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Thomason 2AbstractPET reconstruction by the EM algorithm is an iterative computation of Poisson emission ratesto maximize a likelihood function. The method is time-consuming and, for real scanner data,requires large numerical arrays. To speed up the computation on multiple processors which havetheir own local memory and communicate by passing messages on a network, a parallel methodhas been implemented in which processors compute several iterations before exchanging theirlatest data with other processors. This method is convenient for iterative reconstruction using arelatively small number of standard workstations on a local area network, i.e., for implementationon computer resources commonly available in clinical and research environments and for whichreducing communication among processors is desirable. Computational aspects of the methodare explained and illustrated with 2-D reconstructions from a simulation and from sinogramsproduced by a PET scanner. 512 iterations are computed on a local area network of workstationsand, for reference, on a distributed-memory multiprocessor computer as well. The method iscapable of producing high quality reconstructions with signi�cant speed-up.



Thomason 3In emission tomography reconstruction by spatial statistical methods (cf., [1, 2]), algorithms formaximum likelihood estimation of parameters tend to be iterations with long computation timesinvolving large arrays. One way to address these problems of time and memory is to implementthe iteration on multiple processors in parallel, for example, using a massively parallel computer[3, 4] or taking advantage of speci�c interconnection topologies [5, 6].Parallel iteration can be distributed over a network of workstations. Distributed iterationgenerally reduces the memory required at any one processor by allowing each processor to useonly portions of large, sparse matrices. Distributed iteration on multiple processors may alsoreduce the average time to compute one iteration; however, communication among processors istime-consuming on typical networks, so an objective here is to reduce communications substan-tially while still producing satisfactory reconstructions.This paper describes a method for distributed-memory, iterative reconstruction by the EMalgorithm using relatively few processors with reduced communications. The approach is moti-vated by (i) the potential for reducing processor communications without compromising funda-mental algorithmic requirements such as convergence [7], and (ii) the availability of distributed-memory resources not only as multiprocessor computers [8] but also as local area networks ofstandard workstations [9]. Empirical results are given for three sinograms: a simulated phantom,a 2-
uoro-2-deoxyglucose (FDG) brain scan, and a 13N-ammonia cardiac scan. 512 iterations arecomputed. Results in convergence, percentage error, and timing are reported for reconstructionon a conventional network of workstations and, for comparison, on a multiprocessor computer.



Thomason 4Aspects of EM-ML Iterative ReconstructionThe EM-ML (expectation-maximization, maximum-likelihood) algorithm [1, 2, 10, 11, 12] forestimating Poisson parameters f�b j 1 � b � Bg at B emission sites, given the non-negative inte-ger counts fn�d j 1 � d � Dg for D detector-pairs or tubes, yields the same form of multiplicativeiteration for each pixel b, namely, �k+1b = �kbXd n�dpbd��kd= �kbMkbwhere pbd is the probability that emission from site b is detected in tube d;��kd =Xb �kbpbd;and Mkb =Xd n�dpbd��kdis the multiplier computed for pixel b at iteration k. The pixels in the kth iteration are written asthe vector �k = (�k1; �k2; : : : ; �kB) in B-space (pixel space). The vector ��k = (��k1 ; : : : ; ��kD ) is theprojection of �k into D-space (detector space) via the matrix P = [pbd]. Proofs given elsewhere(cf., [12]) show that pixel vector �k converges to a �xed point vector � = (�1; : : : ; �B) which isa maximum likelihood solution. One aspect is that the Kullback discrimination measureD(n�; ��k) =Xd n�d log n�d��kdconverges monotonically as ��kd ! n�d for each d. Computation of D(n�; ��k) assumes positivevalues (n�d; ��kd > 0) and count-normalization (Pd n�d = Pd ��kd ). In practice, inconsistenciesdue to factors such as random counts, scatter, and numerical inaccuracies mean that di�erences



Thomason 5between n�d and ��kd may remain detectable for some d and the Kullback measure may approacha positive value.Any index d such that n�d = 0 or b such that �kb is under
owing to 0 is eliminated from thecomputation, assuring that multipliers fMkb g remain greater than 0 throughout the iteration.The EM-ML vectors remain normalized in counts, i.e., the initial image vector �0 is speci�ed tohave Xb �0b =Xd n�d;and the normalization Xb �kb =Xd ��kd =Xd n�dis automatically maintained for k = 0; 1; 2; : : :. Reconstruction is initialized with an image �0in which each pixel �0b is positive. Iterating then gives�k+1b = �kbMkb= �0b �M0bM1b � � �Mkb � ;which shows that pixel �k+1b converges to a �xed, positive value �b if and only if the multi-plier product M0b � � �Mkb also converges to a �xed, positive value; this in turn requires that thecomputed multiplier Mkb itself converge to 1 [13].



Thomason 6Materials and MethodsInitial Image, Sinograms, and P MatrixIn this study, initial image �0 is a uniform image in which each pixel has the same positivevalue. 512 iterations are carried out for EM-ML without employing regularization, �ltering, orprior probabilities (cf., [14, 15, 16, 17, 18, 19, 20] for some of these methods in PET or SPECT).No explicit terms for scatter or random counts are included in these computations.Scan data was obtained on an ECAT 921 PET scanner (CTI/Siemens, Knoxville, TN) at theUniversity of Tennessee Medical Center, Knoxville (UTMCK). 2-D reconstructions are 128�128pixels. The data n� = (n�1; n�2; : : : ; n�D) for D detector-pairs or tubes is stored as a sinogramwith 192 rows and 160 columns. The P matrix for the EM algorithm has 128 � 128 rows and192� 160 columns. Entry pbd is a double-precision, 
oating-point value computed as the area ofintersection of tube d with pixel b (approximated by its inscribed circle) relative to the sum-totalintersection of that pixel with all tubes. This yields approximately 8� 106 nonzero entries in P .Three sinograms are used. The �rst is a 192� 160 sinogram obtained by forward projectinga version of the Shepp-Vardi simulated phantom [1] with 128�128 pixels through the P matrix.The second and third are ECAT 921 sinograms produced by FDG brain scan and 13N-ammoniacardiac scan respectively. Each ECAT 921 sinogram is normalized for detector variability andcorrected for attenuation using data from a transmission scan obtained prior to radiopharmaceu-tical injection. Each patient scan follows routine clinical protocols and data processing approvedby the UTMCK Institutional Review Board.



Thomason 7Computer ResourcesReconstruction is implemented on a network of workstations and on a multiprocessor computerin the UT-K Computer Science Department.The multiprocessor computer is a CM-5 (TMC, Cambridge, MA [8]) with 32 nodes whichcommunicate over high-speed, internal networks. The code in C for PET reconstruction uses theCM-5 as a 2n-node MIMD (multiple-instruction, multiple-data) machine with a RISC processorat each node. Communication is by passing arrays of data among processors.The code in C for PET reconstruction on a network of standard workstations is essentiallythe same as the CM-5 code. A virtual 2n-node MIMD machine is composed of Sun Sparc5 work-stations (Sun Microsystems, Mountain View, CA) connected by Ethernet. This implementationuses PVM (Parallel V irtual Machine [9, 21]), version 3.3.3, a general purpose software packagethat facilitates distributed computation on a network of Unix computers.Each CM-5 node and Sparc5 workstation has 32 Mbytes local memory. The CM-5 RISCprocessor has a 32 Mhz clock and a peak execution rate of 4 M
ops. The Sparc5 processorhas a 70 Mhz clock and 13.1 M
ops peak rate, but the e�ective rate of Sparc5 communicationon the Ethernet averages at least two orders of magnitude slower than CM-5 inter-processorcommunication.Distributed EM-ML IterationThe implementation of distributed iteration is block-parallel [7] with balanced partitioning, mean-ing that the B-space vector is partitioned into equal-sized, disjoint subsets of pixels assigned todi�erent processors for iteration. For convenience in manipulating the P matrix [22], the blocks



Thomason 8are contiguous rows of pixels in the 2-D image. Each processor stores only those pbd's that arenon-zero for its pixel block, and each processor has approximately the same number of non-zeropbd's to deal with.Full synchronization means that all processors communicate data after every iteration; thisis a parallel version of the conventional, single-processor computation. Reduced synchronizationmeans that each processor follows the same �xed schedule of computing several iterations ofits block of pixels, then communicating its latest data. In either case, when a synchronizationoccurs, each processor communicates its current contribution to entries in the D-space vector��k, i.e., processor Pi communicates the vector (��ki1 ; : : : ; ��kiD) where��kid =Xbi �kbipbidand the sum is over pixel indices fbig in the block assigned to processor Pi for iteration. Eachprocessor Pi updates its own block of pixels and its contributions to the D-space vector at everyiteration. In doing so, processor Pi computes its pixel multipliers fMkbig using a combination ofits block's current values and the D-space values contributed by the other processors at the lastsynchronization.Unlike fully synchronized EM-ML computation, distributed iteration with reduced synchro-nization does not automatically maintain normalization of counts for the pixel vector �k . Nor-malization is not automatically recovered and convergence of multipliers is adversely a�ected.These characteristics are controlled at synchronization times and between synchronizations inthe distributed algorithm in the following two ways.(1). At each synchronization, each processor obtains the up-to-date D-space vector ��k =(��k1 ; : : : ; ��kD ) where ��kd =Xi ��kid :



Thomason 9Although all values in ��k are based on the most recent iteration, the vector may have lostnormalization of detector counts since the previous synchronization; therefore, each processorcomputes the normalization scalar �kD = Pd n�dPd ��kdand renormalizes in D-space by multiplying ��k by this scalar. Each processor similarly renor-malizes its block of the B-space vector �k by the scalar�kB = Pd n�dPb �kb= Pd n�dPiPbi �kbiwhich is in fact identical to �kD becauseXb �kb = Xb �kbXd pbd= Xd Xi Xbi �kbipbid= Xd Xi ��kid= Xd ��kd :These renormalizations complete the synchronization phase.(2). In this multiplicative iterative method, the convergence of pixel �kb to a �xed, positivevalue �b requires that the multiplier Mkb itself must converge to 1. This means that the rangeof multiplier values is contained in a �nite interval [L; U ], 0 < L � 1 and 1 � U , which duringiteration has L monotonically nondecreasing to 1 and U monotonically nonincreasing to 1. As aconservative estimate of this interval, each processor Pi maintains for reference an upper boundUi and a lower bound Li. Pi adjusts these bounds towards 1 over the course of the iteration.At the �rst computation of multipliers after each synchronization when correct normalization is



Thomason 10guaranteed, Pi checks its computed multipliers to decrease Ui or increase Li accordingly. Ui isdecreased towards 1 when all multipliers computed by Pi immediately after a synchronizationare less than its current value; Li is increased towards 1 when all computed multipliers exceedits current value. At each iteration, each pixel �kbi for which the computed multiplier Mkbi is inthe interval [Li; Ui] is updated.Network and Algorithm ParametersThe empirical results concern convergence, percentage error, and time of computation for dis-tributed EM-ML iteration under the following conditions.Control of Network. All runs on the CM-5 and the workstations are made in dedicated modeswhich prohibit user processes not associated with the EM-ML computation. Systems tra�c onthe Ethernet is suppressed as far as possible.Number of Processors. Results are given for 8 and 16 processors. As the number of proces-sors is reduced, each processor must deal with larger portions of the P matrix; this begins tocause considerable memory paging on processors with 32 Mbytes local memory, which slows thecomputation severely. As the number of processors is increased, the Ethernet tends to saturatewith messages even when synchronizations are reduced, and this also severely impacts the timeof computation. The number of processors is a practical compromise between processing powerand communication for the workstations, the network, the P matrix, and the sinograms involvedin these runs.Reduced Synchronization. All runs consist of 512 iterations. Large changes in numerous pixelsoccur in the �rst few iterations, so full synchronization is maintained for the �rst 16 steps;thereafter, the number of iterations between synchronizations is linearly increased to a maximum



Thomason 11value used for the rest of the run. Reconstructions are computed for caps of 1, 4, and 8 iterationsbetween synchronizations. Cap 1 is full synchronization. Cap 4 results in 140 synchronizationsand cap 8 in 80 synchronizations, respectively 27:3% and 15:6% of full synchronization for 512iterations.ResultsReconstructed ImagesImages in �gures 1-4 are displayed as integer pixels of one byte each.Figure 1 is the simulated phantom �phan. Figure 2 shows its reconstructions at iterations32 and 512 for the three caps. Figure 3 shows the reconstructed brain scan (pixel size 2.275-mm) and �gure 4 the reconstructed cardiac scan (pixel size 3.033-mm) for the same parameters.These are reconstructions using 8 processors. Visually, the reconstructions on 16 processors forcorresponding parameters are virtually indistinguishable.Convergence and Percentage ErrorFigures 5 and 6 give quantitative measurements of convergence and percentage error in recon-struction. The explicit data points marked in the plots are at iterations that are powers of 2between 8 and 512. Quantitative measurements are based on the 
oating-point values computedfor pixels.Figure 5(a) gives plots of the Kullback measure D(n�; ��k) vs. iteration number for fully



Thomason 12synchronized reconstruction for each of the three sinograms when 8 processors are used. Foreach sinogram, the values of D(n�; ��k) for reduced synchronizations essentially coincide withthose for fully synchronized reconstruction, and the plots for caps 4 and 8 are not distinguishablefrom the plot for cap 1. Figure 5(b) plots D(n�; ��k) for 16 processors. Convergence trends arethe same as �gure 5(a).For 8 processors and the simulated phantom, �gure 6(a) gives the percentage error Ek in thereconstructed pixel vector �k referenced to the original vector �phan, computed asEk = Pb(�kb � �phanb )2Pb(�phanb )2 � 100:Di�erences in Ek for full and reduced synchronizations at corresponding iterations are negligible.At 512 iterations, all values in �gure 6(a) are less than 0:15%. For 16 processors, �gure 6(b)shows slightly di�erent values because the �ner partitioning of the P matrix among processorsinduces di�erent patterns of small-scale numerical inaccuracies during distributed iteration. At512 iterations, all values in �gure 6(b) are less than 0:25%.Fully synchronized reconstructions also serve as references with which to measure errors as-sociated with reduced synchronization. This percentage error is computed for each sinogram, forcaps 4 and 8, and for 8 and 16 processors by using the reconstructions for cap 1 at correspondingiterations as the references. For the simulated phantom, this error in all cases is less than 0:02%throughout the iteration; for the brain scan, less than 0:02%; and for the cardiac scan, less than0:8%.



Thomason 13Time of ComputationThe wall-clock time to compute 512 iterations is essentially the same for each of the threesinograms for corresponding settings of network and algorithm parameters. Figure 7 showsthese times for the sinogram of the brain scan for 8 and 16 processors on the CM-5 and on theEthernet-connected workstations. Figure 7 breaks the wall-clock time down into time spent incomputing iterations (i.e., in computing and applying the multipliers), in communicating data,and in idling while waiting to initiate synchronizations.Wall-clock times on the CM-5 show little dependence on the number of synchronizationsbecause communication is fast among its relatively slower but tightly-coupled processors. 16CM-5 processors require approximately 55% of the time taken by 8 processors.Wall-clock times for the Sparc5 workstations on the Ethernet are strongly in
uenced bothby the cap and by the number of processors. Although 16 processors take about 55% the timeof 8 to compute and use the multiplers, they also increase the network tra�c substantially, andthe e�ective rate of communication deteriorates sharply when the Ethernet is saturated withmessages. A contributing factor is that PVM version 3.3.3 uses algorithms that are robust butnot yet tuned for optimality in communications performance [21].Communication accounts for about 75%, 50%, and 40% of wall-clock time for 8 Sparc5s withcaps 1, 4, and 8 respectively. Comparable numbers for 16 Sparc5s are 85%; 80%, and 72%. Aconsequence is that 8 workstations require less wall-clock time than 16 workstations for all threecaps. Using 8 Sparc5s with iteration cap 8 yields a wall-clock time comparable to 16 nodes onthe CM-5, i.e., an average of less than 2 seconds per iteration over the run of 512 iterations.



Thomason 14ConclusionsWe conclude that distributed EM-ML iteration with reduced communications is e�ective inspeeding up the reconstruction when network, workstation, and algorithm parameters are se-lected appropriately. For the sinograms and P matrix in this study, the algorithm for reducedsynchronization with caps 4 or 8 distributed over 8 or 16 processors produces reconstructionsthat are close (visually and quanti�ed by percentage error) to fully synchronized reconstructions.Convergence as measured by Kullback discrimination is also comparable to fully synchronizedcomputation.Workstation and network characteristics must be taken into account to prevent adversetrends such as excessive processor paging or network saturation with messages. When severalhundred iterations are computed, a comparatively slow network (the Ethernet) of 8 standardworkstations (Sparc5) using generic distributed software (PVM) attains an average time periteration approaching clinically acceptable rates.
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Thomason 18Figure CaptionsFigure 1. 128� 128 pixel simulated phantom.Figure 2. Reconstructions of phantom with 8 processors. Caps 1, 4, and 8 from left to right.(a)-(c) are 32 iterations; (d)-(f) are 512 iterations.Figure 3. Reconstructions of brain scan with 8 processors. Organized as �gure 2.Figure 4. Reconstructions of cardiac scan with 8 processors. Organized as �gure 2.Figure 5. Kullback measure D(n�; ��k) using natural logarithms. (a) 8 processors; (b) 16processors.Figure 6. Percentage error in phantom reconstructions with respect to original. (a) 8 proces-sors; (b) 16 processors.Figure 7. Wall-clock time for 512 iterations, broken down into time spent idling (waiting tosynchronize), communicating, and computing.
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