XLSI — A Graphical
User Interface for

a Conceptual Retrieval System

Susan Clower Allen

Computer Science Department

CS-94-264

December 1994

XLSI - A Graphical User Interface

for a Conceptual Retrieval System

A Thesis
Presented for the
Master of Science Degree

The University of Tennessee, Knoxville

Susan Clower Allen

December 1994

Acknowledgements

I would like to thank my family for their patience throughout my thesis project.
My husband, Jeff for allowing me to commit the required time and energy, and my
daughter Hannah for her inspiration.

I would also like to thank Dr. Michael Berry, for his support and motivation. I
appreciate his enthusiasm, patience and vast knowledge, which he so willingly shared.
I would like to thank my thesis committee, Dr. Brad Vander Zanden and Dr. David
Straight. I am grateful for the listening ears and helpful eyes of Rhonda MacIntyre.
I would also like to thank Dr. Susan Dumais at Bellcore and Michael Littman at
Brown University for their original LSI user interface and suggestions on features for

XLSLL

11

Abstract

In this thesis, XLSI, a Motif-based user interface, for utilizing Latent Semantic
Indexing (LSI) retrieval techniques is presented. XLSI is a third generation Windows-
based user interface that allows access to many kinds of textual material, for users
of different levels of experience. The original LSI user interface, InfoSearch provided
the incorporation of conceptual or fuzzy-based retrieval methodologies. The second
generation user interface, XTDRS, provided basic windowing capabilities, utilized
retrieval techniques based on LSI and was designed as an interface for novice X-
windows users. As with its predecessors, XLSI utilizes the underlying LSI retrieval
technologies and displays basic information required for query matching. However, as
XTDRS and InfoSearch were designed for novice windows users, XLSI was designed
to facilitate advanced user interaction and advanced informational display. XLSI
extends the original information displayed by providing the user with the ability to
retrieve previously-performed searches. This advanced information and any other
information displayed by XLSI can be electronically exchanged with other users.
XLSI can be compiled and executed on any workstation that supports the X-Window
System Release 5 (X11R5) and the Open Software Foundation’s (OSF) Motif 1.2.

v

Contents

1 Introduction 1
1.1 Motivationo Lo 1
1.2 Latent Semantic Indexing Lo 2
1.3 Relevance Feedback o000 2
1.4 Ranking Relevant Documents 3
1.5 LSI Factors 3

2 Design Principles 4

3 Implementation 6
3.1 Book Selection 6
3.2 XLSI Operating Modes 7
3.3 Query Constructiono 7
3.4 Relevance Feedbacko 8
3.5 Search History 9
3.6 Previous Search Status oL 10
3.7 Electronic Mail Capability 11
3.8 Print Capability 11

3.9 Trace Files o
3.10 LSI Options o o
3.11 XLST Help . . . o o oo o
3.12 XLST Activity Alerts oo oo
3.13 Opening and Closing Different Books

4 Sample XLSI Session

4.1 Customizing XLST o
4.2 Sample Book Selectiono
4.3 Query Construction Lo

4.3.1 Sample Keyword Search

4.3.2 Sample Relevance Feedback Search
4.4 Utilization of Search History
4.5 Building a Previous Search 00000
4.6 LSI Configuration
4.7 Electronic Mail Communication
4.8 XLSI Printing Capabilities L oo
4.9 Obtaining on-line helpo

5 Current Platforms and Future Work
5.1 Current Platforms.

5.2 TFuture Work e

Bibliography

Appendices

vi

15
15
15
17
17
22
24
26
26
26
31
31

33
33
33

35

38

List of Tables

.1 XLSI Programming Information - Book Selection Interface 49
.2 XLSI Programming Information - Control Interface 50
.3 XLSI Programming Information - Title Interface 50
4 XLSI Programming Information - History Interface 50
.5 XLSI Programming Information - Document Interface 51
.6 XLSI Programming Information - Previous Search Status Interface. . 51
.7 XLSI Programming Information - LSI Configuration Interface 51
.8 XLSI Programming Information - Title Dialog Interface 51
.9 XLSI Programming Information - Email Interface 51

vil

List of Figures

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

Book Selection Interface oL 16
XLSI Interactive Environment L 19
Title Interface oL 20
History Interface o 20
Document Interface oo 21
Document Interface containing text on Dr. Michael Berry 23
Title Interface after Relevance Feedback Search 24
Search as reconstructed using the History Interface 25
Previous Search Status Interface 27
LSI Options Interface L. 28
Electronic Mail Address Interface 29
Electronic Mail Editing Interface 30
Help Tear-offt Menu 32

viil

Chapter 1

Introduction

In this thesis, XLSI, a graphical user interface for latent semantic indexing (LSI)
information retrieval is presented. XLSI can be used to retrieve information from a
wide variety of textual materials, as well as from objects and services (e.g. electronic
mail). The motivation of XLSI and pertinent background information is presented
in this chapter. In Chapter 2, the design principles of XLSI are described. Chapter
3 describes how XLSI has been implemented. Chapter 4 provides a sample session
utilizing XLSI. Chapter 5 describes the current computing platforms and future work
for XLSI. Appendix A describes the interactive environment required to execute XLSI.
Appendix B describes the customizable features of XLSI. Documentation on the XLSI
software is given in Appendix C.

1.1 Motivation

XLSI provides a graphical user interface for the utilization of latent semantic indexing
(LSI) in information retrieval. One of the initial design goals was to develop an inter-
face based upon an industry standard windowing system. The X-Windows System
Release 5 (X11R5) was chosen as the entry point into the X-Windows environment.
To facilitate the development of XLSI, the Motif Version 1.2 libraries were selected
as the X-based Toolkit. With X11R5 and Motif 1.2, XLSI could be portable across
many computing platforms (UNIX and non-UNIX systems alike). Finally, for rapid
prototyping, Visual Edge Software’s UIM /X interface development tool was utilized.

In addition to portability, the X-Windows system provides a client/server archi-
tecture. The XLSI engine can execute on a high-performance workstation, while the
interface is displayed on either a low cost workstation, an X-Terminal, or a personal
computer running X-Windows emulation software.

XLSI was also designed to provide an intuitive interface to a wide range of users,
including non-technical users, non-windows users and experienced windows users.

To provide this extensive degree of customization, XLSI incorporates user-defined
resources. By allowing the end-user to define display characteristics, such as back-
ground colors or scrollbar locations, XLSI can be modified to support the particular
skill level of the user. By default, the resources have been configured for the novice
user.

Finally, XLSI should allow users to share both the information retrieved as well as
the information that would indicate the success or failure of the underlying retrieval
technique (LSI). The sharing of the information is implemented by adding an interface
to the computer’s electronic mail system. To provide additional information to the
LSI-experienced users, XLSI implements the recording and displaying of previous
search information.

1.2 Latent Semantic Indexing

In analyzing information retrieval methodologies, there exists a fundamental prob-
lem of trying to match words of queries with words of documents. Users want to
retrieve information based on the meaning of the document, not necessarily the lit-
eral keywords within a document. An additional problem is that words may have
more than one meaning, so words used in a user’s query will match words in irrel-
evant documents. For example, the word chip may refer to a computer processing
device (PA-RISC 7100) or a thin slice of a potato (a potato chip). Hence, a search
with the word chip may retrieve documents related to food or computers. If the
user is interested in computer technologies, a search with the word chip might not
retrieve any relevant information. Latent Semantic Indexing (LSI) tries to overcome
the problem of literal searches by treating the observed word to document associa-
tion as an unreliable estimate of the larger number of words that could be associated
with the document. Using mathematical models based upon the singular value de-
composition (SVD), LSI can estimate this latent structure and remove the obscuring
noise [DDF*90]. The closeness of documents is determined by the overall pattern
of word usage so that documents can be grouped together regardless of the precise
words used to describe them. In our above example, if the user was interested in
computer technologies, most likely the documents concerning computers would have
more [tke words than documents concerning food. Words, or terms, such as electrical,
instructions, performance, MIPS, and Fortran could be common in computer-related
documents, but not likely in documents on snack foods.

1.3 Relevance Feedback

With relevance feedback [SB90], words can exist in related documents, but not neces-
sarily in a user’s query. Continuing with the above example, if a user finds a document

that contains information about Intel’s Pentium processor, but actually wants infor-
mation concerning performance characteristics of computers, they can use the entire
Intel Pentium document as a query. Because relevance feedback-based queries better
reflect the context of desired documents, a user may find information that did not
contain the original keywords of the search (chip). Relevance feedback within LSI
allows these documents to be clustered based upon the reuse of keywords within the
documents, not necessarily within a user’s search.

1.4 Ranking Relevant Documents

The original LSI process begins with a matrix of terms by documents. This matrix
is derived from the original document(s) text so that each element is the frequency
in which a particular term occurs in a given document. The latent semantic struc-
ture modeled by LSI requires a truncated singular value decomposition (SVD) of the
term by document matrix [Ber92]. The truncated SVD can be viewed as a technique
for deriving a set of uncorrelated factors. Each word (term) and document is repre-
sented by its vector of factor values (elements of scaled left and right singular values).
When the user issues a query, the query is processed as a pseudo-document, i.e., the
query is represented as a vector in the same multi-dimensional space containing the
existing documents. The query vector is then compared to the conceptually-nearest
documents. All documents comprising the database can be ordered with respect to
closeness with the query. One measure of closeness for rank-ordering documents is
the cosine between the vectors [Dum91]. The document corresponding to the highest
cosine is simply the closest document in the k-dimensional subspace as determined
by the truncated SVD of the original term-document matrix.

1.5 LSI Factors

As mentioned in Section 1.4, LSI requires a truncated singular value decomposition
(SVD) of the term by document matrix. Each word (term) and document is rep-
resented by its vector of factor values (elements of left and right singular vectors)
in k-space. The number of dimensions, k is represented by the number of factors
generated by the SVD. In an attempt to map like documents closer, users can reduce
the number of factors or dimensions. By reducing the dimensions (factors), like doc-
uments might move closer together (as reflected by a higher cosine value). However,
if the number of dimensions are too small, the relevance between documents may be

forced[DDF+90].

Chapter 2

Design Principles

XLSI is a third generation graphical user interface developed for the LSI application
discussed in [DDF*190]. The basis for the original LSI windows based interface was
the MGR windowing system, which was developed internally and utilized at Bellcore.
This interface was not based upon an industry standard window system or toolkit,
therefore it was not portable. With XLSI, an initial design goal was to be portable
across hardware platforms. By utilizing the X-Windows System Release 5 (X11R5)
and the Motif 1.2 toolkits and libraries, XLSI can be ported to a wide variety of
computing platforms.

One of the design principles of XLSI is to improve the users’ ability to perform their
information retrieval tasks. This requires understanding the users’ skill level(s). An
initial version of XLSI, XTDRS [BAM93], was designed to provide a basic interface
to the LSI retrieval technologies. This version had a single user audience, librarians
and library patrons at John C. Hodges Library on the campus of The University of
Tennessee, Knoxville. Since this version was designed with a single audience, its usage
was very simple, to provide very basic windows interfaces to the retrieval technologies.
The features were limited by the experience level of the user community. In contrast,
XLSI was designed for users with various experience levels.

In contrasting XLSI with the earlier interface designs for LSI, an easy method
to input the search criteria did not exist. Additionally, the output (display) of the
information was not in a format that the non-technical user could easily interpret.
By providing a user-friendly interface, XLSI gives both the novice and the expert
LST user the capability to retrieve and display accurate information. Additionally,
the early interfaces just displayed the information retrieved, without attempting to
exploit conceptual or fuzzy search techniques. Through the enhanced features of
XLSI, users can develop effective LSI search techniques.

Another design principle of XLSI is to enable users to accomplish searches that
would otherwise be difficult or impossible. To accomplish this goal, XLSI’s input
interfaces provide the format for constructing a unique set of search criteria. In

previous interfaces, the user could enter either keywords to be utilized in the search,
or a title (which represents the entire document and thus a relevance feedback search).
XLSI expands this search capability by allowing the user to enter keywords, titles
(which represent the entire document) or a combination of both keywords and titles
(documents) as search criteria. This feature allows users to retrieve information that
they may have previously not been able to locate.

One challenge for LSI search techniques is the understanding of the relevance feed-
back searches. It is sometimes confusing to a user who is familiar with keyword-only
searches. With XLSI, related documents which do not contain the exact keywords
used in the query may be retrieved. XLSI attempts to educate the user of the under-
lying search process in its uniquely-labeled input interface as well as in the display
(output) interface(s).

In previous LSI interfaces, the user’s environment was a closed system with no
capabilities of communicating with other LSI users. XLSI is designed for enhancing
the users’ ability to communicate with other users. Each individual interface in XLSI
provides the user the capability to use electronic mail, print or save the associated
textual output, thus allowing multiple users of the same documents to communicate
the information they retrieved, the search criteria they used and the efficiency of their
searches.

As mentioned earlier, XLSI is designed for users of different skill levels. Each user
has unique preferences and needs. XLSI allows the user to have some control of the
configuration of the interfaces. This level of customization is provided by utilizing
the X-Window and Motif resources.

Chapter 3

Implementation

As stated previously, XLSI is implemented using X11R5 and Motif 1.2 libraries and
toolkits. The following sections describe each individual interface implementation,
as well as the specific implementation of the X11R5 and Motif 1.2 toolkits. Sample
displays of the interfaces discussed in this chapter are found in Chapter 4.

3.1 Book Selection

The LSI application refers to a collection of documents as a book. Users need to
choose which of these books they want to search, and since books can be modified,
XLSI needed to provide a mechanism for adding, deleting and modifying documents
within books without recompiling the application.

To display the currently configured books, XLSI utilizes the Motif scrolledList
widget. The scrolledList widget allows the user to select the book that contains
the documents that they would like to search. Selection occurs when the user double
clicks on an item in the list. After the user has chosen a book, the XLSI application
retrieves the book title from the scrolledList widget. The book title is then passed to
the XLSI processing code to check for the presence of all the required LSI generated
database files and XLSI database files.

To facilitate the addition of new books, the modification of the current book titles,
and the deletion of old books, the XLSI application makes extensive use of resource
files. For example, the resources associated with the scrolledList widget for book
titles are listed below.

*.scrolledlListl.itemCount: 5

*.scrolledlListl.items: Collier Condensed Encyclopedia,
Gospels of the Bible, Knoxville News Paper, Netlib,
Professors of Computer Science

See Appendix B for a complete listing of XLSI’s defined resources.

To reference a book title within the internal LSI structures, XLSI utilizes a user
configuration file. This configuration file can be customized by modifying the user-
defined variable doc_dir in the storage.h include file (and re-compiling XLSI), or
by the user-defined environment variable BOOK_CONF. See Appendix 5.2 for a complete
listing of user configurable parameters.

3.2 XLSI Operating Modes

XLSI can be configured in two distinct operating modes, Search Mode and Browse
Mode. When operating in Search Mode, the user inputs are defined as constructing
a search. In particular, any reference to a keyword or document signifies to XLSI
that the user would like those keywords or documents added to the search criteria.
If XLSI is operating in Browse Mode, inputs are processed as if the user is browsing
the books and therefore, the associated text is displayed.

3.3 Query Construction

After a book has been selected, XLSI displays the Control Interface. This is the main
interactive interface for the XLSI application. In this interface, the user is able to
input natural language queries (search strings) for textual retrieval. This input occurs
in Motif’s text widget class, XmText. The field Keywords:, is used for search string
input. The XmText widget provides the user with a single line entry field. Entry into
this field can be via the keyboard or by cutting and pasting which is provided by the
window manager. XLSI retrieves the user supplied information via the XmGetText
Motif function and passes the search string to internal XLSI code for parsing.
Depending upon the size of the book, searching a document requires significant
processing and time. For this reason, search processing is not activated by the return
key or pointer input. To perform a search, the user must explicitly utilize the Motif
PushButton labeled Begin Search, which is implemented using a PushButton wid-
get. The PushButton labeled Begin Search is configured with the XmNlabelString
resource, and when the user activates the pushbutton, the callback routine
XmNactivateCallback is executed. If XLSI is currently in Search Mode, a search is
performed. When a search is initiated, the first step is to retrieve the particular key-
words and titles (documents) specified. This is accomplished by the Motif function
XmGetText which returns the keywords and titles (documents) from the appropriate
Motif XmText widgets. At this point, XLSI parses the users input and builds the ap-
propriate query string. If the user has only entered keywords (terms), then the query
string is just that list of terms. If the user has selected a title, which is used as a refer-
ent to a particular document, for relevance feedback searching, then the query string
is the document number associated with that particular title (document), proceeded

by a +. For example, if the user entered the keywords computer chip and selected
the fifteenth document represented by the title Intel Computer Company, the inter-
nal search string would be constructed as computer chip +15. These keywords and
documents are taken together to form a pseudo-document which is compared with
documents already indexed by the truncated SVD [DDF*90].

After a search is completed, XLSI returns a list of document title numbers in
rank-order (highest cosine match first). By mapping the document title to the doc-
ument number, XLSI is able to retrieve the matching document text. For output
display, XLSI then attaches the rank-ordered (cosine) matching information to the
titles which are then placed in the Title Interface interface. The Title Interface
interface uses a Motif XmScrolledList widget to permit the user to choose a ti-
tle by pointing-and-clicking. XLSI uses the XmNsingleSelectionCallback resource
to determine which title was selected. By setting the XmScrolledList resource,
XmNscrollBarDisplayPolicy, to XmAS NEEDED, the interface can place multiple ti-
tles into a small interface. Additionally, because this XmScrolledList is parented by
a Form widget, the user can re-size the title interface to better suit their query needs.

After a successful search and after the titles are displayed in the title interface,
XLSI displays the text of the first document in the rank-ordered list. This docu-
ment is displayed in a separate interface using the XmText widget. XLSI uses the
ScrolledText resource set of the XmText widget so that the user can customize the
amount of text that should be displayed. If the documents in the book are rela-
tively large, the Document Interface’s textual output can be expanded. Likewise, if
the document is small, the Document Interface’s output size can be reduced. By
using the ScrolledText resource, XLSI can automatically add a scrollbar when the
document exceeds the size of the document text interface. The keywords that were
contained in the user’s search string are highlighted in the document text by using
the XmHighLightText Motif library function.

3.4 Relevance Feedback

Relevance Feedback, as discussed in [SB90] and briefly described in Section 1.4 , can
be a very effective search strategy. In XLSI, relevance feedback queries are formed
using the entire text of any documents specified by the user. To implement relevance
feedback, XLSI allows users to enter titles of documents from the Title Interface. To
construct a query using relevance feedback, the user first clicks on the pushbutton to
place XLSI in Search Mode. From this point, until the user toggles the pushbutton
to Browse Mode, any click on a title places the title text in the Title text field of
the Control Interface. Like the Keyword text field, the Title text field is implemented
with a XmText widget. However, since the title must match exactly with the titles in
the book, the resource XmNeditable is set to false. This match must occur, because

to perform relevance feedback, the entire document text must be passed to the LSI
search engine. To map the title to the document text, XLSI matches the titles
entered on the Control Interface to the document number, and then XLSI retrieves
the corresponding document text from the document number. This action is reflected
to the user by placing the document number in the status interface located above the
Mode button in the Control Interface. After the user has constructed the search with
any combination of keywords and document titles, the Begin Search pushbutton is
activated.

3.5 Search History

The original MGR-based interface for LSI [DS91] provided a search history interface
which displayed the previous keyword searches that had been performed. The original
XTDRS/XLSI [BAM93] interface provided the same history functionality with sev-
eral enhancements. The third-generation interface XLSI, also implements the Search
History interface with additional enhancements.

One of the early enhancements was to provide the users the ability to visualize
their previous searches. Since XTDRS/XLSI allowed the users to search with any
combination of keywords and documents (relevance feedback), a display mechanism
was 1n place to distinguish between these two types of inputs. XLSI distinguishes
between keywords and documents with the use of three visuals. First, the keywords
and document titles are placed on separate lines in the History Interface. Secondly,
the keywords are prefixed by a K: and the document titles are prefixed by a T..
Thirdly, all words in the document titles are displayed with an italic font.

By definition of LSI, words that exist in two or more documents and are not
considered common words (of, the, this, etc.) are keywords. The History Interface
provides a visual mechanism to inform users which terms (keywords) that they entered
into the keyword search field were actually keywords in the XLSI search. Words or
terms that were actual keywords (as defined by LSI) are displayed in italics, while
other words or terms are displayed in the default font.

To implement the History Interface, XLSI also uses a XmText widget. This XmText
widget provides the same scrolling features of the Title Interface. The main use of
the History Interface is to allow the user to reconstruct a previous search. Therefore,
the keywords and document titles must be easily selected. When XLSI is configured
in Search Mode, the user simply points and clicks on the word or document title
that they would like to utilize in the search. The keywords are retrieved from the
History Interface by examining the internal Motif communication structure (Call-
back Structure). By mapping the position of the user’s click (item_position) with the
internal search history structure, XLSI is able to reconstruct the actual words and
titles (documents) from the previous query. These words and titles are placed in the

appropriate Keywords: or Title: fields of the Control Interface.

3.6 Previous Search Status

Although originally designed as a document retrieval tool, XLSI can be used to moni-
tor the LSI retrieval technology. In particular, users need to understand both current
and previous queries and the results returned. To address this need, XLSI provides
a Previous Search Status Interface. Like the History Interface, the Previous Search
Status Interface displays keywords and document titles used in a particular search.
Additionally, the Previous Search Status Interface displays the actual rank-ordered
listing of the documents retrieved by that search. This enhancement allows users
to track a particular document and determine which query returned that document
in the highest rank-ordering. Viewing a document title, the search criteria selected
and the rank-ordering, the user has the information necessary to better interpret LSI
performance and improve searching.

Implementation of the Previous Search Status Interface took into consideration
the times at which a user might want to see previous search status information. The
current design allows the interface to be displayed from the History Interface. There-
fore, if XLSI is configured in Browse Mode and the user clicks on a previous search
in the History Interface, the Previous Search Status Interface will be displayed. The
Previous Search Status Interface displays the search criteria used in that particular
search (terms (keywords), titles (documents), or any combination of terms (keywords)
and titles (documents)) and the rank-ordered listing of the documents returned by
that search. The utilization of XLSI in this capacity allows the user to click on one
search, learn from the results, click on another search, compare the results, etc.

The Previous Search Status Interface is also implemented using a XmText widget.
As with all other text interfaces, this XmText widget provides scrolling functionality.
If the XLSI user only requires a small amount of document titles to be displayed, the
interface’s output can be resized to accommodate this display. If the user requires
a large amount of document titles, the interface’s output can be enlarged. Like the
other interfaces, Motif’s XmNScrollBarDisplayPolicy is configured to XmAS NEEDED
which displays the scroll bars when necessary. Also, to provide consistency, if XLSI
is in Search Mode, and the user clicks on a document title, the document title text
is displayed in the Control Interface to be used by the next XLSI search. If XLSI
is configured in Browse Mode and the user clicks on a document title, the document
text is displayed in the Document Text Interface.

10

3.7 Electronic Mail Capability

As XLSI evolved, the need to communicate between users grew. The knowledge of
LSI configuration, retrieval results, and search criteria needs to be shared between
users and LSI developers. To provide this feature, XLSI incorporates the use of
electronic mail. Users can electronically mail their search results from any of the
multiple interfaces within XLSI. They can email the contents of the current Title
Interface, the History Interface, the Document Text Interface, or the Previous Search
Status Interface to any valid internet address. In addition to electronically mailing
the Interface information, XLSI allows the user to edit and annotate the information.
This feature can be used to facilitate communication between XLSI users and LSI
developers.

To implement the electronic mail functionality in XLSI, a pull-down menu was
added to each interface (Title, History, Document, and Previous Search Status). The
user pulls down the File Menu and selects Email. To enter the destination address,
XLSTI uses a Dialog widget and prompts the user to Enter the e-mail address to send
information. After the user enters the address, they have the option of sending the
electronic mail (OK Button) or canceling the operation (Cancel Button). XLSI imple-
ments a callback with the resource XmNokCallback in order to retrieve the electronic
mail address. After the electronic mail address has been retrieved, XLSI executes
the editing command specified by the EDIT_COMMAND environment variable. A sample
setting for this variable might be /usr/bin/X11/xterm -e vi. This would pop-up
a new xterm and use the vi editor to edit the information. After the information
has been edited and saved, XLSI executes the user configured email command (e.g.,
mail). This immediately electronically mails the interface information along with all
edits the user may have added.

3.8 Print Capability

After retrieving relevant information, XLSI provides the user the ability to print
document text. By simply pulling down the File menu on the Document Interface,
the user can select the Print option. This will print the document text to the user
configured printer, using the user-supplied print command. XLSI provides the print
feature to all interfaces (Title Interface, History Interface, Previous Search Status
Interface and Document Text Interface).

To provide the maximum level of customization and to allow XLSI to work in
a heterogeneous computing environment, the print command is customizable. By
either modifying the lp_command in the storage.h include file, or by setting the
LP_COMMAND environment variable, a user is able to execute the print command specific
for their computing environment, as well as specify their printer destination and any

11

unique print options. See Appendix 5.2 for information concerning user customizable
environment variables.

3.9 Trace Files

XLSI implements a Save feature for all the interfaces (Title Interface, History Inter-
face, Previous Search Status Interface and Document Text Interface) which allows a
user to trace their XLSI session. This provides an audit trail of the searches and results
for later analysis of LSI performance. To save information, the user selects the Save
option from the File menu. The interface information is saved to a user-configured
save file.

3.10 LSI Options

As documented in Section 1.2, the user may desire similar documents to be ranked
(or clustered) together by reducing the number of LSI factors or dimensions that
were generated by the SVD. XLSI provides an interface that will allow the user to
increase or decrease the number of factors (dimensions) to be used in the next search.
This functionality allows the experienced LSI user to perform a query = with a factor
of y, and then reconfigure the LSI search to perform query = + 1 with z factors.
However, the user cannot increase the number of factors to be greater than the original
number of factors generated by the original truncated SVD. To modify the number of
factors, the user selects LST Options from the Control Interface’s menu-bar. When the
pulldown menu option LSI Configuration is selected, the LSI_Window is displayed.
At this point, the user can view the LSI Configuration parameters including, number
of factors, number of documents, and number of terms. The input cursor is placed
in the XmText field associated with the number of factors. To modify the number of
factors, the user enters the new number and selects Save Configuration and Fzxit from
the File pulldown menu. If the user attempts to increase the value of factors beyond
the default, an Error Dialog widget is displayed and the error, Cannot increase the
number of factors greater than the default value determined by LSI is displayed.

Additional LSI information displayed by the LSI Options Interface is the number
of documents in the selected book and the number of of terms (words) used by LSI in
searching the book. The default number of documents returned after a query is 50 or
less (less if the book contains less than 50 documents). This can be modified to suit
a particular search requirement. By selecting the Change Number of Titles Displayed
Interface, the user simply supplies the number of documents that they would like
returned. This allows the user to eliminate the display of irrelevant (low matching)
documents or expand the number when they are experiencing problems finding their
information.

12

3.11 XLSI Help

XLSI was designed to be used with a minimal amount of documentation. However,
there are some interactions and information that may require additional explanation.
Rather than expect the user to maintain XLSI documentation, we designed an on-line
help facility. Each Help submenu provides an explanation of the particular interface’s
displayed information and the interaction of the interface’s interface. The interfaces
included in the help subsystem are Control Interface, Title Interface, History Inter-
face, Document Interface and Previous Search Status Interface.

On-line help is implemented using a new feature of Motif 1.2, tear-off menus. When
the user activates the help pull-down menu, a sub-menu becomes available. This sub-
menu is created as a unique interface and can be manipulated separately. Therefore,
when the user asks XLSI for help, the help menu becomes available throughout the
application. The user simply places the Help Tear-off submenu on their interface
and the particular sub-menus can be activated at any time. The tear-off menu is
implemented by setting the resources XmNtearOffModel and XmTEAR OFF ENABLED.
And the Help menu pane is placed in the right most location on the Control Interface
by setting the resource XmNmenuHelp Widget.

3.12 XLSI Activity Alerts

XLSI’s predecessor, MGR was prototyped and tested using small on-line databases
or books. However, XLSI was designed for searching large on-line databases such as a
condensed encyclopedia (Columbia Condensed Encyclopedia), a collection of several
months of local newspaper articles (Knoxville News-Paper) and several translations of
the Gospels of the Bible. These large databases motivated both efficient search algo-
rithms and a mechanism for informing the user that work was being performed. The
first release of XTDRS/XLSI provided a status interface that displayed the number
of documents searched (in increments of 100). However, this in itself required pro-
cessing and update time. The latest generation of XLSI now simply locks the cursor
by changing its display icon to be a stopwatch and freezing interactivity to the appli-
cation. The user is provided with a visual (a new cursor icon) to inform them that
background processing is occurring. When the entire book has been searched, the
cursor returns to its normal mode and the interfaces are ready to receive input.

3.13 Opening and Closing Different Books

When implemented in the John C. Hodges Library on the campus of the University of
Tennessee, XTDRS/XLSI [BAM93] provided an interface to one book at a time. To

close that book and open another book required the user to exit the application. As

13

an enhancement to this, XLSI provides the capability to open a new book. While on
the surface this appears trivial, the termination of the underlying data structures and
the reinitialization of global flags have to occur. To close the current book and open
a different book, the user simply chooses Open New Book from the Control Interface.

14

Chapter 4

Sample XLSI Session

In this chapter, the features and functionality of XLSI are demonstrated. The ses-
sion begins with book selection followed by a typical keyword query. That query is
then followed by a relevance feedback query using the text of a selected document.
Throughout the session, the advanced enhancements of XLSI are demonstrated.

4.1 Customizing XLSI

The customization of XLSI is consistent with other X-Windows applications. In
particular, a resource file (@lsi.rf) is used to notify X-Windows of default values for
particular resources (e.g., Background Color). For simplicity, the notification to the

X-Windows manager is provided through the local XENVIRONMENT variable. For

this session, the user executes,

XENVIRONMENT=x1s1i.rf
export XENVIRONMENT

4.2 Sample Book Selection

In XLSI, searches are performed on a collection of documents, or books. The book
selection is illustrated in Figure 4.1. In this example, UTK’s Computer Science
Department’s Staff was selected. To select this particular book, the user places
the pointer (in this case, the mouse) over the book title and double clicks. XLSI
retrieves the selection, compares UTK’s Computer Science Department’s Staff to
the book titles documented in BOOK_DIR and locates the underlying LSI database
files. If any LSI or XLSI files are missing, XLSI will report an error.

15

= ALSIT

ille News Sentinal
Letter P
Hn-'f 1 b

Figure 4.1: Book Selection Interface

16

4.3 Query Construction

After selecting the University of Tennessee’s Computer Science Department’s Staff,
the user obtains the XLSI Control Interface, the Title Interface, the History Interface,
and the Document Text Interface. The environment is illustrated in Figure 4.2. The
Title Interface outputs the initial book titles as they appear in the book selected. In
this example, each professor’s name and title are displayed. The Document Interface
initially displays the textual information associated with the first professor in the
actual book text. Because this is the first search, the History Interface does not
contain any prior searches.

4.3.1 Sample Keyword Search

Suppose a user is trying to find professors that conduct research in parallel computing.
To begin the search, the query research in parallel computing can be entered.
First, the Keywords text field is activated with the mouse (the outline of the text field
will highlight upon activation). Because this text field is editable, any input errors
that may occur can be corrected with the backspace key, cut and paste, or any other
standard editing functions.

To indicate to XLSI that a search is to be performed, the Mode button is toggled
with the left mouse. The Mode button then displays Search Mode. To initiate a search,
the Begin Search button, located above the Mode button on the Control Interface is
selected. As the search is being performed, the cursor is displayed as an stopwatch
and user input is frozen. When the search completes, the cursor is returned to its
normal icon and input is allowed in the interface.

If any words that the user entered are indexed terms (keywords) in the underlying
LSI database the search can proceed. Otherwise if no words were indexed, an error
message is reported and the user can enter another search. Following a successful
search, XLSI reports the matching terms (words) in the Status Field located above
the Mode button in the Control Interface. In this example, the keywords research
parallel computing were valid terms and therefore utilized in the search. The Title
Interface, as displayed in Figure 4.3, contains a rank-ordered list of the returned
documents with each title preceded by its relevance factor (100 times cosine with
query). The initial XLSI configuration displays a maximum of 50 documents (or all
the documents if the total is less than 50). The vertical scrollbar on this interface can
be used to see the rank-ordering of all the professors as judged by LSI. The horizontal
scroll bar can be used to fully display the professor’s names and titles. The History
Interface (Figure 4.4) logs the queries and italicizes the keywords found and bolds
the words that were indexed by XLSI. Queries based solely on keywords are preceded
by a K:in the History Interface.

Finally, the Document Interface is updated to contain the text of the top-ranking

17

document. In this example, the highest matching professor is Michael A. Langston;
Professor of Computer Science. Figure 4.5 contains the text window that displays the
information associated with this professor. The scroll bar in the Title Interface can
be used to move down the rank-ordered list of professors. When the next professor is
highlighted in the Title Interface, their associated text is displayed in the Document
Interface. Any keyword from our most recent query (if the query was a keyword
search) is highlighted in the Document Interface. This highlighting remains in effect
when browsing articles returned.

18

Hel|

Begin Scarch

Bruce J. Maclerman; Associate Professor of GComputer Science;:
Jean R. 5. Blair; Assistant Professor of Computer Science;
Heather D. Booth; Assistant Professor of Computer Science;
Bradley T. Vander Zanden; Assistant Professor of Computer Science;
Jeffrey D. Case; Associate Professor of Computer Science,
David Matchler; Assistant Professor of Computer Science;
David V. Straight; Assistant Professor of Computer Science;
Jack Dangarra; Professor of Computer Science

|| 3. H. Poore; Professor of Computer Science and Department Head;

Figure 4.2: XLSI Interactive Environment

19

— Title_lindow

Michael A. Langston; Professor of Computer Science;

Mark T. Jones; Assistant Professor of Computer Science;

Heather D. Booth; Assistant Professor of Cowputer Science;
Bradley T. Vander Zanden; Assistant Professor of Computer Science;

Michael W. Berry; Assistant Professor of Computer Science;

David W. Straight; Assistant Professor of Computer Science:
Jean R. 5. Blair; Assistant Professor of Computer Science;

Micah Beck; Assistant Professor of Computer Science:

Jack Dongarra; Professor of Computer Science

Jane Wallace Mayo; Imstructor of Computer Science;

Figure 4.3: Title Interface

Hiztaory_kindow _

Figure 4.4: History Interface

20

— Document_Text

includir

researc aralle CDmputln

He is curr n-n'l'l" 3 icat f] uctive mathemat

in the
rrentls

111'1H1111 Journal

with M. R. Fell

orithm,”’’
with D.

, 7 Discrete Applied Mathe
hamson, M. R. Fellows and EB.

metric Networks from Linear Group

] 21]

Figure 4.5: Document Interface

4.3.2 Sample Relevance Feedback Search

As described in Section 3.4, XLSI allows users to find like documents using relevance
feedback. In essence, the entire document is used as a search, in hopes of retrieving
similar documents. This feature is implemented in XLSI by allowing the user to select
any number of titles (used as referents to documents) from the Title Interface. The
query 1s then built with the entire document text associated with each title entered
in the query.

After scrolling the Title Interface, the text associated with Michael W. Berry is
displayed (see Figure 4.6). Suppose the user wants to find the professors of computer
science who’s research is most like Dr. Berry’s. After toggling the Mode button to
Search Mode. the user selects the title Michael W. Berry; Assistant Professor
of Computer Science from the Title Interface. Because XLSI is now in Search
Mode, a query is constructed. The title selected is then displayed in the Titles:
field of the Control Interface. Dr. Berry’s text is simultaneously displayed in the
Document Interface. To initiate the search, the Begin Search button is pressed and
Figure 4.7 shows the result of this relevance feedback search. The Title Interface has
been updated to reflect the new search, the Document Interface contains the text
associated with the highest-ranking document and the History Interface displays the
query. Since this query was constructed with a document rather than a keyword, the
History Interface proceeds the title with a T and italicizes the entire title. Notice
that the article on Dr. Berry is the highest-ranked document with a relevance factor
of 100 (i.e., the returned document is identical to the search document or query).
To indicate that a relevance feedback search was performed, the Control Interface
displays the actual document number (+15) in the status field.

22

DNocument._Text

HEICSEArC

paralle 1k

entif

wisua

ic

14

paralle 1Rt

with .

£

zoluhk

2 for the
HATO 45T

BS54 Journal of [ManjsiEhesBags,

for

mic reflection tom

for the [M=FI-I-84 y

Factorin:

ix Anal. Appl., 11

rithmic

Information Retri

g Fifth Int

nt of

ompute

23

Figure 4.6: Document Interface containing text on Dr. Michael Berry

— Title_Window = | [

100 - Michael W. Berry; Assistant Professor of Computer Sciend
97 - Mark T. Jones; Assistant Professor of Computer Science;

93 - Heather D. Booth; Assistant Professor of Computer Sciencs
92 - Bradley T. Vander Zanden; Assistant Professor of Cowpute:

91 - Jack Dongarra; Professor of Cowputer Science

90 - Michael A. Langston; Professor of Computer Science;

88 - Davad W. Straight; Assistant Professor of Computer Sciend
85 - Jane Wallace Mayo; Imstructor of Computer Science;

Figure 4.7: Title Interface after Relevance Feedback Search

4.4 Utilization of Search History

The original MGR-based interface for LSI provided a search history interface which
displayed the keyword queries that had been performed. Because XLSI provides the
capability of performing searches with keywords, titles (documents), or keywords and
titles (documents), a method to inform the user of the types of search previously
performed was needed. To distinguish the different types of searches several display
features have been incorporated. First, the keywords and (titles) documents are
reported on a separate line in the Search History Interface. Second, the keywords are
preceded by a K: and the titles are preceded by a T:. Third, as illustrated in Figure
4.4, titles are displayed in italic.

Another function of the Search History Interface is to allow the user to reconstruct
a previous search. XLSI provides this functionality by utilizing a point-and-click
interaction with the interface. To reconstruct a query, the user puts XLSI in Search
mode by toggling the Mode button, and then selects any combination of the previous
searches (keywords, titles (documents), or keywords and titles (documents)). XLSI
determines if the previous search selected was a keyword or title (document) and fills
the appropriate text field in the Control Interface. After the user has constructed

24

their new query, they press the Begin Search button to perform the search. Figure
4.8 illustrates the selection of a new query based on two prior searches, the Keyword
search research in parallel computingand the Title (Document) search Michael
W. Berry, Associate Professor of Computer Science.

= Control_Window ol 1]

h in parallel computing Begin Search

Figure 4.8: Search as reconstructed using the History Interface

25

4.5 Building a Previous Search

With the original MGR based-interface, and XTDRS/XLSI, there was no memory
or display of results from previous searches. XLSI provides previous search results
in a separate interface, Previous Search Status Interface. The information displayed
in the Previous Search Status Interface is the actual search strings (keywords, titles
(documents), or keywords and titles (documents)) and the resulting rank-ordered
listing of the titles (documents).

To display the previous search information, the user places XLSI in Browse Mode
by toggling the Mode button on the Control Interface and then clicks on the desired
previous search from the History Interface. XLSI searches the internal data structures
to find the previous search information associated with the selected search and dis-
plays the information, see Figure 4.9. In displaying the previous search criteria, XLSI
displays titles (reflecting relevance feedback searches) and keywords on consecutive
lines in the Previous Search Interface.

With large databases, long searches, and consecutive searches, the amount of data
managed by XLSI can be enormous. To avoid memory limitations, XLSI stores
the results of only the ten most recent previous searchs. When the user performs
the eleventh consecutive search, XLSI informs them that the ten latest searches are
stored and that some previous search information will be discarded. Also, if the user
tries to retrieve search status information that has been overwritten in memory, XLSI
reports an error message.

4.6 LSI Configuration

As mentioned in Section 1.5 the user may attempt to map like documents closer by
reducing the number of factors or dimensions. To modify the number of dimensions
to be evaluated, the user picks the LSI Options menu item from the Control Interface.
The default number of factors, number of documents and number of terms is displayed
(see Figure 4.10). To modify the number of factors, the user places the pointer in
the text field to the right of the Number of factors label and enters the new value.
To activate these changes, the user selects the Save Changes and Ezit menu selection
from the File menu-bar pane. If the user attempts to increase the number of factors
beyond the original LSI, an error dialog is displayed.

4.7 Electronic Mail Communication

The original MGR-based retrieval tool and XTDRS/XLSI provided information to
a single user. XLSI extends this communication to allow information to be passed
between multiple users. This is accomplished by incorporating electronic mail. Lit-

26

— Previous_Search_Status a | [

Michael W. Berry; Assistant Professor of Computer Science;
Mark T. Jones; Assistant Professor of Computer Science;

Heather D. Booth; Assistant Professor of Cowputer Science;
Bradley T. Vander Zanden; Assistant Professor of Computer
Jack Dongarra; Professor of Computer Science

Michael A. Langston; Professor of Computer Science;

David W. Straight; Assistant Professor of Cowputer Science
Jane Wallace Mayo; Imstructor of Computer Science;

Figure 4.9: Previous Search Status Interface

erally, any information displayed by XLSI can be electronically mailed to another
user. And to enhance communications, the user can annotate the information prior
to mailing it to another user.

For example, suppose the user wanted to send electronic mail about the rank-
ordered listing returned in the XLSI search mentioned above. After activating the
Title Interface containing the rank-ordered information and pulling down the File
menu they may select the E-Mail option. XLSI then prompts the user for the elec-
tronic mail address as displayed in Figure 4.11. After the appropriate information has
been provided, the user clicks the OK button. At this point, XLSI opens an edit inter-
face (see Figure 4.12) with the recorded information from the Title Interface. After
the user edits the information and closes their chosen editor, the modified informa-
tion is mailed. This process can be repeated indefinitely and with any information

displayed by XLSI.

27

Humber of factors

Humber of documents

Humber of terms

Figure 4.10: LSI Options Interface

28

email_interface _l

Enter the e-mail add nd information

Figure 4.11: Electronic Mail Address Interface

29

Figure 4.12: Electronic Mail Editing Interface

30

4.8 XLSI Printing Capabilities

One enhancement of XLSI is the ability to print any information displayed or re-
trieved. The original version of XTDRS/XLSI provided the ability to print only
the document text (via the Document Interface). However, to provide additional
functionality for those users attempting to learn more about LSI, XLSI provides the
capability to print any information retrieved. The user simply selects the File menu
on any screen, then selects the Print option. This will output the information to the
user configured printer. See Appendix 5.2 concerning the details of customizing the
print environment.

4.9 Obtaining on-line help

To retrieve help throughout XLSI, the user may select the Help button on the Control
Interface. The Help sub-menu is displayed and the user can retrieve more detailed
information by selecting a particular help topic. The Help sub-menu was designed
and implemented utilizing Motif 1.2’s tear-off menus. This allows one help screen to
be available throughout the entire application. To display on-line help to the entire
application, the user tears-off the help menu and locates it anywhere on the screen

(see Figure 4.13).

31

— Help Tear-oftf
Control Window Help
Title Window Help

History Window Help

Jocument Window Help

Previous search Status Window Help

Figure 4.13: Help Tear-off Menu

32

Chapter 5

Current Platforms and Future

Work

5.1 Current Platforms

One of the initial design goals for XLSI was portability across many computing plat-
forms. After considering several commercially-available windowing toolkits, OSF’s
(Open Software Foundation) Motif was chosen. The OSF/Motif toolkit is available
on most hardware platforms, including Hewlett-Packard, IBM, DEC, SUN and SGI.
This allowed development on a single platform, yet cross-compile onto the platform
required by users.

XLSI was developed on a Hewlett-Packard Series 9000 Model 720 computer at
The University of Tennessee at Knoxville. The configuration included 64MB of main
memory and 600MB of disk space. The software configuration includes: HP-UX
9.01, X-Windows R5 and OSF Motif 1.2. Because LSI is highly computational in
nature and XLSI manipulates large amounts of data, the high-performing HP work-
station provided an excellent development platform. To provide XLSI to additional
computing communities, we have also compiled and executed on a Sparc Station 10,
utilizing IXIT’s Motif libraries.

5.2 Future Work

In this thesis, XLSI, a Graphical User Interface for a Conceptual Retrieval System,
has been presented. As documented, the underlying retrieval technology for XLSI is
LSI, which includes relevance feedback. While relevance feedback has been proven
to be a very successful retrieval technology [DFL88], users of XLSI still question the
results. Most of the confusion is because the actual keywords that the user entered
either might not exist in the documents retrieved or that the documents retrieved

33

might not be ranked by the total number of keywords (hits) found. One solution
to this problem might be to incorporate an actual keyword search mode in XLSI.
By allowing the user to toggle between keyword search mode and fuzzy (LSI) search
mode, the users might gain a better understanding of relevance feedback searches.

With the growth of multimedia information and applications, one enhancement
to XLSI would be to redesign the underlying information databases. The current
design maintains all data structures in memory and while this allows for fast access,
it does limit the amount of information that can be accessed. With an underlying
database management system handling the data access and manipulation, XLSI can
be expanded to handle even larger books and more diverse information.

34

Bibliography

35

Bibliography

[BAM93]

[Ber92]

[DDF190]

[DFLSS]

[DS91]

[Dum91]

M. Berry, S. Allen, and R. MacIntyre. XLSI: A motif-based user interface

for a conceptual retrieval system. The X Journal, 3(2):58-64, 1993.

M. W. Berry. Large scale singular value computations. [International

Journal of Supercomputer Applications, 6(1):13-49, 1992.

S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman.
Indexing by latent semantic analysis. Journal of the American Society for

Information Science, 41(6):391-407, 1990.

S. Dumais, G. Furnas, and T. Landauer. Using latent semantic analysis to
improve access to textual information. In Proceedings of Computer Human

Interaction 88, pages 281-285, 1988.

S. T. Dumais and D. G. Schmidt. Iterative searching in an online database.
In Proceedings of the Human Factors Society 35th Annual Meeting, pages
398-402, 1991.

S. T. Dumais. Improving the retrieval of information form external sources.
Behavior Research Methods, Instruments, & Computers, 23(2):229-236,
1991.

36

[SBI0] G. Salton and C. Buckley. Improving retrieval performance by rele-
vance feedback. Journal of the American Society for Information Science,

A41(4):288-297, 1990.

37

Appendices

38

The following environment variables have been provided to allow maximum cus-
tomization of the XLSI environment. An initial configuration is provided in the
xlsi.csh.env file. This file, x1si.csh.env was constructed at The University of
Tennessee, using the csh (¢ shell). x1si.env is provided for the sh (bourne shell)
and ksh (korn shell) users.

BOOK_DIRECTORY

BOOK_DIRECTORY is an environment variable that provides the XLSI code the lo-
cation (directory) of the specific books. The BOOK_DIRECTORY is the global directory.
The sub-directories represent the specific books by name. For example, the directory

structure of BOOK_DIRECTORY could be:

/straw/homes/berry/books/
/straw/homes/berry/books/CCE
/straw/homes/berry/books/CSABS
/straw/homes/berry/books/UTK-CS

/straw/homes/berry/books/KNOXNS

BOOK_CONF
BOOK_CONF is used by XLSI to make the connection between the book that the user
selected and the actual directory of SVD information. This very basic implementation

is accomplished as follows:

UTK’s UTK-CS
Knoxville-News-Sentinel KNOXNS
UTKCS-Tech-Report-Abstracts CSABS

When the user selects UTK’s Computer Science Department Staff from the begin-

ning XLSI interface, XLSI opens the BOOK_CONF file and maps the UTK’s string to

39

the UTK-CS directory. This directory name is appended to the BOOK_DIRECTORY to

form the final search path for the LSI information:
/straw/homes/berry/books/UTK-CS

HELP _FILE

HELP _FILE points to the help text that will be displayed on the initial screen. By
providing a user configurable file, the user or XLSI developer can customize the degree
of help available through modifying the HELP_FILE. Again, this allows customization
without modifying the actual XLSI source code.

SAVE _FILE

When the user selects the Save option from the FILE menu of any of the interfaces,
the displayed information is saved to the file pointed to by SAVE_FILE. This allows the
user to customize the location of the saved information for this execution of XLSI.
New information saved is appended to the existing file.

LP_COMMAND

LP_COMMAND is the exact Ip command that XLSI executes to print the interface
information. This customization allows XLSI to execute on multiple environments

with different system print commands. An example LP_COMMAND is:
/usr/ucb/lpr -Pbutter

EDIT_ COMMAND

The EDIT_COMMAND is the system command that is executed when the user is email-
ing information to another user. As mentioned, the user is allowed to annotate the
information that is mailed to the supplied user. By allowing the user to customize
the EDIT_COMMAND, XLSI can execute on multiple system platforms. An example

EDIT_COMMAND is:

40

/usr/bi/usr/local/X11R5/bin/xterm -e vi

EMAIL_ COMMAND

EMAIL_COMMAND is the system command executed by the email interface. After the
user supplies the destination address, the address is added to the EMAIL_COMMAND and
the information is mailed. Again, by allowing the user to customize the EMAIL_COMMAND,

XLSI can execute on multiple system platforms. An example EMAIL_COMMAND is:
/usr/ucb/mail

XENVIRONMENT

XENVIRONMENT is the environment variable used to pass resource definitions to the
X-Windows environment. The appearance of XLSI can be modified via the resource
variables to each of the separate interfaces. XENVIRONMENT is "read” by the window
manager and the resource variables set within the file will be applied to the XLSI
interface.

XLSI_HELP

XLSI_HELP provides the file pointer to the text used to explain the specifics about
LSI text retrieval.

CONTROL_HELP

CONTROL _HELP provides the file pointer to the text used to explain both the in-
formation displayed in the Control Interface and the specifics about user interaction
within this interface.

FILE_HELP

FILE_HELP provides the file pointer to the text used to explain both the information
displayed in the Control Interface’s File Menu option.

SEARCH_HELP

41

SEARCH_HELP provides the file pointer to the text used to explain both the infor-
mation displayed in the Control Interface’s Search Options Menu option.

DISPLAY_HELP

DISPLAY HELP provides the file pointer to the text used to explain the LST Options
Menu Option of the Control Interface.

TITLE_HELP

TITLE_HELP provides the file pointer to the text used to explain both the informa-
tion displayed in the Title Interface and the specifics about user interaction within
this interface.

HISTORY _HELP

HISTORY HELP provides the file pointer to the text used to explain both the in-
formation displayed in the History Interface and the specifics about user interaction
within this interface.

DOC_HELP

DOC_HELP provides the file pointer to the text used to explain both the information
displayed in the Document Interface and the specifics about user interaction within
this interface.

PREVIOUS_HELP

PREVIOUS HELP provides the file pointer to the text used to explain both the in-
formation displayed in the Previous Interface and the specifics about user interaction
within this interface.

ERROR _HELP

ERROR_HELP provides the file pointer to the text used to explain the errors that
can occur within XLSI. This text is displayed when the user encounters an error and

chooses the Help pushbutton on the Error Interface.

42

XLSI provides two default sets of X Windows Resources. The first set of resources
is either defined in the source code, or defined by the actual defaults to the widgets
displayed. The second set of resources is provided in the file x1si.rf. This file can
be modified by the end-user to produce the interface "look and feel” that they desire.

Following is a list of the defaults resources and the interfaces that they effect.

! Resources for the Document Text Interface

* . Document_Text_shell.x: 390
*.Document_Text_shell.y: 10

* . Document_Text_shell.width: 610
*.Document_Text_shell.height: 740
* ., Document_Text.width: 610
*.Document_Text.height: 740

*.Document_Text.background: #9d94ab

*.scrolledText3.background: #dbc9c9
*.scrolledText3.fontlist: -Bitstream-Prestige-Medium-R

-Normal--16-120-72-72-M-80-HP-Roman8

! Resources for the History Interface

*.History_Window_shell.x: 10

* . History_Window_shell.y: 490

43

.History_Window_shell.width: 460
.History_Window_shell .height: 190
.History_Window.width: 460
.History_Window.height: 190

.History_Window.background: #9d94ab

.scrolledList3.background: #dbc9c9

! Resources for the LSI Options Interface

.Lsi_Window.x: 220
.Lsi_Window.y: 320
.Lsi_Window.width: 450
.Lsi_Window.height: 300

.Lsi_Window.background: #9d94ab

| Resources for the Previous Search Status Interface

.Previous_Search_Status.x: 230
.Previous_Search_Status.y: 200
.Previous_Search_Status.width: 490
.Previous_Search_Status.height: 310

.Previous_Search_Status.background: #9d94ab

! Resources for the Error Dialog Interface

44

.errorDialogl_shell.x: 300
.errorDialogl_shell.y: 290
.errorDialogl_shell.width: 410
.errorDialogl_shell .height: 200
.errorDialogl.width: 410
.errorDialogl.height: 200

.errorDialogl.background: #81759d

! Resources for the Error Dialog Interface

.helpWindow_shell.x: 500
.helpWindow_shell.y: 280
.helpWindow_shell.width: 875
.helpWindow_shell.height: 500
.helpWindow.width: 875
.helpWindow.height: 500

.helpWindow.background: #9d94ab

I Resources for the Control Window Interface

.Control_Window_shell.x: 67
.Control_Window_shell.y: 52
.Control_Window_shell.width: 900

.Control_Window_shell .height: 210

45

.Control_Window.width: 900
.Control_Window.height: 210

.Control_Window.background: #9d94ab

.forml.background: #dbc9c9
.forml.height: 176
.forml.width: 900
.forml.x: 0

.forml.y: 34

.scrolledTextl.background: #dbc9c9

.scrolledText2.background: #dbc9c9

.pushButtonGadgetl.fontList: -Bitstream-Swiss 742-Bold-R

-Normal--16-120-72-72-P-94-HP-Roman8

I Resources for the Title Window Interface

.Title_Window_shell.x: 10
.Title_Window_shell.y: 250
.Title_Window_shell .width: 460
.Title_Window_shell .height: 190
.Title_Window.width: 460

.Title_Window.height: 190

46

.Title_Window.background: #9d94ab

.scrolledList2.background: #dbc9c9
.scrolledlList2.fontlist: -Bitstream-Swiss 742-Bold-R

-Normal--16-120-72-72-P-94-HP-Roman8

! Resources for the Title Options Interface

.titleDialogl_shell.x: 480
.titleDialogl_shell.y: 470
.titleDialogl_shell.width: 320
.titleDialogl_shell.height: 190
.titleDialogl.width: 320
.titleDialogl.height: 190

.titleDialogl.background: #81759d

I Resources for the Email Interface

.email_interface_shell.x: 660
.email_interface_shell.y: 190
.email_interface_shell.width: 400
.email_interface_shell .height: 240
.email_interface.width: 400
.email_interface.height: 240

.email_interface.background: #81759d

47

I Resources for the Book Selection Interface

.topLevelShelll.width: 430
.toplevelShelll.height: 290
.toplevelShelll.x: 460
.topLevelShelll.y: 370
.topLevelShelll.background: #dbc9c9

.toplLevelShelll.borderColor: black

.scrolledlListl.itemCount: 6

.scrolledListl.items: Collier Condensed Encyclopedia,
Gospels of the Bible,Knoxville News Sentinal,
Letter P,Netlib,

UTK’s Computer Science Department’s Staff

48

Table .1: XLSI Programming Information - Book Selection Interface

Interface Widget Gadget FEvent Callback
Book Selection | menu_pl_bl activate activateCB_menul _pl_bl
Book Selection | menu_pl_b2 activate activateCB_menul_pl_b2
Book Selection | menu_pl_b3 activate activateCB_menul_pl_b3
Book Selection | menu_p2_bl activate activateCB_menul _pl_bl
Book Selection | scrolledList1 singleSelection | singleSelectionCB_ScrolledList1

In X-Windows programming, visual objects are labeled widgets or gadgets. Specif-
ically, widgets are user interface components comprised of data structures and proce-
dures, a gadget is a widget that does not have a window of its own and must display
in its parent’s window. The particular procedures associated with a widget or gadget
is termed a callback. These callbacks are executed as a result of a particular event.
Fuvents may be a mouse button, pressing and releasing a mouse button, pressing a
certain key on the keyboard, or moving the cursor into a window. In particular,
subroutines or callbacks are attached to particular widget’s events.

XLSI consists of widgets, gadgets, and callbacks. FEach interface (e.g. Control
Interface), has a collection of one or more of the above mentioned window’s elements.
The following documents the specific interface, specific widget or gadget, and specific
attached callback.

49

Table .2: XLSI Programming Information - Control Interface

Interface Widget Gadget FEvent Callback
Control menu2_pl_bl activate activateCB_menu2_pl_bl
Control menu2_pl_b2 activate activateCB_menu2_p1_b2
Control menu2_p2_bb activate activateCB_menu2_p2_bb
Control menu2_p2_b6 activate activateCB_menu2_p2_b6
Control menu2_p3_bl activate activateCB_menu2_p3_bl
Control menu2_p3_b3 activate activateCB_menu2_p3_b3
Control menu2_p5_bl activate activateCB_menu2_p5_b1
Control menu2_p5_b2 activate activateCB_menu2_p5_b2
Control menu2_p5_b3 activate activateCB_menu2_p5_b3
Control menu2_p5_b4 activate activateCB_menu2_p5_b4
Control menu2_p6_bl activate activateCB_menu2_p6_b1
Control menu2_p7_bl activate activateCB_menu2_p7_bl
Control menu2_p8_bl activate activateCB_menu2_p8_bl
Control menu2_p9_bl activate activateCB_menu2_p9_bl
Control pushButtonGadget1 | activate | activateCB_pushButtonGadgetl
Control pushButtonGadget2 | activate | activateCB_pushButtonGadget2
Table .3: XLSI Programming Information - Title Interface
Interface Widget Gadget FEvent Callback
Title menu3_pl_bl activate activateCB_menu3_pl_bl
Title menu3_pl_b2 activate activateCB_menu3_p1_b2
Title menu3_pl_b3 activate activateCB_menu3_p1_b3
Title scrolledList2 singleSelection | singleSelectionCB _scrolledList2
Title scrolledList2 browseSelection | browseSelectionCB_scrolled List2
Table .4: XLSI Programming Information - History Interface
Interface Widget Gadget FEvent Callback
History menu4_pl_bl activate activateCB_menud pl_bl
History menu4_pl_b2 activate activateCB_menud_p1_b2
History menu4_pl_b3 activate activateCB_menud_p1_b3
History scrolledList3 singleSelection | singleSelectionCB _scrolledList3
History scrolledList3 browseSelection | browseSelectionCB_scrolled List3

50

Table .5: XLSI Programming Information - Document Interface

Inter face

Widget Gadget | FEvent

Callback

Document | menub_pl_bl
Document | menub_pl_b2
Document | menub_pl_b3

activate | activateCB_menub_pl_bl
activate | activateCB_menub_pl_b2
activate | activateCB_menub_pl_b3

Table .6: XLSI Programming Information - Previous Search Status Interface

Interface Widget Gadget FEvent Callback
Previous Status | menu6_pl_bl activate activateCB_menu6_pl1_bl
Previous Status | menu6_pl_b3 activate activateCB_menu6_p1_b3
Previous Status | menu6_pl_b4 activate activateCB_menu6_p1_b4
Previous Status | scrolledList4 singleSelection | singleSelectionCB_scrolledList3
Previous Status | scrolledList4 browseSelection | browseSelectionCB_scrolledList3

Table .7: XLSI Programming Information - LSI Configuration Interface

Interface Widget Gadget | Ewvent Callback
LSI Configuration text2 activate activateCB_text?2
LSI Configuration | menu7_pl_bl activate | activateCB_menu7_pl_bl
LSI Configuration | menu7_pl_b2 activate | activateCB_menu7_pl1_b2

Table .8: XLSI Programming Information - Title Dialog Interface

Inter face

Widget

Gadget | Fvent

Callback

Title Dialog

titleDialogl

ok okCallback_titleDialogl

Table .9: XLSI Programming Information - Email Interface

Interface Widget Gadget | Event Callback
Email Dialog | emailDialogl ok okCallback_email interface
Email Dialog | emailDialogl help helpCB_email.interface

51

Vita
Susan Clower Allen was born in Rockwood, Tennessee on November 15, 1960.
She graduated from Roane County High School in 1978 and received a Bachelor of
Arts degree in Computer Science from The University of Tennessee, Knoxville in May
1985. She joined Hewlett-Packard in Atlanta in 1985. She moved back to Knoxville
in 1989 where she received her Master in Computer Science from The University of

Tennessee, Knoxville.

52

