
Compiler-Assisted Checkpointing1Micah Beck, James S. Plank and Gerry KingsleyDepartment of Computer ScienceUniversity of Tennessee, Knoxville, TN 37996fbeck, plank, kingsleyg@cs.utk.eduAbstractIn this paper we present compiler-assisted checkpointing, a new technique which uses staticprogram analysis to optimize the performance of checkpointing. We achieve this performancegain using libckpt, a checkpointing library which implements memory exclusion in the contextof user-directed checkpointing, The correctness of user-directed checkpointing is dependent onprogram analysis and insertion of memory exclusion calls by the programmer. With compiler-assisted checkpointing, this analysis is automated by a compiler or preprocessor. The resultingmemory exclusion calls will optimize the performance of checkpointing, and are guaranteedto be correct. We provide a full description of our program analysis techniques and presentdetailed examples of analyzing three fortran programs. The results of these analyses havebeen implemented in libckpt, and we present the performance improvements that they yield.1 IntroductionCheckpointing is an important method for providing fault tolerance in general-purpose computingenvironments. Checkpointers have been implemented for uniprocessors [LF90, LS92, PBKL95]and all varieties of parallel computing environments [EZ92, LFS93, LNP94, PL94b, SVS94]. Allexperimental research on checkpointing has found that the main source of overhead is the timerequired to write a checkpoint to disk.Many optimizations are found in the literature which attempt to reduce this source of overhead.They can be divided into two classes. Latency hiding optimizations attempt to hide or eliminatethe latency of disk writes. Memory exclusion optimizations attempt to minimize the amount ofmemory that needs to be saved at each checkpoint.Until recently, the only memory exclusion optimization that has been successful in improvingperformance has been incremental checkpointing [FB89, WM89], which eliminates the need to savememory that is read-only between checkpoints. However, another source of memory exclusion ismemory that is dead at the time of checkpointing. There have been mechanisms implemented toexploit both read-only and dead memory exclusion in checkpointing, but they su�er either fromtoo much overhead tracking memory usage [NW94] or from too much dependence on the program-mer [PBKL95].In this paper we present compiler-assisted checkpointing, a new technique which uses staticprogram analysis to optimize the performance of checkpointing. This enables the user to gainthe bene�ts of memory exclusion without memory-tracking overhead and without burdening theprogrammer. This optimization is orthogonal to the latency-hiding checkpointing optimizations,and can be combined with them to obtain checkpointing with very low overhead.1James Plank is supported by the National Science Foundation under contract CCR-9409496.Beck, Plank, and Kingsley 1 Submitted to FTCS 95

We describe an implementation of compiler-assisted checkpointing that uses libckpt, a check-pointing library that implements user-directed memory exclusion [PBKL95]. We show how compiler-assisted checkpointing generates safe and e�cient memory exclusion calls in three example for-tran programs, and present the results of checkpointing this programs. The end result is thatcompiler-assisted checkpointing can be very helpful at optimizing the performance of checkpoint-ing. Moreover, it is the only mechanism known that can exclude dead memory from checkpointsboth safely and e�ciently.2 Background and Related WorkA simple sequential checkpointer works by freezing the execution of a running process periodicallyand saving its entire execution state, including the contents of its data memory and registers, todisk. Recovering from such a checkpoint is straightforward: the values of memory and registers arerestored from the disk �le. The overhead of sequential checkpointing is the time it takes to writethe checkpoint �le to disk. This time is proportional to the size of the program's address space.Sequential checkpointing of multiprocessors is similar, except that there are multiple registersets and often multiple memories to save. In message passing systems there is often a network stateto be saved and synchronization issues to be considered. However, the major source of overhead inthese systems is still the time it takes to write checkpoints to disk; the overhead of saving networkstate and synchronizing is secondary [EJZ92, EZ94, PL94b].Current techniques for optimizing the performance of checkpointing work by trying to hide,minimize or eliminate the e�ect of disk writes. We discuss them below.2.1 Latency-Hiding OptimizationsWe divide checkpointing optimizations into two classes. The �rst of these are called latency hiding,and work by hiding or eliminating the latency of writing a checkpoint to disk. The followingcheckpointing optimizations are based on latency hiding.Main memory/Copy-on-write Checkpointing [LNP94]: A copy of the checkpoint is madein memory, and this copy is written asynchronously to disk by another process. This allows diskwrites to be overlapped with the execution of the application program and reduces the overheadimposed by checkpointing drastically. Copy-on-write allows the process writing the checkpointto access the same memory as the target program: a page is copied only if it is modi�ed beforebeing written to disk. Main memory/copy-on-write checkpointing works extremely well at reducingcheckpoint overhead unless memory is restricted [LNP90, EJZ92, PL94b, PBKL95].Checkpoint Compression [LF90, PL94b]: Here the checkpoint is compressed before beingwritten to disk. Any fast compression algorithm [Wel84, BJLM92] can be used. Compressiononly improves the overhead of checkpointing if the extra time taken to compress the checkpoint isless than the time saved in writing a smaller checkpoint �le. In other cases compression increasescheckpoint overhead. Checkpoint compression has only been shown to be bene�cial in parallelBeck, Plank, and Kingsley 2 Submitted to FTCS 95

environments with contention for secondary storage [PL94b].Diskless Checkpointing [PL94a]: Instead of saving checkpoints to disk, one can use extraprocessors to save redundant information so that any one processor may fail and the system can stillrun. This eliminates disk writing as the major overhead in checkpointing, and places the burdenon the network. Unless memory updates by the application program exhibit good locality, disklesscheckpointing requires a large amount of extra memory to improve performance.2.2 Memory Exclusion OptimizationsCheckpointing optimizations based on memory exclusion improve the performance of checkpointingby omitting read-only and dead portions of memory from each checkpoint. Read-only memory isde�ned to be memory that has not been modi�ed since the previous checkpoint. It does not needto be saved as part of a checkpoint because it may be recovered from an earlier checkpoint. Deadmemory is de�ned to be memory that will be written before it is next read. It does not need tobe saved as part of a checkpoint because the values of such memory will never be needed. Thefollowing are checkpointing optimizations based on memory exclusion.Incremental Checkpointing [FB89, WM89]: With incremental checkpointing, page protec-tion hardware is used to identify dirty pages that have been modi�ed since the last checkpoint.Only the dirty pages are saved in each checkpoint �le, thereby omitting all pages of read-onlymemory. Upon recovery, the checkpointed state is rebuilt from all of the checkpoint �les. Incre-mental checkpointing can reduce overhead dramatically if the target program exhibits good locality.For programs with bad locality, incremental checkpointing can degenerate to the sequential case,saving the entire data memory. In this case the cost of catching page faults actually increases thecheckpointing overhead [FB89, EJZ92, PBKL95]. One extra cost of incremental checkpointing isincreased use of disk space, since old checkpoint �les cannot be discarded.Word-level Memory Exclusion [NW94]: Here every read and write in the program is trackedso that both read-only and dead memory can be excluded from checkpoint �les. This leads tooptimally (or near optimally) small checkpoint �les. Sophisticated techniques have been developedfor performing this tracing with runtime overheads of 175 to 700 percent. Word-level memoryexclusion is useful for playback debugging, where high runtime overheads are justi�ed by the reducedstorage requirements for checkpoint �les. For fault-tolerance however the overhead of word-levelmemory exclusion is too large.User-Directed Checkpointing [PBKL95]: All of the optimizations described above are au-tomatic. They can be implemented as part of a checkpointing library, runtime system or operatingsystem, and require no e�ort on the part of the user to employ. With user-directed checkpoint-ing, procedure calls are provided for the user to improve the performance of checkpointing throughmemory exclusion. Speci�cally, there are procedure calls for excluding bytes of memory from check-points because they are dead or read-only. Moreover, the user can specify program locations atwhich to checkpoint. This is useful for two reasons. First, there are certain code locations (e.g.Beck, Plank, and Kingsley 3 Submitted to FTCS 95

the end of loops and subroutines) where the number of dead variables can be maximized. Thus byspecifying to checkpoint at these locations, the user can maximize the e�ect of memory exclusion.Second, by checkpointing only at known code locations, the task of determining dead and read-onlyvariables is simpli�ed.User-directed checkpointing has been implemented implicitly in checkpointers where the useris responsible for enacting recovery [LB87, SVS94]. It is implemented explicitly as part of theautomatic uniprocessor checkpointer libckpt [PBKL95]. In libckpt, user-directed checkpointinghas been shown to be quite e�ective in reducing the overhead of checkpointing for some programswith very little programmer e�ort.The main drawbacks of user-directed checkpointing are that it can require a great deal of usere�ort and it is unsafe. For some programs, specifying checkpoint locations and memory exclusionis easy. For others, it requires patience and e�ort to identify the best points to checkpoint andthe variables to exclude. Moreover, if the user makes a mistake and excludes memory that is notread-only or dead, then the resulting checkpoint will recover to an incorrect state. For this reason,user-directed checkpointing must be utilized with caution.3 Compiler-Assisted CheckpointingCompiler-assisted checkpointing is a technique �rst used by Li and Fuchs. In compiler-assistedcheckpointing, static program analysis is used to assist in the optimization of checkpointing [LF90].Li and Fuchs use compiler-assisted checkpointing to help the checkpointer choose at which pointsto checkpoint. In this paper, we use compiler-assisted checkpointing to help automate user-directedmemory exclusion.As we have discussed, an analysis of dead and read-only memory is required in order to employuser-directed checkpointing correctly. With the help of safe programmer directives, sets of deadand read-only locations can be can be automatically derived by a compiler or preprocessor. Wewill express these sets as the solution to a collection of data
ow equations which can be solvede�ciently using standard techniques [ASU86]. Compiler-assisted checkpointing uses this automat-ically generated information to generate memory exclusion calls that are safe: the checkpoints itgenerates are guaranteed to be correct.3.1 Memory Exclusion in libckptWe use the interface to user-directed memory exclusion provided by libckpt [PBKL95]. This inter-face consists of three procedure calls implemented by the libckpt runtime library. To implementmemory exclusion, libckpt maintains three lists of memory regions: I (include), E (exclude) andP (pending exclusion). Each word of memory has an entry in exactly one of these lists. Whenlibckpt takes a checkpoint, it writes all the memory in the I and P lists to disk, and then moves allelements of the P list to the E list. The user can manipulate these lists directly with two procedurecalls:Beck, Plank, and Kingsley 4 Submitted to FTCS 95

exclude bytes(char *addr, int size, int usage)include bytes(char *addr, int size)exclude bytes() tells libckpt to exclude the region of memory speci�ed from subsequentcheckpoints. It is called when the user knows that these bytes are not necessary for the correctrecovery of the program. Usage is an argument which may have one of two values: CKPT DEADor CKPT READONLY. If the former, then the memory is moved to the E list | libckptwill excludeit from all subsequent checkpoints. If CKPT READONLY is speci�ed, then the destination list ofthe memory depends upon which list the memory currently resides. If the memory is on the Ilist, then it is moved to the P list. If it is on the P or E lists, then it remains there. Thus, unlessthe memory is already excluded from current checkpoints, it is included in the next checkpoint,but excluded from subsequent checkpoints.include bytes()tells libckpt to move the speci�ed bytes to the I list so that they are includedin the next and subsequent checkpoints.In addition, libckpt provides a procedure checkpoint here()that allows the user to specifyprogram locations at which to checkpoint. There is a runtime variable mintime that can be set sothat checkpoints are not taken if checkpoint here() is called and mintime seconds have not pastsince the previous checkpoint.3.2 Compiler DirectivesThe goal of compiler-assisted checkpointing is for the programmer to place compiler directives intotheir code, and have the compiler insert exclude bytes(), include bytes(), and checkpoint here()calls into the code based on static program analysis. We introduce two such compiler directives:EXCLUDE HERE and CHECKPOINT HERE.1. An EXCLUDE HERE directive tells the compiler to compute memory exclusion information andinsert memory exclusion calls at the that program location.2. The CHECKPOINT HERE directive indicates the program locations at which checkpoints can betaken. Our program analysis assumes that checkpoints are taken only at at these points.This simpli�es the analysis. This assumption can be removed, however, by treating everystatement as if it were followed by a CHECKPOINT HERE directive.The user should place these directives in code locations that lead to the best use of memoryexclusion. However, if the user errs, the result is not incorrect checkpointing, like it would if the userplaced memory exclusion calls incorrectly. Instead, the result is simply unoptimized checkpointing.3.3 Analysis of Memory ExclusionIn order to de�ne our data
ow equations, we must give a more detailed account of our programmodel. A control
ow graph (CFG) is a directed graph G = hN;Ei where N is a set of nodesBeck, Plank, and Kingsley 5 Submitted to FTCS 95

 PROGRAM SIMPLE
 INTEGER I, X, Y, Z

 Z = 3
 X = 5
 FOR 100, I = 1,1000
 Y = X + Z
 X = X * Y
C EXCLUDE_HERE
C CHECKPOINT_HERE
100 CONTINUE
 END

S1:
S2:
S3:
S4:
S5:
S6:
S7:
S8:
S9:

S1 S2 S3

S4

S5

S6

S8S9

S7(a) Example fortran program (b) Control Flow GraphState- may def & Initial Values Final Valuesment may ref must def dead ro de dead ro deS1 ; fZg L L L L ; LS2 ; fXg L L L fI;X; Y g fZg LS3 ; fIg L L L fI; Y g fZg LS4 fX;Zg fY g L L L fY g fI; Zg LS5 fX; Y g fXg L L L ; fI; Y; Zg LS6 ; ; L L L fY g L LS7 ; ; L L L fY g fZg fY gS8 fIg fIg L L L fY g fZg LS9 ; ; L L L L L L(c) Initial values and �nal solutions to the data
ow equationsFigure 1: An Example of Memory Exclusion Analysisrepresenting statements and E � N � N is a set of directed edges representing the possible
owof control between statements [ASU86]. Figures 1 (a) and (b) show an example fortran programand its control
ow graph. In this and all other CFG's, the EXCLUDE HERE nodes are shaded in gray,and the CHECKPOINT HERE nodes are colored black.The program analysis works as follows. It divides the control
ow graph G into subgraphs G0,where each subgraph is rooted by an EXCLUDE HERE directive and contains all paths reachable fromthat directive that do not pass through another EXCLUDE HERE directive. (This does not partitionthe graph. Instead it merely de�nes a collection of subgraphs). For each subgraph G0, we computetwo sets of memory locations: de(G0) and ro(G0). de(G0) is the set of memory locations thatare dead at every CHECKPOINT HERE directive in G0. ro(G0) is the set of memory locations that areread-only throughout G0. At each EXCLUDE HERE directive, the following procedure calls are insertedBeck, Plank, and Kingsley 6 Submitted to FTCS 95

by the compiler:� exclude bytes(lstart, lsize, CKPT DEAD) for all the memory locations l 2 de(G0),where l = [lstart ; lstart + lsize].� exclude bytes(lstart, lsize, CKPT READONLY) for all the memory locations l 2 ro(G0).� include bytes(lstart, lsize) for all the memory locations l that are in neither de(G0) norro(G0).Thus, our analysis focuses on �nding the two sets de(G0) and ro(G0). We use data
owtechniques to perform this analysis. The former (�nding de(G0)) is standard liveness analysis. Thesecond is an analysis that is unique to compiler-assisted checkpointing.In order to make use of data
ow techniques, we characterize the memory accesses of eachstatement in the program with reference and de�nition sets. An execution of a statement operatesby reading (or referencing) some set of memory locations, performing a computation, and thenwriting the results to (or de�ning) another set of locations. Associated with each statement S 2 Nis a reference set may ref(S) and two de�nition sets must def(S) and may def(S):1. Every location that may be referenced by some execution of S is in may ref(S).2. Every location that may be de�ned by some execution of S is in may def(S).3. Every location that must be de�ned by every execution of S is in must def(S).All of these sets can be approximated conservatively: the set of all locations L is a conservativeapproximation to may ref(S) and may def(S), and the empty set is a conservative approximationof must def(S). It is always true that must def(S) � may def(S); in our examples, the twosets are always equal. Figure 1(c) shows the initial may ref, may def and must def sets for ourexample program.Given these basic sets, we can give a de�nition of de(G0) and ro(G0):1. A location l is live at a statement S if there is a path from S to another statement S0 suchthat l 2 may ref(S0) and for every S 00 on that path l 62 must def(S 00). This characterizationre
ects the fact that the value of a live location may be read before it is written on someexecution path. A location l is an element of de(G0) if l is not live at all CHECKPOINT HEREstatements in G0. If there are no CHECKPOINT HERE statements in G0, then de(G0) = ;.2. A location l is read-only at a statement S if l 62 may ref(S). Therefore l 2 ro(G0) if andonly if l 62 may ref(S) for all S in G0.These structural characterizations are conservative, since they look at all possible paths throughthe control
ow graph, when some of these can never be taken by an execution of the program.Exact analysis of liveness and dirtiness are undecidable problems.Beck, Plank, and Kingsley 7 Submitted to FTCS 95

3.4 Data Flow EquationsThe sets may ref, may def and must def can be determined by local syntactic analysis. Theanalysis of liveness is usually expressed as a set of data
ow equations, one for each statement inthe program. We will give data
ow equations which enable us to determine de(G0) and ro(G0)for each subgraph G0 of the program. Each of these equations can be solved by a general iterativetechnique.For the purposes of this paper, a data
ow equation is characterized by its update function FS .This is a function associated with each statement S. The function maps sets of locations to sets oflocations, and characterizes the e�ect of executing statement S.We will illustrate the framework using the analysis of liveness as an example. We will calculatea set dead(S) for each statement S, which represents the set of memory locations that are deadjust before executing S. The locations that are dead just before statement S are those that aredead after statement S plus those that must be written by statement S, minus any that may beread by statement S. Thus, the update function at node S isFS(X) = FS(X) [must def(S)�may ref(S)The iterative algorithm for solving our equations for dead proceeds as follows:1. Initially, set dead(S) = L for all S.2. For every node S(a) compute X = TS0 dead(S0), the intersection of dead(S0) for all statements S 0 that aresuccessors of S in the CFG, and(b) set dead(S) = X [must def(S)� may ref(S).3. Iterate until a �xed point is reached for all sets dead(S).We use three sets of data
ow equations in our analysis: dead, de and ro. dead(S) representsdead data at statement S as described above. de(S) represents the intersection of dead(S 0) forall statements S0 that are CHECKPOINT HERE statements reachable from S in the same subgraph asS. de(S) is used to propagate deadness information from the CHECKPOINT HERE statements to theEXCLUDE HERE statements. Finally, ro(S) represents data that is read-only in all paths from S tothe end of S's subgraph.The data
ow equations for dead, de and ro are given in Figure 2. The iterative algorithmde�ned for dead applies also to computing de and ro. Figure 1(c) shows the initial values of thesethree sets for each statement of the example program, and the �xed point solution to these data
ow equations at each statment.Each EXCLUDE HERE directive de�nes a new subgraph G0. The sets de(G0) and ro(G0) are de�nedto be de(S) and ro(S), where S is the statement directly following the EXCLUDE HERE directive. Inthe example program in Figure 1, this is the statement S7: de(S7) = fY g;ro(S7) = fZg. Thus atBeck, Plank, and Kingsley 8 Submitted to FTCS 95

Set Update Functiondead FS(X) = � L if S is ENDX [must def(S) �may ref(S) otherwisede FS(X) = 8>><>>: X \ dead(S) if S is CHECKPOINT HEREL if S is EXCLUDE HEREL if S is ENDX otherwisero FS(X) = 8<: L if S is EXCLUDE HEREL if S is ENDX � may def(S) otherwiseFigure 2: Data Flow Equations for dead, de and rothe EXCLUDE HERE statment exclude bytes() will be called for Y (with usage set to CKPT DEAD) andZ (with usage set to CKPT READONLY), and include bytes() will be called for the rest of the programlocations.3.5 Implementation DetailsIn our implementation of the data
ow equations, simple sets of locations are replaced by rectangleswhose corners may be de�ned in terms of loop indices. This generalization allows us to representarray regions that arise when analyzing loops. For example, a region of a two-dimensional array Aextending from the corner A(1,1) to the element A(I, J+1) where I and J are loop indices is writtenA(1:I,1:J+1). Such a parameterized rectangle represents array references in a representativeiteration, and allows us to calculate the changes in memory exclusion between iterations.We generalize primitive set operations, such as union and intersection, to operate on sets ofparameterized rectangles. Our technique is both e�cient and exact for the examples given in thispaper, and for a larger class of similar problems. In some cases exact analysis is too expensive orimpossible using this technique, and we settle for a conservative approximation. The problem ofapplying data
ow techniques to array references with the greatest possible accuracy and e�ciencyis the subject of current research [DGS93, MAL93].Our implementation is intended to prove the feasibility of our compiler-based techniques, andwe have made several important restrictions:� More general techniques for characterizing references to array regions have been reported inthe literature [DGS93, MAL93]. The use of these more general techniques would improvethe generality of our automatic analysis, but would not yield better results in any of ourexamples.� Interprocedural data
ow analysis is signi�cantly more complex than intraprocedural analysis.Beck, Plank, and Kingsley 9 Submitted to FTCS 95

One approach is to make conservative assumptions about subroutine calls, letting may ref =may def = L and must def = �. This is the simplest approach which always yields a safe,albeit non-optimal result. More complex approachs include subroutine inlining [CHT91] andconstruction of a interprocedural summary graph [Cal88]. For the purposes of the analysesin this paper all subroutine calls have been inlined.� Substantial research has been devoted to improving the e�ciency of solving data
ow equa-tions [CCF91, JP93]. These approaches are complex to implement and do not improve theaccuracy of the solution found. For these reasons, we have chosen to use the classic iterativetechnique.We are currently implementing our approach in a fortran preprocessor using the Stanford Uni-versity Intermediate Form (SUIF) toolkit.4 Examples of Exclusion AnalysisIn this section we present three example programs and identify sets of dead and clean locations.These sets are obtained by solving the data
ow equations described in Section 3.4.1 CELL : Cellular AutomataCELL is a program that simulates the execution of a grid of cellular automata. The code hasthe structure shown in Figure 3(a), which maps to the control
ow graph in Figure 3(b).An initial pattern of cell values is read to array G0. Simulation proceeds in generations: in eachgeneration an update function is evaluated at each grid location that determines the new value ofthat location. Two generations of updates are computed in every iteration of the outer loop. FirstG1 is calculated as a function of G0, then G0 is calculated as a function of G1. This is depictedgraphically in Figure 4. At the end of each iteration, G1 is dead.The boundaries of these arrays are a special case. The update function at a given grid locationis a function of its own current value and the values of its eight neighbors or adjacent cells. Theupdate function is not de�ned on the boundary of the grid, so the boundary is never updated. Forthis reason, the boundaries of G0 and G1 are read-only after they have been initialized.Memory exclusion is calculated at the bottom of the main loop, just before a checkpoint istaken. Figure 3(c) shows the values of the reference and de�nition sets, and Figure 3(d) showsthe values of de(S14) and ro(S14). The calculation of de(S) and ro(S) for all statements S isincluded in the appendix; for brevity in Figures 3, 5, and 6, we just include the values that leadto memory exclusion. Figure 3(d) tells us that when checkpoints are taken, the interior of G1 isdead. Moreover, during each iteration, the boundaries of G0 and G1 are read-only. Therefore, wecan place the proper exclude bytes() and include bytes() calls at the EXCLUDE HERE directive, anda checkpoint here() call at the CHECKPOINT HERE directive.Beck, Plank, and Kingsley 10 Submitted to FTCS 95

 PROGRAM CELL
 INTEGER I, ROW, COL
 INTEGER G0(1002, 1002)
 INTEGER G1(1002, 1002)

 CALL GRID_INIT(G0, G1)

 DO 200 I = 1, 60
 DO 100 R = 2, 1001
 DO 110 C = 2, 1001
 G1(R, C) = F(G0, R, C)
100 CONTINUE
110 CONTINUE

 DO 130 R = 2, 1001
 DO 120 C = 2, 1001
 G0(R, C) = F(G1, R, C)
120 CONTINUE
130 CONTINUE
 EXCLUDE_HERE
 CHECKPOINT_HERE

200 CONTINUE

 CALL GRID_WRITE(G0)
 END

S1:

S2:
S3:
S4:
S5:
S6:
S7:

S8:
S9:

S10:
S11:
S12:
S13:
S14:

S15:

S16:
S17:

S1

S2

S3

S4

S5

S6

S7 S8 S9

S10

S11

S12

S15 S16

S17

S13

S14

(a) Code (b) Control Flow GraphState- may def& State- may def& State- may def&ment may ref must def ment may ref must def ment may ref must defS1 fG0; G1g fG0; G1g S7 fRg fRg S13 ; ;S2 ; fIg S8 ; fRg S14 ; ;S3 ; fRg S9 ; fCg S15 fIg fIgS4 ; fCg S10 fG1g fG0(R :C)g S16 fG0g ;S5 fG0g fG1(R;C)g S11 fCg fCg S17 ; ;S6 fCg fCg S12 fRg fRg(c) Values of may ref, may def and must defStatement de roS14 fG1[interior]g fG0[border]; G1[border]g(d) Values of the exclusion setsFigure 3: Cellular Automaton ExampleBeck, Plank, and Kingsley 11 Submitted to FTCS 95

G0 -- Cell in G0[interior]
-- Cell in G0[border]

G1 -- Cell in G1[interior]
-- Cell in G1[border]

S2 - S7

S8 - S14Figure 4: Cellular Automata Code Structure
 PROGRAM SIEVE
 INTEGER I, J, K, P(30000)

 I = 1
 P(1) = 2
 DO 300 J = 2, 30000
100 I = I + 1
 DO 200 K = 1, J-1
200 IF (DIVIDES(P(K), I)) GOTO 100
 P(J) = I

 EXCLUDE_HERE
 CHECKPOINT_HERE
300 CONTINUE
 END

S1:
S2:
S3:
S4:
S5:
S6:
S7:

S8:
S9:

S10:
S11:

S1

S2

S3

S4 S5 S6 S7

S8

S10 S11

S9(a) Code (b) Control Flow GraphState- may def& State- may def& State- may def&ment may ref must def ment may ref must def ment may ref must defS1 ; fIg S5 fJg fKg S9 ; ;S2 ; fP(1)g S6 fP(K); Ig ; S10 fJg fJgS3 ; fJg S7 fI; Jg fP(J)g S11 ; ;S4 fIg fIg S8 ; ;(c) Values of may ref, may def and must defStatement de roS9 fP(J+ 1 : 30000)g fP(1 : J)g(d) Values of the exclusion setsFigure 5: Analysis of Prive SieveBeck, Plank, and Kingsley 12 Submitted to FTCS 95

Note that were we to move the EXCLUDE HERE directive to be between statements S1 and S2, theexclusion sets would be the same, and the exclude bytes() and include bytes() calls would onlybe called once, instead of sixty times. This is an example of placing the EXCLUDE HERE directivejudiciously | although both placements of the directive yield the same checkpoint �les, placing itbetween S1 and S2 will cause fewer procedure calls, and therefore less overhead.4.2 SIEVE: Prime SieveSIEVE is a program that enumerates prime numbers using the classical sieve technique. The codehas the structure shown in Figure 5(a), which leads to the control
ow graph in Figure 5(b). 30,000primes are calculated and stored in in array P, making use of previously computed primes to testfor primality. In the J-th iteration of the outer loop, one prime is calculated and stored in locationP(J). Primes stored in locations P(1:J-1) are referenced in calculating P(J).Thus, the entire array P is dead at the start of the program. At the end of iteration J, locationsP(1:J) are read-only and locations P(J+1:30000) are dead.Memory exclusion is calculated at the bottom of the main loop, just before taking a checkpoint.As shown in Figure 5(d), the read-only and dead portions of array P are correctly identi�ed, andthe proper memory exclusion procedure calls will be generated.Unlike the previous CELL example, the exclusion calls are not loop invariant. Were we tomove the EXCLUDE HERE directive outside the loop (e.g. between statements S2 and S3), no memoryexclusion calls could be made other than marking P(1) as read-only.4.3 CONTOUR: Map ContoursCONTOUR is a program that �nds altitude contours on a two-dimensional map. The code hasthe structure shown in Figure 6(a), which leads to the control
ow graph in Figure 6(b). The mapis represented as a grid of positive altitude values stored in array MAP. 100 contours are calculatedand the array elements that lie on these contours are set to -1. One contour locus is calculatedin each iteration of the outer loop. Each contour is calculated by one pass over the map, whereeach grid point calculation involves checking the value on that point with respect to its neighboringpoints, and with respect to the value of the contour locus.Therefore, the value of a grid point is read-only until it is determined to lie on a contour. It isthen set to �1, and it once more becomes read-only.Memory exclusion is calculated before the main loop, and also just before and after a gridlocation is modi�ed. The memory exclusion sets for each EXCLUDE HERE call is shown in Figure 6(d).These calls allow the checkpointer to make note of when grid points become read-only, and whenthey become modi�ed. The resulting checkpoints are minimal, because they only include a gridpoint if that grid point is written in the previous checkpoint interval.In this example, the placement of the EXCLUDE HERE directives surrounding the update (statmentsS7 and S9) is very important. Were the �rst EXCLUDE HERE to be placed before the conditionalBeck, Plank, and Kingsley 13 Submitted to FTCS 95

 PROGRAM CONTOUR
 INTEGER I, J, MAP(1250,1250)

 CALL MAP_INIT(MAP)
 EXCLUDE_HERE

 DO 300 THRESHOLD = 10, 1000, 10
 DO 200 I = 1, 1249
 DO 100 J = 1, 1249
 IF (.NOT. ONCONTOUR(MAP, I, J))
 X GOTO 100
 EXCLUDE_HERE
 MAP(I, J) = -1
 EXCLUDE_HERE
100 CONTINUE
 CHECKPOINT_HERE
200 CONTINUE
300 CONTINUE

 CALL MAP_WRITE(MAP)
 END

S1:
S2:

S3:
S4:
S5:
S6:

S7:
S8:
S9:

S10:
S11:
S12:
S13:

S14:
S15:

S1 S2

S3

S4

S5

S6 S7 S8

S9S10

S12

S13 S14

S15

S11

(a) Code (b) Control Flow GraphState- may def & State- may def &ment may ref must def ment may ref must defS1 fMAPg fMAPg S9 ; ;S2 ; ; S10 fJg fJgS3 ; fTHRESHOLDg S11 ; ;S4 ; fIg S12 fIg fIgS5 ; fJg S13 fTHRESHOLDg fTHRESHOLDgS6 fMAP; I; Jg ; S14 fMAPg ;S7 ; ; S15 ; ;S8 fI; Jg fMAP(I; J)g(c) Values of may ref, may def and must defStatement de roS3 ; fMAPgS8 ; L� MAP(I; J)S10 ; fMAPg(d) Values of the exclusion setsFigure 6: Analysis of Map Contour CodeBeck, Plank, and Kingsley 14 Submitted to FTCS 95

(statement S6) then the update region would include paths which do not include the update andwould avoid the second directive altogether. This would result in all locations being included inthe checkpoint after one pass through the main loop. The e�ect of the two directives is to isolatea region of the program with a deterministic and easily analyzed e�ect. While this is not alwaysan obvious task, it is more straightforward than performing exclusion analysis by hand, and it isalways safe.5 Performance ResultsFor each of the three examples, we inserted the memory exclusion calls calculated above into thesource code, and recompiled the code with libckpt [PBKL95]. We then tested the performance ofcheckpointing these programs with and without the procedure calls for memory exclusion. We alsoperformed tests using standard page-based incremental checkpointing as implemented in libckpt.The experiments were performed on a dedicated Sparcstation 2 running SunOS 4.1.3, andwriting to a Hewlett Packard HP6000 disk via NFS. The speed of disk writes in this con�gurationis 160 Kbytes/second. The results presented below are averages of three or more runs of eachprogram.5.1 CELL : Cellular AutomataThe cellular automaton code takes 857 seconds to run in the absence of checkpointing, and has awritable address space of approximately 8.1 megabytes. Checkpoints are taken approximately every2.5 minutes, meaning that there are six checkpoints taken during the lifetime of the program. Theperformance of sequential and incremental checkpointing with and without the memory exclusioncalls are presented in Figure 7.
0

2

4

6

8

C
he

ck
po

in
t

Si
ze

(M
by

te
s)

0

10

20

30

40

50

O
ve

rh
ea

d
pe

r
C

he
ck

po
in

t
(S

ec
on

ds
) Sequential

Seq. w/ Memory Exclusion
Incremental
Inc. w/ Memory ExclusionFigure 7: Checkpoint Size and Overhead of CELLThis program is interesting because standard incremental checkpointing actually degrades theperformance of checkpointing. This is because the interior of each grid is completely updated ateach iteration. Therefore the checkpoint sizes for incremental and non-incremental checkpointingare roughly the same, resulting in higher overhead for incremental checkpointing due to the extracost of processing page faults. With memory exclusion, the major savings in checkpoint size andoverhead come from the exclusion of dead memory at the EXCLUDE HERE directive. This is a signi�cantBeck, Plank, and Kingsley 15 Submitted to FTCS 95

result because it is the �rst known performance gain through dead memory exclusion that is a resultof a safe, automatic mechanism.5.2 SIEVE: Prime SieveThe prime sieve code takes 1,445 seconds to run in the absence of checkpointing, and consumes210 kilobytes of writable memory. As such, it is an excellent program to checkpoint, because themaximum sequential checkpointing time is very small. We checkpoint this program once every twominutes, which results in a total of twelve checkpoints per run. Figure 8 displays the performanceof checkpointing the SIEVE program.
0.0

0.1

0.2

C
he

ck
po

in
t

Si
ze

(M
by

te
s)

0.0

0.5

1.0

O
ve

rh
ea

d
pe

r
C

he
ck

po
in

t
(S

ec
on

ds
) Sequential

Seq. w/ Memory Exclusion
Incremental
Inc. w/ Memory ExclusionFigure 8: Checkpoint Size and Overhead of SIEVEWhat the graphs show is that excluding dead and read-only portions of P saves roughly about110 kilobytes per checkpoint. Incremental checkpointing saves another 53 kilobytes | this comesfrom excluding read-only pages from system data structures (like the standard I/O library).5.3 CONTOUR: Map ContoursThe map contour code was executed on an example map with a 1250 � 1250 grid of altitudes. Ittakes 1,072 seconds to run without checkpointing, and has a writable address space of 6.3 megabytes.We checkpoint this program once every three minutes, which results in �ve checkpoints per run.Figure 9 displays the performance of checkpointing this program.

0

2

4

6

C
he

ck
po

in
t

Si
ze

(M
by

te
s)

0

10

20

30

O
ve

rh
ea

d
pe

r
C

he
ck

po
in

t
(S

ec
on

ds
) Sequential

Seq. w/ Memory Exclusion
Incremental
Inc. w/ Memory ExclusionFigure 9: Checkpoint Size and Overhead of CONTOURLike the CELL program, the CONTOUR program does not lend itself to large performanceimprovements due to incremental checkpointing. This is because the granularity of page updatesis small | even if just one grid point is updated in a page, that page still must be included inan incremental checkpoint. With memory exclusion, read-only data is traced at the variable level,Beck, Plank, and Kingsley 16 Submitted to FTCS 95

which allows for a 64% improvement in checkpoint size over sequential checkpointing, as opposedto a 23% improvement due to incremental checkpointing.Note that the overhead of checkpointing is only improved by 44%. This is because exclude bytes()and include bytes() are called a total of 237,741 times during the course of the program. Thus thecalls themselves add a non-trivial amount overhead to checkpointing. However, this is more thano�set by the savings of writing a smaller checkpoint �le to disk.When memory exclusion is combined with incremental checkpointing, the checkpoint �les aresmaller, but only marginally. Therefore the overhead of checkpointing is greater than withoutincremental checkpointing because of the overhead of processing page faults.6 ConclusionsIn this paper, we have presented a compiler-assisted technique for the static analysis of safe memoryexclusion in checkpointing. We have expressed exclusion analysis as the solution to a set of data
ow equations, allowing us to use a general iterative method to solve them.We have implemented our technique by hand and have demonstrated its e�ectiveness in reducingcheckpoint size and overhead in three example programs. In two of these (CELL andCONTOUR)the static analyses outperform standard incremental checkpointing. In the third, the performanceof our technique is comparable to that of incremental checkpointing. In all three cases, combiningdynamic incremental checkpointing with static exclusion analysis achieve comparable or betterperformance than either method alone.Static exclusion analysis does not replace dynamic incremental checkpointing, but complementsit. In some systems page protection mechanisms are not accessible to the user; in such cases staticanalysis is the only recourse. In other cases (such as the CONTOUR program), the page granular-ity of the dynamic mechanism defeats its e�ectiveness. Finally, since dead memory locations cannotbe detected e�ciently at runtime, the exclusion of dead memory can only be implemented throughstatic analysis. The techniques outlined in this paper provide a safe mechanism for identifying deadmemory to exclude from checkpoints.Future WorkWe are approaching completion of a fortran preprocessor based on the SUIF toolkit which insertsmemory exclusion calls into programs with EXCLUDE HERE and CHECKPOINT HERE directives. We planto release this tool as a supplementary program to libckpt.In general, memory exclusion eliminates from a checkpoint locations whose values cannot a�ectthe result of the computation. Further exclusions are possible if we consider the checkpoint �le tobe not simply an image of memory but a sequence of instructions for rebuilding the contents ofmemory.In many cases, the instructions for rebuilding a data structure are considerably more compactthan its binary image. One example is a binary search tree, that can be stored in a checkpointBeck, Plank, and Kingsley 17 Submitted to FTCS 95

as a linearization of its external node values. As long as the tree (or an equivalent tree) canbe reconstructed from this linearization, the internal nodes of the tree can be excluded from thecheckpoint, representing perhaps a signi�cant savings in checkpointing cost.This approach can be thought of as a form of compression that uses information speci�c to agiven data structure, and that must be supplied by the implementer of that data structure. Ine�ect, the checkpoint �le is then viewed as a sequence of messages from the active process to therecovering process.This approach lends itself to an object-oriented implementation (perhaps like [BSS94]). Everyobject has a checkpoint method for saving and restoring its state. The implementer of the objectshould have the option of implementing e�cient save and restore operations, or simply copying theobject's binary image to the checkpoint. As with any scheme that substitutes more complex oper-ations for simple data movement, the challenge is to minimize processor overhead, take advantageof the structure of data, and maintain correctness.References[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-Wesley, Reading,MA, 1986.[BJLM92] M. Burrows, C. Jerian, B. Lampson, and T. Mann. On-line data compression in a log-structured �le system. InFifth International Conference on Architectural Support for Programming Languages and Operating Systems, pages2{9. ACM, October 1992.[BSS94] A. Beguelin, E. Seligman, and M. Starkey. Dome: Distributed object migration environment. Technical ReportCMU-CS-94-153, School of Computer Science, Carnegie Mellon University, May 1994.[Cal88] David Callahan. The program summary graph and
ow-sensitive interprocedural data
ow analysis. SIGPLANNotices, 23(7):47{56, July 1988. Proceedings of the ACM SIGPLAN '88 Conference on Programming LanguageDesign and Implementation.[CCF91] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic construction of sparse data
ow evaluation graphs.In Conference Record of the 18th Annual ACM Symposium on Principles of Programming Languages, pages 55{66,Orlando, Florida, January 21{23, 1991.[CHT91] Keith D. Cooper, Mary W. Hall, and Linda Torczon. An experiment with inline substitution. Software { Practice& Experience, 21(6):581{601, June 1991.[DGS93] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou So�a. A practical data
ow framework for array reference analysisand its use in optimizations. SIGPLAN Notices, 28(6):68{77, June 1993. Proceedings of the ACM SIGPLAN '93Conference on Programming Language Design and Implementation.[EJZ92] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The performance of consistent checkpointing. In 11th Sympo-sium on Reliable Distributed Systems, pages 39{47, October 1992.[EZ92] E. N. Elnozahy and W. Zwaenepoel. Manetho: Transparent rollback-recovery with low overhead, limited rollbackand fast output commit. IEEE Transactions on Computers Special Issue on Fault-Tolerant Computing, 41(5), May1992.[EZ94] E. N. Elnozahy and W. Zwaenepoel. On the use and implementation of message logging. In 24th InternationalSymposium on Fault-Tolerant Computing, pages 298{307, Austin, TX, June 1994.[FB89] S. I. Feldman and C. B. Brown. Igor: A system for program debugging via reversible execution. ACM SIGPLANNotices, Workshop on Parallel and Distributed Debugging, 24(1):112{123, Jan 1989.[JP93] Richard Johnson and Keshav Pingali. Dependence-based program analysis. In Proceedings of the SIGPLAN '93Conference on Programming Language Design and Implementation, pages 78{89, Albuquerque, New Mexico, June23{25, 1993. Published as ACM SIGPLAN Notices 28(6).Beck, Plank, and Kingsley 18 Submitted to FTCS 95

[LB87] L. Lehmann and J. Brehm. Rollback recovery in multiprocessor ring con�gurations. In Proceedings of the 3rdInternational GI/IGT/GMA Conference on Fault Tolerant Computing Systems, pages 213{223. Springer-Verlag,1987.[LF90] C-C. J. Li and W. K. Fuchs. CATCH { Compiler-assisted techniques for checkpointing. In 20th InternationalSymposium on Fault Tolerant Computing, pages 74{81, 1990.[LFS93] J. Le�on, A. L. Fisher, and P. Steenkiste. Fail-safe PVM: A portable package for distributed programming withtransparent recovery. Technical Report CMU-CS-93-124, Carnegie Mellon University, February 1993.[LNP90] K. Li, J. F. Naughton, and J. S. Plank. Real-time, concurrent checkpoint for parallel programs. In Second ACMSIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 79{88, March 1990.[LNP94] K. Li, J. F. Naughton, and J. S. Plank. Low-latency, concurrent checkpointing for parallel programs. IEEETransactions on Parallel and Distributed Systems, 5(8):874{879, August 1994.[LS92] M. Litzkow and M. Solomon. Supporting checkpointingand processmigration outside the Unix kernel. In ConferenceProceedings, Usenix Winter 1992 Technical Conference, pages 283{290, San Francisco, CA, January 1992.[MAL93] Dror E. Maydan, Saman P. Amarasinghe, and Monica S. Lam. Array data-
ow analysis and its use in arrayprivatization. In Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principlesof Programming Languages, pages 2{15, Charleston, South Carolina, January 1993.[NW94] R.H.B. Netzer andM.H. Weaver. Optimal tracing and incremental reexecution for debugging long-runningprograms.In ACM SIGPLAN '94 Conference on Programming Language Design and Implementation, pages 313{325, Orlando,FL, June 1994.[PBKL95] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent checkpointing under unix. In ConferenceProceedings, Usenix Winter 1995 Technical Conference, January 1995.[PL94a] J. S. Plank and K. Li. Faster checkpointing with N + 1 parity. In 24th International Symposium on Fault-TolerantComputing, pages 288{297, Austin, TX, June 1994.[PL94b] J. S. Plank and K. Li. Ickp| a consistent checkpointer for multicomputers. IEEE Parallel & Distributed Technology,2(2):62{67, Summer 1994.[SVS94] L. M. Silva, B. Veer, and J. G. Silva. Checkpointing SPMD applications on transputer networks. In Scalable HighPerformance Computing Conference, pages 694{701, Knoxville, TN, May 1994.[Wel84] T. A. Welch. A technique for high-performance data compression. IEEE Computer, 17:8{19, June 1984.[WM89] P. R. Wilson and T. G Moher. Demonic memory for process histories. In SIGPLAN '89 Conference on ProgrammingLanguage Design and Implementation, pages 330{343, June 1989.Appendix: Solutions to the Data Flow EquationsNote that set subtraction (�) is used in these tables. For example, the boundary of grid G0 of theCELL program is denoted as fG0�G0(2:1001; 2:1001)g.Statement dead ro deS1 fI;J;K;P(1 : 30000)g ; fP(2 : 30000)gS2 fJ;P(1 : 30000)g ; fP(2 : 30000)gS3 fJ;P(2 : 30000)g fP(1)g fP(2 : 30000)gS4 fP(J : 30000)g fJ;P� P(J : J)g fP(J : 30000)gS5 fP(J : 30000)g fJ;P� P(J : J)g fP(J : 30000)gS6 fP(J : 30000)g fJ;P� P(J : J)g fP(J : 30000)gS7 fP(J : 30000)g fJ;P� P(J : J)g fP(J : 30000)gS8 fP(J+ 1 : 30000)g L LS9 fP(J+ 1 : 30000)g fP(1 : J)g fP(J+ 1 : 30000)gS10 fP(J+ 1 : 30000)g fP(1 : J)g fP(J+ 1 : 30000)gS11 L L LBeck, Plank, and Kingsley 19 Submitted to FTCS 95

Solutions to the data
ow equations for SIEVEStatement dead ro deS1 L ; G1S2 fI;R; C;G1(2:1001;2:1001)g fG0�G0(2:1001;2:1001); fI;R; C;G1(2:1001;2:1001)gG1�G1(2:1001;2:1001)gS3 fR;C;G1(2:1001;2:1001)g fI;G0�G0(2:1001;2:1001); fR;C;G1(2:1001;2:1001)gG1�G1(2:1001;2:1001)gS4 fC;G1(R;2:1001)g fI;G0�G0(2:1001;2:1001); fC;G1(R :1001;2:1001)gG1� G1(R :1001;2:1001)gS5 fG1(R;C)g fG0�G0(2:1001;2:1001); fG1(R :1001;C :1001)gG1�G1(R :1001;C :1001)gS6 ; fI;G0�G0(2:1001;2:1001); fG1(R+1:1001;2:1001)gG1�G1(R+1:1001;C+1:1001)gS7 fCg fI;G1�G1(2:1001;2:1001); fCgG1� G1(R+1:1001;2:1001)gS8 fR;C;G0(2:1001;2:1001)g fI;G0�G0(2:1001;2:1001); fR;C;G0(2:1001;2:1001)gR;C; G1�G1(2:1001;2:1001)gS9 fC;G0(2:1001;C)g fI;G0� G0(2:1001;C); G1g fC;G0(R :1001;2:1001)gS10 fG0(R;C)g fI;G0�G0(R :1001;C :1001);G1g fG0(R+1:1001;C+1:1001)gS11 ; fI;G0�G0(R+1:1001;C+1:1001);G1g fG0(R+1:1001;C+1:1001)gS12 fC;G1g fI;G0�G0(R1 :1001;2:1001);G1g fC;G0(R+1:1001;2:1001)gS13 fI;R; C;G1(2:1001;2:1001)g L LS14 fR;C;G1(2:1001;2:1001)g fG0�G0(2:1001;2:1001); fG1(2:1001;2:1001)gG1�G1(2:1001;2:1001)gS15 fR;C;G1(2:1001;2:1001)g fG0�G0(2:1001;2:1001); fG1(2:1001;2:1001)gG1�G1(2:1001;2:1001)gS16 L� fG0g L ;S17 L L LSolutions to the data
ow equations for CELLStatement dead ro deS1 L ; LS2 ; fMAPg ;S3 fI;J; THRESHOLDg fMAPg ;S4 fI;Jg fMAPg ;S5 fJg fMAPg ;S6 ; fMAPg ;S7 ; L LS8 ; L� MAP(I;J) ;S9 ; L LS10 ; fMAPg ;S11 fJg fMAPg ;S12 fJg fMAPg fJgS13 fI;Jg fMAPg fI;JgS14 fI;J; THRESHOLDg L fI;J;THRESHOLDgS15 L L LSolutions to the data
ow equations for CONTOURBeck, Plank, and Kingsley 20 Submitted to FTCS 95

