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USING LINEAR ALGEBRA FOR INTELLIGENTINFORMATION RETRIEVAL�MICHAEL W. BERRYy , SUSAN T. DUMAISz AND GAVIN W. O'BRIENxAbstract. Currently, most approaches to retrieving textual materials from scienti�c databasesdepend on a lexical match between words in users' requests and those in or assigned to documents in adatabase. Because of the tremendous diversity in the words people use to describe the same document,lexical methods are necessarily incomplete and imprecise. Using the singular value decomposition(SVD), one can take advantage of the implicit higher-order structure in the association of terms withdocuments by determining the SVD of large sparse term by document matrices. Terms and documentsrepresented by 200-300 of the largest singular vectors are then matched against user queries. We callthis retrieval method Latent Semantic Indexing (LSI) because the subspace represents importantassociative relationships between terms and documents that are not evident in individual documents.LSI is a completely automatic yet intelligent indexing method, widely applicable, and a promisingway to improve users' access to many kinds of textual materials, or to documents and services forwhich textual descriptions are available. A survey of the computational requirements for managingLSI-encoded databases as well as current and future applications of LSI is presented.Key words. indexing, information, latent, matrices, retrieval, semantic, singular valuedecomposition, sparse, updatingAMS(MOS) subject classi�cations. 15A18, 15A48, 65F15, 65F50, 68P201. Introduction. Typically, information is retrieved by literally matching terms in documentswith those of a query. However, lexical matching methods can be inaccurate when they are used tomatch a user's query. Since there are usually many ways to express a given concept (synonymy), theliteral terms in a user's query may not match those of a relevant document. In addition, most wordshave multiple meanings (polysemy), so terms in a user's query will literally match terms in irrelevantdocuments. A better approach would allow users to retrieve information on the basis of a conceptualtopic or meaning of a document.Latent Semantic Indexing (LSI) [4] tries to overcome the problems of lexical matching by usingstatistically derived conceptual indices instead of individual words for retrieval. LSI assumes thatthere is some underlying or latent structure in word usage that is partially obscured by variability inword choice. A truncated singular value decomposition (SVD) [14] is used to estimate the structure inword usage across documents. Retrieval is then performed using the database of singular values andvectors obtained from the truncated SVD. Performance data shows that these statistically derivedvectors are more robust indicators of meaning than individual terms. A number of software tools havebeen developed to perform operations such as parsing document texts, creating a term by documentmatrix, computing the truncated SVD of this matrix, creating the LSI database of singular values andvectors for retrieval, matching user queries to documents, and adding new terms or documents to anexisting LSI databases [4, 23]. The bulk of LSI processing time is spent in computing the truncatedSVD of the large sparse term by document matrices.Section 2 is a review of basic concepts needed to understand LSI. Section 3 uses a constructiveexample to illustrate how LSI represents terms and documents in the same semantic space, howa query is represented, how additional documents are added (or folded-in), and how SVD-updatingrepresents additional documents. In Section 4, an algorithm for SVD-updating is discussed along witha comparison to the folding-in process with regard to robustness of query matching and computationalcomplexity. Section 5 surveys promising applications of LSI along with parameter estimation problemsthat arise with its use.� This research was supported by the National Science Foundation under grant Nos. NSF-CDA-9115428 and NSF-ASC-92-03004. Submitted to SIAM Review.y Department of Computer Science, 107 Ayres Hall, University of Tennessee, Knoxville, TN 37996-1301, berry@cs.utk.edu.z Information Science Research Group, Bellcore, 445 South Street, Room 2L-371, Morristown, NJ07962-1910, std@bellcore.com.x Department of Computer Science, 107 Ayres Hall, University of Tennessee, Knoxville, TN 37996-1301, obrien@cs.utk.edu. 2



Using Linear Algebra for Intelligent Information Retrieval 32. Background. The singular value decomposition is commonly used in the solution of uncon-strained linear least squares problems, matrix rank estimation, and canonical correlation analysis [2].Given an m � n matrix A, where without loss of generality m � n and rank(A) = r, the singularvalue decomposition of A, denoted by SVD(A), is de�ned asA = U�V T(1)where UTU = V TV = In and � = diag(�1; � � � ; �n); �i > 0 for 1 � i � r; �j = 0 for j � r + 1. The�rst r columns of the orthogonal matrices U and V de�ne the orthonormal eigenvectors associatedwith the r nonzero eigenvalues of AAT and ATA, respectively. The columns of U and V are referredto as the left and right singular vectors, respectively, and the singular values of A are de�ned as thediagonal elements of � which are the nonnegative square roots of the n eigenvalues of AAT [14].The following two theorems illustrate how the SVD can reveal important information about thestructure of a matrix.Theorem 2.1. Let the SVD of A be given by Equation (1) and�1 � �2 � � � � �r > �r+1 = � � � = �n = 0and let R(A) and N(A) denote the range and null space of A, respectively.Then, 1. rank property: rank(A) = r, N(A) � spanfvr+1; � � � ; vng, andR(A) � spanfu1; � � � ; urg, where U = [u1u2 � � �um] and V = [v1v2 � � � vn]:2. dyadic decomposition: A = rXi=1 ui � �i � vTi :3. norms: kAk2F = �21 + � � �+ �2r , and kAk22 = �1:Proof. See [14].Theorem 2.2. [Eckart and Young] Let the SVD of A be given by Equation (1) with r = rank(A)� p = min(m;n) and de�ne Ak = kXi=1 ui � �i � vTi ;(2)then minrank(B)=k kA� Bk2F = kA�Akk2F = �2k+1 + � � �+ �2p:Proof. See [15].In other words, Ak, which is constructed from the k-largest singular triplets of A, is the closestrank-k matrix to A [14]. In fact, Ak is the best approximation to A for any unitarily invariant norm[21]. Hence, minrank(B)=k kA� Bk2 = kA�Akk2 = �k+1:(3) 2.1. Latent Semantic Indexing. In order to implement Latent Semantic Indexing [4, 11] amatrix of terms by documents must be constructed. The elements of the term-document matrix arethe occurrences of each word in a particular document, i.e.,A = [aij];(4)where aij denotes the frequency in which term i occurs in document j. Since every word does notnormally appear in each document, the matrix A is usually sparse. In practice, local and globalweightings are applied [6] to increase/decrease the importance of terms within or among documents.Speci�cally, we can write aij = L(i; j) �G(i);(5)



4 Berry, Dumais and O'Brienwhere L(i; j) is the local weighting for term i in document j, and G(i) is the global weighting for termi. The matrix A is factored into the product of 3 matrices (Equation (1)) using the singular valuedecomposition (SVD). The SVD derives the latent semantic structure model from the orthogonalmatrices U and V containing left and right singular vectors of A, respectively, and the diagonalmatrix, �, of singular values of A. These matrices re
ect a breakdown of the original relationshipsinto linearly-independent vectors or factor values. The use of k factors or k-largest singular triplets isequivalent to approximating the original (and somewhat unreliable) term-document matrix by Ak inEquation (2). In some sense, the SVD can be viewed as a technique for deriving a set of uncorrelatedindexing variables or factors, whereby each term and document is represented by a vector in k-spaceusing elements of the left or right singular vectors (see Table 1).Table 1Interpretation of SVD components within LSI.Ak = Best rank-k approximation to Am = Number of termsU = Term vectors n = Number of documents� = Singular values k = Number of factorsV = Document vectors r = Rank of AFigure 1 is a mathematical representation of the singular value decomposition. U and V areconsidered the term and document vectors respectively, and � represents the singular values. Theshaded regions in U and V and the diagonal line in � represent Ak from Equation (2).It is important for the LSI method that the derived Ak matrix not reconstruct the original termdocument matrix A exactly. The truncated SVD, in one sense, captures most of the importantunderlying structure in the association of terms and documents, yet at the same time removes thenoise or variability in word usage that plagues word-based retrieval methods. Intuitively, since thenumber of dimensions, k, is much smaller than the number of unique terms, m, minor di�erences interminology will be ignored. Terms which occur in similar documents, for example, will be near eachother in the k-dimensional factor space even if they never co-occur in the same document. This meansthat some documents which do not share any words with a users query may none the less be near itin k-space. This derived representation which captures term-term associations is used for retrieval.Consider the words car, automobile, driver, and elephant. The terms car and automobile aresynonyms, driver is a related concept and elephant is unrelated. In most retrieval systems, the queryautomobiles is no more likely to retrieve documents about cars than documents about elephants,if neither used precisely the term automobile in the documents. It would be preferable if a queryabout automobiles also retrieved articles about cars and even articles about drivers to a lesser extent.The derived k-dimensional feature space can represent these useful term inter-relationships. Roughlyspeaking, the words car and automobile will occur with many of the same words (e.g. motor, model,vehicle, chassis, carmakers, sedan, engine, etc.), and they will have similar representations in k-space.The contexts for driver will overlap to a lesser extent, and those for elephant will be quite dissimilar.The main idea in LSI is to explicitly model the interrelationships among terms (using the truncatedSVD) and to exploit this to improve retrieval.2.2. Queries. For purposes of information retrieval, a user's query must be represented as avector in k-dimensional space and compared to documents. A query (like a document) is a set ofwords. For example, the user query can be represented byq̂ = qTUk��1k ;(6)where q is simply the vector of words in the users query, multiplied by the appropriate term weights(see Equation (5)). The sum of these k-dimensional terms vectors is re
ected by the qTUk termin Equation (6), and the right multiplication by ��1k di�erentially weights the separate dimensions.Thus, the query vector is located at the weighted sum of its constituent term vectors. The queryvector can then be compared to all existing document vectors, and the documents ranked by theirsimilarity (nearness) to the query. One common measure of similarity is the cosine between the queryvector and document vector. Typically, the z closest documents or all documents exceeding somecosine threshold are returned to the user [4].



Using Linear Algebra for Intelligent Information Retrieval 5Akm � n = UTermVectors
m � rk �r � r

k k������� V T DocumentVectors
r � n

k
Fig. 1. Mathematical representation of the matrix Ak.2.3. Updating. Suppose an LSI-generated database already exists. That is, a collection oftext objects has been parsed, a term-document matrix has been generated, and the SVD of the term-document matrix has been computed. If more terms and documents must be added, two alternativesfor incorporating them currently exist: recomputing the SVD of a new term-document matrix orfolding-in the new terms and documents.Four terms are de�ned below to avoid confusion when discussing updating. Updating refers tothe general process of adding new terms and/or documents to an existing LSI-generated database.Updating can mean either folding-in or SVD-updating. SVD-updating is the new method of updatingdeveloped in [23]. Folding-in terms or documents is a much simpler alternative that uses an existingSVD to represent new information. Recomputing the SVD is not an updating method, but a wayof creating an LSI-generated database with new terms and/or documents from scratch which can becompared to either updating method.Recomputing the SVD of a larger term-document matrix requires more computation time and,for large problems, may be impossible due to memory constraints. Recomputing the SVD allowsthe new p terms and q documents to directly a�ect the latent semantic structure by creating a newterm-document matrix A(m+p)�(n+q), computing the SVD of the new term-document matrix, andgenerating a di�erent Ak matrix. In contrast, folding-in is based on the existing latent semanticstructure, the current Ak, and hence new terms and documents have no e�ect on the representationof the pre-existing terms and documents. Folding-in requires less time and memory but can havedeteriorating e�ects on the representation of the new terms and documents.Folding-in documents is essentially the process described in Section 2.2 for query representation.Each new document is represented as a weighted sum of its component term vectors. Once a newdocument vector has been computed it is appended to the set of existing document vectors or columnsof Vk (see Figure 2). Similarly, new terms can be represented as a weighted sum of the vectors fordocuments in which they appear. Once the term vector has been computed it is appended to the setof existing term vectors or columns of Uk (see Figure 3).To fold-in a new m� 1 document vector, d, into an existing LSI model, a projection, d̂, of d ontothe span of the current term vectors (columns of Uk) is computed byd̂ = dTUk��1k :(7)Similarly, to fold-in a new 1� n term vector, t, into an existing LSI model, a projection, t̂, of t ontothe span of the current document vectors (columns of Vk) is determined byt̂ = tVk��1k :(8) 3. A Demonstration of Latent Semantic Indexing. In this section, Latent Semantic In-dexing (LSI) and the folding-in process discussed in Section 2.3 are applied to a small database of booktitles. In Table 2, 17 book titles from book reviews published in the December 1993 issue (volume 54,number 4) of SIAM Review are listed. All the underlined words in Table 2 denote keywords whichare used as referents to the book titles. The parsing rule used for this sample database required that
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pAkm � nm � (n+p) = Uk

m � km � k �k
k � kk � k pV Tk

k � (n+p)k � n
Fig. 2. Mathematical representation of folding-in p documents.
Ak q(m+q) � nm � n = Uk

(m+q) � km � k q �k
k � kk � k V Tk

k � nk � n
Fig. 3. Mathematical representation of folding-in q terms.



Using Linear Algebra for Intelligent Information Retrieval 7keywords appear in more than one book title. Of course, alternative parsing strategies can increaseor decrease the number of indexing keywords (or terms).Table 2Database of titles from books reviewed in SIAM Review. Underlined keywords appear in morethan one book title.Label TitlesB1 A Course on Integral EquationsB2 Attractors for Semigroups and Evolution EquationsB3 Automatic Di�erentiation of Algorithms: Theory, Implementation,and ApplicationB4 Geometrical Aspects of Partial Di�erential EquationsB5 Ideals, Varieties, and Algorithms { An Introduction toComputational Algebraic Geometry and Commutative AlgebraB6 Introduction to Hamiltonian Dynamical Systems and theN -Body ProblemB7 Knapsack Problems: Algorithms and Computer ImplementationsB8 Methods of Solving Singular Systems of OrdinaryDi�erential EquationsB9 Nonlinear SystemsB10 Ordinary Di�erential EquationsB11 Oscillation Theory for Neutral Di�erentialEquations with DelayB12 Oscillation Theory of Delay Di�erential EquationsB13 Pseudodi�erential Operators and Nonlinear Partial Di�erentialEquationsB14 Sinc Methods for Quadrature and Di�erential EquationsB15 Stability of Stochastic Di�erential Equations with Respectto Semi-MartingalesB16 The Boundary Integral Approach to Static and DynamicContact ProblemsB17 The Double Mellin-Barnes Type Integrals and Their Applicationsto Convolution TheoryCorresponding to the text in Table 2 is the 16� 17 term-document matrix shown in Table 3. Theelements of this matrix are the frequencies in which a term occurs in a document or book title (seeSection 4). For example, in book title B3, the third column of the term-document matrix, algorithms,theory, implementation, and application all occur once. For simplicity, term weighting is not used inthis example matrix. Now compute the truncated SVD (with k = 2) of the 16� 17 matrix in Table 2to obtain the rank-2 approximation A2 as de�ned in Figure 1.Using the �rst column of U2 multiplied by the �rst singular value, �1, for the x-coordinates andthe second column of U2 multiplied by the second singular value, �2, for the y-coordinates, the termscan be represented on the Cartesian plane. Similarly, the �rst column of V2 scaled by �1 are thex-coordinates and the second column of V2 scaled by �2 are the y-coordinates for the documents(book titles). Figure 4 is a two-dimensional plot of the terms and documents for the 16 � 17 sampleterm-document matrix.Notice the documents and terms pertaining to di�erential equations are clustered around the x-axis and the more general terms and documents related to algorithms and applications are clusteredaround the y-axis. Such groupings suggest that the subset of book titles fB2, B4, B8, B9, B10B13, B14, B15g contains titles similar in meaning, for example.
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Table 3The 16� 17 term-document matrix corresponding to the book titles in Table 2.Terms DocumentsB1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17algorithms 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0application 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1delay 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0di�erential 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0equations 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0implementation 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0integral 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1introduction 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0methods 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0nonlinear 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0ordinary 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0oscillation 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0partial 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0problem 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0systems 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0theory 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1
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Fig. 4. Two-dimensional plot of terms and documents for the 16� 17 example.



10 Berry, Dumais and O'Brien3.1. Queries. Suppose we are interested in the documents that pertain to application and the-ory. Recall that a query vector q is represented as q̂ via q̂ = qTUk��1k (see Equation (6)). Since theword and is not an indexed term (i.e., a stop word) in the database, it is omitted from the queryleaving application theory. Mathematically, the Cartesian coordinates of the query are determinedby Equation (6). The coordinates for the sample query application theory are computed in Figure 5and then represented by the point labeled QUERY in Figure 6. This query vector is then compared(in the Cartesian plane) to all the documents in the database. All documents whose cosine with thequery vector is greater than 0:90 is illustrated in the shaded region of Figure 6.� 0:0511 �0:3337 � = 0BBBBBBBBBBBBBBBBBBBBBBBBBB@
0100000000000001
1CCCCCCCCCCCCCCCCCCCCCCCCCCA
T 0BBBBBBBBBBBBBBBBBBBBBBBBBB@

0:0159 �0:43170:0266 �0:37560:1785 �0:16920:6014 0:11870:6691 0:12090:0148 �0:36030:0520 �0:22480:0066 �0:11200:1503 0:11270:0813 0:06720:1503 0:11270:1785 �0:16920:1415 0:09740:0105 �0:23630:0952 0:03990:2051 �0:5448
1CCCCCCCCCCCCCCCCCCCCCCCCCCA� 4:5314 00 2:7582 ��1

Fig. 5. Derived coordinates for the query of application theory.A di�erent cosine threshold, of course, could have been used so that a larger or smaller set ofdocuments would be returned. The cosine is merely used to rank-order documents and its explicitvalue is not always an adequate measure of relevance [23, 29].3.2. Comparison with Lexical Matching. In this example, LSI has been applied using twofactors, i.e. A2 is used to approximate the original 16� 17 term-document matrix. Using a cosinethreshold of :90, six book titles related to application and theory were returned: titles B3, B5, B6,B7, B16, and B17. If the cosine threshold was reduced to :55, then titles B11 and B12 (which aresomewhat related) are also returned. With lexical-matching, only four book titles (B3, B11, B12,B17) are returned. Hence, the LSI approach can extract four additional book titles (B5, B6, B7,B16) which are relevant to the query yet share no common terms. This ability to retrieve relevantinformation based on meaning rather than literal term usage is the main motivation for using LSI.Table 4 lists the LSI-ranked documents (book titles) with di�erent numbers of factors (k). Thedocuments returned in Table 4 satisfy a cosine threshold of :20, i.e., returned documents are within acosine of :20 of the pseudo-document used to represent the query. As alluded to earlier, the cosine bestserves as a measure for rank-ordering only as Table 4 clearly demonstrates that its value associatedwith returned documents can signi�cantly vary with changes in the number of factors k.3.3. Folding-In. Suppose the �ctitious titles listed in Table 5 are to be added to the original setof titles in Table 2. While some titles in Table 5 use terms related to nonlinear systems or di�erentialequations, notice the di�erent meaning of the speci�c term ordinary in book titles B19 and B20 asopposed to book titles B8 and B10. As with Table 2, all underlined words in Table 5 are consideredsigni�cant since they appear in more than one title (across all 20 titles from Tables 2 and 5). Folding-in (see Section 2.3) is one approach for updating the original LSI-generated database with the 3 newtitles. Figure 7 demonstrates how these titles are folded-into the database based on k = 2 LSI factorsvia Equation (7). The new book titles are denoted on the graph by their document labels. Notice thatthe coordinates of the original titles stay �xed, and hence the new data has no e�ect on the clusteringof existing terms or documents.



Using Linear Algebra for Intelligent Information Retrieval 113.4. Recomputing the SVD. Ideally, the most robust way to produce the best rank-k approx-imation (Ak) to a term-document matrix which has been updated with new terms and documents is tosimply compute the SVD of a reconstructed term-document matrix, say ~A. Updating methods whichcan approximate the SVD of the larger term-document matrix ~A become attractive in the presenceof memory or time constraints. As discussed in [23], the the accuracy of SVD-updating approachescan be easily compared to that obtained when the SVD of ~A is explicitly computed.Suppose the titles from Table 5 are combined with those of Table 2 in order to create a new 16�20term-document matrix ~A. Following Figure 1, we then construct the best rank-2 approximation to ~A,~A2 = ~U2 ~�2 ~V T2 :(9)Figure 8 is a two-dimensional plot of the 16 terms and 20 documents (book titles) using the elementsof ~U2 and ~V2 for term and document coordinates, respectively. Notice the di�erence in term anddocument positions between Figures 7 and 8. Clearly, the the new book titles from Table 5 havehelped rede�ne the underlying latent structure when the SVD of ~A is computed. That is, one candiscuss ordinary algorithms and ordinary di�erential equations in di�erent contexts. Folding-in the3 new book titles based on the existing rank-2 approximation to A (de�ned by Table 3) may notaccurately reproduce the true LSI representation of the new (or updated) database.In practice, the di�erence between folding-in and SVD-updating is likely to depend on the numberof new documents and terms relative to the number in the original SVD of A. Thus, we expectSVD-updating to be especially valuable for rapidly changing databases.Table 4Returned documents based on di�erent numbers of LSI factors.Number of Factorsk = 2 k = 4 k = 8B17 .99 B17 .87 B17 .88B 3 .99 B 3 .82 B 3 .78B 6 .99 B12 .57 B12 .37B16 .99 B11 .57 B11 .37B 5 .98 B16 .38B 7 .98 B 7 .38B12 .55 B 1 .35B11 .55 B 5 .22B 1 .38 Table 5Additional titles for updating.Label TitlesB18 Systems of Nonlinear EquationsB19 Ordinary Algorithms for Integral and Di�erential EquationsB20 Ordinary Applications of Oscillation Theory
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Fig. 6. A Two-dimensional plot of terms and documents along with the query applicationtheory.
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Using Linear Algebra for Intelligent Information Retrieval 154. SVD-Updating. The process of SVD-updating discussed in Section 2.3 can also be illus-trated using titles from Tables 2 and 5. The three steps required to perform a complete SVD-updateinvolve adding new documents, adding new terms, and correction for changes in term weightings. Theorder of these steps, however, need not follow the ordering presented in this section (see [23]).4.1. Overview. Let D denote the p new document vectors to process, then D is an m�p sparsematrix since most terms (as was the case with the original term-document matrix A) do not occur ineach document. D is appended to the columns of the rank-k approximation of the m� n matrix A,i.e., from Equation (2), Ak so that the k-largest singular values and corresponding singular vectors ofB = (Ak j D)(10)are computed. This is almost the same process as recomputing the SVD, only A is replaced by Ak.Let T denote a collection of q term vectors for SVD-updating. Then T is a q � n sparse matrix,since each term rarely occurs in every document. T is then appended to the rows of Ak so that thek-largest singular values and corresponding singular vectors ofC = � AkT �(11)are computed.The correction step for incorporating changes in term weights (see Equation (5)) is performed afterany terms or documents have been SVD-updated and the term weightings of the original matrix havechanged. For a change of weightings in j terms, let Yj be an m� j matrix comprised of rows of zerosor rows of the j-th order identity matrix, Ij, and let Zj be an n � j matrix whose columns specifythe actual di�erences between old and new weights for each of the j terms (see [23] for examples).Computing the SVD of the following rank-j update to Ak de�nes the correction step.W = Ak + YjZTj :(12) 4.2. SVD-Updating Procedures. The mathematical computations required in each phaseof the SVD-updating process are detailed in this section. SVD-updating incorporates new term ordocument information into an existing semantic model (Ak from Equation (2)) using sparse term-document matrices (D, T , and YjZTj ) discussed in Section 4.1. SVD-updating exploits the previoussingular values and singular vectors of the original term-documents matrix A as an alternative torecomputing the SVD of ~A in Equation (9). In general, the cost of computing the SVD of a sparsematrix [3] can be generally expressed asI � cost (GTGx) + trp� cost (Gx);where I is the number of iterations required by a Lanczos-type procedure [2] to approximate theeigensystem of GTG and trp is the number of accepted singular triplets (i.e., singular values andcorresponding left and right singular vectors). The additional multiplication by G is required toextract the left singular vector given approximate singular values and their corresponding right singularvector approximations from a Lanczos procedure. A brief summary of the required computations forupdating an existing rank-k approximation Ak using standard linear algebra is given below. Table 6contains a list of symbols, dimensions, and variables used to de�ne the SVD-updating phases.Table 6Symbols used in SVD-updating phases.Symbol Dimensions De�nitionA m� n Original term-document matrixUk m� k Left singular vectors of Ak�k k � k Singular values of AkVk n� k Right singular vectors of AkZj n � j Adjusted term weightsYj m� j Permutation matrixD m� p New document vectorsT q � n New term vectors



16 Berry, Dumais and O'BrienUpdating Documents. Let B = (Ak j D) from Equation (10) and de�ne SVD (B) = UB�BV TB .Then UTk B� Vk OO Ip � = (�k j UTk D);since Ak = Uk�kV Tk : If F = (�k j UTk D) and SVD(F) = UF�FV TF ; then it follows thatUB = UkUF ; VB = � Vk OO Ip �VF ; and �F = �B:(13)Hence UB and VB are m� k and (n + p) � (k + p) dense matrices, respectively.Updating Terms. Let C = � AkT � from Equation (11) and de�ne SVD (C) = UC�CV TC .Then � UTk OO Iq �CVk = � �kTVk � :If H = � �kTVk � and SVD(H) = UH�HV TH then it follows thatUC = � Uk OO Iq �UH ; VC = VkVH ; and �H = �C:Hence UC and VC are (m+ q) � (k + q) and n� k dense matrices, respectively.Term Weight Corrections. Let W = Ak + YjZTj , where Yj is m � j and Zj is n � j fromEquation (12), and de�ne SVD(W ) = UW�WV TW . ThenUTk WVk = (�k + UTk YjZTj Vk):If Q = (�k + UTk YjZTj Vk) and SVD(Q) = UQ�QV TQ , then it follows thatUW = UkUQ and VW = VkVQ:Since (UQUk)TWVkVQ = �Q = �W . Hence UW and VW are m � k and n � k dense matrices,respectively.Table 7 contains the complexities for folding-in terms and documents, recomputing the SVD, andthe three phases of SVD-updating. Using the complexities in Table 7 the required number of 
oating-point operations (or 
ops) for each method can be compared for varying numbers of added documentsor terms. As shown in [23] for a condensed encyclopedia test case, the computational advantagesof one scheme over another depends the values of the variables listed in Table 6. For example, ifthe sparsity of the D matrix from Equation (10) re
ects that of the original m � n term-documentmatrix A with m � n, then folding-in will still require considerably fewer 
ops than SVD-updatingwhen adding p new documents provided p � n. The expense in SVD-updating can be attributed tothe O(2k2m + 2k2n) 
ops associated with the dense matrix multiplications involving Uk and Vk inEquation (13).4.3. Orthogonality. One important distinction between the folding-in (see Section 2.3) andthe SVD-updating processes lies in the guarantee of orthogonality in the vectors (or axes) used forterm and document coordinates. Recall that an orthogonal matrix Q satis�es QTQ = In, where In isthe n-th order identity matrix. Let Dp be the collection of all folded-in documents where each columnof the p � k matrix is a document vector of the form d̂ from Equation (7). Similarly, let Tq be thecollection of all folded-in terms such that each column of the q�k matrix is a term vector of the formt̂ from Equation (8). Then, all term vectors and document vectors associated with folding-in can berepresented as Ûk = �UTk j TTq �T and V̂k = �V Tk j DTp �T , respectively. The folding-in process corruptsthe orthogonality of Ûk and V̂k by appending non-orthogonal submatrices Tq and Dp to Uk and Vk,respectively. Computing ÛTk Ûk and V̂ Tk V̂k, the loss of orthogonality in Ûk and V̂k can be measured bykÛTk Ûk � Ikk2 and kV̂ Tk V̂k � Ikk2:



Using Linear Algebra for Intelligent Information Retrieval 17Table 7Computational complexity of updating methods.Method ComplexitySVD-updating [I � [4nnz(D) + 4mk + k � 2m� d]+documents trp� [2nnz(D) + 2mk �m]]+ [(2k2 � k)(m+ n)]SVD-updating [I � [4nnz(T ) + 4kn + k � 2n � q]+terms trp � [2nnz(T ) + 2kn + k � 2n� q]]+ [(2k2 � k)(m+ n)]:SVD-updating [I � [4nnz(Zj) + 4km+ 2mj + 2kn + 3k � 2n � 2j �m]correction step +trp� [2nnz(Zj) + 2km+ 2kn + k � j � n]]+ [(2k2 � k)(m+ n)]Folding-in documents 2mkpFolding-in terms 2nkqRecomputing I � [4nnz(A)� (m+ q) � (n+ p)]+the SVD trp � 2nnz(A)� (m+ q)Folding-in does not maintain the orthogonality of Ûk or V̂k since arbitrary vectors of weighted termsor documents are appended to Uk or Vk, respectively. However, the amount by which the folding-inmethod perturbs the orthogonality of Ûk or V̂k does indicate how much distortion has occurred dueto the addition of new terms or documents.The trade-o� in computational complexity and loss of orthogonality in the coordinate axes forupdating databases using LSI poses interesting future research. Though the SVD-updating processis considerably more expensive [23] than folding-in, the true lower-rank approximation to the trueterm-document matrix A de�ned by Figure 1 is maintained. Signi�cant insights in the future couldbe gained by monitoring the loss of orthogonality associated with folding-in and correlating it to thenumber of relevant documents returned within particular cosine thresholds (see Section 3.1).4.4. SVD-Updating Example. To illustrate SVD-updating, suppose the �ctitious titles inTable 5 are to be added to the original set of titles in Table 2. In this example, only documentsare added and weights are not adjusted, hence only the SVD of the matrix B in Equation (10) iscomputed.Initially, a 16 � 3 term-document matrix, D, corresponding to the �ctitious titles in Table 5 isgenerated and then appended to A2 to form a 16 � 20 matrix B of the form given by Equation (10).Following Figure 1, the best rank-2 approximation (B2) to B is given byB2 = Û2�̂2V̂ T2 ;where the columns of Û2 and V̂2 are the left and right singular vectors, respectively, corresponding tothe two largest singular values of B.Figure 9 is a two-dimensional plot of the 12 terms and 16 documents (book titles) using theelements of Û2 and V̂2 for term and document coordinates, respectively. Notice the similar clusteringof terms and book titles in Figures 9 and 8 (recomputing the SVD) and the di�erence in documentand term clustering with Figure 7 (folding-in).
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Fig. 9. Two-dimensional plot of terms and documents using the SVD-updating process.



Using Linear Algebra for Intelligent Information Retrieval 195. Applications of Latent Semantic Indexing. In this section, several applications of LSIare discussed ranging from information retrieval and �ltering to models of human memory. Some opencomputational and statistical-based issues related to the practical use of LSI for such applications arealso mentioned.5.1. Information Retrieval. Latent Semantic Indexing was initially developed for informa-tion retrieval applications. In these application, a �xed database is indexed and users pose a seriesof retrieval queries. The e�ectiveness of retrieval systems is often evaluated using test collectionsdeveloped by the information retrieval community. These collections consist of a set of documents, aset of user queries, and relevance judgements (i.e., for each query every document in the collection hasbeen judged as relevant or not to the query)1. This allows one to evaluate the e�ectiveness of di�erentsystems in retrieving relevant documents and at the same time not returning irrelevant documents.Two measures, precision and recall, are used to summarize retrieval performance. Recall is the pro-portion of all relevant documents in the collection that are retrieved by the system; and precision isthe proportion of relevant documents in the set returned to the user. Average precision across severallevels of recall can then be used as a summary measure of performance.Results were obtained for LSI and compared against published or computed results for otherretrieval techniques, notably the standard keyword vector method in SMART [24]. For several infor-mation science test collections, the average precision using LSI ranged from comparable to to 30%better than that obtained using standard keyword vector methods. See [4, 6, 12] for details of theseevaluations. The LSI method performs best relative to standard vector methods when the queries andrelevant documents do not share many words, and at high levels of recall.Term Weighting. One of the common and usually e�ective methods for improving retrievalperformance in vector methods is to transform the raw frequency of occurrence of a term in a document(i.e., the value of a cell in the term by document matrix) by some function (see Equation 5). Suchtransformations normally have two components. Each term is assigned a global weight, indicating itsoverall importance in the collection as an indexing term. The same global weighting is applied to anentire row (term) of the term-document matrix. It is also possible to transform the term's frequencyin the document; such a transformation is called a local weighting, and is applied to each cell in thematrix.The performance for several weighting schemes have been compared in [6]. A transformed matrixis automatically computed, the truncated SVD shown in Figure 1 is computed, and performance isevaluated. A log transformation of the local cell entries combined with a global entropy weight forterms is the most e�ective term-weighting scheme. Averaged over �ve test collections, log � entropyweighting was 40% more e�ective than raw term weighting.Relevance Feedback. The idea behind relevance feedback is quite simple. Users are veryunlikely to be able to specify their information needs adequately, especially on the �rst try. Ininteractive retrieval situations, it is possible to take advantage of user feedback about relevant andnon-relevant documents [25]. Systems can use information about which documents are relevant inmany ways. Typically the weight given to terms occurring in relevant documents is increased andthe weight of terms occurring in non-relevant documents is decreased. Most of the tests using LSIhave involved a method in which the initial query is replaced with the vector sum of the documentsthe users has selected as relevant. The use of negative information has not yet been exploited in LSI;for example, by moving the query away from documents which the user has indicated are irrelevant.Replacing the users' query with the �rst relevant document improves performance by an average of33% and replacing it with the average of the �rst three relevant documents improves performance byan average of 67% (see [6] for details). Relevance feedback provides sizable and consistent retrievaladvantages. One way of thinking about the success of these methods is that many words (thosefrom relevant documents) augment the initial query which is usually quite impoverished. LSI doessome of this kind of query expansion or enhancement even without relevance information, but can beaugmented with relevance information.1 Exhaustive relevance judgements (when all documents are judged for every query) are ideal for sys-tem evaluation. In large document collections, however, exhaustive judgements become prohibitivelycostly. For large collections a pooling method is used. Relevance judgements are made on the pooledset of the top-ranked documents returned by several di�erent retrieval systems for the same set ofqueries. Most of the top-ranked documents for new systems will hopefully be contained in the poolset and thus have relevance judgements associated with them.



20 Berry, Dumais and O'Brien5.2. Choosing the Number of Factors. Choosing the number of dimensions (k) for Ak shownin Figure 1 is an interesting problem. While a reduction in k can remove much of the noise, keeping toofew dimensions or factors may loose important information. As discussed in [4] using a test databaseof medical abstracts, LSI performance2 can improve considerably after 10 or 20 dimensions, peaksbetween 70 and 100 dimensions, and then begins to diminish slowly. This pattern of performance(initial large increase and slow decrease to word-based performance) is observed with other datasetsas well. Eventually performance must approach the level of performance attained by standard vectormethods, since with k = n factors Ak will exactly reconstruct the original term by document matrixA in Equation (4). That LSI works well with a relatively small (compared to the number of uniqueterms) number of dimensions or factors k shows that these dimensions are, in fact, capturing a majorportion of the meaningful structure.5.3. Information Filtering. Information �ltering is a problem that is closely related to in-formation retrieval [1]. In information �ltering applications, a user has a relatively stable long-terminterest or pro�le, and new documents are constantly received and matched against this standinginterest. Selective dissemination of information, information routing, and personalized informationdelivery are also used to refer to the matching of an ongoing stream of new information to relativelystable user interests.Applying LSI to information �ltering applications is straightforward. An initial sample of docu-ments is analyzed using standard LSI/SVD tools. A users' interest is represented as one (or more)vectors in this reduced-dimension LSI space. Each new document is matched against the vector andif it is similar enough to the interest vector it is recommended to the user. Learning methods likerelevance feedback can be used to improve the representation of interest vectors over time.Foltz [10] compared LSI and keyword vector methods for �ltering Netnews articles, and found 12%{23% advantages for LSI. Dumais and Foltz in [11] compared several di�erent methods for representingusers interests for �ltering technical memoranda. The most e�ective method used vectors derivedfrom known relevant documents (like relevance feedback) combined with LSI matching.TREC. Recently, LSI has been used for both information �ltering and information retrieval inTREC (Text REtrieval Conference), a large-scale retrieval conference conference sponsored by NIST[7, 8]. The TREC collection contains more than 1; 000; 000 documents (representing more that 3gigabytes of ASCII text), 200 queries, and relevance judgements pooled from the return sets of morethan 30 systems. The content of the collections varies widely ranging from news sources (AP NewsWire, Wall Street Journal, San Jose Mercury News), to journal abstracts (Zi� Davis, DOE abstracts),to the full text of the Federal Register and U.S. Patents. The queries are very long and detaileddescriptions, averaging more than 50 words in length. While these queries may be representative ofinformation requests in �ltering applications, they are quite unlike the short requests seen in previousIR collections or in interactive retrieval applications (where the average query is only one or twowords long). The fact that the TREC queries are quite rich means that smaller advantages would beexpected for LSI or any other methods that attempt to enhance users queries.The big challenge in this collection was to extend the LSI tools to handle collections of this size.The results were quite encouraging. At the time of the TREC conferences it was not reasonable tocompute Ak from Figure 1 for the complete collection. Instead, a sample3 of about 70; 000 documentsand 90; 000 terms was used. Such term by document matrices (A) are quite sparse, containing only:001{:002% non-zero entries. Computing A200, i.e. the 200-largest singular values and correspondingsingular vectors, by a single-vector Lanczos algorithm [3] required about 18 hours of CPU time ona SUN SPARCstation 10 workstation. Documents not in the original LSI analysis were folded-in aspreviously described in Section 3.3. That is, the vector for a document is located at the weightedvector sum of its constituent term vectors.Although it is very di�cult to compare across systems in any detail because of large pre-processing,representation and matching di�erences, LSI performance was quite good [8]. For �ltering tasks, usinginformation about known relevant documents to create a vector for each query was bene�cial. Theretrieval advantage of 31% was somewhat smaller than that observed for other �ltering tests and isattributable to the good initial queries in TREC. For retrieval tasks, LSI showed 16% improvementwhen compared with the keyword vector methods. Again the detailed original queries account for thesomewhat smaller advantages than previously observed.2 Performance is average precision over recall levels of 0:25, 0:50 and 0:75.3 Di�erent samples for information retrieval and �ltering and for TREC-1 and TREC-2 { see [7, 8]for details.



Using Linear Algebra for Intelligent Information Retrieval 21The computation of Ak for the large sparse TREC matrices A was accomplished without di�culty(numerical or convergence problems) using sophisticated implementations of the Lanczos algorithmfrom SVDPACKC [3]. However, the computational and memory requirements posed by the TRECcollection greatly motivated the development of the SVD-updating procedures discussed in Section 4.5.4. Novel Applications. Because LSI is a completely automatic method, it is widely appli-cable to new collections of texts (including to di�erent languages, as described below). The fact thatboth terms and documents are represented in the same reduced-dimension space adds another dimen-sion of 
exibility to the LSI retrieval model. Queries can be either terms (as in most informationretrieval applications), documents or combinations of the two (as in relevance feedback). Queries caneven be represented as multiple points of interest [17]. Similarly, the objects returned to the userare typically documents, but there is no reason that similar terms could not be returned. Returningnearby terms is useful for some applications like online thesauri (that are automatically constructedby LSI), or for suggesting index terms for documents for publications which require them.Although term-document matrices have been used for simplicity, the LSI method can be applied toany descriptor-object matrix. We typically use only single terms to describe documents, but phrasesor n-grams could also be included as rows in the matrix. Similarly, an entire document is usually thetext object of interest, but smaller, more topically coherent units of text (e.g., paragraphs, sections)could be represented as well. For example, LSI has been incorporated as a fuzzy search optionin NETLIB [5] for retrieving algorithms, code descriptions, and short articles from the NA-Digestelectronic newsletter.Regardless of how the original descriptor-object matrix is derived, a reduced-dimension approxi-mation can be computed. The important idea in LSI is to go beyond the original descriptors to morereliable statistically derived indexing dimensions. The wide applicability of the LSI analysis is furtherillustrated by describing several applications in more detail.Cross-Language Retrieval. It is important to note that the LSI analysis makes no use ofEnglish syntax or semantics. Words are identi�ed by looking for white spaces and punctuation inASCII text. Further, no stemming is used to collapse words with the same morphology. If words withthe same stem are used in similar documents they will have similar vectors in the truncated SVDde�ned in Figure 1; otherwise, they will not. (For example, in analyzing an encyclopedia, doctor isquite near doctors but not as similar to doctoral.) This means that LSI is applicable to any language.In addition, it can be used for cross-language retrieval { documents are in several languages and userqueries (again in several languages) can match documents in any language. What is required forcross-language applications is a common space in which words from many languages are represented.Landauer and Littman in [20] described one method for creating such an LSI space. The originalterm-document matrix is formed using a collection of abstracts that have versions in more than onelanguage (French and English, in their experiments). Each abstract is treated as the combinationof its French English versions. The truncated SVD is computed for this term by combined-abstractmatrix A. The resulting space consists of combined-language abstracts, English words and Frenchwords. English words and French words which occur in similar combined abstracts will be near eachother in the reduced-dimension LSI space. After this analysis, monolingual abstracts can be folded-in(see Section 3.3) { a French abstract will simply be located at the vector sum of its constituent wordswhich are already in the LSI space. Queries in either French or English can be matched to Frenchor English abstracts. There is no di�cult translation involved in retrieval from the multilingual LSIspace. Experiments showed that the completely automatic multilingual space was more e�ective thansingle-language spaces. The retrieval of French documents in response to English queries (and viceversa) was as e�ective as �rst translating the queries into French and searching a French-only database.The method has shown almost as good results for retrieving English abstracts and Japanese Kanjiideographs, and for multilingual translations (English and Greek) of the Bible [29].Modeling Human Memory. Landauer and Dumais [19] have recently used LSI spaces tomodel some of the associative relationships observed in human memory. They were interested interm-term similarities. LSI is often described intuitively as a method for �nding synonyms { wordswhich occur in similar patterns of documents will be near each other in the LSI space even if theynever co-occur in a single document (e.g., doctor, physician both occur with many of the same wordslike nurse, hospital, patient, treatment, etc.). Landauer and Dumais tested how well an LSI spacewould mimic the knowledge needed to pass a synonym test. They used the synonym test from ETS'sTest Of English as a Foreign Language (TOEFL). The test consists of 80 multiple choice test itemseach with a stem word (e.g., levied) and four alternatives (e.g., imposed, believer, requested, correlated),



22 Berry, Dumais and O'Brienone of which is the synonym. An LSI analysis was performed on an encyclopedia represented by a61; 000 word by 30; 473 article matrix A. For the synonym test they simply computed the similarity ofthe stem word to each alternative and picked the closest one as the synonym (for the above exampleimposed was chosen { :70 imposed, :09 believed, :05 requested, �:03 correlated). Using this methodLSI scored 64% correct, compared with 33% correct for word-overlap methods, and 64% correct forthe average student taking the test. This is surprisingly good performance given that synonymyrelationships are no di�erent than other associative relationships (e.g., algebra is quite near words likealgebraic, topology, theorem, Cayley and quadratic, although none are synonyms).Matching People Instead of Documents. In a couple of applications, LSI has been usedto return the best matching people instead of documents. In these applications, people were repre-sented by articles they had written. In one application [12], known as the Bellcore Advisor, a systemwas developed to �nd local experts relevant to users' queries. A query was matched to the nearestdocuments and project descriptions and the authors organization was returned as the most relevantinternal group. In another application [9], LSI was used to automate the assignment of reviewers tosubmitted conference papers. Several hundred reviewers were described by means of texts they hadwritten, and this formed the basis of the LSI analysis. Hundreds of submitted papers were representedby their abstracts, and matched to the closest reviewers. These LSI similarities along with additionalconstraints to insure that each paper was reviewed p times and that each reviewer received no morethan r papers to review were used to assign papers to reviewers for a major human-computer interac-tion conference. Subsequent analyses suggested that these completely automatic assignments (whichtook less than 1 hour) were as good a those of human experts.Noisy Input. Because LSI does not depend on literal keyword matching, it is especially usefulwhen the text input is noisy, as in OCR (Optical Character Reader), open input, or spelling errors. Ifthere are scanning errors and a word (Dumais) is misspelled (as Duniais), many of the other words inthe document will be spelled correctly. If these correctly spelled context words also occur in documentswhich contained a correctly spelled version of Dumais, then Dumais will probably be near Duniais inthe k-dimensional space determined by Ak (see Equation 2 or Figure 1).Nielsen et al. in [22] used LSI to index a small collection of abstracts input by a commerciallyavailable pen machine in its standard recognizer mode. Even though the error rates were 8:8% atthe word level, information retrieval performance using LSI was not disrupted (compared with thesame uncorrupted texts). Kukich [18] used LSI for a related problem, spelling correction. In thisapplication, the rows were unigrams and bigrams and the columns were correctly spelled words. Aninput word (correctly or incorrectly spelled) was broken down into its bigrams and trigrams, the queryvector was located at the weighted vector sum of these elements, and the nearest word in LSI spacewas returned as the suggested correct spelling.5.5. Summary of LSI Applications. Word matching results in surprisingly poor retrieval.LSI can improve retrieval substantially by replacing individual words with a smaller number of morerobust statistically derived indexing concepts. LSI is completely automatic and widely applicable,including to di�erent languages. Furthermore, since both terms and documents are represented in thesame space, both queries and returned items can be either words or documents. This 
exibility hasled to a growing number of novel applications.5.6. Open Computational/Statistical Issues. There are a number of computational/statisticalimprovements that would make LSI even more useful, especially for large collections:� computing the truncated SVD of extremely large sparse matrices (i.e., much larger than theusual 100; 000 by 60; 000 term by document matrix processed on RISC workstations withunder 500 megabytes of RAM,� perform SVD-updating (see Section 4) in real-time for databases that change frequently,and� e�ciently comparing queries to documents (i.e., �nding near neighbors in high-dimensionspaces).5.7. Related Work. A number of other researchers are using related linear algebra methodsfor information retrieval and classi�cation work. Schutze [26] and Gallant [13] have used SVD andrelated dimension reduction ideas for word sense disambiguation and information retrieval work. Hull[16] and Yang and Chute [28] have used LSI/SVD as the �rst step in conjunction with statisticalclassi�cation (e.g. discriminant analysis). Using the LSI-derived dimensions e�ectively reduces thenumber of predictor variables for classi�cation. Wu et al. in [27] also used LSI/SVD to reduce
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