
Information Management Toolsfor Updating anSVD-Encoded Indexing SchemeGavin W. O`BrienComputer Science DepartmentCS-94-258 October 1994

Information Management Toolsfor Updating an SVD-EncodedIndexing SchemeA ThesisPresented for theMaster of Science DegreeThe University of Tennessee, KnoxvilleGavin W. O'BrienDecember 1994

AcknowledgmentsI thank my thesis advisor, Dr. Michael Berry, for his support and guidance. Iappreciate his patience and advice in all aspects of creating this thesis. I am grateful toDr. Susan Dumais from Bellcore and Sowmini Varadhan for their technical advice. Ialso thank my committee members Dr. Brad Vander Zanden and Dr. David Straight.Finally, I must thank the people who have help motivate me in completing myMastersdegree in a timely manner, my parents, Dr. William and Margaret O'Brien andMichelle Johnson.This research has been supported in part by Apple Computer through ContractNo. C24-9100120 and by the National Science Foundation under Grant No. NSF-ASC-92-03004.

iii

AbstractLexical-matching methods for information retrieval can be inaccurate when theyare used to match a user's queries. Typically, information is retrieved by literallymatching terms in documents with those of the query. The problem is that userswant to retrieve on the basis of conceptual topic or meaning of a document. Thereare usually many ways to express a given concept (synonymy), so the literal termsin a user's query may not match those of a relevant document. In addition, mostwords have multiple meanings (polysemy), so terms in a user's query will literallymatch terms in irrelevant documents. The implicit high-order structure of associatingterms with documents can be exploited by the singular value decomposition (SVD).Latent Semantic Indexing (LSI) is a conceptual indexing technique which uses theSVD to estimate the underlying latent semantic structure of the word to documentassociation. By computing a lower-rank approximation to the original term-documentmatrix, LSI dampens the e�ects of word choice variability by representing terms anddocuments using the (orthogonal) left and right singular vectors.Current methods for adding new text to an LSI database can have deterioratinge�ects on the orthogonality of the vectors used to represent terms and documents inhigh-dimensional subspaces. Updating the SVD so as to preserve the orthogonalityamong document vectors corresponding to the new term-document matrix is oneremedy. Computing the SVD of the new term-document matrix can be avoided byusing SVDPACKC routines for appropriate submatrices constructed from existingterm and document vectors and similar vectors corresponding to the new text. Thecost of the numerical computations needed to update the SVD versus the potentialinaccuracy of simply folding-in text presents an interesting tradeo� for LSI databasemanagement. iv

Contents1 Introduction 11.1 Motivation : 11.2 Statement of Problem : 21.3 Overview : 32 Preliminaries 42.1 Singular Value Decomposition : 42.2 Latent Semantic Indexing : 52.3 Queries : 82.4 Folding-In : 83 Latent Semantic Indexing and Updating Example 123.1 Latent Semantic Indexing : 123.2 Queries : 163.3 Comparison with Lexical Matching : : : : : : : : : : : : : : : : : : : 183.4 Folding-In : 193.5 Recomputing the SVD : 214 SVD-Updating 23v

4.1 Overview of SVD-updating : 234.2 SVD-Updating Example : 244.3 SVD-Updating Procedures : 254.3.1 SVD-Updating of Documents : : : : : : : : : : : : : : : : : : 274.3.2 SVD-Updating of Terms : 284.3.3 SVD-Updating with Term Weight Corrections : : : : : : : : : 294.4 LSI-Updating Example with Term Weight Corrections : : : : : : : : 304.5 Orthogonality : 364.6 Memory Considerations : 374.7 Computational Complexity for SVD-Updating : : : : : : : : : : : : : 385 Performance Benchmarks 425.1 Overview : 425.2 Retrieval Accuracy : 425.3 Memory Usage : 475.4 Timing Benchmarks : 506 Summary and Future Work 546.1 Summary : 546.2 Future Work : 55Bibliograpy 56Appendices 59A Compressed Column Storage 60B out File Format 63vi

C Weightings 66Vita 69

vii

List of Tables3.1 Original Data : 133.2 Term-Document Matrix of Original Data : : : : : : : : : : : : : : : : 133.3 Returned documents based on di�erent numbers of LSI factors. : : : 183.4 Additional titles for updating. : 194.1 Symbols used for computational complexity. : : : : : : : : : : : : : : 284.2 Example of ZTj : 334.3 Loss of orthogonality in V̂k for folding-in and in Vk for SVD-updatingand recomputing the SVD using the 12 � 16 example. : : : : : : : : : 374.4 Lanczos memory constraints. : 384.5 Computational complexity of updating methods. : : : : : : : : : : : : 394.6 Assumptions for graphing computational complexities. : : : : : : : : 395.1 Relevance feedback results using the 12� 16 example and log-entropyweightings. : 435.2 Relevance feedback results of misses and hits. : : : : : : : : : : : : : 445.3 Parameters of datasets from the Columbia Condensed Encyclopedia. : 485.4 Actual memory usage for updating the Columbia Condensed Encyclo-pedia. : 49viii

5.5 Timing benchmarks updating the letters A-F of CCE. : : : : : : : : : 506.1 Attributes of updating methods. : 54B.1 Header Information. : 65C.1 Popular local weightings. : 67C.2 Popular global weightings. : 67

ix

List of Figures2.1 Mathematical representation of matrix Ak : : : : : : : : : : : : : : : 72.2 Mathematical representation of folding-in p documents. : : : : : : : : 102.3 Mathematical representation of folding-in q terms. : : : : : : : : : : : 103.1 Best rank-2 approximation to A using 2-largest singular triplets. : : : 143.2 Two-dimensional plot of terms and documents for the 12 � 9 example. 153.3 Derived coordinates for the query of human computer. : : : : : : : : : 163.4 A Two-dimensional plot of terms and documents along with the queryhuman computer. : 173.5 Two-dimensional plot of folded-in documents. : : : : : : : : : : : : : 203.6 Two-dimensional plot of terms and documents using the SVD of areconstructed term-document matrix. : : : : : : : : : : : : : : : : : : 224.1 Two-dimensional plot of terms and documents using the SVD-updatingprocess. : 264.2 Two-dimensional plot of SVD-updating (before the term weight cor-rection method) with log-entropy weighting. : : : : : : : : : : : : : : 324.3 Two-dimensional plot of SVD-updating (after the term weight correc-tion method) with log-entropy weighting. : : : : : : : : : : : : : : : : 34x

4.4 Two-dimensional plot of new SVD with log-entropy weighting. : : : : 354.5 Complexity of adding documents with m� n. : : : : : : : : : : : : : 404.6 Complexity of adding documents with m� n. : : : : : : : : : : : : : 404.7 Complexity of adding terms with m� n. : : : : : : : : : : : : : : : : 404.8 Complexity of adding terms with m� n. : : : : : : : : : : : : : : : : 405.1 c2 relevance feedback hits. : 465.2 m2 relevance feedback hits. : 465.3 n4 relevance feedback hits. : 465.4 n7 relevance feedback hits. : 465.5 Memory usage for updating letters A-F of CCE. : : : : : : : : : : : : 495.6 Wall-clock time in seconds for updating documents of the ColumbiaCondensed Encyclopedia. : 515.7 Updating documents pro�le. : 53A.1 Contents of matrix.hb �le. : 61B.1 out �le contents. : 64
xi

Chapter 1Introduction1.1 MotivationTypically, information is retrieved by literally matching terms in documents withthose of a query. However, lexical-matching methods for information retrieval canbe inaccurate when they are used to match a user's query. Since there are usuallymany ways to express a given concept (synonymy), the literal terms in a user's querymay not match those of a relevant document. In addition, most words have multiplemeanings (polysemy), so terms in a user's query will literally match terms in irrelevantdocuments. A better approach would allow users to retrieve information on the basisof a conceptual topic or meaning of a document.Latent semantic indexing (LSI) [DDF+90] tries to overcome the problems of lexical-matching by assuming there is some underlying latent semantic structure of wordusage data that is partially obscured by the variability of word choice. LSI is aconceptual-indexing technique which uses the singular value decomposition (SVD)[GL89] to estimate the underlying latent semantic structure of word to document as-1

sociation. This implicit high-order structure of associating terms with documents canbe exploited by the SVD. A number of software tools have been developed to performoperations such as: parsing, query matching, and adding additional terms or docu-ments to an existing LSI-generated database. The bulk of the LSI process involvescomputing a truncated SVD of sparse term by document matrices which are used tomodel the latent semantic structure, and the creation of a keyword database. TheSVD combined with the software tools mentioned above comprise an LSI-generateddatabase.Current methods for adding new text to an LSI-generated database can have dete-riorating e�ects on both the SVD and retrieval of information. This thesis develops anew technique for adding text which maintains the integrity of the SVD and improvesinformation retrieval.1.2 Statement of ProblemFolding-in text, the current method for updating an LSI-generated database, is aninexpensive but potentially inaccurate way of updating. Folding-in does not recom-pute the latent semantic model, via the SVD, but instead applies the existing modelto the new terms and documents. This can have deteriorating e�ects on retrievalif the new text uses words di�erently than existing text. The new word usage datais potentially lost or misrepresented. SVD-updating, the method developed in thisthesis, properly updates the current SVD-generated model allowing new word usagedata to perturb the existing model. 2

1.3 OverviewChapter 2 is a review of basic concepts needed to understand LSI. Chapter 3 usesa constructive example to illustrate how LSI represents terms and documents in thesame semantic space, how a query is represented, how additional documents arefolded-in, and how SVD-updating represents additional documents. Chapter 4 com-prises a detailed discussion of the algorithm used in SVD-updating, while Chapter5 compares both methods of updating, folding-in and SVD-updating, with regard torobustness of query matching and computational complexity.

3

Chapter 2Preliminaries2.1 Singular Value DecompositionThe singular value decomposition is commonly used in the solution of unconstrainedlinear least squares problems, matrix rank estimation, and canonical correlation anal-ysis [Ber92a]. Given an m� n matrix A, where without loss of generality m � n andrank(A) = r, the singular value decomposition of A, denoted by SVD(A), is de�nedas A = U�V T (2.1)where UTU = V TV = In and � = diag(�1; � � � ; �n); �i > 0 for 1 � i � r; �j =0 for j � r + 1. The �rst r columns of the orthogonal matrices U and V de�nethe orthonormal eigenvectors associated with the r nonzero eigenvalues of AAT andATA, respectively. U and V are referred to as the left and right singular vectors,respectively. The singular values of A are de�ned as the diagonal elements of �which are the nonnegative square roots of the n eigenvalues of AAT [GL89].The following two theorems illustrate how the SVD can reveal important informa-4

tion about the structure of a matrix.Theorem 1. Let the SVD of A be given by Equation (2.1) and�1 � �2 � � � � �r > �r+1 = � � � = �n = 0and let R(A) and N(A) denote the range and null space of A, respectively. Then1. rank property: rank(A) = r;N(A) � spanfvr+1; � � � ; vng, and R(A) � spanfu1; � � � ; urg,where U = [u1u2 � � � um] and V = [v1v2 � � � vn]:2. dyadic decomposition: A = rXi=1 ui � �i � vTi :3. norms: kAk2F = �21 + � � �+ �2r , and kAk22 = �1:Theorem 2. [Eckart and Young] Let the SVD of A be given by Equation (2.1)with r = rank(A) � p = min(m;n) and de�neAk = kXi=1 ui � �i � vTi (2.2)minrank(B)=k kA�Bk2F = kA�Akk2F = �2k+1 + � � �+ �2p:(For a proof, see [GR71].) In other words, Ak, which is constructed from the k-largest singular triplets of A, is the closest rank-k matrix to A [GL89]. In fact, Ak isthe best approximation to A for any unitarily invariant norm [Mir60]. Hence,minrank(B)=k kA�Bk2 = kA�Akk2 = �k+1: (2.3)2.2 Latent Semantic IndexingIn order to implement Latent Semantic Indexing [DDF+90] a matrix of terms bydocuments must be constructed. The elements of the term-document matrix are the5

occurrences of each word in a particular document, i.e.,A = [aij]; (2.4)where aij denotes the frequency in which term i occurs in document j. Since everyword does not normally appear in each document, the matrix A is usually sparse.In practice, local and global weightings are applied [Dum91] to increase/decrease theimportance of terms within or among documents. Speci�cally, we can writeaij = L(i; j)�G(i); (2.5)where L(i; j) is the local weighting for term i in document j, and G(i) is the globalweighting for term i. The matrix A is factored into the product of 3 matrices (Equa-tion (2.1)) using the singular value decomposition (SVD). The SVD derives the latentsemantic structure model from the orthogonal matrices U and V containing left andright singular vectors of A, respectively, and the diagonal matrix, �, of singular valuesof A. These matrices re
ect a breakdown of the original relationships into linearly-independent vectors or factor values. The use of k factors or k-largest singular tripletsis equivalent to approximating the original (and somewhat unreliable) term-documentmatrix by Ak in Equation (2.2). In some sense, the SVD can be viewed as a tech-nique for deriving a set of uncorrelated indexing variables or factors, whereby eachterm and document is represented by a vector in k-space using elements of the left orright singular vectors.In using Ak as an approximation to the original matrix A it is possible for docu-ments with di�erent sets of terms to be mapped into the same vector. These vectorsrepresent extracted, common meaning relationships of many di�erent terms and doc-uments. Each term and document is represented by a vector of weights indicatingthe magnitude of association with each of the underlying concepts. The meaning of a6

Akm � n = Um � rk �r � r
k k@@@ V Tr � n

k
Ak = Best rank-k approximation to A m = number of termsU = Term Vectors n = number of documents� = Singular Values k = number of factorsV = Document Vectors r = rank of AFigure 2.1: Mathematical representation of the matrix Ak from Equation (2.2).particular term, query, or document can be expressed as a vector. The meaning rep-resentation is a reduction from the original n vectors to the new k < n best surrogatesby which they can be approximated.It is important for the method that the derived k-dimensional factor space notreconstruct the original term-document matrix A perfectly, because we believe theoriginal term-document matrix A to contain noise due to word choice. Rather, wewant a derived structure, that expresses what is reliable and important in the under-lying use of terms as document referents.Figure 2.1 is a mathematical representation of the singular value decomposition. Uand V are considered the term and document vectors respectively, and � representsthe singular values. The shaded regions in U and V and the diagonal line in �represent Ak from Equation (2.2). 7

2.3 QueriesA query (or a set of words) can be considered as just another document, which can berepresented as a vector in the k-dimensional space. As a pseudo-document, a query issimply a weighted sum of its component term vectors, which can be compared againstall existing documents. A query vector (qv) is de�ned as a vector of its weightedterms. For example, the query vector (qv) can be represented mathematically as apseudo-document (q) via q = qTv Uk��1k : (2.6)The (conceptually) nearest document vectors to the pseudo-document can be re-turned. Since an ordered list of all the documents can be returned, a measure forcloseness must be set. One measure of nearness is the cosine. Two types of orderedlistings exist, either a threshold is set for the cosine and all documents above it arereturned or the z closest documents are returned [DDF+90].2.4 Folding-InFolding-in has been the only updating technique considered thus far for LSI. Supposean LSI-generated database already exists. That is, a body of text has been parsed, aterm-documentmatrix has been generated, and the SVD of the term-documentmatrixhas been computed. If more terms and documents must be added, two alternatives forincorporating them currently exist: recomputing the SVD of a new term-documentmatrix or folding-in the new terms and documents.Three terms are de�ned below to avoid confusion when discussing updating. Up-dating refers to the general process of adding new terms and/or documents to an exist-8

ing LSI-generated database. Updating can mean either folding-in or SVD-updating.SVD-updating is the new method of updating developed in this thesis. Recomput-ing the SVD is not an updating method, but a way of creating an LSI-generateddatabase with new terms and/or documents from scratch which can be compared toeither updating method.Recomputing the SVD of a larger term-document matrix requires more compu-tation time and, for large problems, may be impossible due to memory constraints.Folding-in requires less time and memory but can have deteriorating e�ects on therepresentation of the new terms and documents. Recomputing the SVD allows thenew t terms and d documents to directly a�ect the latent semantic structure bycreating a new term-document matrix A(m+t)�(n+d), computing the SVD of the newterm-document matrix, and generating a di�erent Ak matrix. In contrast, folding-inis based on the existing latent semantic structure, (the current Ak), and hence newterms and documents have no e�ect on the representation of the pre-existing termsand documents.Folding-in documents is essentially the process described in Section 2.3 for pseudo-document representation of queries. Each new document is represented as a weightedsum of its component term vectors. Once a new document vector has been computedit is appended to the set of existing document vectors or columns of Vk (see Figure2.2).Similarly, new terms can be represented as a weighted sum of their componentdocument vectors. Once the term vector has been computed it is appended to theset of existing term vectors or columns of Uk (see Figure 2.3).9

pAkm � nm � (n+p) = Uk
m � km � k �k

k � kk � k pV Tk
k � (n+p)k � n

Figure 2.2: Mathematical representation of folding-in p documents.
Ak q(m+q) � nm � n = Uk

(m+q) � km � k q �k
k � kk � k V Tk

k � nk � n
Figure 2.3: Mathematical representation of folding-in q terms.10

To fold-in a new m � 1 document vector, d, into an existing LSI model, thecorresponding term vector dt is �rst determined. Like a query vector, dt is de�nedas a vector of its weighted terms. Then, a projection, dp, of d onto the span of thecurrent document vectors (columns of Vk) is computed bydp = dtVk��1k : (2.7)Similarly, to fold-in a new n � 1 term vector, t, into an existing LSI model, thecorresponding document vector td must be derived. td is de�ned as a vector of itsweighted documents. Then, a projection of t, tq, onto the span of the current termvectors (columns of Uk) is determined bytq = tdUTk ��1k : (2.8)

11

Chapter 3Latent Semantic Indexing andUpdating Example3.1 Latent Semantic IndexingIn this chapter an example of LSI and the folding-in process is presented. The titles(see Table 3.1) used to demonstrate the LSI process are extracted from the test case in[DDF+90]. These titles are based on two topics of memorandum from Bellcore: the\c" documents refer to human-computer interaction and the \m" documents refer togroup theory. All underlined words are considered signi�cant if they appear in morethan one title.Corresponding to the text in Table 3.1 is the 12 � 9 term-document matrix shownin Table 3.2. The elements of this matrix are the frequencies in which a term occursin a document or title (see Section 2.4). For example, in title c1, the �rst columnof the term-document matrix, human, interface, and computer all occur once. TheSVD of the 12 � 9 term-document matrix is then computed. Selecting k=2, the best12

Table 3.1: Original DataDocument Id Titlesc1 Human Machine Interface for Lab ABC Computer Applicationsc2 A Survey of User Opinion of Computer Systems Response Timec3 The EPS User Interface Management Systemsc4 Systems and Human Systems Engineering Testing of EPS-2c5 Relation of User-Perceived Response Time to Error Measurementm1 The Generation of Random, Binary, Unordered Treem2 Intersection Graph of Paths in a Treem3 Graph Minors IV: Tree-Width and Well-Quasi-Orderingm4 Graph Minors - A Survey
Table 3.2: Term-Document Matrix of Original DataTerms Documentsc1 c2 c3 c4 c5 m1 m2 m3 m4human 1 0 0 1 0 0 0 0 0interface 1 0 1 0 0 0 0 0 0computer 1 0 0 0 0 0 0 0 0user 0 1 1 0 1 0 0 0 0system 0 1 1 2 0 0 0 0 0response 0 1 0 0 1 0 0 0 0time 0 1 0 0 1 0 0 0 0EPS 0 0 1 1 0 0 0 0 0survey 0 1 0 0 0 0 0 0 1trees 0 0 0 0 0 1 1 1 0graph 0 0 0 0 0 0 1 1 1minors 0 0 0 0 0 0 0 1 113

A212 x 9
= U212 x 2

�2
2 x 2

V T2
2 x 9Figure 3.1: Best rank-2 approximation to A using 2-largest singular triplets.rank-2 approximation to A is illustrated in Figure 3.1.Using the �rst column of U2 multiplied by the �rst singular value, �1, for the x-coordinates and the second column of U2 multiplied by the second singular value, �2,for the y-coordinates, the terms can be represented on the Cartesian plane. Similarly,the �rst column of V2 scaled by �1 are the x-coordinates and the second column of V2scaled by �2 are the y-coordinates for the documents. Figure 3.2 is a Two-dimensionalplot of the terms and documents for the 12 � 9 example.14

1 2 3

-1

0

1

computer

eps

graph

human
interface

minors

response

survey

system

time

tree

user

c1

c2

c3

c4

c5

m1

m2

m3

m4Figure 3.2: Two-dimensional plot of terms and documents for the 12 � 9 example.15

� 0:1383 0:0275 � = 0BBBBBBBBBBBBBBBBBB@ 101000000000
1CCCCCCCCCCCCCCCCCCA

T 0BBBBBBBBBBBBBBBBBB@ 0:2405 �0:04320:3008 0:14130:0361 �0:62280:2214 0:11320:1976 0:07210:0318 �0:45050:2650 �0:10720:2059 �0:27360:6445 �0:16730:0127 �0:49020:2650 �0:10720:4036 �0:0571
1CCCCCCCCCCCCCCCCCCA� 3:3409 00 2:5417 ��1Figure 3.3: Derived coordinates for the query of human computer.Notice the documents and terms pertaining to human computer interaction areclustered around the x-axis and the graph theory-related terms and documents areclustered around the y-axis. Such groupings suggest that documents c1 throughc5 are similar in meaning and that documents m1 through m4 also have similarmeaning.3.2 QueriesSuppose we are interested in the documents that pertain to human computer interac-tion. Recall that a query vector (qv) is represented as a pseudo document (q) via q =qTv Uk��1k (see Equation (2.6)). Interaction is not an indexed term in the database soit is omitted from the query leaving human computer. Mathematically, the Cartesiancoordinates of the query are determined according to Figure 3.3.This query vector is then compared (in the Cartesian plane) to all the documentsin the LSI-generated database. All documents whose cosine with the query vector isgreater than :90 is illustrated in the shaded region of Figure 3.4.16

-1

0

1

QUERY

computer

eps

graph

human
interface

minors

response

survey

system

time

tree

user

c1

c2

c3

c4

c5

m1

m2

m3

m4Figure 3.4: A Two-dimensional plot of terms and documents along with the query human computer.17

Table 3.3: Returned documents based on di�erent numbers of LSI factors.Number of Factorsk = 2 k = 4 k = 9c3 .99 c1 .99 c1 .88c1 .99 c3 .39 c4 .31c4 .98 c2 .30 c2 .31c2 .93 c4 .22c5 .90A di�erent cosine threshold, of course, could have been used so that a larger orsmaller set of documents would be returned. The cosine is merely used to rank-orderdocuments and its explicit value is not always an adequate measure of relevance. Thisphenomenon will be illustrated in the next section.3.3 Comparison with Lexical MatchingIn this example, LSI has been applied using 2 factors (i.e. A2 is used to approximatethe original 12 � 9 term-document matrix). Using a cosine threshold of :90, all�ve documents related to human computer interaction were returned: documents c1,c2, c3, c4, and c5. With lexical-matching, only three documents (c1, c2, c4) arereturned. Hence, the LSI approach extracts two additional documents (c3 and c5)which are relevant to the query yet share no common terms. Table 3.3 lists the LSI-ranked documents with di�erent numbers of factors (k). The documents returned inTable 3.3 satisfy a cosine threshold of :20, i.e. returned documents are within a cosineof :20 of the pseudo-document used to represent the query.18

Table 3.4: Additional titles for updating.Document Id Titlesn1 System Time to Traverse a B-Tree Graphn2 Interface Graph Toolsn3 Graph Minors Implemented on Computer Systemsn4 Systems Treen5 Computer Graphn6 Survey of Computer Timen7 A Survey of Human Interface Computer Systems3.4 Folding-InSuppose the �ctitious titles listed in Table 3.4 are to be updated to the original setof titles in Table 3.1. While some titles in Table 3.4 use terms from both the humancomputer interaction and group theory categories, others use only terms from eachseparate category. As with Table 3.1, all underlined words in Table 3.4 are consideredsigni�cant since they appear in more than one title (across all 16 titles from Tables 3.1and 3.4). Folding-in (see Section 2.4) is one approach for updating the original LSI-generated database with the 7 new titles. Figure 3.5 demonstrates how these titles arefolded-into an LSI-generated database based on k = 2 factors. The new documentsare denoted on the graph by their document id's. Notice that the coordinates of theoriginal titles stay �xed, and hence the new data has no e�ect on the clustering ofexisting terms or documents.
19

.2 .4 .6 .8 1
0

.2

.4

-.2

-.4

-.6

-.8

computer

eps

graph

human
interface

minors

response

survey

systems

time

tree

user

c1

c2

c3

c4

c5

m1

m2

m3
m4

n1

n2

n3

n4

n5

n6

n7

Figure 3.5: Two-dimensional plot of folded-in documents.20

3.5 Recomputing the SVDIdeally, the most robust way to produce the best rank-k approximation (Ak) to anLSI-generated database which has been added new terms and documents is to simplycompute the SVD of a reconstructed term-document matrix, say ~A. Updating meth-ods which can approximate the SVD of the larger term-document matrix ~A becomeattractive in the presence of memory or time constraints. Therefore, the accuracy ofSVD-updating approaches will be compared to that obtained when the SVD of ~A isexplicitly computed.Suppose the titles from Table 3.4 are combined with those of Table 3.1 in orderto create a new 12 � 16 term-document matrix ~A. Following Figure 3.1, we thenconstruct the best rank-2 approximation to ~A,~A2 = ~U2~�2 ~V T2 : (3.1)Figure 3.6 is a 2-dimensional plot of the 12 terms and 16 documents using the elementsof ~U2 and ~V2 for term and document coordinates, respectively. Notice the di�erence interm and document positions between Figures 3.5 and 3.6. Clearly, the new terms anddocuments from Table 3.4 have helped rede�ne the underlying latent structure whenthe SVD of ~A is computed. Folding-in the 7 new documents based on the existingrank-2 approximation to A (de�ned by Table 3.2) may not accurately reproduce thetrue LSI representation of the new LSI-generated database.
21

0.2 0.4 0.6 0.8 1
0

.2

.4

-.2

-.4

-.6

-.8

computer

eps

graph

human

interface

minors

response
survey

systems

time

tree

user

c1

c2c3
c4

c5

m1

m2

m3

m4 n1

n2

n3

n4

n5

n6

n7

Figure 3.6: Two-dimensional plot of terms and documents using the SVD of a reconstructed term-document matrix. 22

Chapter 4SVD-UpdatingChapter 4 describes SVD-updating using titles from Tables 3.1 and 3.4. The threesteps required to perform a complete SVD-update involve adding new documents,adding new terms, and correction for changes in term weightings. These steps are notrestricted to the ordering presented in the section below, but it is a logical approachto SVD-updating.4.1 Overview of SVD-updatingThis section is an overview of the three steps used to SVD-update an LSI-generateddatabase. Let D denote the d new document vectors to process, then D is an m� dsparse matrix since most terms (as was the case with the original term-documentmatrix A) do not occur in each document. D is appended to the columns of therank-k approximation of the m � n matrix A, i.e., from Equation (2.2), Ak so thatthe k-largest singular values and corresponding singular vectors ofB = (Ak j D) (4.1)23

are computed. This is almost the same process as recomputing the SVD, only A isreplaced by Ak.Let T denote a collection of t�1 term vectors for SVD-updating. Then T is a t�nsparse matrix, since each term rarely occurs in every document. T is then appendedto the rows of Ak so that the k-largest singular values and corresponding singularvectors of B = 0BB@ AkT 1CCA (4.2)are computed.The correction step for incorporating changes in term weights is performed afterany terms or documents have been SVD-updated and the term weightings of theoriginal matrix have changed. For a change of weightings in j terms, let Yj be anm� j matrix comprised of rows of zeros or rows of the j-th order identity matrix, Ij,and let Zj be an n� j matrix whose columns specify the actual di�erences betweenold and new weights for each of the j terms. Computing the SVD of the followingrank-j update to Ak de�nes the correction step.B = Ak + YjZTj : (4.3)4.2 SVD-Updating ExampleTo illustrate SVD-updating, suppose the �ctitious titles in Table 3.4 are to be addedto the original set of titles in Table 3.1. In this example, only documents are addedand weights are not adjusted, hence only the SVD of the matrix B in Equation (4.1)is computed.Initially, a 12 � 7 term-document matrix, D, corresponding to the �ctitious titles24

in Table 3.4 is generated and then appended to A2 to form a 12� 16 matrix B of theform given by Equation (4.1). Following Figure 3.1, the best rank-2 approximation(B2) to B is given by B2 = Û2�̂2V̂ T2 ;where the columns of Û2 and V̂2 are the left and right singular vectors, respectively,corresponding to the two largest singular values of B.Figure 4.1 is a two-dimensional plot of the 12 terms and 16 documents using theelements of Û2 and V̂2 for term and document coordinates, respectively. Notice thesimilar clustering of terms and documents in Figures 4.1 and 3.6 (recomputing theSVD) and the di�erence in clustering with Figure 3.5 (folding-in).4.3 SVD-Updating ProceduresThe mathematical computations required in each phase of the SVD-updating processare detailed in this section. SVD-updating incorporates new term or document infor-mation into an existing semantic model (Ak from Equation (2.2)) using sparse term-document matrices (D, T , and YjZTj) discussed in Section 4.1. SVD-updating exploitsthe previous singular values and singular vectors of the original term-documents ma-trix A as an alternative to recomputing the SVD of ~A in Equation (3.1). In general,the cost of computing the SVD of a sparse matrix [B+93] can be generally expressedas I � cost (GTGx) + trp � cost (Gx); (4.4)where I is the number of iterations required by a Lanczos-type procedure [Ber92a]to approximate the eigensystem of GTG and trp is the number of accepted singulartriplets (i.e. singular values and corresponding left and right singular vectors). The25

.2 .4 .6 .8 1
0

.2

.4

-.2

-.4

-.6

-.8

computer

eps

graph

human
interface

minors

response survey

systems

time

tree

user
c1

c2c3 c4

c5

m1

m2

m3

m4
n1

n2

n3

n4

n5

n6

n7

Figure 4.1: Two-dimensional plot of terms and documents using the SVD-updating process.26

additional multiplication by G is required to extract the left singular vector givenapproximate singular values and their corresponding right singular vector approxima-tions from a Lanczos procedure. The subsections below demonstrate how to updatethe existing rank-k approximation Ak using standard linear algebra along with anestimate of the number of
oating-point operations required for each SVD-updatingphase.4.3.1 SVD-Updating of DocumentsLet B = (Ak j D) from Equation (4.1) and de�ne SVD (B) = UB�BV TB . ThenUTk B 0BB@ Vk Id 1CCA = (�k j UTk D);since Ak = Uk�kV Tk : If F = (�k j UTk D) and SVD(F) = UF�FV TF ; then it followsthat UB = UkUF andVB = 0BB@ Vk Id 1CCAVF ;since (UFUk)TB 0BB@ Vk Id 1CCA = �F = �B: Hence UB and VB are m� k and (n+ d)�(k + d) dense matrices, respectively.Table 4.1 contains a list of symbols, dimensions, and de�nitions of the variablesused to express the computational cost of all the SVD-updating phases. Computationalcost is de�ned in terms of
oating-point operations (multiplications or additions) anddenoted by
ops.Suppose G in Equation (4.4) is de�ned by G = (�k j UTk D) then the required
ops27

Table 4.1: Symbols used for computational complexity.Symbol Dimensions De�nitionA m � n Original Term-document matrixUk m � k Left singular vectors of Ak�k k � k Singular values of AkVk n� k Right singular vectors of AkZj n� j Adjusted weightsYj m � j Permutation matrixD m � d New document vectorsT t� n New term vectorsnnz(X) Number of non zeros in Xfor computing Gx are 2(nnz(D)+mk)�m and those for GTGx are 4nnz(D)+4mk+k � 2m� d. Inserting these costs into Equation (4.4) we obtain,I � [4nnz(D) + 4mk + k � 2m � d] + trp � [2nnz(D) + 2mk �m] (4.5)as an estimate of the number of
ops required to compute SVD(G). The costs forcomputing UB and VB are m[2k2 � k] and n[2k2 � k], respectively. Therefore, thetotal cost for SVD-updating of documents is given by,[I � [4nnz(D) + 4mk + k � 2m� d] + trp � [2nnz(D) + 2mk �m]]+ [(2k2 � k)(m+ n)]: (4.6)4.3.2 SVD-Updating of TermsLet B = 0BB@ AkT 1CCA from Equation (4.2) and de�ne SVD (B) = UB�BV TB . Then0BB@ UTk It 1CCABVk = 0BB@ �kTVk 1CCA :28

If H = 0BB@ �kTVk 1CCA and SVD(H) = UH�HV TH then it follows thatUB = 0BB@ Uk It 1CCAUH andVB = VkVH ;since UTH 0BB@ UTk It 1CCABVkVH = �H = �B: Hence UB and VB are (m+ t)� (k+ t) andn� k dense matrices, respectively.Suppose H in Equation (4.4) is de�ned by G = H = 0BB@ �kTVk 1CCA then the
ops forcomputing Gx are 2nnz(T) + 2nk + k � n � t and those for GTGx are 4nnz(T) +4nk + k � 2n� t. Inserting these costs into Equation (4.4) we obtain,I � [4nnz(T) + 4kn+ k � 2n � t] + trp�[2nnz(T) + 2kn + k � 2n� t] (4.7)as an estimate of the number of
ops required to compute SVD(G) = SVD(H). Thecosts for computing UB and VB are m[2k2 + k] and n[2k2 � k]
ops respectively.Therefore, the total cost for SVD-updating of terms is given by,[I � [4nnz(T) + 4kn + k � 2n � t)] + trp � [2nnz(T) + 2kn+ k � 2n � t]]+ [(2k2 + k)(m+ n)]: (4.8)4.3.3 SVD-Updating with Term Weight CorrectionsLet B = Ak+YjZTj , where Yj is (m+ t)�j and Zj is (n+d)�j from Equation (4.3).Then UTk BVk = (�k + UTk YjZTj Vk):29

If Q = (�k + UTk YjZTj Vk) and SVD(Q) = UQ�QV TQ , then it follows thatUB = UkUQ andVB = VkVQ:Since (UQUk)TBVkVQ = �Q = �B. Hence UB and UQ are m � k and n � k densematrices, respectively.Suppose G in Equation (4.4) is de�ned by G = Q = (�k + UTk YjZTj Vk) then the
ops for computing Gx are 2nk+2mk+2nnz(Zj)�j�n+k and those for GTGx are4nnz(Zj)+4km+2mj +2kn+3k�2n�2j �m. Inserting these costs into Equation(4.4) we obtain,I � [4nnz(Zj) + 4km+ 2mj + 2kn + 3k � 2n � 2j �m] + trp�[2nk + 2mk + 2nnz(Zj)� j � n+ k]; (4.9)where j is the number of terms whose weights have changed. The costs for computingUB and VB are m(2k2 � k) and n(2k2 � k)
ops, respectively. Therefore, the totalcost of SVD-updating with term weight corrections is given by,[I � [4nnz(Zj) + 4km+ 2mj + 2kn + 3k � 2n� 2j �m] +trp � [2nk + 2mk + 2nnz(Zj)� j � n+ k]]+(2k2 � k)(m+ n): (4.10)4.4 LSI-Updating Example with Term Weight CorrectionsThis section describes SVD-updating using the same titles from Table 3.1 and Table3.4. However, this example di�ers from that of Section 4.2 because di�erent local andglobal weightings (see Equation 2.4) have been applied. Let aij denote the frequency of30

term i in document j (Equation (2.5)), dfi denote the number of documents containingthe term i, gfi denote the frequency of term i in the entire collection, and ndocs denotethe number of documents in the collection. Suppose local (logarithmic) and global(entropy) weightings are applied so that from Equation (2.5) we haveL(i; j) = log(aij + 1) and G(i) = 1 �Xj pij log(pij)log(ndocs) ; where pij = aijdfi :We will refer to this particular weighting scheme as the log-entropy weighting [DDF+90].Suppose an LSI-generated database has already been created by applying the log-entropy weighting to the titles from Table 3.1. SVD-updating �rst updates the exist-ing database with the documents from Table 3.4, as in the Section 4.3.1. However,Ak has old weightings compared to D because new documents have changed both thelocal and global weightings of the original term-document matrix A de�ned in Table3.2. In other words, the variables ndocs; dfi, and gfi have all changed due to theaddition of more documents. Figure 4.2 is a two-dimensional plot of the terms anddocuments of SVD-updating before the weighting correction step from Section 4.3.3has been applied. The dotted circles in Figure 4.2 are used to compare clusterings ofterms and documents in later Figures.After the documents have been updated, the term weight correction step can beapplied. The m � j matrix Yj discussed in Section 4.1 denotes exactly which terms(or rows of the matrix A) have changed. Let ei denote the ith canonical vector and~0 denote the j � 1 null vector, thenYj = [e1;~0; e2; e3; e4; e5;~0; e6; e7; e8; e9;~0]T : (4.11)ZTj (see Table 4.2) re
ects a change of weights for 9 out of 12 terms. Each rowof the j � n matrix is computed by subtracting the new term weights from the31

.2 .4 .6 .8 1.0

-0.4

-0.2

-0.0

0.2

0.4

computer

eps

graph

human
interface

minors

response

survey

systems

time

tree

user

c1

c2

c3c4

c5

m1

m2

m3 m4

n1

n2

n3

n4n5

n6

n7

Figure 4.2: Two-dimensional plot of SVD-updating (before the term weight correction method) withlog-entropy weighting. 32

Table 4.2: Example of ZTj0BBBBBBBBBBBB@ �:330 0 �:0807 �:184 0 0 0 0 0�:330 0 0 0 0 �:184 �:214 �:184 00 0 0 �:184 0 0 �:214 0 00 0 �:0807 0 0 0 �:214 0 00 0 0 0 0 0 0 �:184 00 0 0 0 0 0 0 0 �:08040 �:201 0 0 0 0 0 0 �:08040 �:201 0 0 �:0807 0 0 0 �:08040 �:201 0 0 �:0807 �:184 0 0 0 1CCCCCCCCCCCCAold term weights for each document (see Figure 4.2). Once Yj and ZTj have beenconstructed the SVD of the matrix Q from Section 4.3.3 is then computed. Figure4.3 is a two-dimensional plot of the terms and documents after the term weightcorrection method has been applied. In comparison with the recomputed SVD (usinglog-entropy weightings) shown in Figure 4.4, we can see that the clustering of termsand documents with the term weight correction method (Figure 4.3) more closelyresembles that of recomputing the SVD (Figure 4.4) as opposed to SVD-updatingwithout term weight correction (Figure 4.2).The major di�erences between SVD-updating with and without the term weightcorrection step (Figures 4.3 and 4.2) and recomputing the SVD (Figure 4.4) is due tothe approximation of the original term-document matrix A by A2 rather than ~A2. Inorder to numerically quantify the di�erences, matrix norms can be applied. Let �A bethe �rst 9 columns of the 12�16 new term-document matrix and let A2 be the rank-2approximation of the original 12 � 9 term-document matrix A. An estimate of theerror in approximating the new term-document matrix with a rank-2 approximationof the original term-document matrix is given byk �A�A2k2 = 1:1805: (4.12)33

.2 .4 .6 .8 1.0

-0.4

-0.2

-0.0

0.2

0.4

computer

eps

graph

human

interface

minors

response

survey

systems

time

tree

user

c1

c2

c3

c4

c5

m1m2
m3 m4

n1

n2

n3n4
n5

n6

n7

Figure 4.3: Two-dimensional plot of SVD-updating (after the term weight correction method) withlog-entropy weighting. 34

.2 .4 .6 .8 1.0

-0.4

-0.2

-0.0

0.2

0.4

computer

eps

graph

human

interface

minors

response

survey

systems

time

tree

user

c1

c2

c3

c4

c5

m1
m2 m3m4

n1

n2
n3

n4
n5

n6

n7

Figure 4.4: Two-dimensional plot of new SVD with log-entropy weighting.35

When the term weight correction is applied to A2, the error in representing �A isreduced to k ~A�A2 + YjZTj k2 = 1:0665: (4.13)If the true rank-2 approximation to �A is computed (�A2) thenk ~A� ~A2k2 = 1:102 = ��3; (4.14)where ��3 is the third-largest singular value of �A (see Mirsky's result in Equation(2.3)). Notice that the norm in Equation (4.13) more closely resembles the error in(4.14) than does the norm in (4.12).4.5 OrthogonalityOrthogonality is a property maintained in the SVD by the left and right singularvectors. An m � n orthogonal matrix Q satis�es QTQ = In, where In is the n-thorder identity matrix. Let Dp be the collection of all folded-in documents whereeach column of the p� k matrix is a document vector of the form dp from Equation(2.7). Similarly, let Tq be the collection of all folded-in terms such that each columnof the q � k matrix is a term vector of the form tq from Equation (2.8). Then, allterm vectors and document vectors associated with folding-in can be represented asÛk = �UTk j T Tq �T and V̂k = �V Tk j DTp �T , respectively.The folding-in process corrupts the orthogonality of Ûk and V̂k by appending non-orthogonal submatrices Tq and Dp to Uk and Vk, respectively. Computing ÛTk Ûk andV̂ Tk V̂k, the loss of orthogonality in Ûk and V̂k can be measured bykÛTk Ûk � Ikk2 (4.15)36

and kV̂ Tk V̂k � Ikk2: (4.16)Table 4.3 illustrates the orthogonality of V̂k using three di�erent updating methods foradding new documents to the original 12�9 example. SVD-updating and recomputingthe SVDmaintain the orthogonality of Uk and Vk to working precision (single precisionor 32-bit arithmetic for Table 4.3). Folding-in does not maintain the orthogonality ofÛk or V̂k since arbitrary vectors of weighted terms or documents are appended to Ukor Vk, respectively. However, the amount by which the folding-in method perturbsthe orthogonality of Ûk or V̂k does indicate how much distortion has occurred due tothe addition of new terms or documents.Table 4.3: Loss of orthogonality in V̂k for folding-in and in Vk for SVD-updating and recomputingthe SVD using the 12� 16 example.Folding-in SVD-Updating Recomputing the SVD1.445E+1 2.206E-4 2.472E-44.6 Memory ConsiderationsOne of the major concerns in updating LSI databases is memory conservation. Recom-puting the SVD requires memory to store all the nonzeros of the new (m+t)�(n+d)term-document matrix ~A. While SVD-updating requires only the nonzeros of the ma-trices de�ning new terms or documents, folding-in requires no sparse input matrices.Table 4.4 contains a list of estimated memory usages for each updating approach.Clearly, folding-in is the most memory conservative while recomputing the SVD caneasily exhaust available memory if the number of current documents (n) becomes37

Table 4.4: Lanczos memory constraints.Method MemorySVD-updating (any phase) I � k + trp� (1 +m + n)Folding-in documents d+ k + nFolding-in terms t+ k +mRecomputing the SVD I � n+ trp� (1 +m + n)quite large. Each of the SVD-updating phases can be applied so that memory isbetter conserved (k � m).4.7 Computational Complexity for SVD-UpdatingThis section compares the computational complexities of folding-in and SVD-updating.Whereas the computational cost of recomputing the SVD can be considerably lessthan that of SVD-updating, the memory constraints (see Section 4.6) of modest com-puting environments (e.g., workstations) may preclude its applicability (see Chapter5). Table 4.5 contains the complexities for folding-in terms and documents, recom-puting the SVD, and the three phases of SVD-updating. Using the complexities inTable 4.5 the required
ops for each method is graphed for varying numbers of addeddocuments or terms.Assumptions needed in constructing the graphs in Figures 4.5 through 4.8 arelisted in Table 4.6. Using parameters obtained from the letter A of the ColumbiaCondensed Encyclopedia, (CCE), let the number of terms m = 5119 and the numberof documents n = 1063. For an alternative scenario in which relatively few terms areused in many documents, let m = 1000 and n = 6000. The sparse matrices A;D; T;and ZTj are all considered to be 0:1% dense. Term-document matrices corresponding38

Table 4.5: Computational complexity of updating methods.Method ComplexitySVD-updating [I � [4nnz(D) + 4mk + k � 2m� d]+documents trp� [2nnz(D) + 2mk �m]]+ [(2k2 � k)(m + n)]SVD-updating [I � [4nnz(T) + 4kn+ k � 2n� t]+terms trp� [2nnz(T) + 2kn+ k � 2n� t]]+ [(2k2 � k)(m + n)]:SVD-updating [I � [4nnz(Zj) + 4km + 2mj + 2kn+ 3k � 2n� 2j �m]correction step +trp� [2nnz(Zj) + 2km+ 2kn+ k � j � n]]+ [(2k2 � k)(m + n)]Folding-in documents 2mkdFolding-in terms 2nktRecomputing I � [4nnz(A)� (m + t)� (n+ d)]+the SVD trp� 2nnz(A) � (m + t)Table 4.6: Assumptions for graphing computational complexities.Symbol De�nition Value when Value whenm = 5119; n = 1063 m = 1000; n = 6000A m� n� 0:1% 5441 6000D m � d� 0:1% 5:119d dT t � n� 0:1% 1:063t 6tZTj j � n � 0:1% 0:532t 3tI k � 3 124 124trp > k 110 110j t� 50% 0:5t 0:5tk 108 10839

1 500 1000 1500

Number of Documents

.5

1.0

1.5

2.0

2.5

3.0

G
ig

af
lo

ps

Folding-in
SVD-updating without correction step
SVD-updating with correction step

Figure 4.5: Complexity of adding documents withm� n. 1 500 1000 1500

Number of Documents

.5

1.0

1.5

2.0

2.5

3.0

G
ig

af
lo

ps

Folding-in
SVD-updating without correction step
SVD-updating with correction step

Figure 4.6: Complexity of adding documents withm� n.
1 500 1000 1500

Number of Terms

.5

1.0

1.5

2.0

2.5

3.0

G
ig

af
lo

ps

Folding-in
SVD-updating without correction step

Figure 4.7: Complexity of adding terms withm� n. 1 500 1000 1500

Number of Terms

.5

1.0

1.5

2.0

2.5

3.0

G
ig

af
lo

ps

Folding-in
SVD-updating without correction step

Figure 4.8: Complexity of adding terms withm� n.40

to letters of the Columbia Condensed Encyclopedia were typically 0:1% dense. Table4.6 also contains the values of I; trp; j; and k based on the two possible choices for mand n.Figures 4.5 and 4.6 vary the range of documents, d, being added to an LSI-database. When m � n, i.e., the number of documents being updated is relativelysmall, folding-in requires fewer
ops than SVD-updating (see Figure 4.5), but asthe number of documents being updated becomes relative large (greater than 900)SVD-updating requires fewer computations than folding-in. When m � n, i.e. thenumber of documents being updated is very large relative to the number of terms,the number of documents needed for SVD-updating to perform better than folding-inhas grown to greater than 1500 documents (see Figure 4.6). The folding-in methodfor documents is dependent on the number of documents (n) and not on the numberof terms (m) (see Table 4.5), this explains the linearity of the two folding-in curvesin Figures 4.5 and 4.6. The term weight correction step requires twice the required
ops of SVD-updating documents.Figures 4.7 and 4.8 vary the range of terms, t, added to the LSI-database. Whenm � n, SVD-updating performs better than folding-in after 1500 terms have beenupdated (see Figure 4.7). When m � n, folding-in requires fewer
ops than SVD-updating for t < 900, otherwise SVD-updating requires fewer
ops (see Figure 4.8).Since adding new terms has no e�ect on the original weightings (see Section 4.4), theterm weight correction step is not illustrated in Figures 4.7 and 4.8.
41

Chapter 5Performance Benchmarks5.1 OverviewIn this chapter, we discuss the performance of SVD-updating and folding-in comparedto recomputing the SVD. Three performance metrics are used: 1) retrieval accuracy,2) memory usage, and 3) speed. The comparisons are based on experiments usingarticles from the Condensed Columbia Encyclopedia (CCE).5.2 Retrieval AccuracyRelevance feedback [SB90] is a retrieval technique which initially uses a query toobtain a set of relevant documents from which selected documents are used to re-trieve even more relevant documents. This section uses relevance feedback to mea-sure retrieval accuracy. Speci�cally, the returned documents of the relevance feedbackqueries of folding-in and SVD-updating are compared with the documents returnedfrom relevance feedback queries associated with recomputing the SVD.Using the 12 � 16 example with log-entropy weighting described in Section 4.4,42

Table 5.1: Relevance feedback results using the 12� 16 example and log-entropy weightings.QueryDocument Method Returned DocumentsFolding-in c2 n1 n3 n5 n6 c5 m4 n4 n7 n2 m3 m2SVD-updating c2 n1 n6 m1 c5 m2 m3 m4 n5 n4 n3c2 Recomputingthe SVD c2 n6 c5 n1 m4 m1 n5 m2 m3 n3 n4 c3Folding-in m2 m3 m1 m4 c5 n6 n2 n1 c2SVD-updating m2 m3 m4 n5 n4 n3 m1 n6 n1 c2 c3 n7 c5 n2 c1 c4m2 Recomputingthe SVD m2 n5 m3 n3 n4 m1 c3 m4 n7 n2 n1 c1 c4 n6 c2Folding-in n4 n7 n2 c1 c3 c4 n3 c2 n1 n5 n6 c5SVD-updating n4 n5 m4 m3 n3 m2 c3 m1 n7 n6 n1 c2 n2 c1 c4 c5n4 Recomputingthe SVD n4 n3 c3 m3 m2 n5 n7 m1 m4 n2 c1 c4 n1 n6 c2Folding-in n7 n4 n2 c1 c3 c4 n3 c2 n1 n5 n6 c5SVD-updating n7 n2 c3 c1 c4 n3 n4 n5 m4 m3 m2n7 Recomputingthe SVD n7 c3 n2 n4 c1 c4 n3 m3 m2 n5 m1 m4 n1relevance feedback was performed with documents c2, m2, n4 and n7, i.e., thesedocuments were used as new queries to obtain more relevant information. Table 5.1shows the returned documents from the relevance feedback queries for each method.To compare the results of the queries, documents returned by recomputing the SVDwere compared with documents returned by folding-in and SVD-updating. A docu-ment returned by folding-in or SVD-updating is counted as a hit if that document isalso returned by recomputing the SVD. Otherwise, a document is counted as a miss.Hits and misses were computed as a function of window size, where window size isde�ned as the �rst n documents in the LSI rank-ordered list associated with a query.For example, a window size of two would compare the top two returned documentsfrom recomputing the SVD with the top two documents from folding-in and SVD-updating. Table 5.2 contains the hits and misses of folding-in and SVD-updating ateven window sizes for each document used in the queries (c2, m2, n4, n7). Figures43

Table 5.2: Relevance feedback results of misses and hits.Query Window Size (2) Window Size (4) Window Size (6)Document Method Misses Hits Misses Hits Misses HitsFolding-in 1 1 2 2 2 4n2 SVD-updating 1 1 1 3 1 5Folding-in 1 1 2 2 3 3m2 SVD-updating 1 1 1 3 1 5Folding-in 1 1 3 1 4 2n4 SVD-updating 1 1 2 2 1 5Folding-in 1 1 1 3 0 6n7 SVD-updating 1 1 1 3 1 5Query Window Size (8) Window Size (10) Window Size (12)Document Method Misses Hits Misses Hits Misses HitsFolding-in 2 6 3 7 2 10c2 SVD-updating 1 7 1 9 1 11Folding-in 4 4 5 5 7 5m2 SVD-updating 1 7 3 7 2 10Folding-in 4 4 5 5 5 7n4 SVD-updating 1 7 1 9 3 9Folding-in 1 7 2 8 4 8n7 SVD-updating 1 7 1 9 2 10
44

5.1 through 5.4 plot hits from Table 5.2 for folding-in and SVD-updating.For the 12�16 example, SVD-updating has more hits than folding-in at each win-dow size using relevance feedback with documents c2, m2 and n4. This superior re-trieval accuracy indicates that SVD-updating returns documents more similar to thatof recomputing the SVD than folding-in. Relevance feedback using SVD-updatingwith document n7 (Figure 5.4) does not always have more hits than folding-in, butneither method performed convincingly better than the other. Folding-in's accuracyis dependent on the term-document relationships remaining the same before and afterupdating. In the case of n7, the usage of terms in the document was similar to theprevious usage of the terms in documents c1 and c2.

45

0 5 10

Window Size

0

5

10

H
it

s

Folding-in
SVD-updating

Figure 5.1: c2 relevance feedback hits. 0 5 10

Window Size

0

5

10

H
it

s

Folding-in
SVD-updating

Figure 5.2: m2 relevance feedback hits.
0 5 10

Window Size

0

5

10

H
it

s

Folding-in
SVD-updating

Figure 5.3: n4 relevance feedback hits. 0 5 10

Window Size

0

5

10

H
it

s

Folding-in
SVD-updating

Figure 5.4: n7 relevance feedback hits.46

5.3 Memory UsageSection 4.6 discussed memory conservation with respect to the three updating meth-ods. This section provides examples of memory usage using articles comprising theletters A through F of the Columbia Condensed Encyclopedia (CCE). Memory usagefor computing the SVD of sparse matrices was originally discussed in [Do93]. Thememory allocation for SVDPACKC [Ber92b] and the single-vector Lanczos algorithmused in recomputing the SVD can be categorized according to the storage of Lanczosvectors, singular vectors, and temporary workspace. For an m � n term-documentmatrix A, the memory allocation by category can be expressed asLanczos Vectors k(lanmax+ 2)Singular Vectors k(I) +m+ I2Temporary Workspace 9k + 4lanmax+m+ 1 + (n+ nnz + 1)=2 + nnz;where k is the number of singular values and singular vectors to be computed, lanmaxis the maximum number of iterations allowed by the Lanczos algorithm, m is thelargest dimension of A, n is the smallest dimension of A, nnz is the number of non-zeros of A, and I is the actual number of iterations taken.The model for computing memory usage for SVD-updating is essentially the sameas for computing the SVD, since extra memory is only needed for retrieving a previously-generated left or right singular vector from disk, and for a temporary work array whosesize is equal to current number of LSI factors (k). However the number of nonzerosfor the matrices D and T from Equation (4.1) and (4.2) is considerably smaller (inpractice) than the number of nonzeros of the reconstructed term-document matrix ~Asee (Section 4.4). Hence, recomputing the SVD will require more in-core memory for47

Table 5.3: Parameters of datasets from the Columbia Condensed Encyclopedia.dataset Size Number of Number of Number of nnzerosin bytes Documents Terms FactorsA 478,775 1,063 5,119 108 28,116B 549,635 1,251 5,617 105 34,619C 715,125 1,423 6,914 101 43,724D 258,172 607 3,115 102 14,072E 263,869 504 3,065 102 13,105F 261,403 545 3,106 104 13,966AB 1,028,410 2,314 8,905 100 67,264ABC 1,743,517 3,737 12,660 100 117,187ABCD 2,001,689 4,344 13,892 111 136,138ABCDE 2,265,558 4,848 14,976 100 153,943ABCDEF 2,526,961 5,393 16,030 100 172,684computing singular values and singular vectors. The cost of memory for folding-incan be as small as 2m+ k:Actual memory usage was computed (see Table 5.4) using parameters associated withthe letters A through F of the CCE (Table 5.3). Figure 5.5 is a graph of the memoryusage (in megabytes) associated with the three updating methods. Folding-in wasthe most conservative method in terms of memory usage while recomputing the SVDwas the most expensive; SVD-updating was modestly conservative in memory usage.Recomputing the SVDmemory usage is most closely related to the size of the databaseand grows at a faster rate than SVD-updating or folding-in. Folding-in and SVD-updating memory usage, on the other hand, is more related to the sparsity associatedwith the term by document correlation of the incoming data rather than the sparsityof the completely updated term by document matrix.48

Table 5.4: Actual memory usage for updating the Columbia Condensed Encyclopedia.Letter(s) of CCE Letter(s) of CCE Folding-in SVD-updating Recomputing the SVDupdated with updated to bytes bytes bytesB A 12,260 3,009,060 5,150,952C AB 13,112 3,235,824 8,230,048D ABC 54,696 1,694,496 9,289,188E ABCD 53,072 1,161,948 10,372,960F ABCDE 54,056 1,221,028 11,536,860

2314 3000 4000 5000

Total Documents in LSI Database

0.001

0.01

0.1

1.0

10.0

M
eg

ab
yt

es
 o

f
M

em
or

y Folding-in
SVD-updating
Recomputing the SVD

Figure 5.5: Memory usage for updating letters A-F of CCE.49

Table 5.5: Timing benchmarks updating the letters A-F of CCE.Letters in Letters updatedexisting to existing Folding-in SVD-updating Recomputing the SVDdatabase database (min:sec) (min:sec) (min:sec)A B 8:31 6:40 6:29AB C 10:32 11:30 13:53ABC D 4:26 14:02 18:01ABCD E 3:59 15:06 17:47ABCDE F 4:07 15:10 16:115.4 Timing BenchmarksUsing the letters A through F of the Columbia Condensed Encyclopedia, elapsedwall-clock timings of the updating methods were recorded. Wall-clock times on a SunSPARCstation2 (with accelerator chip) and 64 megabytes of memory were obtained.All three updating methods were timed for the entire LSI process. Each letter (exceptA) was updated to the set of letters that precedes it. For example, the letters A andB (AB) were updated with the letter C. Table 5.5 contains the wall-clock times ofeach updating run for the letters B through F. Folding-in's wall-clock times weredependent on the number of documents being added to the existing LSI-generateddatabase. SVD-updating's times were dependent on both the sparsity of the updateddocuments and the size of the existing LSI-generated database. Recomputing the SVDwas dependent on the sparsity of the entire LSI-generated database, the existing LSI-database combined with the new documents, and on the type of data (homogeneousor heterogeneous) being added to the database. Figure 5.5 plots the timings fromTable 5.5. Clearly, folding-in and SVD-updating times increased as new letters of theCCE were added. In general, recomputing the SVD increased as new letters of theCCE were added but decreases in times did occur when the number of terms did not50

2314 3737 4344 4848 5396

Total Number of Documents in the Database.

0:00

2:00

4:00

6:00

8:00

10:00

12:00

14:00

16:00

18:00

W
al

l-
cl

oc
k

T
im

e
in

 m
in

ut
es

:s
ec

on
ds

Folding-in
SVD-updating
Recomputing the SVDFigure 5.6: Wall-clock time in seconds for updating documents of the Columbia Condensed Ency-clopedia. 51

grow signi�cantly.Using the three updating methods for adding the letter C to the letters AB of CCE(i.e., 3,737 total documents after updating from Table 5.3), a code pro�le or graph ofthe signi�cant features of the updating methods was constructed (Figure 5.7). SVD-updating and recomputing the SVD were fashioned from three basic components: 1)parsing, 2) las2, and 3) indexdoc. Parsing, parses the words from the text, eliminatescommon words, creates the database of terms, and generates a Compressed ColumnStorage (CCS) [B+94, DGL89] representation of the term-document matrix (see Ap-pendix A). Las2 computes the truncated SVD of the term-document matrix, andindexdoc creates a list for matching articles of the CCE with corresponding documentvectors derived from the truncated SVD.Folding-in is composed of two di�erent codes,make vectors and vfold. Make vectorsis a C code which creates a document or term vector for each document or term folded-in. Vfold appends the new vectors created by make vector to the SVD contained inthe out �le (see Appendix B).Analyzing Figure 5.7 we can see that the truncated SVD computation (las2) isfaster for SVD-updating than for recomputing the SVD, since a smaller order matrix(D from Equation(4.1)) is processed in SVD-updating. However, parsing is slowerin SVD-updating, negating the speed improvement by SVD-updating. The parsingalgorithm for SVD-updating is not identical to that for recomputing the SVD. SVD-updating must check for the existence of terms before adding them to the databaseand this can explain the slower parsing. In addition, two di�erent languages wereused to implement the parsing. SVD-updating uses a script language (AWK) [AW88]as opposed to a C program for recomputing the SVD.52

SVD-UpdatingFolding-in Recomputing the SVD

2:00

4:00

6:00

8:00

10:00

12:00

T
im

e
in

 M
in

ut
es

:S
ec

on
ds

indexdoc

Las2

Parsing

vfold

make_vectors

indexdoc

Las2

Parsing

C

AWK

Figure 5.7: Updating documents pro�le.53

Chapter 6Summary and Future Work6.1 SummaryWe have produced an alternative updating method, SVD-updating, for LSI. Recom-puting the SVD is the most accurate method of updating but memory and timeconstraints can eliminate it as a possibility. Folding-in is the fastest and most mem-ory conservative but can be inaccurate especially as more documents are folded-in.SVD-updating is an alternative to folding-in and recomputing the SVD which ade-quately compromises the tradeo�s in memory usage, computing speed, and retrievalaccuracy. Table 6.1 illustrates the attributes of the three updating methods. SVD-Table 6.1: Attributes of updating methods.Method Memory Computational LSI RetrievalComplexity AccuracyRecomputing the SVD High High HighSVD-updating Moderate Moderate Moderate to HighFolding-in Low Low Low to High54

updating and folding-in are implemented as software tools and are intended for anexperienced user (LSI-database manager). Such LSI-database management tools fa-cilitate term and/or document updating when resources (memory and computingtime) are limited.6.2 Future WorkSection 4.5 described a method for measuring the orthogonality of term and documentvectors. A simple tool could be created using the out �le format (see Appendix A)which could return the loss of orthogonality in Equations (4.15) and (4.16). Insightscould be gained from monitoring the loss of orthogonality associated with folding-inand correlating it to the number of relevant documents returned.Determining the optimal number of LSI factors is still an area of research. Cur-rently anywhere between 100 to 300 factors are typically used. A tool for detectingthe optimal number of factors should be investigated. Such a tool could read theout �le and extract computed singular values in order to numerically assess the errorin approximating the original term-document matrix (see Equation (4.14)). Withregard to software issues, term parsing associated with the SVD-updating could beimplemented in C rather than AWK. Also, the dense matrix multiplication routinesused in SVD-updating could be modi�ed to signi�cantly reduce the amount of in-corememory allocated.
55

Bibliography

56

Bibliography[AW88] Kernighan Aho and Weinberger. The AWK Programming Language.Addison-Wesley, New York, 1988.[B+93] M. W. Berry et al. SVDPACKC: Version 1.0 User's Guide. TechnicalReport CS{93{194, University of Tennessee, Knoxville, TN, October 1993.[B+94] R. Barrett et al. Templates for the Solution of Linear Systems: BuildingBlocks for Iterative Methods. SIAM, Philadelphia, 1994.[Ber92a] M. W. Berry. Large scale singular value computations. InternationalJournal of Supercomputer Applications, 6(1):13{49, 1992.[Ber92b] M. W. Berry. SVDPACK: A Fortran-77 Software Library for the SparseSingular Value Decomposition. Technical Report CS{92{159, Universityof Tennessee, Knoxville, TN, June 1992.[DDF+90] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman.Indexing by latent semantic analysis. Journal of the American Society forInformation Science, 41(6):391{407, 1990.[DGL89] I. S. Du�, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems.ACM Trans. Math. Software, 15:1{14, 1989.57

[Do93] T. Do. Sequential and Data-Parallel Implementations of a Lanczos Algo-rithm for the Singular Value Decomposition. Master's thesis, The Univer-sity of Knoxville, Tennessee, Knoxville, TN, 1993.[Dum91] S. T. Dumais. Improving the retrieval of information from external sources.Behavior Research Methods, Instruments, & Computers, 23(2):229{236,1991.[GL89] G. Golub and C. Van Loan. Matrix Computations. Johns-Hopkins, Balti-more, second edition, 1989.[GR71] G. Golub and C. Reinsch. Handbook for automatic computation II, linearalgebra. Springer-Verlag, New York, 1971.[Mir60] L. Mirsky. Symmetric gage functions and unitarilly invariant norms. Q.J. Math, 11(1):50{59, 1960.[SB90] G. Salton and C. Buckley. Improving retrieval performance by rele-vance feedback. Journal of the American Society for Information Science,41(4):288{297, 1990.
58

Appendices

59

Appendix ACompressed Column Storage

60

Figure A.1: Contents of matrix.hb �le.matrix.hb �leLine 1 TitleSection 1 Line 2 #(Header) Line 3 rra rows columns nonzeroes 0Line 4 (10i8) (10i8) (8f10.3) (8f10.3)Matrix Section 2 Column pointersCoordinate Section 3 Row indexData Section 4 Nonzero values of the matrix.
Line 1 Any title up to 128 charactersLine 2 #Line 3 rra, rows = number of rows in A, cols = number of columns in A,nonzeros = number of nonzeros in A.Line 4 Fortran formatting lines (from Harwell-Boeing format, obsolete and can be ignored).Section 2 The position indicates the column index of nonzero matrix elements.The number subtracted from the next value indicates how many nonzeros are in that column.Section 3 Indicates the row index of each matrix nonzero element.There are as many row index values as there are nonzero elements.61

matrix.hb �le exampleTitle: using stdin#rra 12 7 22 0(10i8) (10i8) (8f10.3) (8f10.3)1 5 7 11 13 15 18 233 9 10 11 3 5 1 3 6 99 12 1 3 1 8 10 1 4 58 91.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0001.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0001.000 1.000 1.000 1.000 1.000 1.000Actual Representation of Matrix A1 2 3 4 5 6 71 1.000 1.000 1.000 1.00023 1.000 1.000 1.000 1.0004 1.0005 1.000 1.0006 1.00078 1.000 1.0009 1.000 1.000 1.000 1.00010 1.000 1.00011 1.00012 1.00062

Appendix Bout File Format

63

The out �le is a binary �le consisting of a header (parameter list) and the matrix com-ponents of the truncated SVD (singular values and corresponding singular vectors).Figure B.1 shows a general overview of the out �le.Figure B.1: out �le contents.Header InformationUk (term vectors if m � n)Vk (document vectors if m � n)�k (singular values)
64

� Out �le header information is a structure described in table B.1.Table B.1: Header Information.Label Size Descriptionheader.size[COMMENT] 128 bytes Time stamp informationheader.size[TERM] 4 bytes Number or termsheader.size[DOCUMENT] 4 bytes Number of documentsheader.size[FACTOR] 4 bytes Number of LSI factorsheader.folded[TERM] 4 bytes Number of updated termsheader.folded[DOCUMENT] 4 bytes Number of updated documents� Uk comprises header.size[TERM] � header.size[FACTOR]
oating-pointnumbers.� Vk comprises header.size[DOCUMENT] � header.size[FACTOR]
oating-point numbers.� �k header.size[TERMS]
oating-point numbers.

65

Appendix CWeightings

66

De�ne A = [aij], where aij � L(i; j) � G(i), L(i; j) � local weighting for term i indocument j, and G(i) � global weighting for term i.1. Local weights are used to stress overall importance in a document.2. Global weights are used to stress overall importance to the collection of docu-ments. Table C.1: Popular local weightings.Term Frequency frequency with which a given term appears in a given document.Binary weighting replaces any term frequency � 1 with 1.Logarithmic weighting log(term frequency +1) dampens e�ects of large variances in frequencies.De�nitionstfij � frequency of term i in document j.dfi � number of documents containing term i.gfi � frequency of term i in collection (global).ndocs � number of documents in collection.Table C.2: Popular global weightings.Normal G(i) �vuuut 1Xj (tfij)2GfIdf G(i) � gfidfiIdf G(i) � log2�ndocsdfi �+ 11 - Entropy (Noise) G(i) � 1�Xj pijlog(pij)log(ndocs) , where pij = tfijdfi67

1. Global weighting schemes give less weight to terms that occur frequently or inmany documents.2. Entropy is based on information-theoretic ideas which takes distribution of termsover documents into account.3. Combination of a local log weight [log(tfij + 1)] and a global entropy weight(LogEntropy) typically yields best improvement in retrieval performance.

68

VitaGavin William O'Brien was born in Presque Isle, Maine on May 25, 1965. Hegraduated from Presque Isle High School in 1983 and received a Bachelor of Sciencedegree in Mathematics from Bates College in May 1987. After living in Boston,MA from 1987-1991, he moved to Knoxville, TN where he received his Masters inComputer Science.

69

