQ, WANTZINTEGER IJOB, N, LDA, LDB, LDQ, LDZ, LWORK, LIWORK, M,$ INFODOUBLE PRECISION PL, PR* ..* .. Array Arguments ..LOGICAL SELECT( * )INTEGER IWORK( * )DOUBLE PRECISION Q( LDQ, * ), A( LDA, * ), B(LDB, *),$ Z(LDZ, *), ALPHAR(*), ALPHAI(*),$ BETA(*), DIF(*), WORK(*)* ..** Purpose* =======** DTGSEN reorders the generalized real Schur decomposition of a real* matrix pair (A, B) (in terms of an orthonormal equivalence trans-* formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues* appears in the leading diagonal blocks of the upper quasi-triangular* matrix A and and the upper triangular B. The leading columns of Q and Z* form orthonormal bases of the corresponding left and right eigenspaces* (deflating subspaces).** DTGSEN also computes the generalized eigenvalues** w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)** of the reordered matrix pair (A, B). 54



** (A, B) must be in generalized real Schur canonical form (as returned by* DGEGS), i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal* blocks. B is upper triangular.** Optionally, the matrices Q and Z of generalized Schur vectors are updated.** Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'** Optionally, the routine computes estimates of reciprocal condition numbers* for eigenvalues and eigenspaces. These are Difu[(A11,B11), (A22,B22)]* and Difl[(A11,B11), (A22,B22)], i.e. the separation(s) between the matrix* pairs (A11, B11) and (A22,B22) that correspond to the selected cluster and* the eigenvalues outside the cluster, respectively, and norms of "projections"* onto left and right eigenspaces w.r.t. the selected cluster in the (1,1)-block.** References* ==========** [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in* M.S. Moonen et al (eds), Linear Algebra for Large Scale and* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.** [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified* Eigenvalues of a Regular Matrix Pair (A, B) and Condition* Estimation: Theory, Algorithms and Software, Report UMINF - 94.04,* Inst. of Information Processing, University of Umea, S-901 87 Umea,* Sweden, February 1994. (also published as LAPACK Working Note xx)** [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for* Solving the Generalized Sylvester Equation and Estimating the Separa-* tion between Regular Matrix Pairs, Report UMINF - 93.23, Inst. of* Information Processing, University of Umea, S-901 87 Umea, Sweden,* November 1993.(also published as LAPACK Working Note xx)** Arguments* =========** IJOB (input) integer* Specifies what functionality is to be obtained.* 0 : Only reorder w.r.t. SELECT. No extras.* 1 : Reciprocal of norms of "projections" onto left and right eigenspaces* w.r.t. the selected cluster (PL and PR).* 2 : Upper bounds on Difu and Difl. F-norm-based estimate (DIF(1:2)).* 3 : Estimate of Difu and Difl. 1-norm-based estimate (DIF(1:2)).* About 5 times as expensive as IJOB = 2.* 4 : Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic-version to* get it all.* 5 : Compute PL, PR and DIF (i.e. 0, 1 and 3 above)55



** WANTQ (input) LOGICAL* .TRUE. : update the left transformation matrix Q;* .FALSE.: do not update Q.** WANTZ (input) LOGICAL* .TRUE. : update the right transformation matrix Z;* .FALSE.: do not update Z.** SELECT (input) LOGICAL array, dimension (N)* SELECT specifies the eigenvalues in the selected cluster.* To select a real eigenvalue w(j), SELECT(j) must be set to* .TRUE.. To select a complex conjugate pair of eigenvalues* w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,* either SELECT(j) or SELECT(j+1) or both must be set to* .TRUE.; a complex conjugate pair of eigenvalues must be* either both included in the cluster or both excluded.** N (input) INTEGER* The order of the matrices A and B. N >= 0.** A (input/output) DOUBLE PRECISION array, dimension(LDA,N)* On entry, the upper quasi-triangular matrix A, with (A, B) in* generalized real Schur canonical form.* On exit, A is overwritten by the reordered matrix A, again (A, B)* in generalized real Schur canonical form, with the selected* eigenvalues in the leading diagonal blocks.** LDA (input) INTEGER* The leading dimension of the array A. LDA >= max(1,N).** B (input/output) DOUBLE PRECISION array, dimension(LDB,N)* On entry, the upper triangular matrix B, with (A, B) in* generalized real Schur canonical form.* On exit, B is overwritten by the reordered matrix B, again (A, B)* in generalized real Schur canonical form, with the selected* eigenvalues in the leading diagonal blocks.** LDB (input) INTEGER* The leading dimension of the array B. LDB >= max(1,N).** ALPHAR (output) DOUBLE PRECISION array, dimension (N)* ALPHAR(1:N) will be set to the real parts of the diagonal* elements of A that would result from reducing (A, B) to* generalized Schur form and then further reducing them both to* triangular form using unitary transformations s.t. the diagonal* of B is non-negative real. Thus, if A(j,j) is a 1x1 block* (i.e., A(j+1,j) = A(j,j+1) = 0), then ALPHAR(j) = A(j,j).** ALPHAI (output) DOUBLE PRECISION array, dimension (N)* ALPHAI(1:N) will be set to the imaginary parts of the diagonal56



* elements of A that would result from reducing (A, B) to* generalized Schur form and then further reducing them both to* triangular form using unitary transformations s.t. the diagonal* of B is non-negative real. Thus, if A(j,j) is a 1x1 block* (i.e., A(j+1,j) = A(j,j+1) = 0), then ALPHAI(j) = 0.** BETA (output) DOUBLE PRECISION array, dimension (N)* BETA(1:N) will be set to the (real) diagonal elements of B* that would result from reducing (A, B) to generalized Schur form* and then further reducing them both to triangular form using* unitary transformations s.t. the diagonal of B is* non-negative real. Thus, if A(j,j) is a 1x1 block (i.e.,* A(j+1,j) = A(j,j+1) = 0), then BETA(j) = B(j,j).* (Note that BETA(1:N) will always be non-negative real, and* no BETAI is necessary.)** Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)* On entry, if WANTQ and/or WANTZ, the matrices Q and Z of generalized* Schur vectors.* On exit, if WANTQ and/or WANTZ, Q and/or Z have been postmultiplied* by the orthogonal transformation matrices which reorder (A, B);* The leading M columns of Q and Z form orthonormal bases for the* specified pair of left and right eigenspaces (deflating subspaces).* If WANTQ = .FALSE., Q is not referenced.* If WANTZ = .FALSE., Z is not referenced.** LDQ (input) INTEGER* The leading dimension of the array Q.* LDQ >= 1; and if WANTQ, LDQ >= N.** LDZ (input) INTEGER* The leading dimension of the array Z.* LDZ >= 1; and if WANTZ, LDZ >= N.** M (output) INTEGER* The dimension of the specified pair of left and right eigen-* spaces (deflating subspaces). 0 <= M <= N.** PL, PR (output) DOUBLE PRECISION* If IJOB = 1, 4 or 5, PL, PR are lower bounds on the reciprocal* of the norm of "projections" onto left and right eigenspaces,* respectively, w.r.t. the selected cluster. 0 < PL, PR <= 1.* See also further details and references [2-3].* If M = 0 or M = N, PL = PR = 1.* If IJOB = 0, 2 or 3, PL and PR are not referenced.** DIF (output) DOUBLE PRECISION array, dimension (2).* If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl,* respectively. If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds* on Difu and Difl, respectively. If IJOB = 3 or 5, DIF(1:2) are 1-norm-57



* based estimates of Difu and Difl, respectively, computed using* reversed communication with DLACON. See also further details and* references [2-3].* If M = 0 or N, DIF(1:2) = F-norm([A, B]).* If IJOB = 0 or 1, DIF is not referenced.** WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)** LWORK (input) INTEGER* The dimension of the array WORK. LWORK >= (2 * N * N) + N.* If IJOB >= 4 LWORK >= MAX(2*N*N+N, 4*M*(N-M)).** IWORK (workspace) INTEGER, dimension (LIWORK)* IF IJOB = 0 , IWORK is not referenced.** LIWORK (input) INTEGER* The dimension of the array IWORK. LIWORK >= N + 6.* If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).** INFO (output) INTEGER* 0: Successful exit.* < 0: If INFO = -i, the i-th argument had an illegal value.* 1: Reordering of (A, B) failed because the transformed* matrix pair (A, B) would be too far from generalized* Schur form; the problem is very ill-conditioned.* (A, B) may have been partially reordered.* If requested, 0 is returned in DIF(*), PL and PR.*D Calling sequence DTGSNAHere we display the parameter list and the leading comment lines of the double precisionroutine DTGSNA.SUBROUTINE DTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB,$ VL, LDVL, VR, LDVR, S, DIF, MM, M,$ WORK, LWORK, IWORK, INFO )IMPLICIT NONE** --- (preliminary version) ---* Bo Kagstrom and Peter Poromaa, Institute of Information Processing,* Univ. of Umea, S-901 87 Sweden.* May 1994*** .. Scalar Arguments ..CHARACTER HOWMNY, JOBINTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK,$ M, MM, N* .. 58



* .. Array Arguments ..LOGICAL SELECT( * )INTEGER IWORK( * )DOUBLE PRECISION S( * ), DIF( * ), A( LDA, * ), B(LDB, *),$ VL( LDVL, * ), VR( LDVR, * ), WORK( * )* ..** Purpose* =======** DTGSNA estimates reciprocal condition numbers for specified* eigenvalues and/or eigenvectors of a matrix pair (A, B) in* generalized real Schur canonical form (or of any matrix pair* (Q*A*Z**T, Q*B*Z**T) with Q and Z orthogonal).** (A, B) must be in generalized real Schur form (as returned by DGEGS), i.e.* A is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks.* B is upper triangular.** References* ==========** [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in* M.S. Moonen et al (eds), Linear Algebra for Large Scale and* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.** [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified* Eigenvalues of a Regular Matrix Pair (A, B) and Condition* Estimation: Theory, Algorithms and Software, Report UMINF - 94.04,* Inst. of Information Processing, University of Umea, S-901 87 Umea,* Sweden, February 1994. (also published as LAPACK Working Note xx)** [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for* Solving the Generalized Sylvester Equation and Estimating the Separa-* tion between Regular Matrix Pairs, Report UMINF - 93.23, Inst. of* Information Processing, University of Umea, S-901 87 Umea, Sweden,* November 1993.(also published as LAPACK Working Note xx)** Arguments* =========** JOB (input) CHARACTER*1* Specifies whether condition numbers are required for* eigenvalues (S) or eigenvectors (DIF):* = 'E': for eigenvalues only (S);* = 'V': for eigenvectors only (DIF);* = 'B': for both eigenvalues and eigenvectors (S and DIF).** HOWMNY (input) CHARACTER*1* = 'A': compute condition numbers for all eigenpairs;59



* = 'S': compute condition numbers for selected eigenpairs* specified by the array SELECT.** SELECT (input) LOGICAL array, dimension (N)* If HOWMNY = 'S', SELECT specifies the eigenpairs for which* condition numbers are required. To select condition numbers* for the eigenpair corresponding to a real eigenvalue w(j),* SELECT(j) must be set to .TRUE.. To select condition numbers* corresponding to a complex conjugate pair of eigenvalues w(j)* and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be* set to .TRUE..* If HOWMNY = 'A', SELECT is not referenced.** N (input) INTEGER* The order of the square matrix pair (A, B). N >= 0.** A (input) DOUBLE PRECISION array, dimension (LDA,N)* The upper quasi-triangular matrix A, where (A, B) is in* generalized Schur canonical.** LDA (input) INTEGER* The leading dimension of the array A. LDA >= max(1,N).** B (input) DOUBLE PRECISION array, dimension (LDB,N)* The upper triangular matrix B, where (A, B) is in* generalized Schur canonical.** LDB (input) INTEGER* The leading dimension of the array B. LDB >= max(1,N).** VL (input) DOUBLE PRECISION array, dimension (LDVL,M)* If JOB = 'E' or 'B', VL must contain left eigenvectors of (A, B),* corresponding to the eigenpairs specified by HOWMNY and SELECT.* The eigenvectors must be stored in consecutive columns of VL, as* returned by DTGEVC or DGEGV. If job = 'V', VL is not referenced.** LDVL (input) INTEGER* The leading dimension of the array VL.* LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.** VR (input) DOUBLE PRECISION array, dimension (LDVR,M)* If JOB = 'E' or 'B', VR must contain right eigenvectors of (A, B),* corresponding to the eigenpairs specified by HOWMNY and SELECT.* The eigenvectors must be stored in consecutive columns ov VR, as* returned by DTGEVC or DGEGV. If job = 'V', VR is not referenced.** LDVR (input) INTEGER* The leading dimension of the array VR.* LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.** S (output) DOUBLE PRECISION array, dimension (MM)60



* If JOB = 'E' or 'B', the reciprocal condition numbers of the* selected eigenvalues, stored in consecutive elements of the* array. For a complex conjugate pair of eigenvalues two* consecutive elements of S are set to the same value. Thus* S(j), DIF(j), and the j-th columns of VL and VR all* correspond to the same eigenpair (but not in general the* j-th eigenpair, unless all eigenpairs are selected).* If JOB = 'V', S is not referenced.** DIF (output) DOUBLE PRECISION array, dimension (MM)* If JOB = 'V' or 'B', the estimated reciprocal condition* numbers of the selected eigenvectors, stored in consecutive* elements of the array. For a complex eigenvector two* consecutive elements of DIF are set to the same value. If* the eigenvalues cannot be reordered to compute DIF(j), DIF(j)* is set to 0; this can only occur when the true value would be* very small anyway.* If JOB = 'E', DIF is not referenced.* For each eigenvalue/vector specified by SELECT, DIF() stores a* Frobenius norm-based estimate of Difl.** MM (input) INTEGER* The number of elements in the arrays S and DIF. MM >= M.** M (output) INTEGER* The number of elements of the arrays S and DIF used to store* the specified condition numbers; for each selected real* eigenvalue one element is used, and for each selected complex* conjugate pair of eigenvalues, two elements are used. If* HOWMNY = 'A', M is set to N.** WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)** LWORK (input) INTEGER* The dimension of the array WORK. LWORK >= 2*N*(N+2)+32.** IWORK (workspace) INTEGER array, dimension (N + 6)* If JOB = 'E', IWORK is not referenced.** INFO (output) INTEGER* = 0: successful exit* < 0: if INFO = -i, the i-th argument had an illegal value*E Calling sequence DGSRBBHere we display the parameter list and the leading comment lines of the double precisionroutine DGSRBBSUBROUTINE DGSRBB( INPUTS, N, A, LDA, B, LDB, C, LDC, D, LDD,$ Q, LDQ, Z, LDZ, M, RBB, CNDTN, DIF, RRES, WORK,61



$ LWORK, IWORK, LIWORK, INFO )* IMPLICIT NONE* --- (preliminary version) ---* Bo Kagstrom and Peter Poromaa, Institute of Information Processing,* Univ. of Umea, S-901 87 Sweden.* Jan. 1994*** .. Scalar Arguments ..CHARACTER INPUTSINTEGER N, LDA, LDB, LDC, LDD, LDQ, LDZ, M,$ INFO, LIWORK, LWORKDOUBLE PRECISION DIF, CNDTN, RBB, RRES* ..* .. Array Arguments ..INTEGER IWORK(*)DOUBLE PRECISION Q( LDQ, * ), A( LDA, * ), B(LDB, *),$ Z(LDZ, *), C(LDC, *), D(LDD, *), WORK(*)* ..** Purpose* =======** DGSRBB computes an algorithm-independent residual-based error bound for* left and right eigenspaces (deflating subspaces) of a matrix pair (C, D) =* Q' * (A, B) * Z, where Q and Z transform the original matrix pair (A, B) to* generalized real Schur canonical form such that the M-by-M (1,1)-block* of (C, D) holds a selected cluster of eigenvalues. Such a decomposition* can be computed using DGEGS (generalized Schur) and DTGEXC (eigenvalue* reordering). The leading M columns of Q and Z form an orthonormal basis* for the selected pair of left and right eigenspaces (deflating subspaces).** (C, D) in generalized Schur form means that C is block upper triangular with* 1-by-1 and 2-by-2 diagonal blocks. D is upper triangular.** References* ==========** [1] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified* Eigenvalues of a Regular Matrix Pair (A, B) and Condition* Estimation: Theory, Algorithms and Software, Report UMINF - 94.04,* Inst. of Information Processing, University of Umea, S-901 87 Umea,* Sweden, February 1994. (also published as LAPACK Working Note xx)** [2] J-G. Sun; Backward Perturbation Analysis of Certain Characteristic* Subspaces, Numerische Mathematik, 65 (1993), pp 357-382.** Arguments* =========* 62



* INPUTS (input) CHARACTER** 'N': The values of DIF and (C, D) are ignored and computed by this* routine.* 'D': On input DIF must hold the value of Difl[(C11, D11),(C22, D22)]* or an estimate of Difl (e.g., computed by DTGSYL, DTGSYX or DTGSEN).* 'M': On input C and D must be the transformed matrices* C = Q'*A*Z, D = Q'*B*Z, where the (2,1)-blocks may have been set* to zero by some algorithm.* 'B': On input the values of DIF (see above) and (C,D) are all supplied.*** N (input) INTEGER* The order of the matrices A and B. N >= 0.** A (input/output) DOUBLE PRECISION array, dimension(LDA,N)* On entry, the general matrix A.* On exit: if INPUTS = 'N', A = Q'*A*Z, else A is unchanged.** LDA (input) INTEGER* The leading dimension of the array A. LDA >= max(1,N).** B (input/output) DOUBLE PRECISION array, dimension(LDB,N)* On entry, the general matrix B.* On exit: if INPUTS = 'N', B = Q'*B*Z, else B is unchanged.** LDB (input) INTEGER* The leading dimension of the array B. LDB >= max(1,N).** C (input/output) DOUBLE PRECISION array, dimension(LDC, N)* On entry, if INPUTS = 'M' or 'B', C = Q'*A*Z, where the (2,1)-block* may have been set to zero by some algorithm.* Note: If A and C are the same formal parameters and INPUTS = 'N',* C = A will be overwritten by Q'*A*Z, else C is unchanged.** LDC (input) INTEGER* The leading dimension of the array C. LDC >= 1.* If INPUTS = 'M' or 'B', LDC >= N.** D (input/output) DOUBLE PRECISION array, dimension(LDD, N)* On entry, if INPUTS = 'M' or 'B', D = Q'*B*Z, where the (2,1)-block* can have been set to zero by some algorithm.* Note: If B and D are the same formal parameters and INPUTS = 'N',* D = B will be overwritten by Q'*B*Z, else D is unchanged.** LDD (input) INTEGER* The leading dimension of the array D. LDD >= 1.* If INPUTS = 'M' or 'B', LDD >= N.** Q (input) DOUBLE PRECISION array, dimension (LDQ,N)* Z (input) DOUBLE PRECISION array, dimension (LDZ,N)63



* On entry, Q and Z are the orthogonal transformation matrices* which reorder (A, B) with the selected eigenvalues in the* (1,1)-block of (C, D); Q'*(A, B)*Z = (C, D). The leading M* columns of Q and Z form an orthonormal basis for the specified* pair of left and right eigenspaces (deflating subspaces).** LDQ (input) INTEGER* The leading dimension of the array Q.* LDQ >= N.** LDZ (input) INTEGER* The leading dimension of the array Z.* LDZ >= N.** M (input) INTEGER* The dimension of the specified pair of deflating subspaces.** RBB (output) DOUBLE PRECISION* On exit, an approximate residual-based error bound for* selected left and right eigenspaces (deflating subspaces).* See further details.** CNDTN (output) DOUBLE PRECISION* On exit, the value of the restriction on the perturbations, which* should be less than 1 for the bound RBB to hold. See further details.** DIF (input/output) DOUBLE PRECISION* On entry, if INPUTS = 'D' or 'B', DIF = Difl[(C11, D11),(C22, D22)].* This could be an estimate (e.g., computed by DTGSYL, DTGSYX or DTGSEN).* On exit, if INPUTS = 'N' or 'M', DIF = an estimate of* Difl[(C11, D11),(C22, D22)] computed by DTGSYL.* If INPUTS = 'D' or 'B', DIF is not changed.** RRES (output) DOUBLE PRECISION* On exit, the Frobenius norm of the (2,1)-blocks of* (C, D) = Q'*(A, B)*Z, i.e. the norm of the optimal* backward error corresponding to the computed pair of* deflating subspaces (the first M columns of Q and Z).** WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)** LWORK (input) INTEGER* The dimension of the array WORK. LWORK >= N*N.** IWORK (workspace) INTEGER, dimension (LIWORK)* If INPUTS = 'D' or 'B', IWORK is not referenced.** LIWORK (input) INTEGER* The dimension of the array IWORK. LIWORK >= 1.* If INPUTS = 'N' or 'M', LIWORK >= N + 6;* 64



* INFO (output) INTEGER* 0: Successful exit* < 0: If INFO = -i, the i-th argument had an illegal value* 1: CNDTN > 1, see further details.*
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