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21 IntroductionGiven a matrix A 2 Rm�n with m � n, the singular value decomposition (SVD) of Ais de�ned as A = X  �0 !Y T ; (1.1)where X 2 Rm�m and Y 2 Rn�n are orthogonal matrices, and � 2 Rn�n is a non-negative diagonal matrix. The columns of X and Y are the left singular vectors andthe right singular vectors of A, respectively, and the diagonal entries �1; � � � ; �n of �are the singular values of A.One of the many applications of the SVD is to the solution of the linear leastsquares problem: minx2Rn kAx� bk2 ;where b 2 Rm is a given vector. It is well-known that in the case where A has fullcolumn rank (i.e., � is invertible), the solution to the above problem isxLS = Y ���1 0�XT b : (1.2)When A is rank de�cient, the above problem is usually solved with additional con-straints, which may be easily expressed by replacing ��1 by its pseudo-inverse orother approximate inverse. The SVD is also a very useful tool for other constrainedleast squares problems [13].Of the various technique for solving rank de�cient and constrained least squaresproblems, the SVD is considered the most reliable. Unfortunately, it is also themost expensive. When m = n, the SVD based on QR-iteration takes 12n3 
oatingpoint operations (
ops) on average, whereas QR decomposition takes only 43n3 
ops, 9times fewer [13, p. 248]. In fact, on current computer architectures with steep memoryhierarchies, the using the SVD may take over 15 times longer than QR decomposition.This is because the QR decomposition algorithm can be reorganized to exploit thememory hierarchy [3], but the conventional SVD algorithm is much less amenable tothis reorganization.The SVD is usually computed in two phases:Phase I: Use orthogonal transformations to reduce A to an upper bidiagonal matrix:A = (U1 U2) B0 !V T ; (1.3)where (U1 U2) 2 Rm�m and V 2 Rn�n are orthogonal matrices, with U1 2Rm�n and U2 2 Rm�(m�n), andB = 0BBBBB@ �1 �1�2 . . .. . . �n�1�n 1CCCCCA



3is an upper bidiagonal matrix.Phase II: Compute the SVD of B: B = Q�W T (1.4)where Q and W are orthogonal matrices.The SVD of A is then computed asA = (U1Q U2) �0 ! (V W )TPhase II has previously been implemented using QR-iteration [11, 12, 8] or qditeration [22, 24]. This has been the bottleneck of the overall algorithm, taking up to80% of the total time.We have made three contributions toward overcoming this bottleneck. First, wehave implemented a variation of the bidiagonal divide-and-conquer algorithm (BDC)of Gu and Eisenstat [17], which is based on previous work by Arbenz and Golub [2],Cuppen [6], Golub [14], Gu and Eisenstat [15], and Jessup and Sorensen [19], for com-puting the SVD of B. Our numerical experiments indicate that our implementationof BDC averages 9-10 times faster for n = 400 than the LAPACK implementationSBDSQR [1] of the traditional QR based algorithm. This implementation, combinedwith LAPACK routines for Phase I and the rest of Phase II, is from 2.3 to 3.9 timesfaster than the corresponding LAPACK implementation [1] for computing the fullSVD of A when n = 400.Our second contribution is a \factored form" version of the BDC, which allowsus to compute the SVD of B in O(n2) 
ops by representing Q and W as products ofO(log2 n) certain structured orthogonal matrices. Once A has been reduced to upperbidiagonal form (Phase I), this new version of BDC allows us to �nish the rest of thecomputation in (1.2) in O(mn) 
ops. Since the cost of Phase I is about 4mn2�4n3=3
ops, about twice the cost of computing a QR factorization on A, our result meansthat the 
op count of the SVD based least squares solver is only about twice that ofthe QR based solver. The \factored form" version is also useful for the case wherethe least squares solution is subject to some simple constraints [13].Third, we implement another technique for representing the SVD in factored form,originally suggested in [5], and also known to Rutishauser in the context of Jacobi'smethod [23]. The idea is to store all the Givens rotation produced during the bidi-agonal QR iteration and apply them directly to the solution vector, rather thanaccumulating them. This simple change to the current LAPACK routine for solvingthe least squares problem with the SVD, also reduces the 
op count to just twice thatof QR decomposition, but at the cost of O(n2) storage.Based purely on operation counts, we expect either of our two least squares algo-rithms to take only about twice as long as the fastest method (QR decomposition).



4This is in fact nearly the case on the DEC Alpha when we use Fortran implementa-tions of the Basic Linear Algebra Subroutines, or BLAS [10, 9], but not when we usethe BLAS optimized especially for the DEC Alpha. This is because the QR decom-position can be reorganized to do almost all its 
oating point operations by calls toLevel 3 BLAS, whereas Phase I of the SVD does half its 
ops in the Level 3 BLASand half in Level 2 BLAS. In Fortran, the Level 2 and 3 BLAS are comparable inspeed; the optimized Level 3 BLAS are up to 4 times faster than the Level 2 BLAS.Thus, using optimized BLAS, the new SVD based least squares solvers are about 4.4times slower than QR decomposition for n = 400, not twice as slow.It may be possible to break the \BLAS 2" barrier in reduction to bidiagonalform by exploiting successive band reduction techniques proposed for the symmetriceigenproblem [4], but we have not yet pursued this.The rest of the paper is organized as follows: Section 2 describes the basic idea ofBDC and its \factored form" version, and shows how to use them to compute the fullSVD and the least squares solution. Section 3 presents our numerical results. AndSection 4 summarizes our conclusions.2 Solving the full SVD and the least squares prob-lem using bidiagonal divide-and-conquer (BDC)In section 2.1 we outline the bidiagonal divide-and-conquer algorithm. In section 2.2we show how to use it to solve the least squares problem quickly. And in Section 2.3we show how to solve the least squares problem quickly by modifying the conventionalSVD solution based on QR-iteration.2.1 BDC and its \factored form" versionBDC recursively divides B into two subproblems as follows1:B = 0B@ B1 0�kek �ke10 B2 1CA ; (2.5)where B1 2 R(k�1)�k and B2 2 R(n�k)�(n�k) are upper bidiagonal matrices, and ej isthe j-th unit vector of appropriate dimension. We take k = bn=2c.Assume that we are given the SVDs of B1 and B2:B1 = Q1(D1 0)W T1 and B2 = Q2D2W T2 ;1This is actually the dividing strategy used in [2]; BDC in [17] takes out a column (instead of arow) of B at a time.



5where Qi and Wi are orthogonal matrices of appropriate dimensions, and the Di arenon-negative diagonal matrices. Let (lT1 �1) be the last row of W1, and let fT2 bethe �rst row of W2. Plugging these into (2.5), we getB = 0B@ Q1 0 00 1 00 0 Q2 1CA0B@ D1 0 0�klT1 �k�1 �kfT20 0 D2 1CA W1 00 W2 !T : (2.6)Note that the middle matrix is quite simple in that its entries can be non-zero onlyon the diagonal and in the k-th row. We will discuss the computation of its SVD laterin this section. Let S�GT be the SVD of the middle matrix. Plugging it into (2.6),we get the SVD of B as (see (1.4)) B = Q�W Twith Q = 0B@ Q1 0 00 1 00 0 Q2 1CAS and W =  W1 00 W2 !G :To compute the SVDs of B1 and B2, this process can be recursively applied untilthe sizes of the subproblems are su�ciently small2. These small subproblems arethen solved using a QR type algorithm (SBDSQR in LAPACK). There can be at mostO(log2 n) levels of recursion.BDC also has a recursion for computing just the singular values. Let fT1 be the�rst row of W1; let lT2 be the last row of W2; and let fT and lT be the �rst and lastrows of W , respectively. Suppose that Di, fi, li, and �1 are given for i = 1; 2. Thenwe can compute �, f , and l by computing the SVD of the middle matrix in (2.6) asS�GT , and computingfT = (fT1 0)G and lT = (0 lT2 )G :The \factored form" version of BDC is based on the singular value recursion. Westore S and G for each subproblem in the recursion, and never explicitly form any Qand W at any level, except the bottom level where we use a QR type algorithm.In order to compute the SVD of the middle matrix in (2.6), we note that, bypermuting the k-th row and column to the �rst row and column, this matrix can bewritten as M = 0BBBB@ z1 z2 � � � znd2 . . . dn 1CCCCA ; (2.7)2Strictly speaking, this process is not quite recursive since, unlike B, B1 is not a square matrix.This is true for the following singular value recursion also. See [17] for the complete recursions.



6where di's are the diagonal elements of D1 and D2; and zi's are entries of the k-throw of the middle matrix, with z1 being the (k; k) entry. We permute the matrixM so we can write D = diag(d1; d2; : : : ; dn) with3 0 � d1 � d2 � : : : � dn, andz = (z1; z2; : : : ; zn)T . We further assume thatdj+1 � dj � �kMk2 and jzjj � �kMk2 ; (2.8)where � is a small multiple of � speci�ed in [17]. Any matrix of the form (2.7) canbe reduced to one that satis�es these conditions by the de
ation procedure describedin [17].The following lemma characterizes the singular values and singular vectors of M .Lemma 1 (Jessup and Sorensen [18]) Let S�GT be the SVD of M withS = (s1; : : : ; sn) ; � = diag(�1; : : : ; �n) and G = (g1; : : : ; gn) ;where 0 < �1 < : : : < �n: Then the singular values f�igni=1 satisfy the interlacingproperty 0 = d1 < �1 < d2 < : : : < dn < �n < dn + jjzjj2 ;and the secular equation f(�) = 1 + nXk=1 z2kd2k � �2 = 0 :The singular vectors satisfysi =  �1; d2z2d22 � �2i ; : : : ; dnznd2n � �2i !T ,vuut1 + nXk=2 (dkzk)2(d2k � �2i )2 ; (2.9)gi =  z1d21 � �2i ; : : : ; znd2n � �2i !T ,vuut nXk=1 z2k(d2k � �2i )2 : (2.10)On the other hand, given D and all the singular values, we can construct a matrixwith the same structure as (2.7).Lemma 2 (Gu and Eisenstat [17]) Given a diagonal matrix D = diag(d1; d2; : : : ; dn)and a set of numbers f�̂igni=1 satisfying the interlacing property0 � d1 < �̂1 < d2 < : : : < dn < �̂n ; (2.11)there exists a matrix M̂ = 0BBBB@ ẑ1 ẑ2 � � � ẑnd2 . . . dn 1CCCCA3d1 is introduced to simplify the presentation.



7whose singular values are f�̂igni=1. The vector ẑ = (ẑ1; ẑ2; : : : ; ẑn)T is determined byjẑij = vuuut(�̂2n � d2i ) i�1Yk=1 (�̂2k � d2i )(d2k � d2i ) n�1Yk=i (�̂2k � d2i )�d2k+1 � d2i � ; (2.12)where the sign of ẑi can be chosen arbitrarily.We use the root-�nder provided by R.-C. Li [21] to �nd approximate singularvalues f�̂kgnk=1. Following [17], we then compute fẑkgnk=1 by using (2.12) and computethe left and right singular vectors of M using (2.9) and (2.10), except we replace zkby ẑk using the sign of zk. It has been shown [17] that this procedure is numericallystable, provided that one computes the di�erences di�dj to high relative accuracy, for1 � i � j � n. This assumption is automatically satis�ed on most modern computersexcept some earlier Cray machines (Cray XMP, YMP, C90 and 2) which do not havea guard digit. We overcome this di�culty by using the following technique providedby Kahan [20]. Before the singular values are computed, we �rst computedi := (di + di)� di for i = 1; : : : ; n :On machines with a guard digit, this does not change di at all (barring over
ow), butit chops o� the last bit of di on the the above mentioned Cray machines. After doingso, the di�erences di � dj can be computed to high relative accuracy even on thesemachines. To the best of our knowledge, our code should work on any commerciallysigni�cant modern North America computers.Since S and G are generally dense matrices, storing them explicitly will take O(n2)storage for the whole recursion. However, we note that they can be reconstructedfrom fẑkgnk=1, f�̂kgnk=1, and fdkgk = 1n whenever they are needed4. Hence in ourimplementation, we store these data rather than S and G themselves. This increasesthe cost of BDC by O(n2) overall, but reduces the memory requirement from O(n2)to O(n log2 n), since there are O(log2 n) levels of recursion.The subroutine for the bidiagonal SVD is called SBDSDC, and the dense SVDroutine that calls it is called SGESBD-DC; these names will be used in section 3.2.2 Solving the full SVD and the least squares problemIn the current version of LAPACK, in Phase I of the SVD computation (see Section 1),the matrices (U1 U2) and V are generated as products of Householder transforma-tions, and in Phase II, the matrices Q and W are generated as products of Givensrotations. When the full SVD of A is desired, (U1 U2) and V are explicitly computedand the Givens rotations in Q and W are applied to U1 and V as soon as they aregenerated.4The actual implementation is slightly more complicated for e�ciency and stability reasons.



8When the least squares solution (1.2) is desired, it is then computed asx1 � UT1 b ; x2 � QTx1 ; x3 � ��1x2 and xLS = (VW )x3 ; (2.13)where x1 is computed by applying the Householder transformations directly to b, x2is computed by applying the Givens rotations directly to x1, and xLS is computedby explicitly forming the matrix VW , as is done in the dense SVD case, and thenapplying VW to x3. We note that computing VW takes O(n3) 
ops in general.In contrast, for the full SVD computation, we �rst compute the matricesQ andWexplicitly, by organizing the computation to use level 3 BLAS as much as possible, andthen compute U1Q and V W by applying the sequence of Householder transformationsto Q and W , respectively. This approach is similar to that used for computing thefull eigendecomposition of a dense symmetric matrix by using Cuppen's divide-and-conquer algorithm [25]. The current implementation requires 3n2 + O(n) workspacein order to use the level-3 BLAS. We have developed some techniques to reduce thisworkspace requirement to O(nNB), where NB is the block size, a machine dependentparameter that balances the e�ciency of level-3 BLAS and workspace requirement.We plan to use these techniques in a future version of our implementation.To compute the least squares solution (1.2), we use the \factored form" versionof BDC. After Phase I, A is reduced to the upper bidiagonal matrix B, with theorthogonal transformations (U1 U2) and V returned as products of Householdertransformations. We then compute x1 as in (2.13). This can be done in O(mn)
ops [13]. To compute x2, we note that Q is represented as a product of O(log2 n)orthogonal matrices, the i-th of which is block diagonal with the diagonal blocks being1's and left singular vector matrices on the i-th level in the recursion. Since thereare 2i�1 submatrices on the i-th level with each submatrix having size O(n=2i�1), thecost of applying the transposes of these matrices to a vector isO ��n=2i�1�2�� 2i�1 = O �n2=2i�1� ;summing all these costs up, the cost for computing x2 = QTx1 isO(log2 n)Xi=1 O �n2=2i�1� = O(n2)
ops. Computing x3 takes O(n) 
ops. To compute xLS from x3, we do not explicitlyform VW . Instead, we computex4 �Wx3 and xLS = V x4 : (2.14)By the same argument as above, x4 can be computed in O(n2) 
ops. Finally, itis again well known that computing xLS as V x4 takes O(n2) 
ops [13]. Overall,computing xLS after Phase I takes O(mn) 
ops.The routine for solving the least squares problem using divide-and-conquer iscalled SGELSD; this name will be used in section 3.



92.3 A Fast SVD Least Squares Solver Based on QR Itera-tionIt turns out that explicit computation of VW can be avoided even with the QR basedSVD algorithms, as originally noted in [5]. Instead of computing xLS as (VW )x3, wecan again compute xLS as in (2.14). x4 can be computed by saving all O(n2) Givensrotations performed in computing the SVD of B, and applying them to x3 in reverseorder; xLS can then be computed as V x4 as above. Let t be the total number of suchGivens rotations. Then the cost of computing xLS after Phase I is O(mn + t) 
ops.Since we usually expect t = O(n2), this cost is again O(mn) 
ops. One drawbackwith this approach, however, is that it requires O(t) storage, and we cannot bound texactly beforehand.The routine implementing this idea is called SGELSS-QRf (for \QR iteration,factored"); this name will be used in section 3. The existing LAPACK routine willbe called SGELSS-QR.3 Numerical ExperimentsWe ran the following experiments on a Dec Alpha 3000/500X with a 200Mhz clock, 8KByte �rst level cache and 512 KByte second level cache. The optimized BLAS werethose in DEC's mathematical software library dxml. We compiled using f77 withthe -O optimization option. All experiments were run in single precision, i.e. 32-bit,IEEE 
oating point arithmetic. We let � = 2�23 denote the machine precision.Table 1 lists the names of the subroutines we test and what they do. The readermay want to refer to this table to interpret the following performance tables.3.1 Performance of the BLAS and basic LAPACK decom-positionsTable 2 reports on the speed in Mega
ops of the BLAS, SGEMV (matrix-vector mul-tiplication) and SGEMM (matrix-matrix multiplication). It also reports the speedsof LU decomposition (SGETRF), QR decomposition (SGEQRF) and bidiagonal re-duction (SGEBRD). It does this both for Fortran BLAS and optimized BLAS. Allmatrices are dimensioned (LDA,N), where LDA = 513. The block size NB in theblocked algorithms for SGETRF, SGEQRF and SGEBRD was 32. It is interesting tosee that the performance of SGEMV is a strongly nonmonotonic function of matrixdimension. We believe this is because for N < 256, the matrix �ts in second levelcache without con
icts, whereas for N � 256, cache con
icts and cache misses occur.The Level 3 BLAS routines like SGEMM can more easily compensate for this thanLevel 2 BLAS like SGEMV.



10
Table 1: Names and descriptions of routines testedName Description StatusSGEMV Matrix-vector multiply Level 2 BLASSGEMM Matrix-matrix multiply Level 3 BLASSGETRF LU decomposition in LAPACKSGEQRF QR decomposition in LAPACKSGEBRD Reduction to bidiagonal form in LAPACKSBDSQR Compute complete SVD of a bidiagonal in LAPACKmatrix using QR iterationSBDSDC Compute complete SVD of a bidiagonal new routinematrix using divide-and-conquerSGESVD-QR Compute complete SVD of a dense matrix in LAPACKusing QR iteration as SGESVDSGESVD-DC Compute complete SVD of a dense matrix new routineusing divide-and-conquerSGELS Solve the least squares problem using in LAPACKQR decompositionSGELSX Solve the least squares problem using in LAPACKQR decomposition with pivotingSGELSS-QR Solve the least squares problem using in LAPACKthe SVD based on QR-iteration as SGELSSSGELSS-QRf Solve the least squares problem using new routinethe SVD based on QR-iteration but wherethe left singular vectors are left factoredSGELSD Solve the least squares problem using new routinethe SVD based on divide-and-conquer



11Table 2: Speed of BLAS and LAPACK Routines (NB = 32, LDA = 513)Speed in mega
ops using optimized BLASDimensionRoutine Description 50 100 200 300 400 500SGEMV matrix-vector multiply 64.7 60.6 64.2 44.7 39.3 35.7SGEMM matrix-matrix multiply 128.1 146.4 134.4 136.3 136.8 140.3SGETRF LU decomposition 42.0 56.5 78.9 88.9 93.8 94.0SGEQRF QR decomposition 44.0 51.4 77.5 90.9 97.6 102.9SGEBRD Bidiagonal reduction 38.5 49.1 52.1 50.5 50.6 51.3Speed in mega
ops using Fortran BLASDimensionRoutine Description 50 100 200 300 400 500SGEMV matrix-vector multiply 51.7 50.2 51.0 41.5 36.8 32.6SGEMM matrix-matrix multiply 42.7 48.8 51.4 41.4 36.3 32.5SGETRF LU decomposition 28.0 30.8 39.7 42.9 44.2 45.3SGEQRF QR decomposition 35.2 38.5 36.2 35.8 35.5 35.1SGEBRD Bidiagonal reduction 31.5 41.1 33.0 31.9 32.3 32.63.2 Performance of the Bidiagonal SVDWe report on the speed of the bidiagonal SVD (computing all singular values andleft and right singular vectors). We used four types of test matrices, all generated byLAPACK test matrix generator SLATMS:Type 1. These bidiagonal matrices were randomly generated with singular valuesdistributed arithmetically from � up to 1.Type 2. These bidiagonal matrices were randomly generated with singular valuesdistributed geometrically from � up to 1.Type 3. These bidiagonal matrices have 1 singular value at 1 and the other n � 1clustered at �.Type 4. These bidiagonal matrices were generated by taking a dense matrix withindependent random entries uniformly distributed in (�1; 1), and reducing it tobidiagonal form.Table 3 shows the speedup of SBDSDC, the bidiagonal SVD based on divide-and-conquer, with respect to SBDSQR, the bidiagonal SVD based on QR-iteration(all singular values and left and right singular vectors are computed). As can beseen, the speedup is a growing function of matrix dimension. Indeed, the running



12Table 3: Speedup of SBDSDC over SBDSQRSpeedup using optimized BLASDimensionTest Matrix 50 100 200 300 400type 1 1.48 2.71 5.53 7.94 9.47type 2 1.33 2.35 5.79 8.67 11.33type 3 18.00 55.10 68.97 97.59 121.43type 4 1.59 2.93 6.00 8.57 10.56Speedup using Fortran BLASDimensionTest Matrix 50 100 200 300 400type 1 1.58 2.27 3.67 4.47 5.00type 2 1.33 2.41 4.78 6.67 7.67type 3 42.86 55.10 62.07 82.81 116.67type 4 1.62 2.27 4.00 4.94 5.76time for SBDSDC appears to grow like n2:3 rather than n3, as for SBDSQR. Also,the speedup is better when using the optimized BLAS rather than Fortran BLAS,because SBDSDC spends much of its time in SGEMM, whereas SBDSQR cannoteven use Level 2 BLAS.3.3 Performance of the Dense SVDWe report on the speed of the dense SVD (computing all singular values and left andright singular vectors). We used the same four test matrix types as before, but nowall are dense.Table 4 shows how much the dense SVD speeds up when using divide-and-conquerinstead of QR, both for optimized BLAS and Fortran BLAS. When n = 400, thespeedups range from 2.19 to 3.86 for the optimized BLAS, and much less for For-tran BLAS. This is because using optimized BLAS helps SBDSDC much more thanSBDSQR, as seen in Table 3.Table 5 shows what fraction of time the dense SVD spends doing the bidiagonalSVD. The results are shown only for optimized BLAS; the Fortran BLAS fractionsare comparable but slightly lower. The most signi�cant result is that the bidiagonalfraction goes from being 60% to 80% of the total time for SGESVD-QR to at most25% for SGESVD-DC, for large matrices. This means that the bidiagonal SVD hasgone from being the bottleneck in the dense SVD to a small fraction of time.Thus, any signi�cant further improvements in the speed of the dense SVD mustcome from speeding up the non-bidiagonal part of the computation. One way to



13Table 4: Speedup of SGESVD-DC over SGESVD-QRSpeedup using optimized BLASDimensionTest Matrix 50 100 200 300 400type 1 1.07 1.65 2.55 2.85 3.07type 2 0.97 1.29 1.79 2.03 2.19type 3 2.22 3.08 3.42 3.85 3.86type 4 1.16 1.70 2.55 2.91 3.29Speedup using Fortran BLASDimensionTest Matrix 50 100 200 300 400type 1 0.92 1.16 1.62 1.74 1.69type 2 0.76 0.92 1.35 1.35 1.38type 3 1.69 1.86 1.93 1.80 1.92type 4 0.97 1.19 1.62 1.76 1.75do this is to abandon computing the singular vectors explicitly, leaving them in thefactored form provided by the algorithm. We exploit this possibility in the nextsection.3.4 Performance of Solvers for the Linear Least SquaresProblemWe consider solving N -by-N least squares problems with single right hand sides. Weuse the same four test matrices as before. The algorithms we consider are� SGELS - QR decomposition (currently in LAPACK)� SGELSX - QR decomposition with pivoting (currently in LAPACK)� SGELSS-QR - SVD (currently in LAPACK)� SGELSS-QRf - SVD but maintaining the left singular vectors of the bidiagonalmatrix as a list of O(N2) Givens rotations� SGELSD - SVD based on divide-and-conquer, factored formWe present square problems only, sinceM -by-N problems withM � N are generallyreduced to an N -by-N problem by an initial QR decomposition, and this dominatesall later computations.



14Table 5: Fraction of time Dense SVD spends in Bidiagonal SVD (optimized BLAS)Fraction of SGESVD-DC spent in SBDSDCDimensionTest Matrix 50 100 200 300 400type 1 0.50 0.42 0.35 0.29 0.25type 2 0.43 0.30 0.20 0.16 0.13type 3 0.09 0.04 0.04 0.03 0.02type 4 0.51 0.41 0.32 0.27 0.25Fraction of SGESVD-QR spent in SBDSQRDimensionTest Matrix 50 100 200 300 400type 1 0.69 0.70 0.75 0.79 0.78type 2 0.59 0.55 0.65 0.66 0.67type 3 0.71 0.73 0.74 0.81 0.77type 4 0.70 0.71 0.75 0.79 0.79In addition to measuring the speedup of SGELSD and SGELSS-QRf over SGELSS-QR, we measure times relative to SGELS, the fastest, and least reliable, of all themethods. This quanti�es the tradeo� between speed and reliability inherent in thisproblem. Results shown in tables are for optimized BLAS only.Table 6 shows that both new least squares solvers, SGELSS-QRf and SGELSD,are signi�cantly faster than the older SGELSS. Table 7 shows that a fully reliableSVD-based solution to the linear least square problem now costs no more than 4.35times as much as the fastest solver (SGELS), whereas it used to cost as much as 15times more. Furthermore, it is only about twice as expensive as the more reliableQR with pivoting scheme used in SGELSX. \Completely reliable" rank-revealing QRschemes have been designed [16], and these are likely to be intermediate in speedbetween SGELSX and the SVD based schemes. The table entry describing the speedof SGEBRD (bidiagonal reduction), which is performed by all SVD based schemeswe consider, shows that at best we can expect to run 3.37 times faster than SGELS,and we are close to this lower bound.When using Fortran BLAS, the time for SGELSD decreases to about 2.5 times asmuch as SGELS, and SGEBRD takes about twice as long as SGELS, as predicted bythe operation counts.3.5 Accuracy AssessmentWe use two measures of accuracy of the computed SVD A = X�Y T : the residualmaxi kAyi � �ixik=(��1) and the orthogonality of the singular vectors max(kY Y T �



15Table 6: Speedups of New SVD-based Least Squares SolversSpeedup of SGELSD over SGELSS-QRDimensionTest Matrix 50 100 200 300 400type 1 0.87 1.33 2.36 2.95 3.18type 2 0.86 1.27 2.07 2.18 2.32type 3 2.77 3.38 3.78 4.00 3.82type 4 0.89 1.43 2.54 3.21 3.18Speedup of SGELSS-QRf over SGELSS-QRDimensionTest Matrix 50 100 200 300 400type 1 1.50 2.00 2.93 3.47 3.59type 2 1.33 1.69 2.35 2.47 2.38type 3 1.57 2.00 2.98 3.29 3.33type 4 1.48 2.00 3.10 3.59 3.50Ik=�; kXXT � Ik=�), where � is machine precision. Ideally these two measure shouldbe O(1) for any dimension, but we would not be unhappy to get numbers growingwith N , perhaps as O(N), although we cannot prove so tight a bound. In fact, theQR based SVD routines exhibit measures as large as 2N for N = 400, though theyare usually much smaller, whereas the ratios for divide-and-conquer routines werenever larger than 13. In other words, the divide-and-conquer based SVD is not onlyfaster but more accurate than the QR based approach.The above results are for dense matrices. It turns out one can prove tighter relativeerror bounds for singular values and singular vectors for the QR-based bidiagonalSVD [8, 7]. We currently cannot guarantee this high relative accuracy with divide-and-conquer, just the absolute accuracy described in the last paragraph.4 ConclusionsWe have described a new implementation of the singular value decomposition whichis both faster and more accurate than its predecessor. It achieves this by using adivide-and-conquer bidiagonal SVD algorithm instead of QR iteration. The speedupon bidiagonal matrices grows with dimension, so that for 400-by-400 matrices, thebidiagonal SVD is taking just 25% of the total time for the dense SVD, whereas theolder bidiagonal SVD took up to 80% of the total time. This means the bidiagonalSVD is no longer the bottleneck in the computation.We have also shown how to achieve large speedups for solving the linear least



16Table 7: Timings of Least Squares Solvers relative to SGELSTime(SGELSX) / Time(SGELS)DimensionTest Matrix 50 100 200 300 400type 1 1.49 1.29 1.60 1.88 2.39type 2 1.49 1.45 1.87 2.19 2.72type 3 1.32 1.09 1.53 1.84 2.39type 4 1.15 1.16 1.53 1.84 2.39Time(SGEBRD) / Time(SGELS)DimensionTest Matrix 50 100 200 300 400all types 1.32 1.68 2.73 2.79 3.37Time(SGELSS-QRf) / Time(SGELS)DimensionTest Matrix 50 100 200 300 400type 1 3.73 3.23 3.87 3.95 4.24type 2 3.05 2.68 3.40 3.49 4.02type 3 3.90 3.44 3.80 3.95 4.24type 4 3.38 3.23 3.87 3.95 4.35Time(SGELSD) / Time(SGELS)DimensionTest Matrix 50 100 200 300 400type 1 6.44 4.84 4.80 4.65 4.78type 2 4.75 3.55 3.87 3.95 4.13type 3 2.20 2.03 3.00 3.26 3.70type 4 5.59 4.52 4.73 4.42 4.78Time(SGELSS-QR) / Time(SGELS)DimensionTest Matrix 50 100 200 300 400type 1 5.59 6.45 11.33 13.72 15.22type 2 4.07 4.52 8.00 8.60 9.57type 3 6.10 6.88 11.33 13.02 14.13type 4 5.00 6.45 12.00 14.19 15.22



17squares problem using the SVD.While the old SVD based least squares solver required12n3 
ops and took up to 15 times longer than the fastest backward stable solution,the new SVD based routines require just 83n3 
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