Information Management Tools
for Updating an
SVD-Encoded Indexing Scheme

Gavin W. O‘Brien

Computer Science Department

0S-94-258

October 1994

Information Management Tools
for Updating an SVD-Encoded

Indexing Scheme

A Thesis
Presented for the
Master of Science Degree

The University of Tennessee, Knoxville

Gavin W. O’Brien

December 1994

Acknowledgments

I thank my thesis advisor, Dr. Michael Berry, for his support and guidance. I
appreciate his patience and advice in all aspects of creating this thesis. [am grateful to
Dr. Susan Dumais from Bellcore and Sowmini Varadhan for their technical advice. I
also thank my committee members Dr. Brad Vander Zanden and Dr. David Straight.
Finally, I must thank the people who have help motivate me in completing my Masters
degree in a timely manner, my parents, Dr. William and Margaret O’Brien and
Michelle Johnson.

This research has been supported in part by Apple Computer through Contract
No. (€24-9100120 and by the National Science Foundation under Grant No. NSF-
ASC-92-03004.

11

Abstract

Lexical-matching methods for information retrieval can be inaccurate when they
are used to match a user’s queries. Typically, information is retrieved by literally
matching terms in documents with those of the query. The problem is that users
want to retrieve on the basis of conceptual topic or meaning of a document. There
are usually many ways to express a given concept (synonymy), so the literal terms
in a user’s query may not match those of a relevant document. In addition, most
words have multiple meanings (polysemy), so terms in a user’s query will literally
match terms in irrelevant documents. The implicit high-order structure of associating
terms with documents can be exploited by the singular value decomposition (SVD).
Latent Semantic Indexing (LSI) is a conceptual indexing technique which uses the
SVD to estimate the underlying latent semantic structure of the word to document
association. By computing a lower-rank approximation to the original term-document
matrix, LSI dampens the effects of word choice variability by representing terms and
documents using the (orthogonal) left and right singular vectors.

Current methods for adding new text to an LSI database can have deteriorating
effects on the orthogonality of the vectors used to represent terms and documents in
high-dimensional subspaces. Updating the SVD so as to preserve the orthogonality
among document vectors corresponding to the new term-document matrix is one
remedy. Computing the SVD of the new term-document matrix can be avoided by
using SVDPACKC routines for appropriate submatrices constructed from existing
term and document vectors and similar vectors corresponding to the new text. The
cost of the numerical computations needed to update the SVD versus the potential
inaccuracy of simply folding-in text presents an interesting tradeoff for LSI database

management.

v

Contents

1 Introduction 1
1.1 Motivationo Lo 1
1.2 Statement of Problem o000, 2
1.3 Overview. e 3

2 Preliminaries 4
2.1 Singular Value Decomposition 4
2.2 Latent Semantic Indexing oL 5
2.3 Queries. 8
24 Folding-In L 8

3 Latent Semantic Indexing and Updating Example 12
3.1 Latent Semantic Indexing L L. 12
3.2 Queries. 16
3.3 Comparison with Lexical Matching 18
3.4 Folding-In L 19
3.5 Recomputing the SVD oo o 21

4 SVD-Updating 23

4.1 Overview of SVD-updating 0.
4.2 SVD-Updating Example 0000
4.3 SVD-Updating Procedures oL
4.3.1 SVD-Updating of Documents
4.3.2 SVD-Updating of Terms
4.3.3 SVD-Updating with Term Weight Corrections
4.4 LSI-Updating Example with Term Weight Corrections
4.5 Orthogonality
4.6 Memory Considerations L

4.7 Computational Complexity for SVD-Updating

Performance Benchmarks

5.1 Overview.o
5.2 Retrieval Accuracy
5.3 Memory Usage
5.4 Timing Benchmarks o0 oo

Summary and Future Work
6.1 Summary e e

6.2 TFuture Work

Bibliograpy

Appendices

A Compressed Column Storage

B out File Format

vi

42
42
42
47
50

54
54
35

56

59

60

63

C Weightings

Vita

vil

66

69

List of Tables

3.1
3.2
3.3
3.4

4.1
4.2
4.3

4.4
4.5
4.6

5.1

5.2
5.3
5.4

Original Datao o o
Term-Document Matrix of Original Data
Returned documents based on different numbers of LLSI factors.

Additional titles for updating.o oL

Symbols used for computational complexity.
Example of ZjT
Loss of orthogonality in V; for folding-in and in Vj for SVD-updating
and recomputing the SVD using the 12 x 16 example.
Lanczos memory constraints. L.
Computational complexity of updating methods.

Assumptions for graphing computational complexities.

Relevance feedback results using the 12 x 16 example and log-entropy
welghtings. L
Relevance feedback results of misses and hits.
Parameters of datasets from the Columbia Condensed Encyclopedia. .
Actual memory usage for updating the Columbia Condensed FEncyclo-

pedia. e e

3.5

6.1

B.1

C.1
C.2

Timing benchmarks updating the letters A-F of CCE. 50

Attributes of updating methods. 0oL 54
Header Information. oL 65
Popular local weightings. 0oL 67
Popular global weightings. 67

1X

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4

3.5
3.6

4.1

4.2

4.3

Mathematical representation of matrix A,
Mathematical representation of folding-in p documents.

Mathematical representation of folding-in ¢ terms.

Best rank-2 approximation to A using 2-largest singular triplets. . . .

Two-dimensional plot of terms and documents for the 12 x 9 example.

Derived coordinates for the query of human computer.
A Two-dimensional plot of terms and documents along with the query
human computer. e e
Two-dimensional plot of folded-in documents.
Two-dimensional plot of terms and documents using the SVD of a

reconstructed term-document matrix.

Two-dimensional plot of terms and documents using the SVD-updating
PTOCESS. o v v v v e e e e e e e e e e
Two-dimensional plot of SVD-updating (before the term weight cor-
rection method) with log-entropy weighting.
Two-dimensional plot of SVD-updating (after the term weight correc-

tion method) with log-entropy weighting.

14
15
16

17
20

22

26

32

4.4 Two-dimensional plot of new SVD with log-entropy weighting. 35
4.5 Complexity of adding documents with m < n. 40
4.6 Complexity of adding documents with m >n. 40
4.7 Complexity of adding terms with m < mn. 40
4.8 Complexity of adding terms with m > mn. 40
5.1 ¢2 relevance feedback hits.o oL 46
5.2 m2 relevance feedback hits.o o000 46
5.3 n4 relevance feedback hits.00 46
5.4 n7 relevance feedback hits. o oo 46
5.5 Memory usage for updating letters A-F of CCE. 49
5.6 Wall-clock time in seconds for updating documents of the Columbia
Condensed Encyclopedia. 51
5.7 Updating documents profile. 53
A.1 Contents of matrix.hbfile. 61
B.1 outfilecontents.. 64

X1

Chapter 1

Introduction

1.1 Motivation

Typically, information is retrieved by literally matching terms in documents with
those of a query. However, lexical-matching methods for information retrieval can
be inaccurate when they are used to match a user’s query. Since there are usually
many ways to express a given concept (synonymy), the literal terms in a user’s query
may not match those of a relevant document. In addition, most words have multiple
meanings (polysemy), so terms in a user’s query will literally match terms in irrelevant
documents. A better approach would allow users to retrieve information on the basis
of a conceptual topic or meaning of a document.

Latent semantic indexing (LSI) [DDF*90] tries to overcome the problems of lexical-
matching by assuming there is some underlying latent semantic structure of word
usage data that is partially obscured by the variability of word choice. LSI is a
conceptual-indexing technique which uses the singular value decomposition (SVD)

[GL89] to estimate the underlying latent semantic structure of word to document as-

sociation. This implicit high-order structure of associating terms with documents can
be exploited by the SVD. A number of software tools have been developed to perform
operations such as: parsing, query matching, and adding additional terms or docu-
ments to an existing LSI-generated database. The bulk of the LSI process involves
computing a truncated SVD of sparse term by document matrices which are used to
model the latent semantic structure, and the creation of a keyword database. The
SVD combined with the software tools mentioned above comprise an LSI-generated
database.

Current methods for adding new text to an LSI-generated database can have dete-
riorating effects on both the SVD and retrieval of information. This thesis develops a
new technique for adding text which maintains the integrity of the SVD and improves

information retrieval.

1.2 Statement of Problem

Folding-in text, the current method for updating an LSI-generated database, is an
inexpensive but potentially inaccurate way of updating. Folding-in does not recom-
pute the latent semantic model, via the SVD, but instead applies the existing model
to the new terms and documents. This can have deteriorating effects on retrieval
if the new text uses words differently than existing text. The new word usage data
is potentially lost or misrepresented. SVD-updating, the method developed in this
thesis, properly updates the current SVD-generated model allowing new word usage

data to perturb the existing model.

1.3 Overview

Chapter 2 is a review of basic concepts needed to understand LSI. Chapter 3 uses
a constructive example to illustrate how LSI represents terms and documents in the
same semantic space, how a query is represented, how additional documents are
folded-in, and how SVD-updating represents additional documents. Chapter 4 com-
prises a detailed discussion of the algorithm used in SVD-updating, while Chapter
5 compares both methods of updating, folding-in and SVD-updating, with regard to

robustness of query matching and computational complexity.

Chapter 2

Preliminaries

2.1 Singular Value Decomposition

The singular value decomposition is commonly used in the solution of unconstrained
linear least squares problems, matrix rank estimation, and canonical correlation anal-
ysis [Ber92a]. Given an m x n matrix A, where without loss of generality m > n and
rank(A) = r, the singular value decomposition of A, denoted by SVD(A), is defined

as

A=UxVT (2.1)

where UTU = VIV = [, and ¥ = diag(oy,-++,0,),0; > Ofor 1 <7 < r.o; =
0 for yj > r + 1. The first r columns of the orthogonal matrices /' and V' define
the orthonormal eigenvectors associated with the r nonzero eigenvalues of AAT and
AT A, respectively. U and V are referred to as the left and right singular vectors,
respectively. The singular values of A are defined as the diagonal elements of X
which are the nonnegative square roots of the n eigenvalues of AAT [GL89].

The following two theorems illustrate how the SVD can reveal important informa-

tion about the structure of a matrix.

Theorem 1. Let the SVD of A be given by Equation (2.1) and
0-120-2"'20-7’>0-7’+1:"':0-n:0
and let R(A) and N(A) denote the range and null space of A, respectively. Then

1. rank property: rank(A) = r, N(A) =span{v,41,---,v,}, and R(A) =spanfuy,---,u,},

where U = [ujuy -+ - uy,] and V = [vyvy - v,).

2. dyadic decomposition: A = Z w; - oy - vl

=1
3. norms: ||A||% =02+ ---+ 02, and ||A]]2 = 0.
Theorem 2. [Eckart and Young] Let the SVD of A be given by Equation (2.1)

with r = rank(A) < p = min(m,n) and define
k
Ak = Z U; Oy UZ»T (22)
=1

B BlZ = ||A— Al = 024y + - + 02

(For a proof, see [GR71].) In other words, Ay, which is constructed from the k-
largest singular triplets of A, is the closest rank-k matrix to A [GL89]. In fact, Ay is

the best approximation to A for any unitarily invariant norm [Mir60]. Hence,

min A= Bl = A= Aulla = o (2.3)

2.2 Latent Semantic Indexing

In order to implement Latent Semantic Indexing [DDF*90] a matrix of terms by

documents must be constructed. The elements of the term-document matrix are the

occurrences of each word in a particular document, i.e.,
A = ag], (2.4)

where a;; denotes the frequency in which term ¢ occurs in document j. Since every
word does not normally appear in each document, the matrix A is usually sparse.
In practice, local and global weightings are applied [Dum91] to increase/decrease the

importance of terms within or among documents. Specifically, we can write
ai; = L(i,7) x G(1), (2.5)

where L(z,7) is the local weighting for term ¢ in document j, and G(i) is the global
weighting for term ¢. The matrix A is factored into the product of 3 matrices (Equa-
tion (2.1)) using the singular value decomposition (SVD). The SVD derives the latent
semantic structure model from the orthogonal matrices U and V' containing left and
right singular vectors of A, respectively, and the diagonal matrix, 3, of singular values
of A. These matrices reflect a breakdown of the original relationships into linearly-
independent vectors or factor values. The use of k factors or k-largest singular triplets
is equivalent to approximating the original (and somewhat unreliable) term-document
matrix by Ay in Equation (2.2). In some sense, the SVD can be viewed as a tech-
nique for deriving a set of uncorrelated indexing variables or factors, whereby each
term and document is represented by a vector in k-space using elements of the left or
right singular vectors.

In using Aj as an approximation to the original matrix A it is possible for docu-
ments with different sets of terms to be mapped into the same vector. These vectors
represent extracted, common meaning relationships of many different terms and doc-
uments. Fach term and document is represented by a vector of weights indicating

the magnitude of association with each of the underlying concepts. The meaning of a

k
Ag U by
k

m X n m X r rXr X n
Ar = Best rank-k approximation to A m = number of terms

U = Term Vectors n = number of documents
X = Singular Values k = number of factors

V' = Document Vectors r =rank of A

Figure 2.1: Mathematical representation of the matrix Ay from Equation (2.2).

particular term, query, or document can be expressed as a vector. The meaning rep-
resentation is a reduction from the original n vectors to the new k& < n best surrogates
by which they can be approximated.

It is important for the method that the derived k-dimensional factor space not
reconstruct the original term-document matrix A perfectly, because we believe the
original term-document matrix A to contain noise due to word choice. Rather, we
want a derived structure, that expresses what is reliable and important in the under-
lying use of terms as document referents.

Figure 2.1 is a mathematical representation of the singular value decomposition. U
and V are considered the term and document vectors respectively, and ¥ represents
the singular values. The shaded regions in U and V and the diagonal line in X

represent Ay from Equation (2.2).

2.3 Queries

A query (or a set of words) can be considered as just another document, which can be
represented as a vector in the k-dimensional space. As a pseudo-document, a query is
simply a weighted sum of its component term vectors, which can be compared against
all existing documents. A query vector (g¢,) is defined as a vector of its weighted
terms. For example, the query vector (¢,) can be represented mathematically as a

pseudo-document (¢) via

0= U (2.6)

The (conceptually) nearest document vectors to the pseudo-document can be re-
turned. Since an ordered list of all the documents can be returned, a measure for
closeness must be set. One measure of nearness is the cosine. Two types of ordered
listings exist, either a threshold is set for the cosine and all documents above it are

returned or the z closest documents are returned [DDF*90].

2.4 Folding-In

Folding-in has been the only updating technique considered thus far for LSI. Suppose
an LSI-generated database already exists. That is, a body of text has been parsed, a
term-document matrix has been generated, and the SVD of the term-document matrix
has been computed. If more terms and documents must be added, two alternatives for
incorporating them currently exist: recomputing the SVD of a new term-document
matrix or folding-in the new terms and documents.

Three terms are defined below to avoid confusion when discussing updating. Up-

dating refers to the general process of adding new terms and /or documents to an exist-

ing LSI-generated database. Updating can mean either folding-in or SVD-updating.
SVD-updating is the new method of updating developed in this thesis. Recomput-
ing the SVD is not an updating method, but a way of creating an LSI-generated
database with new terms and/or documents from scratch which can be compared to
either updating method.

Recomputing the SVD of a larger term-document matrix requires more compu-
tation time and, for large problems, may be impossible due to memory constraints.
Folding-in requires less time and memory but can have deteriorating effects on the
representation of the new terms and documents. Recomputing the SVD allows the
new t terms and d documents to directly affect the latent semantic structure by
creating a new term-document matrix A"F9*+4) - computing the SVD of the new
term-document matrix, and generating a different Ay matrix. In contrast, folding-in
is based on the existing latent semantic structure, (the current Ay), and hence new
terms and documents have no effect on the representation of the pre-existing terms
and documents.

Folding-in documents is essentially the process described in Section 2.3 for pseudo-
document representation of queries. Each new document is represented as a weighted
sum of its component term vectors. Once a new document vector has been computed
it is appended to the set of existing document vectors or columns of Vj (see Figure
2.2).

Similarly, new terms can be represented as a weighted sum of their component
document vectors. Once the term vector has been computed it is appended to the

set of existing term vectors or columns of Uy, (see Figure 2.3).

A Ug b v
m x n m x k k x k k xn

m X (n+4p) m x k k x k k x (n+p)

Figure 2.2: Mathematical representation of folding-in p documents.

Ap Uk Xk VkT
m x n m x k k x k k xn

BN B

(m+q) X n (m+q) x k k x k k xn

Figure 2.3: Mathematical representation of folding-in ¢ terms.

10

To fold-in a new m x 1 document vector, d, into an existing LSI model, the
corresponding term vector d; is first determined. Like a query vector, d; is defined
as a vector of its weighted terms. Then, a projection, d,, of d onto the span of the

current document vectors (columns of V4) is computed by
d, = d; VXt (2.7)

Similarly, to fold-in a new n x 1 term vector, ¢, into an existing LSI model, the
corresponding document vector t; must be derived. t; is defined as a vector of its
weighted documents. Then, a projection of ¢, {,, onto the span of the current term

vectors (columns of Uy) is determined by

ty, = tUESTE (2.8)

11

Chapter 3

Latent Semantic Indexing and

Updating Example

3.1 Latent Semantic Indexing

In this chapter an example of LSI and the folding-in process is presented. The titles
(see Table 3.1) used to demonstrate the LSI process are extracted from the test case in
[DDEF*T90]. These titles are based on two topics of memorandum from Bellcore: the
“c” documents refer to human-computer interaction and the “m” documents refer to
group theory. All underlined words are considered significant if they appear in more
than one title.

Corresponding to the text in Table 3.1 is the 12 x 9 term-document matrix shown
in Table 3.2. The elements of this matrix are the frequencies in which a term occurs
in a document or title (see Section 2.4). For example, in title 1, the first column
of the term-document matrix, human, interface, and computer all occur once. The

SVD of the 12 x 9 term-document matrix is then computed. Selecting k=2, the best

12

Table 3.1: Original Data

Document Id | Titles

cl
c2
c3
c4
ch
ml
m2
m3
m4

Human Machine Interface for Lab ABC Computer Applications
A Survey of User Opinion of Computer Systems Response Time
The EPS User Interface Management Systems

Systems and Human Systems Engineering Testing of EPS-2
Relation of User-Perceived Response Time to Error Measurement
The Generation of Random, Binary, Unordered Tree

Intersection Graph of Paths in a Tree

Graph Minors IV: Tree-Width and Well-Quasi-Ordering

Graph Minors - A Survey

Table 3.2: Term-Document Matrix of Original Data

Terms Documents
cl | c2|cd3|cd|ch|ml|m2| m3| md

human 1 0 0 1 0 0 0 0 0
interface 1 0 1 0 0 0 0 0 0
computer | 1 | 0 | 0 [O | O 0 0 0 0
user 0 1 1 0 1 0 0 0 0
system 0 1 11210 0 0 0 0
response | 0 11010 1 0 0 0 0
time 0 1 010 1 0 0 0 0
EPS 010 1 1 0 0 0 0 0
survey 0 1101100 0 0 0 1
trees 0 0 0 0 0 1 1 1 0
graph 000|010 0 1 1 1
minors 0 0 0 0 0 0 0 1 1

13

E 2 VzT

As Us

12x 9 12x 2 2x2 2x9

Figure 3.1: Best rank-2 approximation to A using 2-largest singular triplets.

rank-2 approximation to A is illustrated in Figure 3.1.

Using the first column of U, multiplied by the first singular value, oy, for the x-
coordinates and the second column of U; multiplied by the second singular value, oy,
for the y-coordinates, the terms can be represented on the Cartesian plane. Similarly,
the first column of V5 scaled by oy are the x-coordinates and the second column of V5
scaled by oy are the y-coordinates for the documents. Figure 3.2 is a Two-dimensional

plot of the terms and documents for the 12 x 9 example.

14

]__
c4
system
S
human o c3
interface

1 cl

0 T | ' |
compuE:eSrl LSer 2 3
time
response
-m 1 c2
survey

-1

m2

minors

|tree

] m4

im3

graph

Figure 3.2: Two-dimensional plot of terms and documents for the 12 x 9 example.

15

0.2405 —0.0432
0.3008 0.1413
0.0361 —0.6228
0.2214 0.1132
0.1976 0.0721
0.0318 —0.4505 33409 0\
0.2650 —0.1072 (0 2.5417)

0.2059 —0.2736
0.6445 —0.1673
0.0127 —0.4902
0.2650 —0.1072
0.4036 —0.0571

(0.1383 0.0275) =

O OO OO OO OO O

Figure 3.3: Derived coordinates for the query of human computer.

Notice the documents and terms pertaining to human computer interaction are
clustered around the x-axis and the graph theory-related terms and documents are
clustered around the y-axis. Such groupings suggest that documents cl through
c5 are similar in meaning and that documents m1 through m4 also have similar

meaning.

3.2 Queries

Suppose we are interested in the documents that pertain to human computer interac-
tion. Recall that a query vector (g,) is represented as a pseudo document (¢) via ¢ =
ql Ut (see Equation (2.6)). Interaction is not an indexed term in the database so
it is omitted from the query leaving human computer. Mathematically, the Cartesian
coordinates of the query are determined according to Figure 3.3.

This query vector is then compared (in the Cartesian plane) to all the documents
in the LSI-generated database. All documents whose cosine with the query vector is

greater than .90 is illustrated in the shaded region of Figure 3.4.

16

system
human - c3

interface
QUERY !

computer
c5
mi
1m2
minors

[tree
m4

graph

Figure 3.4: A Two-dimensional plot of terms and documents along with the query human computer.

17

Table 3.3: Returned documents based on different numbers of LSI factors.

Number of Factors
k=2 k=14 k=9
c3 .99 [cl | .99 | cl | .88
cl | .99 c3 | .39 | c4| .31
cd | 98 | c2 | .30 | c2 | .31
c2 | .93 | cd | .22
ch | .90

A different cosine threshold, of course, could have been used so that a larger or
smaller set of documents would be returned. The cosine is merely used to rank-order
documents and its explicit value is not always an adequate measure of relevance. This

phenomenon will be illustrated in the next section.

3.3 Comparison with Lexical Matching

In this example, LSI has been applied using 2 factors (i.e. Ay is used to approximate
the original 12 x 9 term-document matrix). Using a cosine threshold of .90, all
five documents related to human computer interaction were returned: documents cl,
c2, c3, c4, and ¢5. With lexical-matching, only three documents (c1, c2, c4) are
returned. Hence, the LSI approach extracts two additional documents (¢3 and ¢5)
which are relevant to the query yet share no common terms. Table 3.3 lists the LSI-
ranked documents with different numbers of factors (k). The documents returned in
Table 3.3 satisfy a cosine threshold of .20, i.e. returned documents are within a cosine

of .20 of the pseudo-document used to represent the query.

18

Table 3.4: Additional titles for updating.

Document Id | Titles
nl System Time to Traverse a B-Tree Graph
n2 Interface Graph Tools
n3 Graph Minors Implemented on Computer Systems
n4 Systems Tree
nb Computer Graph
n6 Survey of Computer Time
n7 A Survey of Human Interface Computer Systems

3.4 Folding-In

Suppose the fictitious titles listed in Table 3.4 are to be updated to the original set
of titles in Table 3.1. While some titles in Table 3.4 use terms from both the human
computer interaction and group theory categories, others use only terms from each
separate category. As with Table 3.1, all underlined words in Table 3.4 are considered
significant since they appear in more than one title (across all 16 titles from Tables 3.1
and 3.4). Folding-in (see Section 2.4) is one approach for updating the original LSI-
generated database with the 7 new titles. Figure 3.5 demonstrates how these titles are
folded-into an LSI-generated database based on k& = 2 factors. The new documents
are denoted on the graph by their document id’s. Notice that the coordinates of the
original titles stay fixed, and hence the new data has no effect on the clustering of

existing terms or documents.

19

) c4
' systems
human P> c3
inter{ace
c
0 I T I n7 T I T I
cémputer uler 6 8
nd SRse
time
mi n6 c2
-24ml
NS survey
4 n3
T nl
Mfnors
tree
m3 m4
| graph
-8-

Figure 3.5: Two-dimensional plot of folded-in documents.

20

3.5 Recomputing the SVD

Ideally, the most robust way to produce the best rank-k approximation (Ax) to an
LSI-generated database which has been added new terms and documents is to simply
compute the SVD of a reconstructed term-document matrix, say A. Updating meth-
ods which can approximate the SVD of the larger term-document matrix A become
attractive in the presence of memory or time constraints. Therefore, the accuracy of
SVD-updating approaches will be compared to that obtained when the SVD of Ais
explicitly computed.

Suppose the titles from Table 3.4 are combined with those of Table 3.1 in order
to create a new 12 x 16 term-document matrix A. Following Figure 3.1, we then

construct the best rank-2 approximation to A,
A2 - UQZQ‘N/zT. (31)

Figure 3.6 is a 2-dimensional plot of the 12 terms and 16 documents using the elements
of U, and V4 for term and document coordinates, respectively. Notice the difference in
term and document positions between Figures 3.5 and 3.6. Clearly, the new terms and
documents from Table 3.4 have helped redefine the underlying latent structure when
the SVD of A is computed. Folding-in the 7 new documents based on the existing
rank-2 approximation to A (defined by Table 3.2) may not accurately reproduce the

true LSI representation of the new LSI-generated database.

21

4
c4
ntc2
2- Jymart 3 systems
eps; ntfrface
responsec
C nesurvey computer
%me
0 [T [T [T [T 1
0.2 0.4 0.6 0.8 1
n4
ml
-2 n2 n5
n3
.m4 nl
minors
4 m?2
ree
| ms
__6 -]
graph
-8

Figure 3.6: Two-dimensional plot of terms and documents using the SVD of a reconstructed term-
document matrix.

22

Chapter 4

SVD-Updating

Chapter 4 describes SVD-updating using titles from Tables 3.1 and 3.4. The three
steps required to perform a complete SVD-update involve adding new documents,
adding new terms, and correction for changes in term weightings. These steps are not
restricted to the ordering presented in the section below, but it is a logical approach

to SVD-updating.

4.1 Overview of SVD-updating

This section is an overview of the three steps used to SVD-update an LSI-generated
database. Let D denote the d new document vectors to process, then D is an m x d
sparse matrix since most terms (as was the case with the original term-document
matrix A) do not occur in each document. D is appended to the columns of the
rank-k approximation of the m x n matrix A, i.e., from Equation (2.2), Ay so that

the k-largest singular values and corresponding singular vectors of

B = (A | D) (4.1)

23

are computed. This is almost the same process as recomputing the SVD, only A is
replaced by Aj.

Let T' denote a collection of ¢ x 1 term vectors for SVD-updating. Then T isa t xn
sparse maftrix, since each term rarely occurs in every document. 7" is then appended
to the rows of Aj so that the k-largest singular values and corresponding singular

vectors of

(4.2)

are computed.

The correction step for incorporating changes in term weights is performed after
any terms or documents have been SVD-updated and the term weightings of the
original matrix have changed. For a change of weightings in j terms, let Y, be an
m x 7 matrix comprised of rows of zeros or rows of the j-th order identity matrix, /;,
and let Z; be an n x 7 matrix whose columns specify the actual differences between
old and new weights for each of the 5 terms. Computing the SVD of the following

rank-j5 update to A, defines the correction step.

B=A+Y,Z]. (4.3)

4.2 SVD-Updating Example

To illustrate SVD-updating, suppose the fictitious titles in Table 3.4 are to be added
to the original set of titles in Table 3.1. In this example, only documents are added
and weights are not adjusted, hence only the SVD of the matrix B in Equation (4.1)
is computed.

Initially, a 12 x 7 term-document matrix, D, corresponding to the fictitious titles

24

in Table 3.4 is generated and then appended to A, to form a 12 x 16 matrix B of the
form given by Equation (4.1). Following Figure 3.1, the best rank-2 approximation
(B2) to B is given by
By = 5%,V

where the columns of U, and V5 are the left and right singular vectors, respectively,
corresponding to the two largest singular values of B.

Figure 4.1 is a two-dimensional plot of the 12 terms and 16 documents using the
elements of U/, and V; for term and document coordinates, respectively. Notice the

similar clustering of terms and documents in Figures 4.1 and 3.6 (recomputing the

SVD) and the difference in clustering with Figure 3.5 (folding-in).

4.3 SVD-Updating Procedures

The mathematical computations required in each phase of the SVD-updating process
are detailed in this section. SVD-updating incorporates new term or document infor-
mation into an existing semantic model (A from Equation (2.2)) using sparse term-
document matrices (D, T', and Y]Z]T) discussed in Section 4.1. SVD-updating exploits
the previous singular values and singular vectors of the original term-documents ma-
trix A as an alternative to recomputing the SVD of A in Equation (3.1). In general,
the cost of computing the SVD of a sparse matrix [BT93] can be generally expressed
as

I x cost (GTGx) +trp x cost (Gx), (4.4)

where [is the number of iterations required by a Lanczos-type procedure [Ber92a]
to approximate the eigensystem of G7(and trp is the number of accepted singular

triplets (i.e. singular values and corresponding left and right singular vectors). The

25

44
c3 04']702
27 interllﬁ'atcjrenan Systems
o5 EPsuser
rﬁ?ﬁgn survey computer
0 T [[T [[
2 4 6 8
n4
ml n2
-2 - n5
nl n3
m4
N mral nors
tree
- m3
__6 -]
graph
__8]

Figure 4.1: Two-dimensional plot of terms and documents using the SVD-updating process.

26

additional multiplication by G is required to extract the left singular vector given
approximate singular values and their corresponding right singular vector approxima-
tions from a Lanczos procedure. The subsections below demonstrate how to update
the existing rank-k approximation Ay using standard linear algebra along with an
estimate of the number of floating-point operations required for each SVD-updating

phase.

4.3.1 SVD-Updating of Documents

Let B = (A | D) from Equation (4.1) and define SVD (B) = UgXgVy. Then

Uy B = (S | U D),

1q

since Ay, = UpyX VI I F = (3 | UI'D) and SVD(F) = UpXpVE, then it follows

that
Ug = U,Ur and
Vi
Vg = Vr,
1q
Vi
since (UpUy)T'B = Y = Yp. Hence Ug and Vi are m x k and (n + d) x

1q

(k 4+ d) dense matrices, respectively.

Table 4.1 contains a list of symbols, dimensions, and definitions of the variables
used to express the computational cost of all the SVD-updating phases. Computational
cost is defined in terms of floating-point operations (multiplications or additions) and
denoted by flops.

Suppose (& in Equation (4.4) is defined by G = (X | UI'D) then the required flops

27

Table 4.1: Symbols used for computational complexity.

Symbol | Dimensions | Definition
A mxn Original Term-document matrix
U mx k Left singular vectors of Ag
Y kxk Singular values of Ag
Vi nxk Right singular vectors of Ag
Z; nxj Adjusted weights
Y; m X j Permutation matrix
D m X d New document vectors
T txn New term vectors
nnz(X) Number of non zeros in X

for computing G are 2(nnz(D)+mk)—m and those for GG are dnnz(D)+4mk+

k —2m — d. Inserting these costs into Equation (4.4) we obtain,
I x [4Annz(D) 4+ 4mk + k —2m — d] 4+ trp X 2nnz(D) + 2mk — m] (4.5)

as an estimate of the number of flops required to compute SVD(G). The costs for
computing Ug and Vg are m[2k* — k] and n[2k* — k|, respectively. Therefore, the
total cost for SVD-updating of documents is given by,

[[x [Annz(D) + 4mk + k —2m — d] + trp X [2nnz(D) + 2mk — m]]

+ [(2K% — k)(m +n))]. (4.6)
4.3.2 SVD-Updating of Terms

A
Let B = S from Equation (4.2) and define SVD (B) = UgXgVZ. Then
T

28

by
If H= . and SVD(H) = UyXyVy then it follows that

TV
Uy
Ug = Uy and
I
Ve = ViV,
i
since U BV,Vg = Yy = Yp. Hence Ug and Vg are (m+1t) x (k+1t) and
I
n x k dense matrices, respectively.
by
Suppose H in Equation (4.4) is defined by G = H = " | then the flops for
TV

computing Ga are 2nnz(T) + 2nk + k — n — t and those for GTGy are dnnz(T) +
dnk + k — 2n — t. Inserting these costs into Equation (4.4) we obtain,

I x [Annz(T) 4+ 4kn + k — 2n — t] + trp x

2nnz(T) + 2kn + k — 2n — 1] (4.7)
as an estimate of the number of flops required to compute SVD(G) = SVD(H). The
costs for computing Ug and Vg are m[2k? + k] and n[2k* — k] flops respectively.
Therefore, the total cost for SVD-updating of terms is given by,

[[x [4nnz(T) 4+ 4kn + k —2n — t)] + trp x 2nnz(T) + 2kn + k — 2n — t]]

+ [(2K% 4+ k)(m + n)). (4.8)

4.3.3 SVD-Updating with Term Weight Corrections

Let B = Ak—I—YijT, where Y is (m+1) x j and Z; is (n+d) x j from Equation (4.3).
Then
ULBVe = Sk + ULY; 21V,

29

IfQ= (2, + UkTY]Z]TVk) and SVD(Q) = UgXgV{, then it follows that
Ug = UyUg and

Ve = Vi lo.

Since (UgUp)T BV, Vg = ¥g = Xp. Hence Ug and Uy are m x k and n x k dense
matrices, respectively.

Suppose G in Equation (4.4) is defined by G = @ = (X + UkTY]Z]TVk) then the
flops for computing Gx are 2nk 4 2mk +2nnz(Z;) — j —n+k and those for GT Gy are
dnnz(Z;) 4+ 4km+2mj + 2kn + 3k — 2n — 25 —m. Inserting these costs into Equation
(4.4) we obtain,

I x [Annz(Z;) + 4km + 2myj + 2kn 4+ 3k — 2n — 25 — m] + trp X
[2nk + 2mk + 2nnz(Z;) — j — n + k], (4.9)
where j is the number of terms whose weights have changed. The costs for computing
Up and Vg are m(2k* — k) and n(2k* — k) flops, respectively. Therefore, the total
cost of SVD-updating with term weight corrections is given by,
[[x [Annz(Z;) + 4km + 2mj + 2kn + 3k — 2n — 25 — m] +
trp X [2nk + 2mk + 2nnz(Z;) — j — n + k]

(2K — k)(m + n). (4.10)

4.4 LSI-Updating Example with Term Weight Corrections

This section describes SVD-updating using the same titles from Table 3.1 and Table
3.4. However, this example differs from that of Section 4.2 because different local and

global weightings (see Equation 2.4) have been applied. Let a;; denote the frequency of

30

term ¢ in document j (Equation (2.5)), df; denote the number of documents containing
the term ¢, g f; denote the frequency of term ¢ in the entire collection, and ndocs denote
the number of documents in the collection. Suppose local (logarithmic) and global

(entropy) weightings are applied so that from Equation (2.5) we have

ay
dfi’

We will refer to this particular weighting scheme as the log-entropy weighting [DDF*+90].

N : pijlog(pis)
L(i,j) = log(a;; + 1) and G(z) = 1 — ZJ: W, where p;; =

Suppose an LSI-generated database has already been created by applying the log-
entropy weighting to the titles from Table 3.1. SVD-updating first updates the exist-
ing database with the documents from Table 3.4, as in the Section 4.3.1. However,
Ay has old weightings compared to D because new documents have changed both the
local and global weightings of the original term-document matrix A defined in Table
3.2. In other words, the variables ndocs, df;, and ¢f; have all changed due to the
addition of more documents. Figure 4.2 is a two-dimensional plot of the terms and
documents of SVD-updating before the weighting correction step from Section 4.3.3
has been applied. The dotted circles in Figure 4.2 are used to compare clusterings of
terms and documents in later Figures.

After the documents have been updated, the term weight correction step can be
applied. The m x 7 matrix Y] discussed in Section 4.1 denotes exactly which terms
(or rows of the matrix A) have changed. Let e; denote the ith canonical vector and

0 denote the j x 1 null vector, then

— — —.

}/j = [617 07 €2, €3, €4, €5, 07 €6, €7, €3, €9, O]T (411)

ZjT (see Table 4.2) reflects a change of weights for 9 out of 12 terms. FEach row

of the 7 X n matrix is computed by subtracting the new term weights from the

31

interface
human
0.4 cl
. 4 3
| n7
02—
systems
n2 computer
-0.0 T [[[[1
\nHS/ 2 4 6 8 1.0
1 user
, n3 n6
m nl
0.2+ t survey
ree
?geponse c2
H time
r
msn% r%s m4
0.4

Figure 4.2: Two-dimensional plot of SVD-updating (before the term weight correction method) with
log-entropy weighting.

32

Table 4.2: Example of ZjT

—.330 0 —.0807 —.184 0 0 0 0 0
—.330 0 0 0 0 —.184 —-.214 -—.184 0
0 0 0 —.184 0 0 —.214 0 0
0 0 —.0807 0 0 0 —.214 0 0
0 0 0 0 0 0 0 —.184 0
0 0 0 0 0 0 0 0 —.0804
0 —.201 0 0 0 0 0 0 —.0804
0 —.201 0 0 —.0807 0 0 0 —.0804
0 —.201 0 0 —.0807 —.184 0 0 0

old term weights for each document (see Figure 4.2). Once Y; and ZjT have been
constructed the SVD of the matrix) from Section 4.3.3 is then computed. Figure
4.3 is a two-dimensional plot of the terms and documents after the term weight
correction method has been applied. In comparison with the recomputed SVD (using
log-entropy weightings) shown in Figure 4.4, we can see that the clustering of terms
and documents with the term weight correction method (Figure 4.3) more closely
resembles that of recomputing the SVD (Figure 4.4) as opposed to SVD-updating
without term weight correction (Figure 4.2).

The major differences between SVD-updating with and without the term weight
correction step (Figures 4.3 and 4.2) and recomputing the SVD (Figure 4.4) is due to
the approximation of the original term-document matrix A by A; rather than A,. In
order to numerically quantify the differences, matrix norms can be applied. Let A be
the first 9 columns of the 12 x 16 new term-document matrix and let A, be the rank-2
approximation of the original 12 X 9 term-document matrix A. An estimate of the
error in approximating the new term-document matrix with a rank-2 approximation

of the original term-document matrix is given by
|A — Agll2 = 1.1805. (4.12)

33

0.4

10

0.2
i n2 systems
computer
n
-0.0 w T T T T 1
g]l no A 6 8
tree survey

-0.2 5 user

047 egprgﬁse 2
b ¢

Figure 4.3: Two-dimensional plot of SVD-updating (after the term weight correction method) with

log-entropy weighting.

34

c4
0.4 interface ny

c3

systems

computer

: : : : :
SUrvey, 6 8 1.0

-0.2 5

user

time
-0.4 - 02

response
c5

Figure 4.4: Two-dimensional plot of new SVD with log-entropy weighting.

35

When the term weight correction is applied to Aj, the error in representing A is

reduced to

A — A, + Y Z] |2 = 1.0665. (4.13)

If the true rank-2 approximation to A is computed (A;) then
|A = Ayl = 1.102 = &5, (4.14)

where o3 is the third-largest singular value of A (see Mirsky’s result in Equation
(2.3)). Notice that the norm in Equation (4.13) more closely resembles the error in

(4.14) than does the norm in (4.12).

4.5 Orthogonality

Orthogonality is a property maintained in the SVD by the left and right singular
vectors. An m x n orthogonal matrix Q satisfies Q7@ = I,, where I, is the n-th
order identity matrix. Let D, be the collection of all folded-in documents where
each column of the p x k£ matrix is a document vector of the form d, from Equation
(2.7). Similarly, let T}, be the collection of all folded-in terms such that each column
of the ¢ x k matrix is a term vector of the form ¢, from Equation (2.8). Then, all
term vectors and document vectors associated with folding-in can be represented as
U, = (UkT | TqT)T and V, = (VkT | Dg)T, respectively.

The folding-in process corrupts the orthogonality of Uy and Vj, by appending non-
orthogonal submatrices T}, and D, to Uy and Vj, respectively. Computing ﬁgﬁk and

\A/kT\A/k, the loss of orthogonality in Uy and Vj, can be measured by

0L T, — 1| (4.15)

36

and

IV Vi = Ll (4.16)

Table 4.3 illustrates the orthogonality of Vi using three different updating methods for
adding new documents to the original 12x9 example. SVD-updating and recomputing
the SVD maintain the orthogonality of U, and Vj, to working precision (single precision
or 32-bit arithmetic for Table 4.3). Folding-in does not maintain the orthogonality of
U, or Vj since arbitrary vectors of weighted terms or documents are appended to Uy
or Vi, respectively. However, the amount by which the folding-in method perturbs
the orthogonality of (jk or \A/k does indicate how much distortion has occurred due to

the addition of new terms or documents.

Table 4.3: Loss of orthogonality in Vi for folding-in and in Vi for SVD-updating and recomputing
the SVD using the 12 x 16 example.

Folding-in | SVD-Updating | Recomputing the SVD
1.445E+1 2.206E-4 2.472E-4

4.6 Memory Considerations

One of the major concerns in updating LSI databases is memory conservation. Recom-
puting the SVD requires memory to store all the nonzeros of the new (m+1) x (n+d)
term-document matrix A. While SVD-updating requires only the nonzeros of the ma-
trices defining new terms or documents, folding-in requires no sparse input matrices.
Table 4.4 contains a list of estimated memory usages for each updating approach.
Clearly, folding-in is the most memory conservative while recomputing the SVD can

easily exhaust available memory if the number of current documents (n) becomes

37

Table 4.4: Lanczos memory constraints.

Method Memory
SVD-updating (any phase) | I x k+trp x (1 +m +n)

Folding-in documents d+k+n

Folding-in terms t+k+m
Recomputing the SVD Ixn4+trpx (14+m+n)

quite large. FEach of the SVD-updating phases can be applied so that memory is

better conserved (k < m).

4.7 Computational Complexity for SVD-Updating

This section compares the computational complexities of folding-in and SVD-updating.
Whereas the computational cost of recomputing the SVD can be considerably less
than that of SVD-updating, the memory constraints (see Section 4.6) of modest com-
puting environments (e.g., workstations) may preclude its applicability (see Chapter
5). Table 4.5 contains the complexities for folding-in terms and documents, recom-
puting the SVD, and the three phases of SVD-updating. Using the complexities in
Table 4.5 the required flops for each method is graphed for varying numbers of added
documents or terms.

Assumptions needed in constructing the graphs in Figures 4.5 through 4.8 are
listed in Table 4.6. Using parameters obtained from the letter A of the Columbia
Condensed Encyclopedia, (CCE), let the number of terms m = 5119 and the number
of documents n = 1063. For an alternative scenario in which relatively few terms are
used in many documents, let m = 1000 and n = 6000. The sparse matrices A, D, T

and ZjT are all considered to be 0.1% dense. Term-document matrices corresponding

38

Table 4.5: Computational complexity of updating methods.

Method Complexity
SVD-updating [I x [dnnz(D) +4mk + k — 2m — d]+
documents

trp x [2nnz(D) 4 2mk — m|]
+ [(2k% = k)(m + n)]

SVD-updating

terms

[x [4nnz(T) + 4kn+ k —2n — t]+
trp x 2nnz(T) + 2kn+ k — 2n —1]]
+ [(2k% = k) (m + n)].

SVD-updating
correction step

[x [4nnz(Z;) + 4km + 2mj + 2kn + 3k — 2n — 2j — m)]
+trp x 2nnz(Z;) 4+ 2km + 2kn + k — j — n]]
+ [(2k% = k)(m + n)]

Folding-in documents 2mkd
Folding-in terms 2nkt
Recomputing I x[dnnz(A) — (m+1t)— (n+ d)]+
the SVD

trp x 2nnz(A) — (m +1)

Table 4.6: Assumptions for graphing computational complexities.

Symbol Definition Value when Value when
m = 5119,n = 1063 | m = 1000, n = 6000

A mxnx0.1% 5441 6000

D mx dx0.1% 5.119d d

T txnx0.1% 1.063¢ 6t

z! jxnx0.1% 0.532t 3t

1 kx3 124 124
trp >k 110 110

J t x 50% 0.5¢ 0.5t

k 108 108

39

] - -e— Folding-in
30 —=— sv D-updating without correction step
] —-e—- SVD-updating with correction step
2.5
Q 2.0_;»0—--—o-—--o—--—o—--o--—-o—--—o-— 23
o]
k<] e
= 154 g
O j ped
] /./
10 tamm = P S - S - —
] _
5 L
] e
e e e B |
1 500 1000 1500

Number of Documents

Figure 4.5: Complexity of adding documents with
m <& n.

- -o— - Folding-in
30 —=— sv D-updating without correction step
2.5
2 20
o]
<]
= 154
o]
1.0
5
= = = - §=——u—A
i e
——e——-"9
L A L A A L AL |
1 500 1000 1500

Number of Terms

Figure 4.7: Complexity of adding terms with
m <& n.

- -o— - Folding-in
30 —=— sv D-updating without correction step
] —-e—- SV D-updating with correction step
2.5
2 20
o]
k<]
= 154
o]
PO — b — e
1.0+
5
= = = 8 _—§-—=
e~
A A L R R EL A |
1 500 1000 1500

Number of Documents

Figure 4.6: Complexity of adding documents with
m>>n.

] - -e— Folding-in
30 —=— sv D-updating without correction step
2.5
o]
2.0
g e
5 e
[T == — 8 —= = =
1.0+ .«
] o
5 -7
] .®
e e e A L
1 500 1000 1500

Number of Terms

Figure 4.8: Complexity of adding terms with
m>>n.

40

to letters of the Columbia Condensed Encyclopedia were typically 0.1% dense. Table
4.6 also contains the values of I, trp, j, and k based on the two possible choices for m
and n.

Figures 4.5 and 4.6 vary the range of documents, d, being added to an LSI-
database. When m < n, i.e., the number of documents being updated is relatively
small, folding-in requires fewer flops than SVD-updating (see Figure 4.5), but as
the number of documents being updated becomes relative large (greater than 900)
SVD-updating requires fewer computations than folding-in. When m > n, i.e. the
number of documents being updated is very large relative to the number of terms,
the number of documents needed for SVD-updating to perform better than folding-in
has grown to greater than 1500 documents (see Figure 4.6). The folding-in method
for documents is dependent on the number of documents (n) and not on the number
of terms (m) (see Table 4.5), this explains the linearity of the two folding-in curves
in Figures 4.5 and 4.6. The term weight correction step requires twice the required
flops of SVD-updating documents.

Figures 4.7 and 4.8 vary the range of terms, ¢, added to the LSI-database. When
m & n, SVD-updating performs better than folding-in after 1500 terms have been
updated (see Figure 4.7). When m > n, folding-in requires fewer flops than SVD-
updating for ¢ < 900, otherwise SVD-updating requires fewer flops (see Figure 4.8).
Since adding new terms has no effect on the original weightings (see Section 4.4), the

term weight correction step is not illustrated in Figures 4.7 and 4.8.

41

Chapter 5

Performance Benchmarks

5.1 Overview

In this chapter, we discuss the performance of SVD-updating and folding-in compared
to recomputing the SVD. Three performance metrics are used: 1) retrieval accuracy,
2) memory usage, and 3) speed. The comparisons are based on experiments using

articles from the Condensed Columbia Encyclopedia (CCE).

5.2 Retrieval Accuracy

Relevance feedback [SB90] is a retrieval technique which initially uses a query to
obtain a set of relevant documents from which selected documents are used to re-
trieve even more relevant documents. This section uses relevance feedback to mea-
sure retrieval accuracy. Specifically, the returned documents of the relevance feedback
queries of folding-in and SVD-updating are compared with the documents returned
from relevance feedback queries associated with recomputing the SVD.

Using the 12 x 16 example with log-entropy weighting described in Section 4.4,

42

Table 5.1: Relevance feedback results using the 12 x 16 example and log-entropy weightings.

Query Method Returned Documents
Document
Folding-in ¢2 nl n3 n5 n6 ¢ m4 nd n7 n2 m3 m2
2 SVD-updating | ¢c2 nl n6 ml ¢5 m2 m3 m4 n5 nd4d n3
Retc}(l)emsp\L/l;l)ng c2 n6 ¢5 nl m4 ml n5 m2 m3 n3 n4 c3
Folding-in m2 m3 ml m4 ¢5 n6 n2 nl c2
2 SVD-updating | m2 m3 m4 n5 n4 n3 ml n6 nl ¢c2 ¢3 n7 c& n2 cl c4
Retc}(l)emsp\L/l;l)ng m2 n5 m3 n3 n4 ml ¢c3 m4 n7 n2 nl ¢l c4 n6 c2
Folding-in nd n7 n2 ¢l 3 ¢4 n3 ¢2 nl n5 n6 c5
nd SVD-updating | n4 n5 m4 m3 n3 m2 ¢3 ml n7 n6 nl ¢2 n2 cl c4 cb
Retc}(l)emsp\L/l;l)ng nd n3 ¢3 m3 m2 n5 n7 ml m4 n2 ¢l ¢4 nl n6 c2
Folding-in n7 nd n2 ¢l 3 ¢4 n3 ¢2 nl n5 n6 c5
07 SVD-updating | n7 n2 ¢3 ¢l ¢4 n3 n4d n5 md4d m3 m2
Retc}(l)emsp\L/l;l)ng n7 ¢3 n2 n4d ¢l ¢4 n3 m3 m2 n5 ml m4 nl

relevance feedback was performed with documents ¢2, m2, n4 and n7, i.e., these
documents were used as new queries to obtain more relevant information. Table 5.1
shows the returned documents from the relevance feedback queries for each method.
To compare the results of the queries, documents returned by recomputing the SVD
were compared with documents returned by folding-in and SVD-updating. A docu-
ment returned by folding-in or SVD-updating is counted as a hit if that document is
also returned by recomputing the SVD. Otherwise, a document is counted as a miss.
Hits and misses were computed as a function of window size, where window size is
defined as the first n documents in the LSI rank-ordered list associated with a query.
For example, a window size of two would compare the top two returned documents
from recomputing the SVD with the top two documents from folding-in and SVD-
updating. Table 5.2 contains the hits and misses of folding-in and SVD-updating at

even window sizes for each document used in the queries (¢2, m2, n4, n7). Figures

43

Table 5.2: Relevance feedback results of misses and hits.

Query Method Window Size (2) | Window Size (4) | Window Size (6)
Document Misses Hits Misses Hits Misses Hits
09 Folding-in 1 1 2 2 2 4
SVD-updating 1 1 1 3 1 5
- Folding-in 1 1 2 2 3 3
SVD-updating 1 1 1 3 1 5
oA Folding-in 1 1 3 1 4 2
SVD-updating 1 1 2 2 1 5
07 Folding-in 1 1 1 3 0 6
SVD-updating 1 1 1 3 1 5

Query Method Window Size (8) | Window Size (10) | Window Size (12)

Document Misses Hits Misses Hits Misses Hits
9 Folding-in 2 6 3 7 2 10
SVD-updating 1 7 1 9 1 11

9 Folding-in 4 4 5 5 7 5
SVD-updating 1 7 3 7 2 10

" Folding-in 4 4 5 5 5 7

SVD-updating 1 7 1 9 3 9

07 Folding-in 1 7 2 8 4 8
SVD-updating 1 7 1 9 2 10

44

5.1 through 5.4 plot hits from Table 5.2 for folding-in and SVD-updating.

For the 12 x 16 example, SVD-updating has more hits than folding-in at each win-
dow size using relevance feedback with documents ¢2, m2 and n4. This superior re-
trieval accuracy indicates that SVD-updating returns documents more similar to that
of recomputing the SVD than folding-in. Relevance feedback using SVD-updating
with document n7 (Figure 5.4) does not always have more hits than folding-in, but
neither method performed convincingly better than the other. Folding-in’s accuracy
is dependent on the term-document relationships remaining the same before and after
updating. In the case of n7, the usage of terms in the document was similar to the

previous usage of the terms in documents ¢1 and c2.

45

Hits

Hits

10+
.’ /
1 - -e— - Folding-in M)/
{ --#-- SVD-updating - /
o’ /
1 u e
4) ‘ ,’
. e
5+ o
e 7/
4 ’/
. 7/
4 '!' //
;' 4
< R /.
_ "
0 | T
0 5 10
Window Size

Figure 5.1: ¢2 relevance feedback hits.

10 —
1 - -e— Folding-in e
1 --4-- SVD-updating
i "" »
. 7
4 7
e Ve
5 m o
- ! .
Ve
i . /7
S /s
. 4
1 R {
1 _- e
0 T T
0 5 10
Window Size

Figure 5.3: n4 relevance feedback hits.

Hits

Hits

46

10 H n
1 - -e— - Folding-in
1 --4-- SVD-updating
1 R) °

7/
7/
T 7/
7/

5 | /,o’

] /‘//

4 /.//

] ",'/./

_ "
0 1

0 5 10

Window Size

Figure 5.2: m2 relevance feedback hits.

10 + ..
1 - -e— - Folding-in -
{--m-- SVD-updating . e-—-e
4 /"'//

4 .'/',"
/ L
5)
/."
] /
/,
1 .
7
- o/
d
s
g w
0 T
0 5 10
Window Size

Figure 5.4: n7 relevance feedback hits.

5.3 Memory Usage

Section 4.6 discussed memory conservation with respect to the three updating meth-
ods. This section provides examples of memory usage using articles comprising the
letters A through F of the Columbia Condensed Encyclopedia (CCE). Memory usage
for computing the SVD of sparse matrices was originally discussed in [D093]. The
memory allocation for SVDPACKC [Ber92b] and the single-vector Lanczos algorithm
used in recomputing the SVD can be categorized according to the storage of Lanczos
vectors, singular vectors, and temporary workspace. For an m x n term-document

matrix A, the memory allocation by category can be expressed as

Lanczos Vectors E(lanmax + 2)
Singular Vectors E(I)+m + I?
Temporary Workspace 9k + 4lanmax +m + 14 (n +nnz 4+ 1)/2 + nnz,

where k is the number of singular values and singular vectors to be computed, lanmaz
is the maximum number of iterations allowed by the Lanczos algorithm, m is the
largest dimension of A, n is the smallest dimension of A, nnz is the number of non-
zeros of A, and [is the actual number of iterations taken.

The model for computing memory usage for SVD-updating is essentially the same
as for computing the SVD, since extra memory is only needed for retrieving a previously-
generated left or right singular vector from disk, and for a temporary work array whose
size is equal to current number of LSI factors (k). However the number of nonzeros
for the matrices D and T from Equation (4.1) and (4.2) is considerably smaller (in
practice) than the number of nonzeros of the reconstructed term-document matrix A

see (Section 4.4). Hence, recomputing the SVD will require more in-core memory for

47

Table 5.3: Parameters of datasets from the Columbia Condensed Encyclopedia.

dataset Size Number of | Number of | Number of | nnzeros
in bytes | Documents Terms Factors
A 478,775 1,063 5,119 108 28,116
B 549,635 1,251 5,617 105 34,619
C 715,125 1,423 6,914 101 43,724
D 258,172 607 3,115 102 14,072
E 263,869 504 3,065 102 13,105
F 261,403 545 3,106 104 13,966
AB 1,028,410 2,314 8,905 100 67,264
ABC 1,743,517 3,737 12,660 100 117,187
ABCD 2,001,689 4,344 13,892 111 136,138
ABCDE 2,265,558 4,848 14,976 100 153,943
ABCDEF | 2,526,961 5,393 16,030 100 172,684

computing singular values and singular vectors. The cost of memory for folding-in

can be as small as

2m + k.

Actual memory usage was computed (see Table 5.4) using parameters associated with
the letters A through F of the CCE (Table 5.3). Figure 5.5 is a graph of the memory
usage (in megabytes) associated with the three updating methods. Folding-in was
the most conservative method in terms of memory usage while recomputing the SVD
was the most expensive; SVD-updating was modestly conservative in memory usage.
Recomputing the SVD memory usage is most closely related to the size of the database
and grows at a faster rate than SVD-updating or folding-in. Folding-in and SVD-
updating memory usage, on the other hand, is more related to the sparsity associated
with the term by document correlation of the incoming data rather than the sparsity

of the completely updated term by document matrix.

48

Table 5.4: Actual memory usage for updating the Columbia Condensed Encyclopedia.

Letter(s) of CCE | Letter(s) of CCE | Folding-in | SVD-updating | Recomputing the SVD
updated with updated to bytes bytes bytes
B A 12,260 3,009,060 5,150,952
C AB 13,112 3,235,824 8,230,048
D ABC 54,696 1,694,496 9,289,188
E ABCD 53,072 1,161,948 10,372,960
F ABCDE 54,056 1,221,028 11,536,860
______ -
e U e ———
.................................. ..
j ‘.
............ [
1.0+
- 1 - -o— Folding-in
5 i --4-- SVD-updating
g — -¢— - Recomputing the SVD
=
g 01+
=]
2] A e .
g . -7
= . ///
p - ————————————— === —0//
0.01 —
ool b onm 1+ o p i o ——
2314 3000 4000 5000

Total Documentsin LS| Database

Figure 5.5: Memory usage for updating letters A-F of CCE.

49

Table 5.5: Timing benchmarks updating the letters A-F of CCE.

Letters in | Letters updated
existing to existing Folding-in | SVD-updating | Recomputing the SVD
database database (min:sec) (min:sec) (min:sec)
A B 8:31 6:40 6:29
AB C 10:32 11:30 13:53
ABC D 4:26 14:02 18:01
ABCD E 3:59 15:06 17:47
ABCDE F 4:07 15:10 16:11

5.4 Timing Benchmarks

Using the letters A through F of the Columbia Condensed Encyclopedia, elapsed
wall-clock timings of the updating methods were recorded. Wall-clock times on a Sun
SPARCstation2 (with accelerator chip) and 64 megabytes of memory were obtained.
All three updating methods were timed for the entire LSI process. Each letter (except
A) was updated to the set of letters that precedes it. For example, the letters A and
B (AB) were updated with the letter C. Table 5.5 contains the wall-clock times of
each updating run for the letters B through F. Folding-in’s wall-clock times were
dependent on the number of documents being added to the existing LSI-generated
database. SVD-updating’s times were dependent on both the sparsity of the updated
documents and the size of the existing LSI-generated database. Recomputing the SVD
was dependent on the sparsity of the entire LSI-generated database, the existing LSI-
database combined with the new documents, and on the type of data (homogeneous
or heterogeneous) being added to the database. Figure 5.5 plots the timings from
Table 5.5. Clearly, folding-in and SVD-updating times increased as new letters of the
CCE were added. In general, recomputing the SVD increased as new letters of the

CCE were added but decreases in times did occur when the number of terms did not

50

18:00 A
16:00 e
14:00 , "
12.00 | P

10:00 s

‘e
\
\
-

8:00) / . 0

6:00 | .- \

Wall-clock Timein minutes:seconds
\
\
e

4:00 Tt -——-—-—--- L

2:00

O: OO T T T T T T I T T T T T T T T T I T T T T T T T T T I T T T
2314 3737 4344 4848 5396

Total Number of Documentsin the Database.
— -— - Folding-in

—-m—- SVD-updating
-- - -- Recomputing the SVD

Figure 5.6: Wall-clock time in seconds for updating documents of the Columbia Condensed Ency-
clopedia.

51

grow significantly.

Using the three updating methods for adding the letter C to the letters AB of CCE
(i.e., 3,737 total documents after updating from Table 5.3), a code profile or graph of
the significant features of the updating methods was constructed (Figure 5.7). SVD-
updating and recomputing the SVD were fashioned from three basic components: 1)
parsing, 2) las2, and 3) indexdoc. Parsing, parses the words from the text, eliminates
common words, creates the database of terms, and generates a Compressed Column
Storage (CCS) [Bt94, DGLS89] representation of the term-document matrix (see Ap-
pendix A). Las2 computes the truncated SVD of the term-document matrix, and
indexdoc creates a list for matching articles of the CCE with corresponding document
vectors derived from the truncated SVD.

Folding-in is composed of two different codes, make_vectors and vfold. Make_vectors
is a C code which creates a document or term vector for each document or term folded-
in. Vfold appends the new vectors created by make_vector to the SVD contained in
the out file (see Appendix B).

Analyzing Figure 5.7 we can see that the truncated SVD computation (las2) is
faster for SVD-updating than for recomputing the SVD, since a smaller order matrix
(D from Equation(4.1)) is processed in SVD-updating. However, parsing is slower
in SVD-updating, negating the speed improvement by SVD-updating. The parsing
algorithm for SVD-updating is not identical to that for recomputing the SVD. SVD-
updating must check for the existence of terms before adding them to the database
and this can explain the slower parsing. In addition, two different languages were
used to implement the parsing. SVD-updating uses a script language (AWK) [AWSS]

as opposed to a C program for recomputing the SVD.

52

Timein Minutes: Seconds

indexdoc
12:00 I:I C
[Jaw
10:004 vfold indexdoc
8:00 — Las2
Las2
6:00 —
make vectors
4:00 —
Parsing
200] Parsing
T T T
Folding-in SVD-Updating Recomputing the SVD

Figure 5.7: Updating documents profile.

53

Chapter 6

Summary and Future Work

6.1 Summary

We have produced an alternative updating method, SVD-updating, for LSI. Recom-
puting the SVD is the most accurate method of updating but memory and time
constraints can eliminate it as a possibility. Folding-in is the fastest and most mem-
ory conservative but can be inaccurate especially as more documents are folded-in.
SVD-updating is an alternative to folding-in and recomputing the SVD which ade-
quately compromises the tradeoffs in memory usage, computing speed, and retrieval

accuracy. Table 6.1 illustrates the attributes of the three updating methods. SVD-

Table 6.1: Attributes of updating methods.

Method Memory | Computational LSI Retrieval
Complexity Accuracy
Recomputing the SVD High High High
SVD-updating Moderate Moderate Moderate to High
Folding-in Low Low Low to High

54

updating and folding-in are implemented as software tools and are intended for an
experienced user (LSI-database manager). Such LSI-database management tools fa-
cilitate term and/or document updating when resources (memory and computing

time) are limited.

6.2 Future Work

Section 4.5 described a method for measuring the orthogonality of term and document
vectors. A simple tool could be created using the out file format (see Appendix A)
which could return the loss of orthogonality in Equations (4.15) and (4.16). Insights
could be gained from monitoring the loss of orthogonality associated with folding-in
and correlating it to the number of relevant documents returned.

Determining the optimal number of LSI factors is still an area of research. Cur-
rently anywhere between 100 to 300 factors are typically used. A tool for detecting
the optimal number of factors should be investigated. Such a tool could read the
out file and extract computed singular values in order to numerically assess the error
in approximating the original term-document matrix (see Equation (4.14)). With
regard to software issues, term parsing associated with the SVD-updating could be
implemented in C rather than AWK. Also, the dense matrix multiplication routines
used in SVD-updating could be modified to significantly reduce the amount of in-core

memory allocated.

55

Bibliography

56

Bibliography

[AWSS]

[B+93]

[B+94]

[Ber92a]

[Ber92b)]

[DDF190]

[DGLSY]

Kernighan Aho and Weinberger. The AWK Programming Language.
Addison-Wesley, New York, 1988.

M. W. Berry et al. SVDPACKC: Version 1.0 User’s Guide. Technical
Report CS-93-194, University of Tennessee, Knoxville, TN, October 1993.

R. Barrett et al. Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods. STAM, Philadelphia, 1994.

M. W. Berry. Large scale singular value computations. [International

Journal of Supercomputer Applications, 6(1):13-49, 1992.

M. W. Berry. SVDPACK: A Fortran-77 Software Library for the Sparse
Singular Value Decomposition. Technical Report CS-92-159, University
of Tennessee, Knoxville, TN, June 1992.

S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman.
Indexing by latent semantic analysis. Journal of the American Society for

Information Science, 41(6):391-407, 1990.

I. S. Duff, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems.
ACM Trans. Math. Software, 15:1-14, 1989.

57

[Do93]

[Dum91]

[GLSY]

[GR71]

[Mir60]

[SBYO]

T. Do. Sequential and Data-Parallel Implementations of a Lanczos Algo-
rithm for the Singular Value Decomposition. Master’s thesis, The Univer-

sity of Knoxville, Tennessee, Knoxville, TN, 1993.

S. T. Dumais. Improving the retrieval of information from external sources.
Behavior Research Methods, Instruments, & Computers, 23(2):229-236,
1991.

G. Golub and C. Van Loan. Matriz Computations. Johns-Hopkins, Balti-

more, second edition, 1989.

G. Golub and C. Reinsch. Handbook for automatic computation I, linear

algebra. Springer-Verlag, New York, 1971.

L. Mirsky. Symmetric gage functions and unitarilly invariant norms.).

J. Math, 11(1):50-59, 1960.

G. Salton and C. Buckley. Improving retrieval performance by rele-

vance feedback. Journal of the American Society for Information Science,

A41(4):288-297, 1990.

58

Appendices

59

Appendix A

Compressed Column Storage

60

Figure A.1: Contents of matrix.hb file.

matrix.hb file

Line 1 Title
Section 1 Line 2 #
(Header) Line 3 rra rows columns nonzeroes 0
Line 4 (10i8) (10i8) (8f10.3) (8f10.3)
Matrix Section 2 | Column pointers
Coordinate Section 3 | Row index
Data Section 4 | Nonzero values of the matrix.

Line 1 Any title up to 128 characters

Line 2 #
Line 3 rra, rows = number of rows in A, cols = number of columns in A,
nonzeros = number of nonzeros in A.
Line 4 Fortran formatting lines (from Harwell-Boeing format, obsolete and can be ignored).

Section 2 The position indicates the column index of nonzero matrix elements.

The number subtracted from the next value indicates how many nonzeros are in that column.
Section 3 Indicates the row index of each matrix nonzero element.

There are as many row index values as there are nonzero elements.

61

Title: using stdin

matrix.hb file example

#
rra 12 7 22
(10i8) (10i8) (8f10.3)
1 5 7 11 13 15 18
3 9 10 11 3 5 1
9 12 1 3 1 8 10
8 9
1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000
Actual Representation of Matrix A
1 2 3 4 5 6 7
1 1.000 1.000 | 1.000 | 1.000
2
3 | 1.000 | 1.000 | 1.000 1.000
4 1.000
5 1.000 1.000
6 1.000
7
8 1.000 | 1.000
9 | 1.000 1.000 | 1.000 1.000
10 | 1.000 1.000
11 | 1.000
12 1.000

62

23

0
(8£10.3)
6 9
4 5
1.000 1.000
1.000 1.000

Appendix B

out File Format

63

The out file is a binary file consisting of a header (parameter list) and the matrix com-
ponents of the truncated SVD (singular values and corresponding singular vectors).

Figure B.1 shows a general overview of the out file.

Figure B.1: out file contents.

Header Information

Uk (term vectors if m > n)

Vi (document vectors if m > n)

Y (singular values)

64

o Out file header information is a structure described in table B.1.

Table B.1: Header Information.

Label Size Description
header.sizel COMMENT] 128 bytes | Time stamp information
header.size[TERM] 4 bytes | Number or terms
header.sizel DOCUMENT] 4 bytes | Number of documents
header.size[FACTOR] 4 bytes | Number of LSI factors
header.folded[TERM] 4 bytes | Number of updated terms
header.folded[DOCUMENT] | 4 bytes | Number of updated documents

e U; comprises header.size[TERM] x header.size[FACTOR] floating-point
numbers.

e V. comprises header.sizel DOCUMENT] x header.size[FACTOR] floating-
point numbers.

e Y, header.size[TERMS] floating-point numbers.

65

Appendix C

Weightings

66

Define A = [a;j], where a;; = L(1,j) x G(2), L(z,7) = local weighting for term 7 in

document j, and G(i) = global weighting for term .

1. Local weights are used to stress overall importance in a document.

2. Global weights are used to stress overall importance to the collection of docu-

ments.
Table C.1: Popular local weightings.
Term Frequency frequency with which a given term appears in a given document.
Binary weighting replaces any term frequency > 1 with 1.

Logarithmic weighting log(term frequency +1) dampens effects of large variances in frequencies.

Definitions
tfi; = frequency of term ¢ in document j.
df; = number of documents containing term z.
9fi = frequency of term i in collection (global).
ndocs = number of documents in collection.
Table C.2: Popular global weightings.
Normal
N gfi
GfIdf =
“O =,
1df G(i) = logs 29255} 14
i) = log> | — 7

. l
1 - Entropy (Noise) G(i)=1-— E f” Ogdp” , where p;; = té}”
og(ndocs) :

67

1. Global weighting schemes give less weight to terms that occur frequently or in

many documents.

2. Entropy is based on information-theoretic ideas which takes distribution of terms

over documents into account.

3. Combination of a local log weight [log(tf;; + 1)] and a global entropy weight

(LogEntropy) typically yields best improvement in retrieval performance.

68

Vita
Gavin William O’Brien was born in Presque Isle, Maine on May 25, 1965. He
graduated from Presque Isle High School in 1983 and received a Bachelor of Science
degree in Mathematics from Bates College in May 1987. After living in Boston,
MA from 1987-1991, he moved to Knoxville, TN where he received his Masters in

Computer Science.

69

