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Abstract

In this thesis, a method for indexing cross-language databases for conceptual query-
matching is presented. Two languages (Greek and English) are combined by append-
ing a small portion of documents from one language to the identical documents in
the other language. The proposed merging strategy duplicates less than 7% of the
entire database (made up of different translations of the Gospels). Previous strategies
duplicated up to 34% of the initial database in order to perform the merger. The
proposed method retrieves a larger number of relevant documents for both languages
with higher cosine rankings when Latent Semantic Indexing (LSI) is employed.

Using the proposed merge strategies, LSI is shown to be effective in retrieving
documents from either language (Greek or English) without requiring any translation
of a user’s query. An effective Bible search product needs to allow the use of natural
language for searching (queries). LSI enables the user to form queries with using
natural expressions in the user’s own native language. The merging strategy proposed
in this study enables LSI to retrieve relevant documents effectively while duplicating

a minimum of the entire database.
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Chapter 1

Introduction

1.1 Motivation

The need to search multilanguage databases with only the knowledge of one language
arises in many fields of study such as international law, medicine, physics, theology,
mathematics, or scientific computing. The problem is one of translation. In order
to match queries with text from other languages, translation of the query to such
languages is sometimes necessary. Queries may be translated differently, affecting the
performance of searches, because translation involves interpretation of the source and
target languages. When the translation of the query and the translation of the text
use different terms, sometimes relevant documents are not returned.

The primary concern of this thesis is multiple translations of a single work, the
Bible. These translations differ at various scales ranging from only a word to the
complete paraphrasing of the text. The languages that differ the most and have
no direct translation into English are Hebrew and Greek, from the Old and New

Testament, respectively. Current software can only search one translation at a time



using literal-matching schemes. These include, but are not restricted to, the following;:
QuickVerse (Parsons Technology), Wordsearch (NavPress Software), Online Bible
(shareware), BibleWorks (Hermeneutica), PC Study Bible (BibleSoft), Logos Bible
Software (Logos), Deluxe Bible for Windows (Rocky Mountain Laboratories), and
Multimedia Family Bible (Candlelight Publishing) [Hew93]. These software products
have linked the translations together so that if a verse is returned in one translation,
the same verse will also be displayed in the other translations. Cross-referencing
performed by these products has been done using look-up tables, which may require
many man-hours to code properly. Topical searches are either programmed into the
software (where the user has to decipher layers of menus to find the appropriate topic),
or such searches do not exist. Most users have a limited knowledge of the Bible, i.e.,
they know that a verse or story is contained in the Bible but are not able to remember
the exact words. Because of this typical searching scenario, lexical-matching schemes
may not perform well. For the average user of Bible search software, the ability to
retrieve verses, stories, or even topics from the Bible using their own words (i.e.,

natural language) is a very attractive option.

1.2 Overview

In this thesis, an approach to automatically index a cross-language database of the
Gospels is evaluated. Within this chapter, the indexing scheme used for query match-
ing, Latent Semantic Indexing (LSI) [DDF*90], and the singular value decomposition
(SVD) [GL89] which is used to define the underlying word structure of data are both
explained. Starting with four English versions of the Gospels, the performance of

LSI is evaluated. Then, a two-language database composed of Greek and English is



used to test two LSI-based methods for automatically indexing the database. One
method is a coarse-grained combination of data similar to that used by Landauer et
al. [LLI90]. The coarse-grained method takes whole documents from both languages
and combines them. The second method is a fine-grained combination of data. The
fine-grained method takes a verse (sentence) from the beginning of a document in
one language and combines it with a corresponding verse (sentence) from the other
language. Landauer et al. used bilingual training sets [LL90] (composed of complete
documents in both languages) to combine languages. While training sets of whole
documents are used for comparison in this thesis, training sets using small portions
of each document are shown to combine languages in a more global fashion.

Particular problems of dealing with cross-language databases are presented in
Chapter 2. In Chapter 3 a progression of three different case studies is explained. The
first study uses four English translations of the Gospels with verses as documents.
For the next study, the document size is increased to an average of ten verses per
document, and the final study uses English and Greek translations with larger docu-
ment sizes. In Chapter 4 the performance of the different approaches for optimizing
cross-language databases is analyzed. Finally, Chapter 5 discusses the future possi-
bilities for cross-language database indexing, whether the database is a translation of
the Bible or technical journals for a multilingual scientific community.

An effective Bible search product needs to allow the use of natural language for
searching (queries). LSI has been shown to be very effective for this type of searching.
In the next section, LSI is introduced as a way of computing a low-rank approximation

to an original term-document matrix using the SVD.



1.3 Preliminaries

1.3.1 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is initially applied to a matrix of terms by documents.
Bible verses in English and Greek will be used to demonstrate the LSI process. The
verses (see Table 1.1) are in English (E1-4) and Greek (G1-4). The notation (KJV)
and (HG) refer to the King James and Greek versions of the verses, respectively.
Terms indexed are underlined in Table 1.1 and appear more than once in the small
database. Table 1.2 illustrates the corresponding 14 x 8 term by document matrix.

In general, a term by document matrix is defined as
A = ag], (1.1)

where a;; is the frequency that term ¢ occurs in document 7. It is possible by prepro-
cessing (or reweighting of the rows or columns of A) to limit the differential effect of
document length or to impose preconceptions of which terms are more important. In

other words, elements of matrix A may be given by
ai; = L(i,7) x G(1), (1.2)

where L(z,7) is the local weighting for term ¢ in document j, and G(i) is the global
weighting for term :. In the example from Table 1.2, local term frequency weighting
and no global weighting (i.e., G(i) = 1) are used. However, the experiments in this

thesis used local logarithmic term weighting
L(i,j) = log(a;; + 1), (1.3)

with global entropy weighting



Table 1.1: Bible verses used as documents in English and Greek.

Document | Text

El

Mat 3:17 (KJV) And lo a voice from heaven,
saying, This is my beloved Son, in whom
I of heaven am well pleased.

E2

Mat 12:18 (KJV) Behold my servant, whom T have
chosen; my beloved, in whom my soul 1s well pleased: 1
will put my spirit upon him, and he shall shew judgment to the Gentiles.

E3

Mat 17:5 (KJV) While he yet spake, behold, a

bright cloud overshadowed them: and behold a voice out
of the cloud, which said, This is my beloved

Son, in whom I am well pleased; hear ye him.

E4

Mark 9:7 (KJV) And there was a cloud that overshadowed
them: and a voice came out of the cloud, saying,
This is my beloved Son: hear him.

Gl

Mat 3:17 (HG) . idou. phone ouranos
lego houtos agapetos huios
. hos.ouranos . eudokeo eudokeo

G2

Mat 12:18 (HG) idou. pais hos. . hairetizo.
agapetos. hos. psuche. eudokeo eudokeo. .
tithemi. pneuma. . apaggello krisis. . ethnos.

G3

Mat 17:5 (HG) eti laleo idou. photeinos
nephele episkiazo . idou. phone. . nephele. .
lego houtos . agapetos huios paroikeo .eudokeo
eudokeo akouo . .

G4

Mark 9:7 (HG) . nephele. episkiazo. . .
phone erchomai . nephele lego houtos. .
agapetos huios akouo.




Table 1.2: Term by document matrix.

Term [ E1 [ E2 | E3 [ E4 |Gl | G2]G3 | G4 |
voice 1 1 1

1

heaven

saying
beloved
son
pleased
cloud

1

= =] = =] =

—
RO = = =
= = = = =

phone
ouranos

lego
agapetos
huios

e e e
—

eudokeo

NI NG Y e
= N = =] =

nephele

N Pijlog(pi)
Gy =1 Z]log(ndlocs)7 (14)

where
CLZ']‘
Pi; =
! gfz'7

with ¢gf; representing the number of occurances of the term in the collection, and

ndocs is the number of documents in the collection [Dum91].

This log-entropy weighting scheme is similar to that of Landauer et al. [LL90].
The local logarithmic term weighting from Equation (1.3) is a compromise between
the common practice of binary weights (one if present, zero otherwise) and the raw
frequency (a;;) as an indicator of the degree to which a document is characterized by
the term. Regardless of the weighting scheme used, most terms do not occur in every

document so that the matrix A in Equation (1.1) tends to be extremely sparse.



1.3.2 Singular Value Decomposition
The singular value decomposition (SVD) of the sparse matrix A is given by
A=UxVT (1.5)

where U and V' are orthogonal matrices and X is the diagonal matrix of singular
values [Ber92]. Specifically, the columns of /' and V' contain the left and right singular
vectors, respectively, corresponding to the singular values of A (see Figure 1.1).

The following two theorems illustrate how the SVD can reveal important informa-
tion about the structure of a matrix.

Theorem 1. Let the SVD of A be given by Equation (1.5) and
0-120-2"'20-7’>0-7’+1:"':0-n:0
and let R(A) and N(A) denote the range and null space of A, respectively. Then

1. rank property: rank(A) = r, N(A) =span{v,41,---,v,}, and R(A) =spanfuy,---,u,},
where U = [ujuy -+ - uy,] and V = [vyvy - v,).

2. dyadic decomposition: A = Z u; - o - vl

=1
3. norms: ||A||Z =02+ ---+ 02, and ||A]]? = 0.
Theorem 2. [Eckart and Young] Let the SVD of A be given by Equation (1.5)

with r = rank(A) < p = min(m,n) and define
k
i=1
Then,

min 14 = Bl = 1A= Aullp = ofy 4o+ o

(For a proof, see [GL89]).



The m xn matrix Ay, which is constructed from the k-largest singular triplets of A,
is the closest rank-k matrix to A [GL89]. In fact, Ay is the best rank-k approximation

to A for any unitarily invariant norm [Mir60], i.e.,

min 4= Bl = A= Adlls = o1

k
k k
Ag U b vT
k
m X n m X T rXT rXn

Ay = Best rank-k approximation to A m = number of terms

U = Left singular vectors (Term vectors) n = number of documents

3 = Singular values k = rank (dimension of semantic space)

V' = Right singular vectors (Document vectors)

Figure 1.1: Mathematical representation of the matrix Ay from Equation (1.6).

Following Theorem 2, the best rank-k approximation (Ag) to A is given by
k
Ak:Zui-ai-viT with k <r (1.7)
i=1
where {u;, o;,v;} is the i-th largest singular triplet of the sparse matrix A [Ber92], and
r = rank(A). Using LSI, the optimal value for k is data dependent, but & € [100, 200]
has been suggested [DDFT90]. Fortunately, the value of %k is usually much smaller
than the rank (r) of the matrix A.
The shaded region in Figure 1.1 reflects the reduced (rank-%) or truncated SVD

of A, which is used by LSI to capture the semantic structure of word usage. If k = r,



LSI performs similarly to literal-matching. If £ = 1, LSI treats all documents and
words as related.

By using the reduced model in Equation (1.7), minor differences in terminology
(noise) are virtually ignored. Moreover, the closeness of objects is determined by
the overall pattern of term usage, so documents can be classified together (i.e., word
choice suppression) regardless of the precise words that are used to describe them.
The description of documents depends on a consensus of their term meanings, thus
dampening the effects of polysemy (words with multiple meanings). Terms that do not
actually appear in a document may still be used as referents, if they are consistent
with the major patterns of association in the data. The position in the reduced
space (R(Ay)) then serves as a new kind of semantic indexing [Ber92]. Therefore,
when using the truncated SVD, LSI achieves noise reduction (variable of word choice

suppression) via the reduced model Ay.

1.3.3 Multi-Dimensional Representation

Each term and document is represented by a vector in k-space using elements of
the left or right singular vectors. By using the reduced model A; to approximate the
original matrix A, documents comprised of different terms may be potentially mapped
into nearly the same vector. Terms used similarly in documents also may be mapped
to close vectors. A rank-2 approximation to matrix A (denoted by As) uses the first
two elements of each row of U and V from Equation (1.5) to plot the terms and
documents respectively. The graph in Figure 1.2 illustrates the coordinates of terms
and documents on the Cartesian plane using A; to approximate the term by document
matrix in Table 1.2. LSI typically uses the cosines between vectors as an indicator of

relevance within a multi-dimensional space composed of term and document vectors.
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Figure 1.2: Two-dimensional plot of terms and documents.
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If k is too small, the relevance between documents may be abnormally forced, as
reflected by cosines close to 1. A higher (approaching 1) cosine value should not be
used to indicate semantic similarities between documents because a high cosine value
is only a potential indicator of relevance, however, and not a guarantor of relevance.

In Figure 1.2, the terms and documents of the English version are clustered along
the y-axis, and the terms and documents of the Greek version are clustered along

the x-axis. While the terms and documents are clustered by version in the multi-



dimensional space, there is a possibility that the languages may be placed in disjoint

regions of the multi-dimensional space, as illustrated by Figure 1.2.

1.3.4 Queries

A query can be represented in the same multidimensional space generated by Aj.
Suppose the term vector ¢, is composed of occurrences of each term in Table 1.2
within a particular query. The term vector ¢, can then be represented as a pseudo-
document q via ¢ = 17U, ', For example, suppose one is interested in Bible verses
where God spoke or people could hear a wvoice from heaven . A term vector for
this query is built using the terms in the query (hear a voice from heaven ). A list of
common words such as {a, and, from, or} are not parsed and are not used as referents
to verses. Also, hear is not an indexed term in the database, so it is dropped from
the query leaving voice heaven. The parsing rule used in this thesis requires that
a term must appear more than once in the database for the term to be included in
the term by document matrix A. Of course, other parsing rules may allow unique
terms to be included in the matrix A. The Cartesian coordinates of the query voice
heaven are derived in Figure 1.3.

Since a query (or pseudo-document) can be represented in the same semantic space
as all other documents, it can be compared for similarity with all the documents in
the LSI-generated database. All documents whose cosine with the query vector is
greater than a threshold value such as .90 may be returned. The shaded region in
Figure 1.4 illustrates those documents for our 14 x 8 example which satisfy this con-
straint. Any documents within the shaded region are considered above the threshold
(.90) and are returned. None of the Greek terms or documents are returned and all

of the English terms and documents are returned. This illustrates a major problem

11



Figure 1.3: Coordinates of the query voice heaven.

T 700190 —0.2474

0.3245 —0.0368
0.1961  0.0183
0.0148 —0.1958
0.0465 —0.6028
0.4164  0.0491 1
0.2282  0.0190 32801 0
(101047, ~0.0957 ) = 0.2282  0.0190 ( 0 2.9685)
0.4724  0.0324
0.2282  0.0190
0.0120 —0.1818
0.1560  0.0204
0.0163 —0.1830
0.0190 —0.2474

OO OO DD OCD OO OO O~

for query-matching within a cross-language database. Of course, a different cosine
threshold could have been used so that a larger set of documents would be returned,
although the LSI-rank of the Greek documents (according to cosines with query vec-
tors) would be very low. The cosine is merely used to rank-order documents and its

explicit value is not always an adequate measure of relevance when k € [100, 200].

1.3.5 Folding-In

Suppose an LSI-generated database already exists; that is, a body of text has been
parsed, a term-document matrix has been generated, and the SVD of the term-
document matrix has been computed. If more terms and documents must be added,
two alternatives for incorporating them currently exist: recomputing the SVD of a
new term-document matrix or folding-in the new terms and documents. Recomput-
ing the SVD of a larger term-document matrix requires more computation time and,
for large problems, may be impossible due to memory constraints. Folding-in requires

less time and memory but can have deteriorating effects on the representation of the

12
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Figure 1.4: Two-dimensional plot of the documents returned for the query voice heaven.
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m X (n+4p) m x k k x k k x (n+p)

Figure 1.5: Mathematical representation of folding-in p documents.

new terms and documents [BDO95]. Folding-in is based on the existing latent seman-
tic structure (the current Ay), and hence new terms and documents have no effect on
the representation of the pre-existing terms and documents. Folding-in documents is
essentially the process described in Section 1.3.4 for pseudo-document representation
of queries. Each new document is represented as a weighted sum of its component
term vectors. Once a new document vector has been computed, it is appended to the
set of existing document vectors or columns of V (see Figure 1.5). Similarly, new
terms can be represented as a weighted sum of their component document vectors.
Once the term vector has been computed, it is appended to the set of existing term

vectors or columns of Uy (see Figure 1.6).

1.4 Cross-Language Databases

It is precisely because of LSI’s ability to suppress notse, exploit the semantic struc-
ture, and process queries as pseudo-documents, that it has been used for information
retrieval from cross-language databases [LLI0]. The critical factor for effective infor-

mation retrieval in a cross-language database is the orthography of individual words,

14
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Figure 1.6: Mathematical representation of folding-in ¢ terms.

i.e., word-for-word correspondence between languages. If the translations were word-
for-word translations of each other, then the semantic structure would be exactly the
same. This is unrealistic, of course, but the closer the translations are to each other,
the closer their orthography.

In Landauer et al. [LL90] training sets are used to accomplish the orthography of
words translated in both languages. They started with 2,482 documents containing
at least five lines for each document in both English and French versions (for a
total of 4,964 documents). The documents in each language averaged 85 words (84
in English and 86 in French). The training sets used 300, 600, and 900 randomly
sampled sets of documents (matching documents from both languages) which were
then processed using the local and global term weightings specified by equations
1.3 and 1.4 respectively. Fach training set was tested with the remaining sets of
documents (out of a total of 2,482 documents) folded into the space (see Section 1.3.5).
Specifically, a document not found in the training sets is treated as a query or pseudo-
document, and the highest-ranked documents from the other language (as determined

by cosines) are returned. For the 300-, 600-, and 900-document training sets, the top

15



returned document from the second language was the identical document to the query
78%, 87%, and 92% of the time, respectively. According to the authors, the tests they
conducted involved what might be called ideal queries. These queries express the
meaning of the desired target document as nearly as possible, in the same way and
in the same style as the original document , but use a different language. Landauer
et al. suggested testing the performance of ordinary, less well formed queries, only

speculating the performance would be less favorable.

1.5 Database Merge Strategy

In Landauer et al. [L190], there was no indication of how high the LSI-rankings were
for the returned documents. Returned documents may actually be so far down the LSI
ranking (below 25) that they may not be useful. The LSI-ranking of the top returned
document of the cross-language was evaluated, but nothing was reported about how
many of the other documents in the cross-language database were returned as, for
example, the top 50 LSI-ranked documents. This would have given more information
about the placement of documents of both languages in the multi-dimensional vector
space.

In this thesis a strategy of automatically combining less than 8% of each document
(about one sentence) using LSI will be shown to perform well. The LSI-ranking of the
returned documents of the other language are typically higher, and there is more of a
mixing of the languages in the list of top 50 returned documents using the proposed
strategy. It is obvious that if one needs only to duplicate the size of less than 8% of
the database, one will need to use much less memory space in storage than a strategy

that requires duplication of 36% of the database [L.L90].
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Chapter 2

Cross-Language Databases

2.1 Cross-Language Difficulty

While LST’s use of the SVD can be effective in representing the semantic structure
of documents in a multi-dimensional space, there are problems with cross-language
documents. Since there may be few common words between the two languages (e.g.,
French and English), LSI can (geometrically) place documents of the two languages
at disjoint regions of the multi-dimensional space (recall Figure 1.2). In other words,
the lack of common words precludes the geometrical representation of cross-language

documents in close proximity (via the SVD).

2.2 Creating Common Terms

Different documents can contain material that is conceptually the same without using
similar words. One document might use the word mice to describe a computer input
device while another document about mice might use the words pointing device. Users

create queries by concept, and the words the user chooses for the query often do not

17



match the words used in relevant documents. An optimal indexing strategy would
allow for such differences to be taken into account. This is especially true of cross-
language databases where terms may be found translated in a second language with
conceptually similar documents. A multi-dimensional space that represents similar
terms from both languages as close as possible to each other is very desirable. Using
such a space, LSI should return highly-ranked but relevant documents for the more

usual short queries (few keywords) that users have.

2.3 Two Approaches

This thesis will show that by combining a low percentage of each document in both
languages, an effective cross-language retrieval system can be built. Experiments
using the Gospels of the Bible have been conducted to assess LSI’s ability to return
relevant documents among four translations. The translations are The King James,
The Living Bible, The New International Version, and The Revised Standard version.
A set of queries from the New International Version Study Bible [BBST85], has been
constructed from phrases used to describe the miracles and life of Jesus (see Table 2.1).

The same queries have been used in all of our tests to simplify the interpretation
of the results. An appropriate number of factors (k) has been empirically determined
to ensure that LSI performs well from a user’s perspective, i.e., relevant documents
are returned with a high enough LSI-ranking that the documents can be quickly
identified (not just in the top 50, but the top 10-20 returned documents). After
effective performance is obtained from LSI using the four English translations, the
two languages (English and Greek) are combined using two different strategies.

The first strategy for creating a base of common terms in the database mimics

18



Table 2.1: Queries used for testing.

| Number | Query

1 The Baptism of Jesus
Healing of Bartimaeus
Tribute to Caesar
Cleansing the Temple
The Great Commandment
Entry into Jerusalem
Epileptic Boy Healed
Feeding Five Thousand

9 Fig Tree Cursed

10 Lamp Under a Bowl

11 New Cloth Old Coat

12 New Wine Old Wineskins
13 Sower and the Soils

14 Mustard Seed

15 Tenants

16 Fig Tree

O 1| S| O t=| | DO

the previous study by Landauer et al. [LL90]. Their strategy used a range of 8.27%
to 36.26% of the database to create the common term base. In this thesis 1%, 2%,
4%, 8%, 16%, 24%, and 32% of the database is combined to create the common term
base. In this way the effectiveness of the strategy proposed by Landauer et al. is
studied in more detail.

The second strategy involves combining a smaller portion of each document across
the entire database. This strategy combines one verse of each document to create
the new common term base (using only 7.7% of the database). The resulting LSI
model for both strategies is tested using the same set of queries, and the number
of documents returned in the Greek text is recorded. All the returned LSI-rankings
for Greek text are recorded in order to better understand the amount of mixing and
reliability of the resulting LSI model. A series of three case studies (discussed in

Chapter 3) is used to test the performance of the different LSI models.
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Chapter 3

Design of Case Studies

LSI models for cross-language databases can be created using different weighting
schemes, numbers of factors (k), and different language merge strategies. In this
chapter, three case studies are used to study the performance of the different LSI
models. The first involves four English translations of the Gospels using individual
verses as the documents. The same four translations are organized into stories (com-
bining an average of 10 verses) that are used as documents in the second case study.

Finally, a Greek and an English version are combined using the stories as documents.

3.1 Casel: Four Translations

Starting with four versions of the Gospels, different numbers of LSI factors (k) are
tested. The four translations used are (i) The King James Version, a translation of the
Vulgate (Latin) version of the Bible; (ii) The Revised Standard Version, a translation
of the Greek and Hebrew with an attempt to update the language to a more modern

vocabulary; (iii) The New International Version, a more recent translation of the
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Table 3.1: Locations of queries in Gospels.

| Query Number | Matthew | Mark | Luke | John
1 Mt.3:13-17 Mk. 1:9-11 Lk 3:21-23 Jn 1:29-39
2 Mt 20:29-34 Mk 10:46-52 Lk 18:35-43
3 Mt 22:15-22 Mk 12:13-17 Lk 20:20-26
4 Mt 21:12-13 Mk 11:12-14 Jn 2:14-22
5 Mt 22:34-40 Mk 12:18-31
6 Mt 21:1-11 Mk 11:1-10 Lk 19:29-44 Jn 12:12-19
7 Mt 17:14-18 Mk 9:17-29 Lk 9:38-43
8 Mt 14:15-21 Mk 6:35-44 Lk 9:12-17 Jn 6:5-13
9 Mt 21:18-22 Mk 11:12-14,20-25
10 Mt 5:14-15 Mk 4:21-22 Lk 8:16;11:33
11 Mt 9:16 Mk 2:21 Lk 5:36
12 Mt 9:17 Mk 2:22 Lk 5:37-38
13 Mt 13:3-8,18-23 | Mk 4:3-8,14-20 Lk 8:5-8,11-15
14 Mt 13:31-32 Mk 4:30-32 Lk 13:18-19
15 Mt 21:33-44 Mk 12:1-11 Lk 20:9-18
16 Mt 24:32-35 Mk 13:28-29 Lk 21:29-31

Greek and Hebrew where the writers try to keep the poetry of the King James Version;
and (iv) The Living Bible, a paraphrase of the Bible.

The Gospels are useful for testing purposes since many of the stories are shared,
especially in the Synoptic (first three) Gospels: Matthew, Mark, and Luke. In other
words, it is possible to determine which returned documents are misses (false hits),
which documents are related to the query (precision), and how many of the known
relevant documents are returned (recall).

The queries obtained from the NIV Study Bible [BBST85] are descriptive titles
containing either parables or miracles of Jesus appearing in more than one of the
Gospels. This implies that there should be more than one relevant document or verse
returned depending upon the number of appearances of the story in the four Gospels.

Table 3.1 shows where the queries are found in the different Gospels.
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3.2 Case2: Story Versions

The relatively low number of terms (average of 6.28) contained in a given Bible verse
suggest that document or verse similarities may be adequately judged by using a
literal-matching scheme as opposed to using LSI. The semantic structure of documents
is limited by such a small document size. However, for a total of 18,895 verses, LSI is
still able to return a high number of hits (relevant verses). Determining the relevancy
of verses without seeing them in their proper context, however, is not an easy task.
The usefulness of such verses out of context is also questionable.

An alternative contextual approach for evaluating the performance of LSI is to
construct a story version of the Gospels, i.e., group verses by context. This approach
uses documents similar in size to the database used by Landauer et al. [LL90] whose
documents averaged 85 words. The highest number of hits returned is found when
slightly over 100 factors or dimensions are used (113 factors to be exact). With this
new LSI-generated database, a smaller number of documents (1471) is used with a
larger document size available (80.62 words per document average). Each document
contains an average of 12.85 verses, and varies in size from 5 to 45 verses. While LSI
returns a good mixture from the different versions (translations) of a given query, all

verses processed contain terms from the English language (i.e., no Greek terms).

3.3 Case3: Greek and King James

A combination of the Greek and King James versions of the Gospels has been con-
structed as a cross-language database of the Gospels. The reason for this particular
combination lies in the fact that the King James Version originated from Latin not

Greek and, therefore, should pose a strong challenge for LSI. Also Greek has few
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adjectives, pronouns, or other parts of grammer which are found in English, so word
order is not important. If LSI can determine the appropriate semantic relationships
between Greek words, there is little doubt that LSI can perform well with other
translations of the Gospels.

The work done previously by Landauer et al. [LL90] used the strategy of combining
complete documents together (see Section 1.4). They combined varying portions
(12.08%, 24.17%, and 36.26%) of the database by taking equivalent documents in
each language and forming a single document from both. The combined portion of
the database was run through LSI and the remaining documents folded-in.

The LSI-rank of returned Greek documents may be affected by queries containing
terms used in English titles. Terms used in a query which are also found in the title of
a Greek document may raise the LSI-rank of the document because titles occur only
in English for both the English and Greek versions. This will be especially true of
smaller Greek documents (less than 5 verses) because the title will make up a larger
percentage of the document. To help understand the performance of different queries,
a list of query terms is included in Table 3.2.

Two different ways of combining English and Greek text are examined in this
thesis. First, whole documents are combined using different portions of the Greek
documents (1.09%, 2.18%, 4.36%, 8.72%, 17.44%, 26.16%, and 34.88%). This is
accomplished by taking the Greek documents and appending them to the end of
the English documents. The previous percentages reflect the different numbers of
Greek documents appended to the English documents (1, 2, 4, 8, 16, 24, and 32
Greek documents, respectively). The second approach takes a single verse from the
beginning of each Greek document and adds it to the end of the first verse in the

corresponding English document. Since there are 9448 verses and 734 documents
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Table 3.2: Query terms in titles and documents.

Query Number Found | Number Found
Number | Term in Titles in Documents
(Not Titles)
1 Baptism 12 26
1 Jesus 580 616
2 Healing 40 4
2 Bartimaeus 4 1
3 Tribute 0 10
3 Caesar 12 19
4 Cleansing 0 2
4 Temple 28 65
5 Great 28 150
5 Commandment | 8 32
6 Entry 16 0
6 Jerusalem 4 68
7 Boy 16 0
7 Healed 8 34
8 Feeding 0 4
8 Five 16 32
8 Thousand 24 14
9 Fig 20 21
9 Tree 16 45
9 Cursed 0 3
10 Lamp 12 20
10 Under 0 63
11 New 0 77
11 Cloth 0 43
11 Old 16 303
11 Coat 0 8
12 Wine 4 38
13 Sower 12 5
14 Mustard 12 5
14 Seed 16 30
15 Tenants 12 0
16 Fig 20 21
16 Tree 16 45
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in the entire database, the average document size is about 13 verses. Using only
one verse from each document in the second approach means that only 7.77% of the
database is combined (Landauer et al. [LLI0] combined up to 36.26%).

The size of the King James and Greek database is one-half the size of the database
comprising the four versions of the Gospels. LSI factors k& = 80 and k£ = 113 were
initially tested with this smaller database. The higher number of LSI factors k =
113 returned more hits and related documents while returning less misses. For this
reason subsequent tests used LSI factors ranging from 113 to 122. The two strategies
for combining documents follow two lines of thought: a coarse-grained approach and
a fine-grained approach. A sequential mixing of whole documents is used in the first
strategy, which combines a larger local amount of both languages (coarse-grained).
This strategy is appropriate if the documents (or verses) do not vary much in context.
In other words, the spatial location of a document within the database will determine
its relevancy to other documents. In contrast, if the context of documents varies
within the database, this strategy would be inappropriate because only the actual
documents used for combining languages are likely to be returned by an LSI-generated
query.

The second strategy is closer to a random mixing of the database. The first
verse of each document is combined in both languages (fine-grained), resulting in all
documents contributing to the common base (i.e., more global mixing). Using the
second strategy all documents have a better chance of being returned by an LSI-
generated query. The first strategy allows much more of the database to be combined
than the second strategy, but the second strategy is more effective in merging the
languages and enabling LSI to return hits in both languages with a reasonable LSI-

ranking (10-20).
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Chapter 4

Performance

Tests were conducted on the following databases: (i) a verse-based version of the
Gospels including four translations, (ii) a story-based version of the Gospels including
four translations, and (iii) a story-based version of the Gospels including Greek and
King James translations. Fach series of tests gave results that indicated how LSI
performs with the database, and what changes might be made before the next set
of tests were run (i.e., change in the number of factors k& or weighting). Different
LSI models were created using various choices for k, term weightings, or indexing
schemes, in order to accomplish comparisons that were appropriate for each set of
tests. The first series of tests using the first version of the database examined local
term weighting versus local logarithmic term weighting (see Section 1.3.1), global
entropy weighting (see Equation 1.4), and various values for k (12, 13, 35, 36, 92,
and 96). The second series of tests examined LSI performance with three values for
k (46, 82, and 113) using local logarithmic term weighting and global entropy term
weighting for the second version of the database. The third series of tests examined

the performance of two schemes for combining a cross-language database of Greek and
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English (the third version of the database). The third series of tests evaluated the
coarse-and fine-grained methods of indexing the database. The recall and precision
were monitored as well as the average LSI-rank of the hits for each LSI model. Based
upon the results of the tests, the fine-grained indexing scheme was shown not only to

perform the best, but also to use less disk memory space for indexing purposes.

4.1 Test by Verses

The first tests were conducted on the database of four English versions of the Gospels
(see Section 3.1). The database contained 18,895 documents (i.e., verses) with each
document containing an average of 6.28 terms. The top 50 LSI-rank documents for the
queries in Table 2.1 were classified into one of three categories: (i) hits (documents
listed in Table 3.1); (ii) related (documents not listed in Table 3.1 but related in
subject matter to the query); and (iii) misses (documents not listed in Table 3.1 and
not related to the subject matter of the query). The queries should have returned
multiple hits, since each query describes a story (made up of an average of 10 verses)
that appears in at least two of the Gospels (see Table 3.1). The LSI models used
either term frequency-entropy weighting described in Equations (1.2) and (1.4) with
k =12, 35, and 92 factors, or log-entropy weighting described in Equations (1.3) and
(1.4) with £ = 13, 36, and 96 factors.

The greater the number of hits for a given LSI model, the better the model’s
recall. The smaller the number of misses for a given LSI model, the better the
model’s precision (see Section 3.1). The tests on the first group of LSI models give
clear performance results for both models with varied k& and different term weighting

schemes.
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Figure 4.1: Hit distribution average across versions.

Figure 4.1 clearly indicates that log-entropy weighting performs much better than
term frequency-entropy weighting. For each number of factors k, the log-entropy
weighting (LG/k) returned more hits and related documents. With the smallest
number of factors, log-entropy weighting returned more hits and related documents
than even the best of the term frequency-entropy (TF/Ek) models. This confirms the
earlier findings of Deerwester et al. in [DDF*90] that log-entropy weighting with

k ~ 100 factors performs quite well.
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Working with verses as documents presented other problems as it is not always
easy to understand the context of the verse, and therefore the verse’s meaning. Verses
are sentences which make up only part of a story, or some other form of literature
(i.e., parable, sermon, or wisdom literature). This necessitates the grouping of verses
into their larger context. The larger context for the verses is called a story for reasons

of simplicity, even though story can mean any form of literature found in the Bible.

4.2 Test by Stories

The grouping of verses into stories was done according to the New [nternational
Version Study Bible (NIV) [BBS*85]. This version (NIV) organizes the verses into
the desired story documents and also provides titles for each story (or document).
The titles were used for identification of documents returned by LSI. Only log-entropy
term weighting was used for testing (local term frequency was abandoned due to poor
performance). LSI models with k& = 46, 82, and 113 factors were tested, and are
referred to as model 46, model 82, and model 113, respectively.

Most of the significant documents (i.e., documents listed in Table 3.1) were re-
turned in model 46. LSI should have returned 8, 12, or 16 hits, depending upon how
many of the 4 Gospels the story appeared in. The lower number of factors for model
46 produced good recall at the expense of poorer precision (see Figure 4.2). The
cosine values of the documents returned in model 46 were significantly higher than
the other two models, indicating that relevance may have been somewhat forced in
model 46 (see page 34). This may account for the higher number of misses found in
model 46.

LSI model 82 performed well and returned most of the significant documents.
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Unfortunately, it missed significant documents for queries 1, 11, 13, 14, and 16 (see
Figure 4.3). Although fewer misses were returned by model 82 (as opposed to model
46) there were more misses than with model 113, resulting in poorer precision.

With k = 113 factors, LSI returned all expected documents (excellent recall) with
a smaller number of misses (better precision) than the other two models (see Fig-
ure 4.4).

Figure 4.5 illustrates the increase in precision and recall of LSI model 113 over
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the other two models. A comparison of Figure 4.5 and Figure 4.6 demonstrates why

cosine values are not a reliable indicator for relevance. The cosines were higher for the

models with a smaller number of factor k at the cost of poorer precision and recall.
The models tested so far have all been variations of English. The performance

of similar models for a database of both English and Greek is discussed in the next

section.
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4.3 English and Greek

The LSI models used for a database comprised of both English and Greek text are
listed in Table 4.1 along with the different database merge schemes discussed in
Section 3.3.

The V1-115 LSI model used fine-grained indexing and all the other models used
coarse-grained indexing (see Section 1.2). The two LSI models using k& = 80 factors
were studied to see if a value of k& < 100 would perform well. Both of these models
(T-80 and F1-80), however, returned most of the hits below the LSI-rank of 10 and
many below 20. The average LSI-rank of the returned hits for all the LSI models in
Table 4.1 are shown in Figure 4.7 for queries 6, 14, and 16. The target document
(story) for queries 6, 14, and 16 is included with the coarse-grained models F8-119,
F24-121, and F32-122. Hence, the average LSI-rank for hits can be compared for
coarse-grained models before the inclusion of the target document for merging, and
the fine-grained model V1-115 can be compared with all other models for the average
LSI rank for hits.

The location of the target documents (stories) in the different Gospel accounts
provides information about the performance of the coarse-grained models. Table 4.2
lists the numeric order (position) of target documents in each Gospel for queries 6, 14,
and 16. For example, the target document for query number 6 occurs as the seventh
document in the Gospel of John. As target documents were included in coarse-grained
models (see Table 4.2), queries that were directly related to the target documents
should have returned hits with an improved average LSI-rank (see Figure 4.7).

Queries 6, 14, and 16 demonstrated the effectiveness of the fine-grained method in

model V1-115 (see Figure 4.7). Query 6 has the target document included at the 7th
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Table 4.1: Description of LSI models in English and Greek.

| Model Name | Merge Strategy | Number of Factors (k) | Granularity |
T-80 Titles only 80 | coarse
F1-80 First document 80 | coarse
T-118 Titles only 118 | coarse
F1-116 First document 116 | coarse
F2-114 First 2 documents 114 | coarse
F4-117 First 4 documents 117 | coarse
Fg8-119 First 8 documents 119 | coarse
F16-120 First 16 documents 120 | coarse
F24-121 First 24 documents 121 | coarse
F32-122 First 32 documents 122 | coarse

| V1-115 | First verse of each document 115 | fine

Table 4.2: Numeric order of target documents by query and Gospel.

| Query Number | Matthew | Mark | Luke | John |

6 7
14 10 22
16 19
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document in the Gospel of John. The inclusion of the target document in the training
sets improves the average LSI-rank of the hits in the LSI models that merge 8 or more
documents (coarse-grain). This type of improvement is also illustrated for query 14
after the 10th and 22nd document from Mark and Luke are included in the training
sets, and for query 16 after the 19th document from Mark was included. Clearly, the
performance of the coarse-grained approach to indexing was very dependent upon

whether or not the target document was included in the training sets. The recall
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Figure 4.8: Average LSI-rank for all hits.

performance of the fine-grained approach was much more consistent across all the
queries.

Figure 4.8 illustrates the average LSI-rank of the hits for each of the LSI models
from Table 4.1. The T-80 and F1-80 models did not perform particularly well, re-
turning hits that do not even average in the top 10. The other coarse-grained models
fluctuate in their performance, indicating that inclusion of whole documents actually
hinders the performance of queries that do not involve documents found in the train-
ing sets. The fine-grained V1-115 model performed better than all of the others with
an average LSI-rank of 4.06 for hits.

The LSI models of particular interest are: (i) F8-119, since it combines approxi-
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mately the same percentage of the database as the V1-115 model; (ii) F32-122, since
it combines approximately the same percentage of the database as in Landauer et
al. [LL90] and (iii) V1-115, because it is the recommended fine-grained LSI-model.

Figures 4.7 and 4.8 demonstrate that the V1-115 model returns all significant
documents with a higher LSI-rank than the F8-119 model and comparable LSI-rank
to the F32-122 model. The precision (number of misses) is not necessarily a helpful
source of information for these models. There are a limited number of hits available
(4, 6, or 8) and the number of related documents is minimal, i.e., one expects large
numbers of misses since the number of documents that are either hits or related is
much less than the 50 documents returned by LSI.

Another way of indicating how well LSI returns both languages is to record how
many Greek documents (which are hits or related) were returned in each of the models.
Figure 4.9 illustrates the number of Greek documents returned in each of the three
models of interest. The V1-115 model recorded the most Greek documents (related
or hits) in the top 50 returned documents. This gives a clear indication that the
V1-115 model performs better than the others in incorporating the second language
for information retrieval. This fine-grained method, which combines only 7% of the
database, is able to achieve high levels of performance with respect to recall, LSI-rank
for returned documents, and numbers of Greek documents returned in the top 50.
The coarse-grained models, on the other hand, combine up to 34% of the database,
and perform worse than the VI-115 LSI-model. When using a large database (several
gigabytes), duplicating 34% of the database for the purpose of information retrieval

i1s not an attractive option.
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4.4 Recommendations

Two merging methods for combining cross-language databases (coarse-grain and fine-
grain) have been tested. The intent has been to develop a method for combining two
languages of a database so that effective information retrieval (recall and precision)
can be obtained using LSI. The coarse-grain methods used whole documents when
merging the languages and duplicated from about 2% to 34% of the database. The
coarse-grain LSI model that performed the best was F32-122 which duplicated more
of the database than the other models. Since the coarse-grain methods include whole
documents for merging, it is a hit or miss proposition. If the document you are
searching for has been included in the merging of the languages, then your query will
perform well. If the target document has not been included in the merging of the
languages, performance suffers. This implies that for better performance on a given
query, more documents should be included in merging. However, Figure 4.8 illustrates
that even doubling the amount of documents for merging, the performance of coarse-
grain merging models does not improve significantly, unless the target document is
included in the merging (see Figure 4.7). LSI model F24-121 includes the target
document in the merging and so the LSI-rank of returned hit documents improves
significantly. If you are willing to take the chance that the target document has been
included in merging, (or all documents are very similar in content) then a coarse-grain
method might be an option. However, the only way to assure that the target document
for your query has been included is to merge 100% of the database (effectively doubling
the size of the database).

The only fine-grain method impemented was V1-115, which included under 10% of

the database in the merging of the languages. This amounted to about one sentence of
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each document. Since each document was included in the merging, a greater variety
of text from both languages was included. This allowed the languages to merge more
effectively so that more Greek documents were returned with the fine-grain model
than any of the coarse-grain models. This allowed the recall and precision of the
fine-grain model to perform quite well across the whole scope of queries (see Figure
4.8). Even when a coarse-grain method included the target document in merging the
languages the fine-grain method did well (see Figure 4.7). The fine-grain method not
only had good recall and precision, but it also duplicated a smaller amount of the

database. Clearly, the fine-grain method is the method of choice.
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Chapter 5

Summary and Future Work

It is clear that the fine-grain method (V1-115) performs better than the coarse-grain
methods, but Greek is an unusual language that assumes common words. A common
word list was used for eliminating selected words in the English text. While this
was not necessary for the Greek text, language-specific common word lists may be
needed in other applications. Updating the database is also a consideration that was
addressed by folding-in documents by Landauer et al. [LL90]. Since the performance
of the coarse-grain LSI-models in Landauer et al.’s tests were based upon the training
sets, folding-in later documents did not affect the performance of their LSI-models.
There is no reason to believe that the performance of the fine-grain method LSI-model
would be affected by folding-in later documents either.

Personal computers (PC’s) are the most widely used computers today, and there-
fore it would be nice if the source code for LSI was written completely in the C
language. This would enable other software developers to make use of this informa-
tion retrieval system. It would also be useful to develop tools (in C) for automatically

merging multilingual ASCII text files for use with LSI.

43



Other than searching the Bible using LSI, there are many other possible uses for a
cross-language information retrieval system. For example, a multilanguage thesaurus
could be implemented. A search tool for finding files stored on a computer by topic
without any organizational overhead would be another useful application. LSI is

certainly one plausible technique for effective retrieval from cross-language databases.
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