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Abstract

In this paper we present compiler-assisted checkpointing, a new technique which uses static
program analysis to optimize the performance of checkpointing. We achieve this performance
gain using libckpt, a checkpointing library which implements memory exclusion in the context
of user-directed checkpointing, The correctness of user-directed checkpointing is dependent on
program analysis and insertion of memory exclusion calls by the programmer. With compiler-
assisted checkpointing, this analysis is automated by a compiler or preprocessor. The resulting
memory exclusion calls will optimize the performance of checkpointing, and are guaranteed
to be correct. We provide a full description of our program analysis techniques and present
detailed examples of analyzing three FORTRAN programs. The results of these analyses have
been implemented in libckpt, and we present the performance improvements that they yield.

1 Introduction

Checkpointing is an important method for providing fault tolerance in general-purpose computing
environments. Checkpointers have been implemented for uniprocessors [LF90, LS92, PBKL95]
and all varieties of parallel computing environments [EZ92, LFS93, LNP94, PL94b, SVS94]. All
experimental research on checkpointing has found that the main source of overhead is the time
required to write a checkpoint to disk.

Many optimizations are found in the literature which attempt to reduce this source of overhead.
They can be divided into two classes. Latency hiding optimizations attempt to hide or eliminate
the latency of disk writes. Memory exclusion optimizations attempt to minimize the amount of
memory that needs to be saved at each checkpoint.

Until recently, the only memory exclusion optimization that has been successful in improving
performance has been incremental checkpointing [FBR9, WMS89], which eliminates the need to save
memory that is read-only between checkpoints. However, another source of memory exclusion is
memory that is dead at the time of checkpointing. There have been mechanisms implemented to
exploit both read-only and dead memory exclusion in checkpointing, but they suffer either from
too much overhead tracking memory usage [NW94] or from too much dependence on the program-
mer [PBKL95].

In this paper we present compiler-assisted checkpointing, a new technique which uses static
program analysis to optimize the performance of checkpointing. This enables the user to gain
the benefits of memory exclusion without memory-tracking overhead and without burdening the
programmer. This optimization is orthogonal to the latency-hiding checkpointing optimizations,

and can be combined with them to obtain checkpointing with very low overhead.
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We describe an implementation of compiler-assisted checkpointing that uses libeckpt, a check-
pointing library that implements user-directed memory exclusion [PBKL95]. We show how compiler-
assisted checkpointing generates safe and efficient memory exclusion calls in three example FOR-
TRAN programs, and present the results of checkpointing this programs. The end result is that
compiler-assisted checkpointing can be very helpful at optimizing the performance of checkpoint-
ing. Moreover, it is the only mechanism known that can exclude dead memory from checkpoints

both safely and efficiently.

2 Background and Related Work

A simple sequential checkpointer works by freezing the execution of a running process periodically
and saving its entire execution state, including the contents of its data memory and registers, to
disk. Recovering from such a checkpoint is straightforward: the values of memory and registers are
restored from the disk file. The overhead of sequential checkpointing is the time it takes to write
the checkpoint file to disk. This time is proportional to the size of the program’s address space.

Sequential checkpointing of multiprocessors is similar, except that there are multiple register
sets and often multiple memories to save. In message passing systems there is often a network state
to be saved and synchronization issues to be considered. However, the major source of overhead in
these systems is still the time it takes to write checkpoints to disk; the overhead of saving network
state and synchronizing is secondary [EJZ92, EZ94, PL94b].

Current techniques for optimizing the performance of checkpointing work by trying to hide,

minimize or eliminate the effect of disk writes. We discuss them below.

2.1 Latency-Hiding Optimizations

We divide checkpointing optimizations into two classes. The first of these are called latency hiding,
and work by hiding or eliminating the latency of writing a checkpoint to disk. The following
checkpointing optimizations are based on latency hiding.

Main memory/Copy-on-write Checkpointing [LNP94]: A copy of the checkpoint is made
in memory, and this copy is written asynchronously to disk by another process. This allows disk
writes to be overlapped with the execution of the application program and reduces the overhead
imposed by checkpointing drastically. Copy-on-write allows the process writing the checkpoint
to access the same memory as the target program: a page is copied only if it is modified before
being written to disk. Main memory/copy-on-write checkpointing works extremely well at reducing
checkpoint overhead unless memory is restricted [LNP90, EJZ92, PL94b, PBKL95].

Checkpoint Compression [LF90, PL94b]: Here the checkpoint is compressed before being
written to disk. Any fast compression algorithm [Wel84, BJL.M92] can be used. Compression
only improves the overhead of checkpointing if the extra time taken to compress the checkpoint is
less than the time saved in writing a smaller checkpoint file. In other cases compression increases

checkpoint overhead. Checkpoint compression has only been shown to be beneficial in parallel

Beck, Plank, and Kingsley 2 Submitted to FTCS 95



environments with contention for secondary storage [PL94b].

Diskless Checkpointing [PL94a]: Instead of saving checkpoints to disk, one can use extra
processors to save redundant information so that any one processor may fail and the system can still
run. This eliminates disk writing as the major overhead in checkpointing, and places the burden
on the network. Unless memory updates by the application program exhibit good locality, diskless

checkpointing requires a large amount of extra memory to improve performance.

2.2 Memory Exclusion Optimizations

Checkpointing optimizations based on memory exclusion improve the performance of checkpointing
by omitting read-only and dead portions of memory from each checkpoint. Read-only memory is
defined to be memory that has not been modified since the previous checkpoint. It does not need
to be saved as part of a checkpoint because it may be recovered from an earlier checkpoint. Dead
memory is defined to be memory that will be written before it is next read. It does not need to
be saved as part of a checkpoint because the values of such memory will never be needed. The
following are checkpointing optimizations based on memory exclusion.

Incremental Checkpointing [FB89, WMS89]: With incremental checkpointing, page protec-
tion hardware is used to identify dirty pages that have been modified since the last checkpoint.
Only the dirty pages are saved in each checkpoint file, thereby omitting all pages of read-only
memory. Upon recovery, the checkpointed state is rebuilt from all of the checkpoint files. Incre-
mental checkpointing can reduce overhead dramatically if the target program exhibits good locality.
For programs with bad locality, incremental checkpointing can degenerate to the sequential case,
saving the entire data memory. In this case the cost of catching page faults actually increases the
checkpointing overhead [FBR9, EJZ92, PBKL95]. One extra cost of incremental checkpointing is
increased use of disk space, since old checkpoint files cannot be discarded.

Word-level Memory Exclusion [NW94]: Here every read and write in the program is tracked
so that both read-only and dead memory can be excluded from checkpoint files. This leads to
optimally (or near optimally) small checkpoint files. Sophisticated techniques have been developed
for performing this tracing with runtime overheads of 175 to 700 percent. Word-level memory
exclusion is useful for playback debugging, where high runtime overheads are justified by the reduced
storage requirements for checkpoint files. For fault-tolerance however the overhead of word-level
memory exclusion is too large.

User-Directed Checkpointing [PBKL95]: All of the optimizations described above are au-
tomatic. They can be implemented as part of a checkpointing library, runtime system or operating
system, and require no effort on the part of the user to employ. With user-directed checkpoint-
ing, procedure calls are provided for the user to improve the performance of checkpointing through
memory exclusion. Specifically, there are procedure calls for excluding bytes of memory from check-
points because they are dead or read-only. Moreover, the user can specify program locations at

which to checkpoint. This is useful for two reasons. First, there are certain code locations (e.g.
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the end of loops and subroutines) where the number of dead variables can be maximized. Thus by
specifying to checkpoint at these locations, the user can maximize the effect of memory exclusion.
Second, by checkpointing only at known code locations, the task of determining dead and read-only
variables is simplified.

User-directed checkpointing has been implemented implicitly in checkpointers where the user
is responsible for enacting recovery [LB87, SVS94]. It is implemented explicitly as part of the
automatic uniprocessor checkpointer libekpt [PBKL95]. In libckpt, user-directed checkpointing
has been shown to be quite effective in reducing the overhead of checkpointing for some programs
with very little programmer effort.

The main drawbacks of user-directed checkpointing are that it can require a great deal of user
effort and it is unsafe. For some programs, specifying checkpoint locations and memory exclusion
is easy. For others, it requires patience and effort to identify the best points to checkpoint and
the variables to exclude. Moreover, if the user makes a mistake and excludes memory that is not
read-only or dead, then the resulting checkpoint will recover to an incorrect state. For this reason,

user-directed checkpointing must be utilized with caution.

3 Compiler-Assisted Checkpointing

Compiler-assisted checkpointing is a technique first used by Li and Fuchs. In compiler-assisted
checkpointing, static program analysis is used to assist in the optimization of checkpointing [LF90].
Li and Fuchs use compiler-assisted checkpointing to help the checkpointer choose at which points
to checkpoint. In this paper, we use compiler-assisted checkpointing to help automate user-directed
memory exclusion.

As we have discussed, an analysis of dead and read-only memory is required in order to employ
user-directed checkpointing correctly. With the help of safe programmer directives, sets of dead
and read-only locations can be can be automatically derived by a compiler or preprocessor. We
will express these sets as the solution to a collection of data flow equations which can be solved
efficiently using standard techniques [ASUR6]. Compiler-assisted checkpointing uses this automat-
ically generated information to generate memory exclusion calls that are safe: the checkpoints it

generates are guaranteed to be correct.

3.1 Memory Exclusion in libckpt

We use the interface to user-directed memory exclusion provided by libckpt [PBKIL95]. This inter-
face consists of three procedure calls implemented by the libekpt runtime library. To implement
memory exclusion, libckpt maintains three lists of memory regions: I (include), E (exclude) and
P (pending exclusion). Each word of memory has an entry in exactly one of these lists. When
libckpt takes a checkpoint, it writes all the memory in the I and P lists to disk, and then moves all
elements of the P list to the E list. The user can manipulate these lists directly with two procedure

calls:
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exclude bytes(char *addr, int size, int usage)

include bytes(char *addr, int size)

exclude bytes() tells libckpt to exclude the region of memory specified from subsequent
checkpoints. It is called when the user knows that these bytes are not necessary for the correct
recovery of the program. Usage is an argument which may have one of two values: CKPT_DEAD
or CKPT _READONLY. If the former, then the memory is moved to the E list — libckpt will exclude
it from all subsequent checkpoints. If CKPT READONLY is specified, then the destination list of
the memory depends upon which list the memory currently resides. If the memory is on the I
list, then it is moved to the P list. If it is on the P or E lists, then it remains there. Thus, unless
the memory is already excluded from current checkpoints, it is included in the next checkpoint,

but excluded from subsequent checkpoints.

include bytes()tells libckpt to move the specified bytes to the I list so that they are included

in the next and subsequent checkpoints.

In addition, libckpt provides a procedure checkpoint_here()that allows the user to specify
program locations at which to checkpoint. There is a runtime variable mintime that can be set so
that checkpoints are not taken if checkpoint_ here() is called and mintime seconds have not past

since the previous checkpoint.

3.2 Compiler Directives

The goal of compiler-assisted checkpointing is for the programmer to place compiler directives into
their code, and have the compiler insert exclude bytes(), include bytes(), and checkpoint here()
calls into the code based on static program analysis. We introduce two such compiler directives:

EXCLUDE HERE and CHECKPOINT HERE.

1. An EXCLUDE HERE directive tells the compiler to compute memory exclusion information and

insert memory exclusion calls at the that program location.

2. The CHECKPOINT HERE directive indicates the program locations at which checkpoints can be
taken. Qur program analysis assumes that checkpoints are taken only at at these points.
This simplifies the analysis. This assumption can be removed, however, by treating every

statement as if it were followed by a CHECKPOINT HERE directive.

The user should place these directives in code locations that lead to the best use of memory
exclusion. However, if the user errs, the result is not incorrect checkpointing, like it would if the user
placed memory exclusion calls incorrectly. Instead, the result is simply unoptimized checkpointing.
3.3 Analysis of Memory Exclusion
In order to define our data flow equations, we must give a more detailed account of our program

model. A control flow graph (CFG) is a directed graph G = (N, E) where N is a set of nodes
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PROGRAM SI MPLE
INTEGER I, X Y, Z

S1: Z =3 @

2 X =5

S3: FOR 100, I = 1,1000

& @

S5: X=X* Y

S6: C EXCLUDE_HERE

Sr7: C CHECKPO NT_HERE

S8: 100  CONTI NUE S7 @

SO: END
(a) Example FORTRAN program (b) Control Flow Graph
State- MAY_DEF & Initial Values Final Values
ment MAY_REF MUST_DEF DEAD | RO | DE DEAD RO DE
S1 0 {7} L L | L L 0 L
52 0 {X} L L | L |{l,X,Y} {Z} L
S3 0 {I} L L | L {I,Y} {Z} L
S4 {X,Z} {Y} L L | L {Y} {I,7} L
S5 {X,Y} {X} L L | L 0 {I,Y,Z} | L
56 0 0 L L | L {Y} L L
S7 0 0 L L | L {Y} {7} {Y}
S8 {I} {I} L L | L {Y} {Z} L
59 0 0 L L | L L L L

(c) Initial values and final solutions to the data flow equations

Figure 1: An Example of Memory Exclusion Analysis

representing statements and /2 C N X N is a set of directed edges representing the possible flow
of control between statements [ASU86]. Figures 1 (a) and (b) show an example FORTRAN program
and its control flow graph. In this and all other CFG’s, the EXCLUDE HERE nodes are shaded in gray,
and the CHECKPOINT HERE nodes are colored black.

The program analysis works as follows. It divides the control flow graph G into subgraphs G’,
where each subgraph is rooted by an EXCLUDE HERE directive and contains all paths reachable from
that directive that do not pass through another EXCLUDE HERE directive. (This does not partition
the graph. Instead it merely defines a collection of subgraphs). For each subgraph G’, we compute
two sets of memory locations: DE(G’) and RO(G’). DE(G’) is the set of memory locations that
are dead at every CHECKPOINT HERE directive in G’. RO(G’) is the set of memory locations that are
read-only throughout G’. At each EXCLUDE HERE directive, the following procedure calls are inserted
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by the compiler:

e exclude bytes(lstart, lsize, CKPTDEAD) for all the memory locations [ € DE(GY),

where [ = [Istart, Istart + Isize].
e exclude bytes(lstart, lsize, CKPT_READONLY) for all the memory locations [ € RO(G').

e include bytes(lstart, lsize) for all the memory locations [ that are in neither DE(G’) nor

rRO(G").

Thus, our analysis focuses on finding the two sets DE(G’) and RO(G’). We use data flow
techniques to perform this analysis. The former (finding DE(G")) is standard liveness analysis. The
second is an analysis that is unique to compiler-assisted checkpointing.

In order to make use of data flow techniques, we characterize the memory accesses of each
statement in the program with reference and definition sets. An execution of a statement operates
by reading (or referencing) some set of memory locations, performing a computation, and then
writing the results to (or defining) another set of locations. Associated with each statement S € N

is a reference set MAY_REF(S) and two definition sets MUST_DEF(S) and MAY_DEF(S):
1. Every location that may be referenced by some execution of S is in MAY_REF(S).
2. Every location that may be defined by some execution of S is in MAY_DEF(S).
3. Every location that must be defined by every execution of S is in MUST_DEF(S).

All of these sets can be approximated conservatively: the set of all locations L is a conservative
approximation to MAY_REF (S) and MAY_DEF(5), and the empty set is a conservative approximation
of MUST_DEF(S). It is always true that MUsST_DEF(S) C MAY_DEF(S); in our examples, the two
sets are always equal. Figure 1(c) shows the initial MAY_REF, MAY_DEF and MUST_DEF sets for our
example program.

Given these basic sets, we can give a definition of DE(G’) and RO (G'):

1. A location [ is live at a statement S if there is a path from S to another statement S’ such
that [ € MAY REF(S’) and for every S” on that path [ ¢ MusT_DEF(S”). This characterization
reflects the fact that the value of a live location may be read before it is written on some
execution path. A location [ is an element of DE(G”) if [ is not live at all CHECKPOINT HERE
statements in G’. If there are no CHECKPOINT HERE statements in G, then DE(G') = (.

2. A location [ is read-only at a statement S if I ¢ MAY_REF(S). Therefore [ € roO(G") if and
only if [ € MAY_REF(S) for all S in G.

These structural characterizations are conservative, since they look at all possible paths through
the control flow graph, when some of these can never be taken by an execution of the program.

Exact analysis of liveness and dirtiness are undecidable problems.
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3.4 Data Flow Equations

The sets MAY_REF, MAY_DEF and MUST_DEF can be determined by local syntactic analysis. The
analysis of liveness is usually expressed as a set of data flow equations, one for each statement in
the program. We will give data flow equations which enable us to determine DE(G’) and rRO(G')
for each subgraph G’ of the program. Each of these equations can be solved by a general iterative
technique.

For the purposes of this paper, a data flow equation is characterized by its update function Fs.
This is a function associated with each statement S. The function maps sets of locations to sets of
locations, and characterizes the effect of executing statement .S.

We will illustrate the framework using the analysis of liveness as an example. We will calculate
a set DEAD(S) for each statement S, which represents the set of memory locations that are dead
just before executing 5. The locations that are dead just before statement S are those that are
dead after statement S plus those that must be written by statement .S, minus any that may be

read by statement S. Thus, the update function at node .S is
Fs(X) = Fs(X)UMUST_DEF(S) — MAY_REF(S)
The iterative algorithm for solving our equations for DEAD proceeds as follows:
1. Initially, set DEAD(S) = L for all S.
2. For every node S

(a) compute X = (g DEAD(S’), the intersection of DEAD(S’) for all statements S’ that are
successors of .S in the CFG, and

(b) set DEAD(S) = X UMUST_DEF(S) — MAY_REF(S).
3. Iterate until a fixed point is reached for all sets DEAD(S).

We use three sets of data flow equations in our analysis: DEAD, DE and RO. DEAD(.S) represents
dead data at statement S as described above. DE(S) represents the intersection of DEAD(S’) for
all statements S’ that are CHECKPOINT HERE statements reachable from S in the same subgraph as
S. DE(S) is used to propagate deadness information from the CHECKPOINT HERE statements to the
EXCLUDE HERE statements. Finally, RO(Y) represents data that is read-only in all paths from S to
the end of S’s subgraph.

The data flow equations for DEAD, DE and RO are given in Figure 2. The iterative algorithm
defined for DEAD applies also to computing DE and RO. Figure 1(c) shows the initial values of these
three sets for each statement of the example program, and the fixed point solution to these data
flow equations at each statment.

Each EXCLUDE HERE directive defines a new subgraph G’. The sets DE(G’) and RO(G’) are defined
to be DE(S) and RO(SS), where S is the statement directly following the EXCLUDE HERE directive. In
the example program in Figure 1, this is the statement S7: DE(ST) = {Y }, Ro(S7) = {Z}. Thus at
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Set Update Function

if S is END

DEAD | Fg(X) = { UMUST_DEF(S) — MAY_REF(S) otherwise

S

X NDEAD(S) if S is CHECKPOINT HERE
if S 1s EXCLUDE_HERE
if S 1s END
otherwise

DE Fs(X) =

RO Fs(X) = if S is END

— MAY_DEF(S) otherwise

L
L
X
L if S is EXCLUDE _HERE
L
X

Figure 2: Data Flow Equations for DEAD, DE and RO

the EXCLUDE HERE statment exclude bytes() will be called for Y (with usage set to CKPTDEAD) and
7 (with usage set to CKPT READONLY), and include bytes() will be called for the rest of the program

locations.

3.5 Implementation Details

In our implementation of the data flow equations, simple sets of locations are replaced by rectangles
whose corners may be defined in terms of loop indices. This generalization allows us to represent
array regions that arise when analyzing loops. For example, a region of a two-dimensional array A
extending from the corner A(1,1) to the element A(T, J+1) where I and J are loop indices is written
A(1:I,1:3+41). Such a parameterized rectangle represents array references in a representative
iteration, and allows us to calculate the changes in memory exclusion between iterations.

We generalize primitive set operations, such as union and intersection, to operate on sets of
parameterized rectangles. Our technique is both efficient and exact for the examples given in this
paper, and for a larger class of similar problems. In some cases exact analysis is too expensive or
impossible using this technique, and we settle for a conservative approximation. The problem of
applying data flow techniques to array references with the greatest possible accuracy and efficiency
is the subject of current research [DGS93, MAL93].

Our implementation is intended to prove the feasibility of our compiler-based techniques, and

we have made several important restrictions:

e More general techniques for characterizing references to array regions have been reported in
the literature [DGS93, MAL93]. The use of these more general techniques would improve
the generality of our automatic analysis, but would not yield better results in any of our

examples.

o Interprocedural data flow analysis is significantly more complex than intraprocedural analysis.
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One approach is to make conservative assumptions about subroutine calls, letting MAY_REF =
MAY _DEF = L and MUST_DEF = ¢. This is the simplest approach which always yields a safe,
albeit non-optimal result. More complex approachs include subroutine inlining [CHT91] and
construction of a interprocedural summary graph [Cal88]. For the purposes of the analyses

in this paper all subroutine calls have been inlined.

e Substantial research has been devoted to improving the efficiency of solving data flow equa-
tions [CCF91, JP93]. These approaches are complex to implement and do not improve the
accuracy of the solution found. For these reasons, we have chosen to use the classic iterative

technique.

We are currently implementing our approach in a FORTRAN preprocessor using the Stanford Uni-
versity Intermediate Form (SUIF) toolkit.

4 Examples of Exclusion Analysis

In this section we present three example programs and identify sets of dead and clean locations.

These sets are obtained by solving the data flow equations described in Section 3.

4.1 CELL : Cellular Automata

CELL is a program that simulates the execution of a grid of cellular automata. The code has
the structure shown in Figure 3(a), which maps to the control flow graph in Figure 3(b).

An initial pattern of cell values is read to array GO. Simulation proceeds in generations: in each
generation an update function is evaluated at each grid location that determines the new value of
that location. Two generations of updates are computed in every iteration of the outer loop. First
G1 is calculated as a function of GO, then GO is calculated as a function of G1. This is depicted
graphically in Figure 4. At the end of each iteration, G1 is dead.

The boundaries of these arrays are a special case. The update function at a given grid location
is a function of its own current value and the values of its eight neighbors or adjacent cells. The
update function is not defined on the boundary of the grid, so the boundary is never updated. For
this reason, the boundaries of GO and G1 are read-only after they have been initialized.

Memory exclusion is calculated at the bottom of the main loop, just before a checkpoint is
taken. Figure 3(c) shows the values of the reference and definition sets, and Figure 3(d) shows
the values of DE(S14) and RO(S14). The calculation of DE(S) and RO(S) for all statements S is
included in the appendix; for brevity in Figures 3, 5, and 6, we just include the values that lead
to memory exclusion. Figure 3(d) tells us that when checkpoints are taken, the interior of G1 is
dead. Moreover, during each iteration, the boundaries of GO and G1 are read-only. Therefore, we
can place the proper exclude bytes() and include bytes() calls at the EXCLUDE HERE directive, and
a checkpoint_here() call at the CHECKPOINT HERE directive.
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PROGRAM CELL

I NTEGER |, ROW CCL

| NTEGER (0( 1002, 1002)
| NTEGER GL(1002, 1002)

Si: CALL GRID_INIT(@®0, Gl)

S2: DO 200 | =1, 60

S3: DO 100 R = 2, 1001

57 DO 110 C = 2, 1001

S5: Gl(R © = F®&, R ©

S6: 100 CONTI NUE

S7: 110 CONTI NUE

S8: DO 130 R = 2, 1001

So: DO 120 C = 2, 1001

S10: &A(R © = FGl, R ©

S11: 120 CONTI NUE

S12: 130 CONTI NUE

S13: EXCLUDE_HERE

S14: CHECKPO NT_HERE

S15: 200 CONTI NUE

Si6: CALL GRI D_WRI TE( Q0)

S17: END

(a) Code (b) Control Flow Graph
State- MAY_DEF& State- MAY_DEF& State- MAY_DEF&
ment || MAY_REF | MUST_DEF ment || MAY_REF | MUST_DEF ment || MAY_REF | MUST_DEF
S1 {G0,G1}Y | {G0,G1} ST {R} {R} S13 0 0
S2 0 {I} S8 0 {R} S14 0 0
S3 0 {R} S9 0 {C} S15 {I} {1}
S4 0 {C} S10 {G1} {GO(R:C)} S16 {G0} 0
S5 {G0} {GL(R,C)} S11 {C} {C} S17 0 0
S6 {C} {C} S12 {R} {R}
(c) Values of MAY_REF, MAY_DEF and MUST_DEF
Statement DE RO
S14 {G1linterior]} | {GO[border], G1[border]}

(d) Values of the exclusion sets

Figure 3: Cellular Automaton Example
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H -- Céll in GO[ border]

GO 0O-cdlinGO[interior]

S2-S7

S8 -S14
S i

Gl O--cdlinGifinterior]

B --Cdli

n G1[border]

Figure 4: Cellular Automata Code Structure

PROGRAM SI EVE
INTEGER I, J, K, P(30000)
Si: I =1
S2: P(1) =2
S3: DO 300 J = 2, 30000
S4: 100 | =1 + 1
S5: DO 200 K =1, J-1
S6: 200 IF (DIVIDES(P(K), 1)) GOro 100
ST P(J) =1
S8: EXCLUDE_HERE
So: CHECKPO NT_HERE
S10: 300 CONTI NUE
Si11: END
(a) Code (b) Control Flow Graph
State- MAY_DEF& State- MAY_DEF& State- MAY_DEF&
ment || MAY_REF | MUST_DEF ment || MAY_REF | MUST_DEF ment || MAY_REF | MUST_DEF
S1 0 {1} S5 {3} Ik} S9 0 0
S2 0 {P(1)} S6 {P(K), I} 0 S10 {3} {3}
S3 0 {3} S7 {1,73} {P(3)} S11 0 0
S4 {1} {1} S8 0 0
(c) Values of MAY_REF, MAY_DEF and MUST_DEF
Statement DE RO
S9 {P(J+1:30000)} | {P(1:J)}

(d) Values of the exclusion sets

Beck, Plank, and Kingsley
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Note that were we to move the EXCLUDE HERE directive to be between statements S1 and S2, the
exclusion sets would be the same, and the exclude bytes() and include bytes() calls would only
be called once, instead of sixty times. This is an example of placing the EXCLUDE HERE directive
judiciously — although both placements of the directive yield the same checkpoint files, placing it

between S1 and S2 will cause fewer procedure calls, and therefore less overhead.

4.2 SIEVE: Prime Sieve

SIEVE is a program that enumerates prime numbers using the classical sieve technique. The code
has the structure shown in Figure 5(a), which leads to the control flow graph in Figure 5(b). 30,000
primes are calculated and stored in in array P, making use of previously computed primes to test
for primality. In the J-th iteration of the outer loop, one prime is calculated and stored in location
P(J). Primes stored in locations P(1:J-1) are referenced in calculating P(J).

Thus, the entire array P is dead at the start of the program. At the end of iteration J, locations
P(1:J) are read-only and locations P(J+1:30000) are dead.

Memory exclusion is calculated at the bottom of the main loop, just before taking a checkpoint.
As shown in Figure 5(d), the read-only and dead portions of array P are correctly identified, and
the proper memory exclusion procedure calls will be generated.

Unlike the previous CELL example, the exclusion calls are not loop invariant. Were we to
move the EXCLUDE HERE directive outside the loop (e.g. between statements S2 and S3), no memory

exclusion calls could be made other than marking P(1) as read-only.

4.3 CONTOUR: Map Contours

CONTOUR is a program that finds altitude contours on a two-dimensional map. The code has
the structure shown in Figure 6(a), which leads to the control flow graph in Figure 6(b). The map
is represented as a grid of positive altitude values stored in array MAP. 100 contours are calculated
and the array elements that lie on these contours are set to -1. One contour locus is calculated
in each iteration of the outer loop. Each contour is calculated by one pass over the map, where
each grid point calculation involves checking the value on that point with respect to its neighboring
points, and with respect to the value of the contour locus.

Therefore, the value of a grid point is read-only until it is determined to lie on a contour. It is
then set to —1, and it once more becomes read-only.

Memory exclusion is calculated before the main loop, and also just before and after a grid
location is modified. The memory exclusion sets for each EXCLUDE HERE call is shown in Figure 6(d).
These calls allow the checkpointer to make note of when grid points become read-only, and when
they become modified. The resulting checkpoints are minimal, because they only include a grid
point if that grid point is written in the previous checkpoint interval.

In this example, the placement of the EXCLUDE_HERE directives surrounding the update (statments
S7 and S9) is very important. Were the first EXCLUDE HERE to be placed before the conditional
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PROGRAM CONTOUR
| NTEGER 1,

J, MAP( 1250, 1250)

Beck, Plank, and Kingsley

Figure 6: Analysis of Map Contour Code

14

Si: CALL MAP_I NI T( MAP)
S2: EXCLUDE_HERE
S3: DO 300 THRESHOLD = 10, 1000, 10
S4: DO 200 | =1, 1249
S5: DO 100 J = 1, 1249
S6: I'F (. NOT. ONCONTOUR(MAP, I, J))
X GOTO 100
St EXCLUDE_HERE
S8: MAP(I, J) = -1
So: EXCLUDE_HERE
S10: 100 CONTI NUE
S11: CHECKPO NT_HERE
S12: 200 CONTI NUE
S13: 300 CONTI NUE
Si4: CALL MAP_WRI TE( MAP)
S15: END
(a) Code (b) Control Flow Graph
State- MAY_DEF & State- MAY_DEF &
ment MAY _REF MUST _DEF ment MAY _REF MUST _DEF
S1 {MAP} {uAP} S9 0 0
S2 0 0 S10 {3} {3}
S3 0 {THRESHOLD} S11 0 0
S4 0 {1} S12 {1} {1}
S5 0 {3} S13 {THRESHOLD} | {THRESHOLD}
S6 {MAP, 1,7} 0 S14 {uAP} 0
ST 0 0 S15 0
S8 {1,3} {MAP(1,J)}
(c) Values of MAY_REF, MAY_DEF and MUST_DEF
Statement || DE RO
S3 0 {MAP}
S8 0 | L —MAP(I,J)
S10 0 {MAP}
(d) Values of the exclusion sets
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(statement S6) then the update region would include paths which do not include the update and
would avoid the second directive altogether. This would result in all locations being included in
the checkpoint after one pass through the main loop. The effect of the two directives is to isolate
a region of the program with a deterministic and easily analyzed effect. While this is not always
an obvious task, it is more straightforward than performing exclusion analysis by hand, and it is

always safe.

5 Performance Results

For each of the three examples, we inserted the memory exclusion calls calculated above into the
source code, and recompiled the code with libckpt [PBKL95]. We then tested the performance of
checkpointing these programs with and without the procedure calls for memory exclusion. We also
performed tests using standard page-based incremental checkpointing as implemented in libckpt.

The experiments were performed on a dedicated Sparcstation 2 running SunOS 4.1.3, and
writing to a Hewlett Packard HP6000 disk via NFS. The speed of disk writes in this configuration
is 160 Kbytes/second. The results presented below are averages of three or more runs of each

program.

5.1 CELL : Cellular Automata

The cellular automaton code takes 857 seconds to run in the absence of checkpointing, and has a
writable address space of approximately 8.1 megabytes. Checkpoints are taken approximately every
2.5 minutes, meaning that there are six checkpoints taken during the lifetime of the program. The
performance of sequential and incremental checkpointing with and without the memory exclusion

calls are presented in Figure 7.

o 8 50 =

=3 67 Scw 40 - s Scquential

.g g 4] _g S g 30 - Seq. w/ Memory Exclusion
_%.O <73 (% 20 - = |ncremental

é 2 2 g 6 = 104 &==—= Inc. w/ Memory Exclusion
© o 0-

Figure 7: Checkpoint Size and Overhead of CELL

This program is interesting because standard incremental checkpointing actually degrades the
performance of checkpointing. This is because the interior of each grid is completely updated at
each iteration. Therefore the checkpoint sizes for incremental and non-incremental checkpointing
are roughly the same, resulting in higher overhead for incremental checkpointing due to the extra
cost of processing page faults. With memory exclusion, the major savings in checkpoint size and

overhead come from the exclusion of dead memory at the EXCLUDE HERE directive. This is a significant
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result because it is the first known performance gain through dead memory exclusion that is a result

of a safe, automatic mechanism.

5.2 SIEVE: Prime Sieve

The prime sieve code takes 1,445 seconds to run in the absence of checkpointing, and consumes
210 kilobytes of writable memory. As such, it is an excellent program to checkpoint, because the
maximum sequential checkpointing time is very small. We checkpoint this program once every two

minutes, which results in a total of twelve checkpoints per run. Figure 8 displays the performance

of checkpointing the SIEVE program.
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=7 o g g ] s Sequential

S < % 3= . = Seq. w/ Memory Exclusion
fo¥s) 01 <3 (§§ 05 E=====1 Incremental

8 é a>3 6 9 === Inc. w/ Memory Exclusion
= (@) i

O o0 0.0-]

Figure 8: Checkpoint Size and Overhead of SIEVE

What the graphs show is that excluding dead and read-only portions of P saves roughly about
110 kilobytes per checkpoint. Incremental checkpointing saves another 53 kilobytes — this comes

from excluding read-only pages from system data structures (like the standard 1/O library).

5.3 CONTOUR: Map Contours

The map contour code was executed on an example map with a 1250 x 1250 grid of altitudes. It
takes 1,072 seconds to run without checkpointing, and has a writable address space of 6.3 megabytes.
We checkpoint this program once every three minutes, which results in five checkpoints per run.

Figure 9 displays the performance of checkpointing this program.
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Figure 9: Checkpoint Size and Overhead of CONTOUR

Like the CELL program, the CONTOUR program does not lend itself to large performance
improvements due to incremental checkpointing. This is because the granularity of page updates
is small — even if just one grid point is updated in a page, that page still must be included in

an incremental checkpoint. With memory exclusion, read-only data is traced at the variable level,
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which allows for a 64% improvement in checkpoint size over sequential checkpointing, as opposed
to a 23% improvement due to incremental checkpointing.

Note that the overhead of checkpointing is only improved by 44%. This is because exclude bytes()
and include bytes() are called a total of 237,741 times during the course of the program. Thus the
calls themselves add a non-trivial amount overhead to checkpointing. However, this is more than
offset by the savings of writing a smaller checkpoint file to disk.

When memory exclusion is combined with incremental checkpointing, the checkpoint files are
smaller, but only marginally. Therefore the overhead of checkpointing is greater than without

incremental checkpointing because of the overhead of processing page faults.

6 Conclusions

In this paper, we have presented a compiler-assisted technique for the static analysis of safe memory
exclusion in checkpointing. We have expressed exclusion analysis as the solution to a set of data
flow equations, allowing us to use a general iterative method to solve them.

We have implemented our technique by hand and have demonstrated its effectiveness in reducing
checkpoint size and overhead in three example programs. In two of these (CELL and CONTOUR)
the static analyses outperform standard incremental checkpointing. In the third, the performance
of our technique is comparable to that of incremental checkpointing. In all three cases, combining
dynamic incremental checkpointing with static exclusion analysis achieve comparable or better
performance than either method alone.

Static exclusion analysis does not replace dynamic incremental checkpointing, but complements
it. In some systems page protection mechanisms are not accessible to the user; in such cases static
analysis is the only recourse. In other cases (such as the CONTOUR program), the page granular-
ity of the dynamic mechanism defeats its effectiveness. Finally, since dead memory locations cannot
be detected efficiently at runtime, the exclusion of dead memory can only be implemented through
static analysis. The techniques outlined in this paper provide a safe mechanism for identifying dead

memory to exclude from checkpoints.

Future Work

We are approaching completion of a FORTRAN preprocessor based on the SUIF toolkit which inserts
memory exclusion calls into programs with EXCLUDE HERE and CHECKPOINT HERE directives. We plan
to release this tool as a supplementary program to libckpt.

In general, memory exclusion eliminates from a checkpoint locations whose values cannot affect
the result of the computation. Further exclusions are possible if we consider the checkpoint file to
be not simply an image of memory but a sequence of instructions for rebuilding the contents of
memory.

In many cases, the instructions for rebuilding a data structure are considerably more compact

than its binary image. One example is a binary search tree, that can be stored in a checkpoint
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as a linearization of its external node values. As long as the tree (or an equivalent tree) can
be reconstructed from this linearization, the internal nodes of the tree can be excluded from the
checkpoint, representing perhaps a significant savings in checkpointing cost.

This approach can be thought of as a form of compression that uses information specific to a
given data structure, and that must be supplied by the implementer of that data structure. In
effect, the checkpoint file is then viewed as a sequence of messages from the active process to the
recovering process.

This approach lends itself to an object-oriented implementation (perhaps like [BSS94]). Every
object has a checkpoint method for saving and restoring its state. The implementer of the object
should have the option of implementing efficient save and restore operations, or simply copying the
object’s binary image to the checkpoint. As with any scheme that substitutes more complex oper-
ations for simple data movement, the challenge is to minimize processor overhead, take advantage

of the structure of data, and maintain correctness.
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Appendix: Solutions to the Data Flow Equations

Note that set subtraction (—) is used in these tables. For example, the boundary of grid GO of the
CELL program is denoted as {G0 — G0(2:1001,2:1001)}.

Statement DEAD RO DE

S1 {I,J.KX,P(1:30000)} ] {P(2:30000)}
2 {J,P(1:30000)} 0 {P(2:30000)}
s3 {J,P(2:30000)} {P(1)} {P(2:30000)}
S4 {P(J: 30000)} {JP-PJ:J)} | {P(J:30000)}
S5 {P(J: 30000)} {JP-PJ:J)} | {P(J:30000)}
s6 {P(J: 30000)} {JP-PJ:J)} | {P(J:30000)}
s7 {P(J: 30000)} {JP-PJ:J)} | {P(J:30000)}
s8 {P(J+1:30000)} L L

s9 {P(J+1:30000)} P(1:J)} {P(J+1:30000)}
$10 {P(J +1:30000)} {P(1:J)} {P(J+1:30000)}
S11 L L L
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Solutions to the data flow equations for SIEVE

Statement DEAD RO DE
S1 L ] G
S2 {I,R,C,G1(2:1001,2:1001)} | {G0— G0(2:1001,2:1001), {I,R,C,G1(2:1001,2:1001)}
G1 — G1(2:1001,2:1001)}
S3 {R,C,G1(2:1001,2:1001)} | {I,G0 — G0(2:1001,2:1001), {R,C,G1(2:1001,2:1001)}
G1 — G1(2:1001,2:1001)}
S4 {C,G1(R,2:1001)} {I,G0 — G0(2:1001,2:1001), {C,G1(R:1001,2:1001)}
G1 — G1(R:1001,2:1001)}
S5 {G1(R,C)} {G0 — G0(2:1001,2:1001), {G1(R:1001,C:1001)}
G1 — G1(R:1001,C :1001)}
S6 0 {I,G0 — G0(2:1001,2:1001), {G1(R+1:1001,2:1001)}
G1 — G1(R+1:1001,C'+1:1001)}
S7 {C} {I,G1 — G1(2:1001,2:1001), {C}
G1 — G1(R+1:1001,2:1001)}
S8 {R,C,G0(2:1001,2:1001)} | {I,G0 — G0(2:1001,2:1001), {R,C,G0(2:1001,2:1001)}
R,C,G1 — G1(2:1001,2:1001)}
S9 {C,G0(2:1001,C)} {I,G0 — G0(2:1001,C),G1} {C, GO(R:1001,2:1001)}
S10 {GO(R,C)} {I,G0 — GO(R:1001,C:1001),G1} {GO(R+1:1001,C+1:1001)}
S11 0 {I,G0 — GO(R+1:1001,C'+1:1001),G1} | {GO(R+1:1001,C+1:1001)}
S12 {C,G1} {I,G0 — GO(R;:1001,2:1001),G1} {C, GO(R+1:1001,2:1001)}
S13 {I,R,C,G1(2:1001,2:1001)} L L
S14 {R,C,G1(2:1001,2:1001)} | {G0— G0(2:1001,2:1001), {G1(2:1001,2:1001)}
G1 — G1(2:1001,2:1001)}
S15 {R,C,G1(2:1001,2:1001)} | {G0— G0(2:1001,2:1001), {G1(2:1001,2:1001)}
G1 — G1(2:1001,2:1001)}
S16 L - {Go} L 0
S17 L L L

Solutions to the data flow equations for CELL

Statement DEAD RO DE
S1 L 0 L
S2 0 {MAP} 0
S3 {1,J, THRESHOLD} {maP} 0
S4 {1,3} {MAP} 0
S5 {3} {MAP} 0
S6 0 {MAP} 0
S7 0 L L
S8 0 L — MAP(I,J) 0
S9 0 L L
S10 0 {MAP} 0
S11 {3} {MAP} 0
S12 {3} {maP} {J}
S13 {1,3} {maP} {1,3}
S14 {1,J, THRESHOLD} L {1,J, THRESHOLD}
S15 L L L

Solutions to the data flow equations for CONTOUR
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