
Solving Secular EquationsStably and E�cientlyRen-Cang LiDepartment of MathematicsUniversity of California at BerkeleyBerkeley, California 94720April, 1993Dedicated to B. N. Parlett and W. Kahan on the occasion of their 60th birthdaysAbstractA divide-and-conquer method for solving symmetric tridiagonaleigenproblems has evolved from work by Cuppen, Dongarra, Sorensen,Tang, and most recently Gu and Eisenstadt. At the heart of theirmethods is the solution of a so-called Secular Equation. Proposedhere is a more e�cient organization of the equation{solving process,including some crucial implementation details.
1

1 IntroductionA continuing element in divide-and-conquer algorithms descended from Cup-pen's [4, 5] is the solution of an eigensystem that di�ers from diagonal bya rank{1 perturbation. Let D = diag (�1; � � � ; �n) be a real diagonal matrix,� a nonzero real number, and z = (�1; � � � ; �n)T a real vector; the perturbedsystem's matrix is D + 1�zzT : (1)Its eigenvalues are the zeros x = �1; � � � ; �n of the secular function (see [7])f(x) = � + nXj=1 �2j�j � x ; (2)and the eigenvector corresponding to each �k is parallel to(D � �kI)�1z: (3)(Here I is the n�n identity matrix.) Numerical di�culties arose when thesewere not computed accurately enough to be orthogonal, but recent work[11, 9] has overcome these di�culties. Ours is a small contribution to solvingthe secular equation f(x) = 0 as accurately as necessary but faster thanbefore. Certain details necessary for robustness in the code will be discussedtoo. Inattention to such details can cause accidents like Division by Zero,which the author has encountered while testing others' programs.The paper is organized as follows: In Section 2, we study various his-toric ways to rationally interpolate the secular function (2) and then developthree di�erent schemes for solving the equation f(x) = 0, two of which areessentially due to [3] and the other one is new and fastest among the three.The way to interpolate f(x) in Section 2 is not always e�cient because, inwhich, attention is largely paid to the positions of two nearby poles. Sec-tion 3 gives a closer look into cases when attention has to be paid not only tothe positions of most relevant poles but also to weights over particular poles.Important implementation issues like securing initial guesses and selectingthe best scheme are discussed in detail in Sections 4 and 6. Numerical exam-ples with detailed explanation are given in Section 7. Discussions of variousstopping criteria and justi�cations of our proposed stopping criteria, are pre-sented in Section 5. Numerical examples with detailed explanation are givenin Section 7. Section 8 presents our conclusions.2

Before we proceed, let's make some convenient assumptions. Withoutloss of generality, we assume that�1 < �2 < � � � < �n; and every �j 6= 0:Otherwise, de
ation would give a new matrix of form (1) with a lower di-mension [4, 5, 10]. Then it is easy to see that f(x) has precisely n zeros �i,one in each open interval (�j; �j+1), and one to the right of �n if � > 0 orto the left of �1 otherwise. To simplify our presentation, in the following weassume � > 0, and set �n+1 = �n + zT z� . Then the n eigenvalues �1; � � � ; �n ofthe matrix (1) satisfy �i < �i < �i+1; i = 1; � � � ; n:2 Secular Equation Solvers (I)One obvious method to solve the secular equation f(x) = 0 is Newton'smethod. However, as argued in [3], since f(x) is a rational function havingpoles at �1; � � � ; �n, Newton's method, based upon a local linear interpolation,may not be a good method. Bunch, Nielsen and Sorensen [3] proposed amethod based upon rational osculatory interpolation. A major drawback oftheir method is that it takes too many iterations in certain circumstances,as we shall see.The following subsection explores three rational approximations to f(x),from which we will develop three iteration schemes to solve the equationf(x) = 0. One of them we call the Middle Way is new and fastest. Most ofmaterial in this section is presented for historic reasons and for comparisons.2.1 Rational Osculatory InterpolationsIn this section, we explore the osculatory interpolation of the secular functionf(x) in (2) by a combination of the following two kinds of simple rationalfunctions: F (x; p; q) def= qp � x and G(x; �; r; s) def= r + s� � x: (4)3

They will be used in conjunction with a partition of the secular functionf(x) = �+ k(x) + �k(x) where, for k = 1; 2; � � � ; or n, k(x) = kXj=1 �2j�j � x; �k(x) = nXj=k+1 �2j�j � x: (5)(Convention sets �n(x) � 0.) The choice of k will depend upon which eigen-value �k is being computed. It is easy to see that for �k < x < �k+1�1 < k(x) < 0 < �k(x) < +1:For any approximation y to �k, we shall approximate each of k(x) and �k(x)by a simpler form F or G chosen to match k and �k in value and derivativeat x = y; in other words, we perform osculatory interpolation.So far, nothing we have said di�ers from past practice [3, 5, 9]. What willbe novel will be the way we choose which of F and G should be used witheach of k and �k; in fact, we shall see that F is best not used at all.2.1.1 Two Ways to Rationally Interpolate k(x)Let y be a �xed approximation to �k somewhere between �k and �k+1. Nowwe have a choice. We can choose parameters p and q in F (x; p; q) so thatF (y; p; q) = k(y); F 0(y; p; q) = 0k(y):Or we can choose � = �k to match the pole of k(x) next to y (and �k) andthen choose parameters r and s in G(y; �k; r; s) so thatG(y; �k; r; s) = k(y); G0(y; �k; r; s) = 0k(y):Here are the formulas for the parameters:� In F (x; p; q) = q=(p� x),p = y + k(y)= 0k(y) (6)= 1 0k(y) kXj=1 �2j(�j � y)2�j;q = k(y)2= 0k(y) > 0: (7)4

� In G(x; �k; r; s) = r + s=(�k � x),r = k(y)� (�k � y) 0k(y) (8)= k�1Xj=1 �j � �k(�j � y)2�2j � 0;s = (�k � y)2 0k(y) > 0: (9)In fact, �2k � s � kPj=1 �2j ; if k > 1, k�1Pj=1 �2j =(�j � y) = k�1(y) < r < 0; and ifk = 1, r = 0.Let these assignments to p; q; r; s hold throughout the rest of this x 2.1.1.Here are some of the properties of the two osculatory interpolating functionsthat our subsequent analysis will exploit.Proposition 1 �1 < p < �k < y:This proposition indicates that the pole p of F (x; p; q) lies farther fromy than �k does. Therefore F (x; p; q) may approximate k(x) poorly betweenits pole �k and y. This happens when �k is relatively small, in which case �klies very close to �k, and therefore y will do likewise.Since the interpolating rationals are unique, as we can see from the aboveequations, they are identically equal to k(x) if k = 1.Theorem 1 If k � 2, then for �k < x < +1 and x 6= yG(x; �k; r; s) < k(x) < F (x; p; q):Proof: The inequality F (x; p; q) > k(x) for �k < x < +1 was proved by[3]. Now we prove G(x; �k; r; s) < k(x) for �k < x < +1 in a similar way.Let g(x) = G(x; �k; r; s) � k(x). It su�ces to prove g(x) < 0 for �k <x < +1. To this end, set h(x) = g(x) kYj=1(�j � x): (10)5

Then h(x) = r kYj=1(�j � x) + (s� �2k) k�1Yj=1(�j � x)+ k�1Xi=1 �2i kYj=1;j 6=i(�j � x); (11)is a polynomial of degree k. It is easy to verify that h(y) = 0 and h0(y) = 0,so we have h(x) = �(x� y)2 k�2Yj=1(x�
j); (12)for some �,
j. (In fact, � = (�1)kr, from (11).)We claim that
j < �k for 1 � j � k � 2. The zeros of h(x) are the zerosof g(x). There is a zero of g(x) in each interval (�j; �j+1) for j = 1; � � � ; k � 2.Therefore h(x) has k� 2 of its zeros less than �k. As y > �k, we have provedour claim.Since � = (�1)kr and (from (8)) r < 0, so from (12) sign (h(x)) = (�1)k�1when �k < x. On the other hand, for �k < x < +1, we �nd from (10) thatsign (g(x)) = sign (h(x))(�1)k = �1, which means g(x) < 0.2.1.2 Two Ways to Rationally Interpolate �k(x)Similarly, we can perform osculatory interpolations of �k(x) by F (x; p; q) andby G(x; �k+1; r; s), respectively, such thatF (y; p; q) = �k(y); F 0(y; p; q) = �0k(y);G(y; �k; r; s) = �k(y); G0(y; �k; r; s) = �0k(y):It is easily veri�ed thatp = y + �k(y)=�0k(y) (13)= 1�0k(y) nXj=k+1 �2j(�j � y)2�j; (14)q = �k(y)2=�0k(y) > 0; (15)r = �k(y)� (�k+1 � y)�0k(y) (16)6

= nXj=k+2 �j � �k+1(�j � y)2 �2j > 0; (17)s = (�k+1 � y)2�0k(y) > 0: (18)Moreover �2k+1 � s � Pnj=k+1 �2j ; if k < n� 1, 0 < r < �k+1; and if k = n� 1,r = 0.F and G are identically equal to �k(x) if k = n� 1.Proposition 2 y < �k+1 < p < �n:Proposition 2 indicates the same phenomenon as we observed in Propo-sition 1.Theorem 2 If k � n� 2, then for y 6= x < �k+1F (x; p; q) < �k(x) < G(x; �k+1; r; s):2.2 Solving f(x) = 0Three ways come to mind to �nd the kth zero �k of the secular function (2)by combining di�erent rational osculatory interpolating functions to k(x)and �k(x) studied above.The �rst one we are going to study is the one in [3], and we describe itas Approaching from the Left because the algorithm will produce a sequenceof monotonically increasing approximations to �k provided the initial guessis between �k and �k. We reproduce it here for completeness.We describe the second one as Approaching from the Right for the samereason.The third iteration scheme is a new and fastest one which we shall callthe Middle Way.Assume, we have a guess y to �k (with �k < y < �k+1); Later, in Section 4,we shall discuss how to choose such a y.2.2.1 Approaching from the LeftAssume for the moment 1 � k < n. 7

To approach from the left, we interpolate k(x) by F (x; p; q) and �k(x)by G(x; �k+1; r; s), where p, q, r and s are determined by Equations (6), (7),(16) and (18). Instead of solving �+ k(x) + �k(x) = 0, we solve�+ qp � x + r + s�k+1 � x = 0 (19)for x. Equation (19) has two roots x of which just one lies between p and�k+1; that one is our new approximation y + �. Set �k+1 = �k+1 � y. Thenthe correction � to y is� = a�pa2 � 4bc2c if a � 0; (20)= 2ba+pa2 � 4bc if a > 0; (21)where a = f(y) �k+1 + k(y) 0k(y)!��k+1 k(y) 1 + �0k(y) 0k(y)! ;b = �k+1f(y) k(y) 0k(y);c = �+ r = �+ �k(y)��k+1�0k(y):Eventually, as f(y)! 0, we �nd a > 0, so (21) will be used more often than(20).The case for k = n is special since �n � 0. Solving �+ qp�x = 0 gives� = x� y = � + n(y)� 0n(y) n(y) = f(y) n(y)f 0(y)� : (22)Regarding the foregoing scheme, we haveTheorem 3 If �k < y < �k, then � > 0 and y < y + � < �k; if �k < y <�k+1, then � < 0 and y + � < �k < y.Proof: It is clear from Theorems 1 and 2.Theorem 3 says, starting with an initial guess which is less than �k, theforegoing scheme will yield a sequence of approximations converging mono-tonically upwards to �k; on the other hand if the initial guess exceeds �k the8

�rst increment � will be negative enough to make the next approximation lessthan �k, and all later approximations will go upwards to �k again.Remark: The above statement is true, generally, except for one case whenthe initial guess exceeds �k so much that the next approximation falls below�k. Recall that we can only guarantee p < y + � < �k+1 while p < �kby Proposition 1. The author has encountered examples in which, becauseof inaccurate initial guess y, the next approximation by Approaching fromthe Left went indeed below �k. Care must be taken to prevent that fromhappening.2.2.2 Approaching from the RightReversing to the choice of interpolating rationals for k(x) and �k(x) inApproaching from the Left, we now interpolate k(x) by G(x; �k; r; s) and�k(x) by F (x; p; q), where p, q, r and s are determined by Equations (8), (9),(13) and (15). Set �k = �k � y. Then the correction � to y is, again, givenby (20) and (21), but witha = f(y) �k + �k(y)�0k(y)!��k�k(y) 1 + 0k(y)�0k(y)! ;b = �kf(y)�k(y)�0k(y);c = �+ r = �+ k(y)��k 0k(y):>From which we see eventually a > 0.When k = n, we partition and interpolate the secular function f(x) thesame as we did for the case k = n� 1, but choose our new approximation to�n to be the root of �+G(x; �n�1; r; s)+F (x; p; q) = 0 which lies between �nand �n+1 if any. It is easy to see that F (x; p; q) � �n�1(x), and there is sucha root provided � + r > 0. The correction � to y is� = a+pa2 � 4bc2c if a � 0; (23)= 2ba�pa2 � 4bc if a < 0;with a; b; c as shown above for k = n� 1, which can be simpli�ed asa = (�n�1 +�n)f(x)��n�1�nf 0(y);9

b = �n�1�nf(y);c = �+ r = � + n�1(y)��n�1 0n�1(y)= f(y)��n�1 0n�1(y)� �2n�n :(23) is usable provided f(y)��n�1 0n�1(y)� �2n�n > 0 since otherwise y+� < �nor � is in�nite. Eventually as f(y) ! 0, so does f(y) � �n�1 0n�1(y) � �2n�nbecome positive.The foregoing scheme is called Approaching from the Right because ofthis:Theorem 4 If �k < y < �k+1, then � < 0 and �k < y + � < y. If�k < y < �k and k < n, then � > 0 and y < �k < y + �. If �n < y < �n andy is not too close to �n, then y + � > �n.Proof: It is clear from Theorems 1 and 2.Remark: As we remarked after Theorem 3, in Theorem 4 it is possiblefor y + � to jump above �k+1 when �k < y < �k. This must be prevented inpractice.2.2.3 The Middle Way: a New MethodA new way (we call it theMiddle Way) to solve the secular equation f(x) = 0will be developed here. Unlike the previous two ways, it need not yielda sequence of approximations that converges monotonically to �k, but itconverges faster as we will see.We interpolate both k(x) and �k(x) by rationals of type G(x; �; r; s),taking both nearby poles into consideration. To be speci�c, when 0 < k < nwe let r + s�k � x approximate to k(x); andR + S�k+1 � x approximate to �k(x);where(s = �2k 0k(y) > 0;r = k(y)��k 0k(y) � 0; and (S = �2k+1�0k(y) > 0;R = �k(y)��k+1�0k(y) � 0;(24)10

and �k = �k � y < 0 < �k+1 = �k+1 � y as before. We compute our new\better" approximation y + � to �k by solving the equation� + r + s�k � x +R+ S�k+1 � x = 0: (25)Equation (25) has two roots x, one of them in�nite if �+r+R = 0. The rootwe need is the one between �k and �k+1. Set � = x� y. Then the correction� to y has forms (20) and (21) witha = (�k +�k+1)f(y)��k�k+1f 0(y);b = �k�k+1f(y);c = f(y)��k 0k(y)��k+1�0k(y):Eventually a > 0.The case k = n is exactly the same as in x 2.2.2.Remark: Quadratic convergence of Approaching from the left was provedin [3]. A similar proof does likewise for Approaching from the Right , andproves that the Middle Way converges at least quadratically.3 Secular Equation Solvers (II): A Close LookThe Middle Way outperforms Approaching from the Left and Approachingfrom the Right because it takes both nearby poles into considerations whileeach of latter two uses one of the poles. However, as we shall see, the MiddleWay still behaves badly in a few circumstances. The following is a simpleintuitive explanation for why. In �2j�j�x , �2j is the weight over the pole �j andcontrols how much role the pole �j plays in the secular function f(x). Most ofthe time the simple interpolating rational r + s�k�x approximates k(x) verywell, but there are situations when s overestimates �2k so much that iterationsare forced to move slowly towards the desired roots. Recall s��2k�k�x functionsfor the rest of the poles in k(x). Similar things happen to �k, too. In thissection, we shall provide ways to conquer this as well as di�culties when justemploying two nearby poles is not enough.The case k = n will not be handled here since the Middle Way (Ap-proaching from the Right also) has used the two nearby poles on the left of�n already while there is no pole on its right. We begin with a new look atour iteration formulas whose
exibility will be of big help.11

3.1 Iteration FormulasLet y be a �xed approximation to �k somewhere between �k and �k+1. TheMiddle Way is, eventually, based upon an osculatory interpolation of f(x)at y by Q(x; c; s; S) def= c+ s�k � x + S�k+1 � x; (26)for which c+ s�k � y + S�k+1 � y = f(y); (27)s(�k � y)2 + S(�k+1 � y)2 = f 0(y): (28)However, if we start with Q(x; c; s; S) satisfying (27) and (28), we cannotdetermine Q(x; c; s; S) uniquely because of three unknowns and only twoequations available. Therefore an additional condition has to be imposed inorder to determine Q(x; c; s; S). For the moment, let's not worry about this,but instead assume Q(x; c; s; S) is a rational of form (26) with (27) and (28)satis�ed.The idea for computing a correction � to y for the next (\better") ap-proximation y + � to �k is to solve the equation Q(x; r; s; S) = 0. Let�k = �k � y; �k+1 = �k+1 � y; x = y + �:Q(x; c; s; S) = 0 yieldsc(�k � �)(�k+1 � �) + s(�k+1 � �) + S(�k � �) = 0;givingc�2 � �[c(�k +�k+1) + s+ S] + c�k�k+1 + s�k+1 + S�k = 0: (29)Proposition 3 With c, s and S subject to (27) and (28), we havec(�k +�k+1) + s+ S = (�k +�k+1)f(y)��k�k+1f 0(y);c�k�k+1 + s�k+1 + S�k = �k�k+1f(y):12

Proof: It follows from (27) and (28) thats = �2k�k ��k+1 (f(y)� c��k+1f 0(y));S = �2k+1�k+1 ��k (f(y)� c��kf 0(y)):Substituting them into c(�k +�k+1) + s+ S and c�k�k+1 + s�k+1 + S�kleads to the desired results.Proposition 3 illustrates a surprising fact that the iteration formula bysolving (29) depends only upon c, alone. As surely, the equations (27) and(28) are solvable for any c. Without worrying about global convergence,any c will give rise an ultimately at least quadratically convergent iterationscheme!In the case s > 0 and S > 0 in which we are interested, it follows from(29) that � = a�pa2 � 4bc2c if a � 0; (30)= 2ba+pa2 � 4bc if a > 0; (31)where a = (�k +�k+1)f(y)��k�k+1f 0(y);b = �k�k+1f(y):In what follows, for a particular iteration scheme, we shall provide the nec-essary number c, as well as a proof for s > 0 and S > 0. Di�erent choicesof c give rise to di�erent iteration schemes. By choosing c properly, a verye�cient iteration scheme may be obtained.The Middle Way falls into the category, i.e., s > 0 and S > 0, andc = f(y)��k 0k(y)��k+1�0k(y)= f(y)��k+1f 0(y)� 0k(y)(�k � �k+1)= f(y)��kf 0(y)� �0k(y)(�k+1 � �k):Reorganization of c is for the reader to see its di�erences from those in someother schemes to which we are about to get.13

3.2 The Fixed Weight MethodWe have been aware that the weight �2k or �2k+1 may be overestimated in theMiddle Way. Although not all overestimations are harmful, there are caseswhere iterations move slowly because of overestimations. In order to handlethese cases e�ciently, we propose the following scheme so-called the FixedWeight Method because it �xes one of the weights �2k and �2k+1 while satisfying(27) and (28).1. The Case �k closer to �k: We set s = �2k , thens = �2k ; (32)S = �2k+1 f 0(y)� �2k�2k! (33)= �2k+1 + Xj 6=k;k+1 �2k+1�2j �2j > �2k+1;c = f(y)� �2k�k ��k+1 f 0(y)� �2k�2k!= f(y)��k+1f 0(y)� �2k�2k (�k � �k+1): (34)2. The Case �k closer to �k+1: We set S = �2k+1, thens = �2k f 0(y)� �2k+1�2k+1! (35)= �2k + Xj 6=k;k+1 �2k�2j �2j > �2k ;S = �2k+1; (36)c = f(y)��kf 0(y)� �2k+1�2k+1 (�k+1 � �k): (37)The following theorem gives a basic property of the interpolating functionQ(x; c; s; S) and the next approximation y + � to �k.Theorem 5 If c, s and S are de�ned by (32), (33) and (34), then f(x) �Q(x; c; s; S) for �k < x < �k+1 and either �k < y < y + � < �k < �k+1 or14

�k < y + � < �k < y < �k+1; if, on the other hand, c, s and S are de�ned by(35), (36) and (37), then f(x) � Q(x; c; s; S) for �k < x < �k+1 and either�k < �k < y + � < y < �k+1 or �k < y < �k < y + � < �k+1.3.3 Gragg's Scheme, a Scheme of Ultimately CubicConvergenceGragg proposed to choose c, s and S so that Q(x; c; s; S) matches f(x) aty up to the second derivative. In another word, besides (27) and (28), it isalso required that s(�k � y)3 + S(�k+1 � y)3 = f 00(y)2 ; (38)which, together with (27) and (28), yields = �3k�k+1�k ��k+1 f 0(y)�k+1 � f 00(y)2 != �2k + (�k � y)3�k � �k+1 Xi 6=k; k+1 �i � �k+1(�i � y)3 �2i > �2k ;S = �k�3k+1�k+1 ��k f 0(y)�k � f 00(y)2 != �2k+1 + (�k+1 � y)3�k+1 � �k Xi 6=k; k+1 �i � �k(�i � y)3�2i > �2k+1;c = f(y)� (�k +�k+1)f 0(y) + �k�k+1f 00(y)2 :This scheme needs to compute the second derivative of the secular functionf(x). Thus it needs more work.Remark: Gragg's scheme will yield a sequence of approximations whichconverge monotonically to the desired eigenvalue �k for 1 � k < n (ref.[8] and notice the di�erence between their secular function and ours). Theinterpolation of f(x) for �nding �n should be done in the same way as for�nding �n�1, except monotonic convergence is lost.15

3.4 Using Three Poles When Necessary: a HybridSchemeThe Middle Way and the Fixed Weight Method can be combined to designmore powerful secular equation solvers by properly switching between thetwo. But there are cases where three poles have to be used in order to makeiterations go faster. For m = 2; � � � ; n� 1, setfm(x) = �+ nXj=1;j 6=m �2j�j � x;which is the secular function f(x) with the mth term in the summationremoved. It is easy to see that fm(x) has a zero between �m�1 and �m+1.Numerically, we have discovered the following cases are possible di�cult ones:1. �k < �k < �k+�k+12 and fk(x) has a zero between �k and �k;2. �k+�k+12 < �k < �k+1 and fk+1(x) has a zero between �k and �k+1.To see why the �rst case may be di�cult, we let �2k ! 0, then, as functionsof �2k , �k�1 goes monotonically upward until it hits �k while �k goes mono-tonically downward until it hits the zero of fk(x) between �k and �k. Now,on the contrary, let �2k go back from zero to its original value, what we willsee is the exact contrary phenomena. Based on this simple observation, wecan think, roughly, that �k�1 depends largely on the pole �k and its weight�2k and, therefore, the Fixed Weight Method should be good at �nding it. Onthe other hand, �k depends on the pole �k and its weight �2k and the zero offk(x) where it starts from and which is controlled roughly by the the poles�k�1 and �k+1 with appropriate weights. Similar intuitive arguments applyto the second case above.The treatment of the two cases is almost identical. In what follows, wediscuss the �rst case only. A natural way to handle the �rst case is tointerpolate f(x) with the following simple rational:eQ(x; c; s; S) def= c+ s�k�1 � x + �2k�k � x + S�k+1 � x: (39)The parameters c, s and S can be determined by either interpolating fk(x) =�+ k�1(x)+�k(x) in the way that the Middle Way does or in the way that16

the Fixed Weight Method does depending on situations. Once we have (39),its zero between �k and �k+1 can be computed in various iterative ways withnegligible cost. However, care has to be taken in evaluating eQ(x; c; s; S) ata given point. As a matter of fact, because of roundo�, sometimes (thoughrarely) computed eQ(y; c; s; S) di�ers signi�cantly from computed f(y) thoughthe two should be the same by interpolation in theory. It turns out that wecan evaluate eQ(x; c; s; S) in an indirectly way to avoid this from happening.Since cimputed f(y) is available at the time we interpolate the secular func-tion f(x), we do not compute eQ(y; c; s; S) at all while simply setting it tobe f(y). At the very next time when we need to compute eQ(x; c; s; S) weupdate f(y) by adding a correction to it becauseeQ(x; c; s; S) = eQ(y; c; s; S) + (eQ(x; c; s; S)� eQ(y; c; s; S))= f(y) + (x� y) s(�k�1 � y)� (x� y)+ �2k(�k � y)� (x� y) + S(�k+1 � y)� (x� y)! :Subsequent evaluation of eQ(x; c; s; S) is done in the same way by addingcorrection to its value at the previous x.According to our experience, proper treatment of poles and their weightsis crucial and delicate, especially in di�cult cases as we discussed above. Itaccelerates convergence signi�cantly in the sense that it reduces the over-all average number of iterations per eigenvalue �nding and keeps the peaknumber of iterations for �nding an eigenvalue reasonably small. which isessential for avoiding load-balancing in parallel computations. In view ofthis, we propose the following scheme{the Hybrid Scheme which combinesthe Middle Way and the Fixed Weight Method in a clever way and which ofcourse employs three poles when necessary: Suppose we are computing �kand suppose �k < �k < (�k+�k+1)=2. In practice, we compute �k��k insteadof �k itself. We have an initial guess �k+ � for �k for which �k < �k+ � < �kis guaranteed (ref. Section 4). The value of the secular function is evaluatedin such a way f(�k + �) = fk(�k + �) + �2k�� < 017

that fk(�k + �) is obtained as a by-product. At this point, we will make adecision between using two poles or three poles:if fk(�k + �) > 0, thentwo poles �k and �k+1 are used;elsethree poles �k�1, �k and �k+1 are used.end ifAfter the decision is made, we use the Fixed Weight Method to interpolatef(x) if the decision favors two poles or interpolate fk(x) if the decision favorsthree poles, and do one iteration to get an new approximation �1. If f(�k +�1) < 0 and jf(�k+ �1)j > 0:1� jf(�k + �)j, we switch to the Middle Way forthe next iteration starting at �k + �1. >From now on, just for guarding, wecompare the value fnew of the secular function at the newest approximationwith its value fpre at the previous one and another switch is made fromthe current iterative scheme to the other one if fnewfpre > 0 and jfnewj >0:1� jfprej.The philosophy behind our switch making is that, taking �k < �k + � <�k < �k+�k+12 for example where �k + � is an initial guess, after �rst inter-polation using the Fixed Weight Method �k + � < �k + �1 < �k. Now ifjf(�k + �1)j > 0:1 � jf(�k + �)j, it indicates that iteration is going slow withthe Fixed Weight Method . Generally, it is always a danger when the valuesof f(x) at two consecutive approximations have the same sign but the lastestvalue improves little in comparing with the previous one.If, however, we are computing �k under (�k+�k+1)=2 < �k < �k+1, similarprinciple can be applied in a straightforward way.Remark: A theorem similar to Theorem 5 holds for eQ(x; c; s; S) if we usethe Fixed Weight Method to interpolate fk(x) or fk+1(x).4 Initial GuessesAn iteration that could ultimately converge quadratically, which is quite fast,may get converge slowly (if at all) from a su�ciently bad �rst guess. This sadpossibility becomes a probability when �k or �k+1 is tiny compared with the18

other �j's, in which case �k is very close to �k or �k+1. In extreme cases, aswe have already observed, the iterations Approaching from the left or Rightcan even jump out from between �k and �k+1.In what follows we will present an inexpensive way to obtain relativelyaccurate initial guesses. At the same time we shall show how to decidewhich of �k and �k+1 is closes to �k. This decision is important because, ifdecided wrongly, roundo� could cause an iterate to collide with an endpoint�k or �k+1, or even overshoot it. A collision would soon lead to Divisionby Zero; overshooting could jeopardize subsequent convergence. To avoidthese problems, we shall translate the origin temporarily, while �k is beingcomputed, to whichever of �k or �k+1 is closer.A natural and e�ective way to make the correct decision is to look at thesign of f ��k+�k+12 �. If this value is positive, we know �k is closer to �k thanto �k+1 and thus the origin should be translated to �k; otherwise �k is closerto �k+1 and the origin should be translated to there. If, however, roundo�obscures the sign of f ��k+�k+12 �, in which case �k is almost half way betweenthe two poles, the origin could be translated to either one of them withoutmaking much di�erence. The computation of f � �k+�k+12 � can be done in sucha way that an initial guess y is obtained as a by-product.First we consider the case 1 � k < n.Rewrite the secular function (2) as f(x) = g(x) + h(x), whereg(x) = �+ nXj=1;j 6=k;k+1 �2j�j � x; and h(x) = �2k�k � x + �2k+1�k+1 � x: (40)We choose our initial guess y to be that one of the two roots of the equationg �k + �k+12 !+ h(y) = 0: (41)lying between �k and �k+1, where g � �k+�k+12 � was retained from the compu-tation of f ��k+�k+12 �. (Thus it is a gift!) By sketching the graph of the sumof the last two terms on the left hand-side of (41), we can tell without anydi�culty which root is needed. In case f � �k+�k+12 � � 0, Equation (41) shouldbe solved for � = y � �k, while in case f ��k+�k+12 � < 0, it should be solvedfor � = y � �k+1. De�ne � = �k+1 � �k and c = g � �k+�k+12 �. Here are the19

formulas for � : � = y � �K = a�pa2 � 4bc2c if a � 0; (42)= 2ba+pa2 � 4bc if a > 0;where if f � �k+�k+12 � � 0,K = k; a = c�+ (�2k + �2k+1); b = �2k�; (43)and if f � �k+�k+12 � < 0,K = k + 1; a = �c�+ (�2k + �2k+1); b = ��2k+1�: (44)Theorem 6 If f � �k+�k+12 � > 0, then � given by (42) and (43) satis�es�k < �k + � < �k < �k + �k+12 ;If f � �k+�k+12 � < 0, then � given by (42) and (44) satis�es�k + �k+12 < �k < �k+1 + � < �k+1:Proof: One way to see these is to sketch graphs. It can also be seen bysubtracting one from the other of the following two equations�2k�k � �k + �2k+1�k+1 � �k = �g(�k);�2k�k � y + �2k+1�k+1 � y = �g �k + �k+12 ! ;which produces(�k � y) �2k(�k � �k)(�k � y) + �2k+1(�k+1 � �k)(�k+1 � y)!= �k + �k+12 � �k! Xj 6=k;k+1 �2j��j � �k+�k+12 � (�j � �k) : (45)20

Thus �k � y has the same sign as has �k+�k+12 � �k.For the case of k = n, we partition the secular function f(x) = g(x)+h(x)as when k = n� 1. An initial guess y is obtained basically by solvingg �n + �n+12 !+ h(y) = 0:A detail but simple analysis yields the following formula for � = y � �n:� The case: �n+�n+12 � �n, i.e., f � �n+�n+12 � � 0.1. If g � �n+�n+12 � � �h(�n+1), then � = y � �n = zT z=�.2. If g � �n+�n+12 � > �h(�n+1), then� = y � �n = a+pa2 � 4bc2c if a � 0; (46)= 2ba�pa2 � 4bc if a < 0;where � = �n � �n�1, c = g � �n+�n+12 � anda = �c�+ (�2n�1 + �2n); b = ��2n�: (47)It can be proved that in this case �n+�n+12 � �n < �n + � < �n+1.� The case: �n+�n+12 > �n, i.e., f ��n+�n+12 � > 0. Then g � �n+�n+12 � >�h(�n+1). We compute � = y� �n by (46) and (47). It is easy to showthat in this case �n < �n + � < �n < �n+�n+12 .The approach to compute initial guesses we just proposed costs marginalsince to make program robust we have to calculate f ��k+�k+12 � anyway.An alternative approach proposed by [3] is to solve the equation (41) withg � �k+�k+12 � replaced by g(�k+1) or g(�k), which yields two guesses that hap-pen to be a lower bound and an upper bound for �k. First of all theirguesses require extra work. Second, this extra work may not be worth do-ing. Take the case �k < �k+�k+12 , for example. In this case, this lower boundis worse than our guess while the upper bound may possibly be greater21

than �k+�k+12 . In a divide-and-conquer code from Sorensen and Tang1, theysimply solve the equation (41) with g � �k+�k+12 � replaced by � to obtain ini-tial guesses for 1 � k � n � 1. They handle the case k = n by solving�+ n�1(�n+1) + �n�1(y) = 0. In any event, we believe our approach shouldbe better averagely. Our numerical experience con�rms our intuition.5 Two Stopping CriteriaPeople have discovered in order to guarantee the computed eigenvectors by(3) to be fully orthogonal one must be able to compute the distances betweeneach �i and �j to almost full accuracy [10, 11]. So simulated \double" doubleprecision was invented to evaluate the value of the secular function extraprecisely when necessary. To guarantee full accuracy of computed distances�i � �j, the stopping criterion was set to bej�j � c�mminfj�k � xj; j�k+1 � xjg; (48)where x is the current iterate, � is the last iterative correction that was com-puted, �m is the machine's roundo� threshold and c is fairly small constant[1, 5, 11]. (c = 24 in Sorensen and Tang's code.) However we decide to stopwhen �2 � �mminfj�k � xj; j�k+1 � xjg(j�0j � j�j); (49)where �0 is the correction before last. This new stopping criterion oftensave one iteration per eigenvalue found. The following observation due toW. Kahan justi�es (49).Let fxjg1j=1 be a sequence of numbers, produced by some rapidly conver-gent iteration scheme, such that limj!1 xj = z. If jxj+1 � xjj=jxj � xj�1j aredecreasing for j � k, and if jxk+1 � xkj=jxk � xk�1j < 1, thenjxk+1 � zj < jxk+1 � xkj2jxk � xk�1j � jxk+1 � xkj:1I would like to thank Prof. D. Sorensen and Dr. Peter Tang for sending me theirdivide and conquer code. 22

To see why this observation works, let's denote
 = jxk+1�xkj=jxk�xk�1j.For i > k, we have xi+1 � xi = iYj=k xj+1 � xjxj � xj�1 (xk � xk�1):which gives jxi+1 � xij �
i�k+1jxk � xk�1j. Thereforejxk+1 � zj = ������ 1Xi=k+1(xi � xi+1)������� jxk � xk�1j 1Xi=k+1
i�k+1 = jxk+1 � xkj2jxk � xk�1j � jxk+1 � xkj ;as required.Recently, Gu and Eisenstadt [9] found a new way to compute eigenvec-tors after all eigenvalues are computed. This new way makes the simulated\double" double precision unnecessary, and the stopping criterion was set tobe jf(x)j � n�m0@�+ nXj=1 ����� �2j�j � x �����1A (50)by [9]. However, for large n, it may allow too much error while for small nthere is a danger that it might never be satis�ed. Note that not every termin secular equation is of the same magnitude. Generally, only two termswill dominate all others. In our code, we decide to compute error boundswith marginal costs at each iteration. Our implementation is as follows: Wecompute k(x) by summing up each term from j = 1 to k, while �k(x) fromj = n to k + 1 (refer to (5)) since hopefully in this way we add terms fromsmall magnitude to large ones. Note that we actually work withf(�K + �) = �+ nXj=1 �2j(�j � �K)� � ; (51)where � = x� �K and K = k if �k comes more close to �k than to other �jand K = k + 1 otherwise. It is easy to show thatjf(�K + �)� (Computedf(�K + �))j � �me;23

wheree = 2� + kXj=1(k � j + 6) ����� �2j�j � x �����+ k+1Xj=n(j � k + 5) ����� �2j�j � x �����+ jf(�K + �)j;which can be computed recursively on our way to compute k(x) and �k(x)and costs about 2n additions for each iteration cycle. On the other hand, if �is a neighbor of the desired zero � � to the function (51), i.e., j� � � �j � �mj� j,then jf(�K + �)� 0j � j� � � �j jf 0(�K + �)j+O(j� � � �j2)� �mj� j jf 0(�K + �)j+O(j� � � �j2):In view of these, we set our stopping criterion to bejf(�K + �)j � e�m + �mj� j jf 0(�K � �)j (52)This stopping criterion is more reasonable and tighter than (50). The lastterm in (52) is usually much smaller than e�m since j� j � j�k+1 � �kj=2.6 Choosing the Right SchemeWith many di�erent iterative schemes at hand, which one is the right onethat we should use in order to achieve best performance that we could getfrom the divide-and-conquer method? Obviously, they could not be equallye�cient. Based on our intuition and numerical experience, we think theHybrid Scheme is the best choice.Approaching from the Left has been used for �nding zeros of the secularfunction (2) for over a decade since it �rst appeared in [3]. Why was itfavored and why were not the other schemes? Two possible reasons are:� Only a small portion of the total cost for Cuppen's divide-and-conqueralgorithm is spent on solving secular equations2. Therefore a fastersecular equation solver might a�ect the overall performance of the al-gorithm so little that people's attention were not caught.2This is not true if only eigenvalues are requested because, in this case, the total costis O(n2) [6]. 24

� Approaching from the Left yields a sequence of approximations thatconverge monotonically to the desired eigenvalue. Monotonicity isgood, for example, no need to compute error bound (refer to Section 5),but simply stop whenever monotonicity is lost.The rational interpolation resulting in Approaching from the Left forces �k+1to be the pole of the interpolating rational G(x; �k+1; r; s) for �k(x), whilepushes the pole �k to the left to p as the pole of the interpolating rationalF (x; p; q) for k(x). The former is quite reasonable; on the other hand,the latter raises a question: Are rationals of form F (x; p; q) good enough ascandidates to interpolate k(x), especially for the case when x comes closeto �k? The answer turns out to be \No", as it becomes clear from numericalresults in the following section. This gives us an idea that Approaching fromthe Left works better in the case when �k comes closer to �k+1 than in thecase when �k closer to �k.The above argument applies to Approaching from the Right. And theMiddle Way should work perfectly in any case in the sense that it matchesthe better one of the two.The average number of iteration of Gragg's cubic scheme, which needs tocompute the second derivative of the secular function f(x), is about the sameas that of our Hybrid Scheme. But, as we will see later, it does iterates morein some cases where poles and weights have to be taken into considerationsmore closely.Few cases have been encountered by the author in which there are bigdi�erences in numbers of iterations for �nding �n. Our suggestion is stronglysupported by numerical results below.7 Numerical ExamplesIn numerical results that follows, double precision arithmeticwas used through-out. Both stopping criteria will be used for testing. We will demonstratenumerically1. How good are our initial guesses?2. Approaching from the Left and Right are bad schemes;25

3. The stopping criterion (52) usually terminates computations 1{2 iter-ations earlier than (49);4. Comparisons among theMiddle Way, the Fixed Weight Method, Gragg'sscheme and the Hybrid Scheme.Our �rst example is taken from [11]: n = 4, �1 = 1, �2 = 2��, �3 = 2+�and �4 = 313 , where � = 10�` is a parameter chosen on purpose to make�1 close to �2 and �3 close to �2. We make �2 = 2 in exact arithmetic,half way between �2 and �3, by letting wT = (2; �; �; 2), � = kwk�2 andz = (�1; �2; �3; �4)T = w=kwk.In the following table, we compare the numbers of iterations taken byusing Approaching from the Left with our initial guesses (the third row) andwith those taken by using Sorensen and Tang's secular equation solver code.Iteration stops whenever (49) is satis�ed, and extra precise evaluations [11]of secular functions are invoked.Table 1: Initial Guess Issue3� = 10�3 � = 10�6 � = 10�10Eigenvalues 1 2 3 4 1 2 3 4 1 2 3 4Left 5 2 13 4 5 1 24 4 5 2 37 4Sorensen & Tang's 12 15 16 4 18 26 25 5 28 37 38 4This example shows our initial guesses provide better starting points. Butstill the third eigenvalue �3 takes lots of iterations before required accuracyis reached. The reason is that �3 is extremely close to �3 and Approachingfrom the Left behaves badly in this situation. In exact arithmetic, �2 = 2 liesexactly in the half way between �2 and �3. However, as Table 1 indicates, afew iterations are still required even with our way of initial guessing, whichshould give correct result in this situation in exact arithmetic. As a matterof fact, the corresponding problem that computer had seen is the one aftera few roundo�s. The second eigenvalue to that problem is 2+O(�m), which,in general, does not lie in the half way between rounded �2 and rounded �3.At the end of computation, extra precise evaluations of the secular functionbasically yields �2 as 2+� with � computed to certain relative accuracy whichis unnecessarily lot more for just computing the eigenvalue but is necessaryfor computing the full orthogonal eigenvectors later on [11].3The initial guess is not counted. This is also the case for all following tables.26

>From now on, our way of initial guessing is always used except in Sorensenand Tang's code. The following table exhibits how many iterations are re-quired respectively by the three di�erent zero �nders we discussed in Sec-tion 2. Invoke extra precise evaluation [11] whenever necessary.Table 2: Schemes in Subsection 2.2� = 10�3 � = 10�6 � = 10�10Eigenvalues 12 23 33 44 12 23 33 44 12 23 33 44Left 5 2 13 4 5 1 24 4 5 2 37 4Right 13 2 5 4 23 1 6 4 36 2 5 4Middle 5 2 5 4 5 1 6 4 5 2 5 4In this table each item ij in the second row says that the correspondingcolumn is for �nding the ith eigenvalue with origin translated to �j. The�rst column lists which iteration schemes in Subsection 2.2 are being used.Others are numbers of iterations required.Table 2 con�rms our previous speculations. As �2 sits \right" on thehalf way between �2 and �3, the three di�erent schemes required almost thesame number of iterations; Approaching from the Left is suitable for �nding�1 while Approaching from the Right is obviously not because �1 comes veryclose to �2; the contrary conclusion holds for �nding �3 because �3 comesvery close to �3. In any event, the Middle Way is the best among the three.The stopping criterion (52) usually terminates an eigenvalue computing1{2 iterations earlier than the stopping criterion (49). The following tableillustrates the point. Table 3: (49) vs. (52)� = 10�3 � = 10�6 � = 10�10Eigenvalues 12 23 33 44 12 23 33 44 12 23 33 44Middle with (49) 5 2 5 4 5 1 6 4 5 2 5 4Middle with (52) 4 0 5 3 4 0 5 3 3 0 3 3Table 4 lists the numbers of iterations for an example of a rank{1 per-turbed diagonal eigensystem arising in applying the divide-and-conquer algo-rithm to the glued Wilkinson matrix, i.e., the matrices in Test 1 of [11]. Heren = 30. The �rst column refers to which eigenvalue and the correspondingtemporary origin translated to. The 2nd to 4th columns refer to the threeiteration schemes in Subsection 2.2 with stopping criterion (49). The 5thcolumn refers to the divide-and-conquer code from Sorensen and Tang. Thelast column refers to the Middle Way with stopping criterion (52).27

Table 4Left Right Middle Sorensen & Tang Middle & (52)11 2 2 2 2 122 2 2 2 3 133 2 2 2 4 144 2 2 2 4 155 2 2 2 4 166 2 2 2 4 177 2 2 2 4 188 2 2 2 4 199 3 2 2 5 21010 2 2 2 3 11112 4 19 4 8 21212 28 11 11 28 91313 3 2 2 5 11415 4 18 3 6 21515 27 16 16 27 151617 2 6 2 7 11718 3 24 3 23 21818 34 13 12 37 101919 7 2 2 7 12021 2 3 2 6 12121 16 17 17 19 162222 7 2 2 7 12323 3 2 3 6 22424 5 2 2 7 22525 3 3 3 7 32626 5 2 2 5 12727 3 3 3 3 22829 2 6 2 7 22929 8 7 7 10 63030 1 1 1 6 0Table 4 has demonstrated all the points we have made about the schemesin Section 2 and about our initial guesses over Sorensen and Tang's. Onthe other hand, it also explodes the inability of the Middle Way to computethe 12th, 15th, 18th and 21st eigenvalues e�ciently. The reason is exactlywhat we have made at the beginning of Section 3 and which motivates usto create the Fixed Weight Method and the Hybrid Scheme. The followingtable presents numbers of iterations required by the Middle Way, the FixedWeight Method, Gragg's scheme and the Hybrid scheme on �nding these four\di�cult" eigenvalues. >From now on, all tests are done under the stoppingcriterion (52) (except for Gragg's scheme) as we have observed neither stop-28

ping criterion a�ects demonstrations on the e�ciency of a particular scheme.For Gragg's scheme, we stop whenever we detect loss of monotonicity, andthus last iterations might be wastes.Table 5Eigenvalues 12 15 18 21 Total Per Eig PeakMiddle 9 15 10 16 91 3.03 16Fixed 2 2 2 2 42 1.40 5Gragg's 2 2 3 2 56 1.87 4Hybrid 1 1 1 2 38 1.27 4Here, \Total" refers to the total number of iterations required by thecorresponding scheme for �nding all 30 eigenvalues; \Per Eig" the averagenumber of iterations required per eigenvalue; and \Peak" the largest oneamong numbers of iterations for �nding each of the eigenvalues. Three poleswere used by the Hybrid Scheme for the 12th, 15th and 18th eigenvalues.One might interpret Table 5 in a wrong way that the Fixed Weight Methodis good enough and there is no necessity for developing the Hybrid Scheme.To discover the drawback of the Fixed Weight Method , we invented anotherarti�cial problem in which n = 50 and in which the 31st eigenvalue is sospecial that the Fixed Weight Method takes as many as 31 iterations tocompute it. In that problem, �32 and �33 agree as many as 9 decimal digits,while �232 is much smaller than �233. The �31, however, is fairly away from bothof its nearby poles though it comes closer to �32. In this case, setting S = �232underestimate the role played by �33 and the rest other than �32 so muchthat the iterations generated by the Fixed Weight Method go unbearablyslow. Numerical data are displayed in Table 6. One thing we have to say isthat for the Middle Way the �rst iteration overshoots because of roundo�errors in computing the correction. We handle this by restarting the iterationat the middle point between �31 and �32.Table 6Middle Fixed Gragg's HybridEigenvalue 31 4 31 10 3Total 159 181 150 145Per Eig 3.18 3.62 3.00 2.90Peak 6 31 10 5To see how iterations go, we list values of the secular function after eachiteration: 29

Middle: 1.4D+08!-2.0D+00!1.5D-02!3.6D-07!0.0D+00Fixed: 1.4D+08! 6.9D+07!3.5D+07!1.7D+07!8.7D+06! 4.3D+06!2.2D+06!1.1D+06!5.4D+05! 2.7D+05!1.4D+05! � � �Gragg's: 1.4D+08! 6.9D+07!2.6D+07!7.2D+06!1.2D+06! 1.0D+05!2.6D+03!1.1D+01!1.1D-02! 9.4D-10!0.0D+00Hybrid: 1.4D+08! 1.4D-02!4.2D-07!9.0D-16The following is another table justifying that including three most rele-vant poles helps. It is about a problem of n = 30.Table 7Eigenvalues 12 15 19 22 Total Per Eig PeakMiddle 6 7 6 10 65 2.17 10Fixed 7 7 8 7 64 2.13 8Gragg's 5 6 6 5 65 2.17 6Hybrid 3 3 6 6 53 1.77 6In theory all the schemes we studied share a fundamental property thatevery correction is in the right direction. To be more speci�c, whenever thevalue of the secular function is negative the next correct must be positive andvice versa. However, it does not hold in the face of roundo�. To handle this,we simply do one Newton step instead whenever fatal roundo� in computingcorrections is detected. In Table 7, for the Fixed Weight Method the �rstiterations for the 19th and 22nd eigenvalues are Newton steps.Numerous other examples generated either randomly or arti�cially havebeen run. The results turn out to be very satisfactory. And randomly gen-erated problems do not give di�culties. Table 8 below lists a few more dataon real rank-1 perturbed problems extracted from applying the divide-and-conquer algorithm to either randomly generated symmetric tridiagonal ma-trices or to symmetric tridiagonal matrices obtained by reducing randomlygenerated symmetric dense matrices to tridiagonal forms.
30

Table 8n = 100 n = 364 n = 700Total Per Eig Peak Total Per Eig Peak Total Per Eig PeakMiddle 175 1.75 10 1084 2.98 6 2125 3.04 7Fixed 146 1.46 6 1106 3.04 6 2157 3.08 7Gragg's 185 1.85 6 1031 2.83 5 2054 2.93 5Hybrid 146 1.46 5 1074 2.95 5 2093 2.99 5It is worth mentioning an problem suggested to the author by W. B.Gragg: D = diag (1; 2; � � � ; n), � = 1 and z = (1; 10�1; � � � ; 10�(n�1))T . Inpractice, there will be lots of de
ation for large n. But for the purpose oftesting the robustness of our code, we run it on this problem for n as largeas 100 without de
ating. The numerical results indicate our code has nodi�culties in solving the problems.8 ConclusionsWe have studied di�erent rational interpolations for the secular function,each of which has di�erent strong points and based upon which many schemeshave been proposed and studied. A proper combination leads to the HybridScheme which competes with Gragg's cubic convergent scheme on randomproblems, however, as our numerical results indicated, there are arti�cialproblems in which the regions of at least quadratic convergence for the HybridScheme are larger than those of cubic convergence for Gragg's scheme. Alsothe Hybrid Scheme keeps peak number of iterations relatively small, whichis extremely helpful for solving the secular equation in parallel because thetotal time is determined roughly by whichever eigenvalue takes the largestnumber of iterations.We also discussed a few implementation details for making a robust codeand for achieving the desired solution as accurately as possible.Acknowledgments. The author is grateful for the supervision of Pro-fessor W. Kahan. Thanks also go to Professors J. Demmel and B. N. Parlettfor valuable discussions. 31

References[1] J. L. Barlow, Error analysis of update methods for the symmetric eigen-value problem, submitted for publication.[2] C. F. Borges and W. B. Gragg, A parallel divide and conquer algo-rithm for the generalized real symmetric de�nite tridiagonal eigenprob-lem, Working paper, (1992).[3] J. R. Bunch, Ch. P. Nielsen, and D. C. Sorensen, Rank-one modi�cationof the symmetric eigenproblem, Numer. Math., 31(1978), 31{48.[4] J. J. M. Cuppen, A divide and conquer method for the symmetric tridi-agonal eigenproblem, Numer. Math., 36(1981), 177{195.[5] J. J. Dongarra and D. C. Sorensen, A fully parallel algorithm for thesymmetric eigenvalue problem, SIAM J. Sci. Stat. Comput., 8(1987),s139{s154.[6] D. Gill and E. Tadmor, An O(N2) method for computing the eigensys-tem of N�N symmetric tridiagonal matrices by the divide and conquerapproach, SIAM J. Sci. Stat. Comput., 11(1990), 161{173.[7] G. H. Golub, Some modi�ed matrix eigenvalue problems, SIAM rev.,15(1973), 318{334.[8] W. B. Gragg, J. R. Thornton, and D. D. Warner, Parallel divide andconquer algorithms for the symmetric tridiagonal eigenproblem and bidi-agonal singular value problem, in Modeling and Simulation, vol. 23, part1, W. G. Vogt and M. H. Mickle, eds., Univ. Pittsburgh School of En-gineering, 1992, 49{56.[9] Ming Gu and S. C. Eisenstadt, A stable and e�cient algorithm for therank{one modi�cation of the symmetric eigenproblems, Research ReportYaleU/DCS/RR{916, 1992.[10] W. Kahan, Symmetric rank-1 perturbed diagonal's eigensystem,preprint, 1989. 32

[11] D. C. Sorensen, and P. T. P. Tang, On the orthogonality of eigenvectorscomputed by divide-and-conquer techniques, SIAM J. Numer. Anal.,28(1991), 1752{1775.

33

