
Parallel Benchmarks andComparison-Based Computing�Clay P. BreshearsDepartment of Computer ScienceUniversity of Southern MississippiHattiesburg, MS 39406USA Michael A. LangstonDepartment of Computer ScienceUniversity of TennesseeKnoxville, TN 37996USAAbstractNon-numeric algorithms have been largely ignored in parallel benchmarkingsuites. Prior studies have concentrated mainly on the computational speed ofprocessors within very regular and structured numeric codes. In this paper,we survey the current state of non-numeric benchmark algorithms and investi-gate the use of in-place merging as a suitable candidate for this role. In-placemerging enjoys several important advantages, including the scalability of e�cientmemory utilization, the generality of comparison-based computing and the rep-resentativeness of near-random data access patterns. Experimental results overseveral families of parallel architectures are presented.
�A preliminary version of a portion of this paper was presented at the International Conference on ParallelComputing held in Gent, Belgium, in September, 1995. This research has been supported in part by theNational Science Foundation under grant CDA{9115428 and by the O�ce of Naval Research under contractN00014{90{J{1855.



1 IntroductionOnly in recent years have non-numeric algorithms been considered for inclusion in paralleland supercomputer benchmarks [2, 8, 22]. Past benchmarking suites have been primarilyconcerned with a parallel system's aggregate speed of performing oating-point operations.As the �eld of parallel computation matures, however, the range of codes executed on parallelmachines will likely include a wide assortment of non-numeric routines.Counting sort and radix sort have been proposed as non-numeric benchmark candidates[2, 22]. Unfortunately, these simple algorithms are not very representative of operationscarried out in wide assortments of non-numeric applications. Both of these sorts exhibitcompletely predictable data access patterns and, even worse, squander an unbounded amountof unnecessary memory. Thus, in order to predict more accurately the performance ofnon-numeric algorithms, a comparison-based, in-place benchmark may be more telling. Inthe sequel, we examine the e�ectiveness of the parallel merge (and hence sort-by-merging)approach �rst devised in [13]. We report the results of large collections of experimentsconducted on a wide range of parallel machines, including both SIMD versus MIMD andshared versus distributed memory designs. We also compare these results to those obtainedfor numeric codes.In the next section, we survey several known benchmarking e�orts, including those forsequential and parallel computational models. In Section 3, we focus on the needs of asuitable non-numeric parallel benchmark. We consider previously-proposed alternatives inthis light, and discuss the relative merits of in-place merging. In Section 4, we addressimplementation details and present timing results, with which we compare di�erent machines.Comparisons are also made to numeric benchmark results. A �nal section contains a fewclosing observations and related remarks. 2



2 Previous E�orts2.1 Sequential BenchmarksWe �rst briey examine some of the better-known sequential non-numeric benchmarkingalgorithms that are available. We know of no parallel implementations or performanceresults for any of the codes described within this section.2.1.1 DhrystoneThe Dhrystone benchmark [26] is a synthetic collection of operations based upon a litera-ture survey of the distribution of language features most used in non-numeric, system-typeprogramming. The major computational concentration is on string functions. Originallyimplemented in Ada, more recent versions have been coded and distributed in C [27]. TheDhrystone benchmark is intended to measure integer performance on small machines withsimple architectures.2.1.2 Stanford Small Programs Benchmark SetWeicker [28] makes mention of the Stanford Small Programs Benchmark Set. Used for the�rst comparisons between RISC and CISC processors, this benchmark is a collection ofsmall programs brought together at Stanford University by John Hennessy and Peter Nye.In addition to two oating-point routines, there are eight integer codes including quicksort,bubble sort and tree sort. These units have been collected into a single C program and madeavailable through informal channels. 3



2.1.3 Aburto's CollectionAlfred Aburto at the Naval Ocean Systems Center, San Diego, maintains, collects and pub-lishes results for a number of separate non-numeric codes that continue to be used for bench-marking systems. These include Heapsort, Hanoi (solves the Towers of Hanoi puzzle), NSieve(�nds prime numbers), and Sim (locates similarities between DNA sequences). Also availableis Fhourstone, a program to solve positions from the game Connect-4 that tests hashing andrandom access performance, recursive alpha beta searching and other scalar operations in-volving array and table computations. These benchmarking results and routines are availablethrough several on-line sources.2.1.4 EDN BenchmarksThis collection of programs was developed at Carnegie Mellon University and published byEDN in 1981 [11]. The intent of the benchmarks was to measure the computational speed ofmicroprocessors without measuring the quality of the compiler. For that reason, the originalcodes were written directly in assembly languages of various microprocessors, though a subsetof the original benchmarks are now available in C. This subset includes routines for stringsearch, linked list insertion and quicksort. There is no formal mechanism for distribution.2.2 Parallel BenchmarksIn testing their Threaded Abstract Parallel Machine model of computation on the ThinkingMachines CM-5 and the MIT J-machine, Spertus et al [21] make use of a simple quicksort.This algorithm, along with others used for comparison, were written in the parallel languageId90. Francis and Mathieson [10] put forth a parallel sort algorithm for benchmarkingshared memory machines. There are more individual benchmarking examples used to rate4



the performance of speci�c hardware systems or architectures in the literature. Bhuyan andZhang bring several of these examples together in [5].Attempts to develop and make available a standardized parallel benchmarking suite arein their infancy. These attempts include the EuroBEN Group [25], the GENESIS Project [1],PERFECT Club Benchmarks [4], NAS Parallel Benchmarks [2] and the vendor-supportedSPEC Benchmarks [8]. Recently, a number of researchers interested in benchmarking metand formed the PARKBENCH Committee [14]. The goal of this group is to make availablecodes that test the capabilities of scalable massively-parallel computers while maintainingstrict guidelines on an acceptable benchmarking methodology to ensure that performanceevaluations are meaningful across a variety of machines. A majority of the routines within thecurrent PARKBENCH collection come from the NAS Parallel Benchmark and the GENESISBenchmark suites.All of these benchmarking programs and suites are geared toward scienti�c computations.This, in turn, translates to codes devoted to computations involving single and multiple pre-cision oating-point operations. There are, however, some non-numeric exceptions includedwithin two of the suites.The NAS Parallel Benchmarks [2] is a collection of di�erent algorithms found in actualcomputational uid dynamics calculations. The entire suite includes �ve parallel kernels andthree complete applications. One kernel is a sort, needed as part of certain particle codes,whose data set is made up of eight million nineteen-bit numbers, each generated by takingthe average of four random numbers ranging between 0 and 219. This benchmark is intendedto measure integer computation and communication performance.In [22], Thearling and Smith note that the NAS sorting benchmark does not go farenough with either the size of the data �le to be sorted or the characterization of the dataset used. They observe that the sorting of a billion or more keys has been achieved on at5



least two parallel systems. Thus, the data set size of the NAS benchmarks is already dwarfedby the memory capacity of certain parallel machines. They propose instead a radix sort,and present performance results using a Connection Machine CM-5 with varying numbersof processors and several data distributions.Within the integer computation suite, CINT92, of the SPEC Benchmarks [8] are routinesfor generating and optimizing Programmable Logic Arrays, solving a nine queens' problemwith a Lisp interpreter and compressing input �les with the Lempel-Ziv encoding. Anothercode, eqntott [23], that translates logical Boolean expressions into truth table equivalents,makes use of a sorting procedure.2.3 Database BenchmarkingIn contrast to benchmarks targeted at speci�c types of computations or performance of par-ticular hardware subsystems (e.g., I/O latency, cache access, page swapping), benchmarksfor database management systems use higher level measures such as tuple retrieval time orthe number of queries satis�able within a given amount of time. Integer or character compu-tations are used for evaluation and often involve comparisons of quantities or movement ofdata. Such computations may be repeated in the processing of a single transaction or query.Two of the better-known database benchmarks are the Wisconsin benchmark [7] and theTPC benchmark [20]. The former uses a synthetic database with a set of queries designed tomeasure performance of decision support systems; the latter measures transaction processingusing a large number of small transactions. Both benchmarks were originally designed forserial systems, but are adaptable for use on parallel ones. The performance evaluation of theGamma parallel database machine under the Wisconsin benchmark is included in [7]. TPCcomes in three versions: one for online transaction processing with a LAN or WAN, onefor online transaction processing with no network, and one for online business transaction6



processing (which includes batch transactions, data entry errors that cause some transactionsto abort, and several other features not found in the other two suites).Citing the need for a �ner level of granularity than is generally available from serialbenchmarks, McCann and Bell [19] have developed a hybrid benchmarking model. Thereare two stages to the model: serial and parallel. The serial stage measures resource con-sumption by modeling the system in terms of input, output, comparison and other low leveloperations. Queries in this model are analyzed in terms of CPU time to complete a set ofelementary operations including fetching a page from disk to memory, comparing either asingle integer or character and outputting a tuple that satis�es conditions set with a givenquery. The parallel stage models database operations as a network of communicating se-quential processes. This model uses CPU times for serial elementary operations and is ableto represent the tra�c congestion of real parallel systems under a real workload. McCannand Bell present sample simulation results run on a two transputer system. Implementationof the model was made possible through the high-level queuing network package NetworkII.5 (CACI Products Company).2.4 In SummaryNone of the non-numeric exceptions within scienti�c benchmarks adequately deals with themeasurement of non-numeric computations. Database benchmarks are a little better, butare too specialized for use in benchmarking generic non-numeric performance on parallelmachines. Thus, we will employ instead a \bell weather" non-numeric operation: merging.We have selected a parallel, in-place method as our algorithm of choice. An explanationof this selection follows in the next section. Details on the inner-workings of the algorithmitself are contained in an appendix. 7



3 De�ning a Suitable Benchmark AlgorithmGray [12], lists four criteria for domain-speci�c benchmarks. Though this list was aimedat database systems, we argue that it can easily be extended to more general non-numericparallel environments. We list Gray's criteria below, and describe how each can be appliedto parallel benchmarks in general, and to non-numeric processing in particular.Relevance. The purpose of benchmarking is to measure the performance of machinesover computations that are typical of the work expected to be routinely performed.For parallel machines, this applies not only to the processing of data, but also tothe patterns of data movement that are anticipated in the execution of productionapplications.Portability. Parallel benchmark algorithms should not rely on the particular featuresof any single machine. Implementations should be independent of the number of pro-cessors, network topology and available programming language features (up to thosemachine-dependent functions necessary for proper execution). Thus a benchmarkshould provide a \level playing �eld" for comparing di�erent machines. Because awide range of execution modes are available across di�erent architectures, benchmark-ing algorithms should also be implementable on both shared versus distributed memoryand SIMD versus MIMD systems. When implementing an algorithm across architec-tural paradigms, care must be taken to keep computations as equivalent as possiblewithin given machine constraints.Scalability. An algorithm should be scalable to di�ering numbers of processors andmemory sizes. As computer architectures continue to evolve, the longevity and use-fulness of benchmarking codes will lie in large part in their adaptability to new andlarger systems as they become available.8



Simplicity. Benchmarking routines must be understandable, else they lack credibilityand are not readily accepted by large numbers of potential users. Portability andscalability may be hindered if an implementation is too complicated. Not to put too�ne a point on it, the goal is to select algorithms that are complex enough to tickle awide range of architectural features, but not so intricate that the code is indecipherable.3.1 Non-Numeric OperationsWe have identi�ed the following operations as being desirable within a non-numeric bench-mark:� comparison of data within local memory,� movement of data within local memory,� comparison of data across processors,� movement of data across processors, and� global scan/reduction operations.Parallel merge or sort algorithms probably best �t this bill. It is important, however, thatthe movement of data across processors be rather unpredictable and driven by the data valuesthemselves. This is in marked contrast with numeric benchmarks, which generally have inter-processor data movement schemes built into the algorithms. Unpredictable data movementis typical of non-numeric applications, and is much more apt to create network congestion inparallel systems. Determining just how e�ectively such movement is automatically handledis another bene�t derivable from non-numeric benchmarks.There are several benchmarking kernels and proposed kernels that do sorting or merging.We look at these algorithms in turn, plus Valiant's parallel merge, with an eye toward howwell each measures up to our expectations. In all cases, we consider implementations of the9



selected algorithms that are designed for a �xed, �nite number of processors. Algorithmsdesigned with only the PRAM model in mind often ignore this real-life restriction, anddescribe idealized computations done with a number of processors related to the size of theinput data set. Implementation of such algorithms can often be accomplished directly byusing each physical processor to emulate a number of virtual processors required by thePRAM algorithm. Unfortunately, this simple-minded approach does not scale with limitedmemory.3.2 The NAS Parallel SortThe NAS Parallel Integer Sort benchmark is based on the serial code of the benchmark kerneland is available in HPF and Fortran 90 as well as specialized Intel iPSC/860 and ThinkingMachines CM-2 versions. For the latter two, both C and FORTRAN versions are available.This benchmark measures the time needed to rank randomly generated keys and performa partial check for correctness. The two step process of ranking and checking is repeated sev-eral times. After the timing is done, the data is moved to its sorted position and completelyveri�ed for accuracy. This data movement is not part of the benchmark timing.While such a counting sort algorithm is a part of larger scienti�c codes, and thus a valu-able kernel within the NAS benchmarking suite, its suitability as a non-numeric performancemeasure is very much in doubt. There is no direct comparison of keys (ranking is accom-plished by counting); data movement is not even timed; no global scan/reduction operationsare involved.3.3 Radix SortParallel radix sort [18] implemented on a �nite number of processors �rst evenly divides therecords to be sorted among the processors. Each processor ranks the given keys based on10



successive non-overlapping segments of bits within each key starting at the least signi�cantportion of the key and working up to the most signi�cant. For each segment, this rankingis done by generating all the possible bit patterns of the speci�ed size in numerical order.For each pattern, the number of keys that match the pattern within the target segmentare counted and given a rank index based on the key's position in the list, the number ofpreviously ranked keys and the number of keys whose segment matches the current pattern.Parallel scan operations are used to compute the ranks of keys across processors. Once therank of all keys is known, the records are permuted based on this rank. The ranking anddata movement is repeated for the next bit segment until the entire key has been processedin this way.In principle, radix sort is perfectly data balanced. That is, the amount of records andworkspace initially allocated to each processor is unchanged throughout the execution ofthe algorithm. Under a shared memory paradigm, the movement of data is easily done bymoving records into temporary array elements indexed by each key's rank. After all recordsare moved, the algorithm can either move data to the corresponding elements of the originalarray before proceeding to the next bit segment or merely swap roles between the temporaryholding array and the original data array for each bit segment used. The former methodwould require both global and local data movement while the latter only global movement.Unless programmed carefully, movement of records between distributed memory proces-sors can end up in deadlock. Even with a careful implementation the data movement candegenerate into a token ring wherein only a single record is in transit between processors andthe receiving processor. Upon receipt and local storage of the record, the receiving processoris then able to send out a single record to another processor, and so on, until all recordshave been moved. This adverse scenario depends upon how message passing routines areimplemented, key values and their distribution among the processors.11



A much more fundamental problem with radix sort is that it can only deal with keyswhose bit patterns directly determine their lexicographic ordering. Records whose keyscontain non-standard characters or formats cannot be easily handled. Records whose keysare determined from a combination of two or more data �elds may not be handled at all.Furthermore, global data movement is really nothing more than the permutation of datathrough a network. More e�ective algorithms [29] are available if one wishes to measure thisvery limited type of data movement.3.4 Valiant's Parallel MergeConverting the algorithm of Valiant [24] to a computational model with a �xed number, k,of processors is fairly simple. Instead of being able to distribute bpnmc processors to mergepn smaller sublists, we merge O(k) lists on the k processors by dividing the �rst list into kblocks and locating the points within the second list where the last element of each sublistwould be placed if these elements alone were merged into the second list. These points arethe endpoints of the sublists within the second list that are merged with the original sublistsfrom the �rst list.This parallel merge performs comparisons across sublists (blocks), local key comparisonsfor the �nal merges, and movement of data on distributed machines to locate elements fromthe second list within the proper processor memory for the �nal merge. Shared memoryimplementations need only update pointers to locate the second list blocks that are to bemerged with the �rst list blocks. The local merge moves data between the input array andan additional auxiliary array.In general, this merge is not well load or data balanced. One can easily construct datasets that will restrict the entire �nal local merge to be executed on a single processor. Ondistributed memorymachines with the two original lists spread throughout the local memory12



of the processors, if the data capacity of each processor is initially at or near capacity, thedata redistribution of the second list blocks may not have the required space available onsome of the processors. Data sets can of course be contrived to ensure that a machine is loadbalanced and that the data capacity of distributed processors will not be exceeded. In thiscase, however, memory access and communication patterns are predictable and unlikely tobe representative of arbitrary computations.3.5 In-Place MergingThe algorithm of [13] covers the �ve desired operations very well, and is easily scalable to anynumber of processors or memory size. During the course of execution, keys are comparedand records moved between processors, global scan and reduce operations broadcast thepositions of certain keys, and data is compared and moved within a processor's memory.Two very di�erent kinds of data movement are carried out between processors. The �rstinvolves moving an entire block of data initially assigned to a processor into another block.The destination block is based on the sorted position of the last key within each block. Sincesuch a large amount of data is being transported to a single destination and all processorsare participating, this operation can be done by moving large portions of the block in a singlemessage with distributed memory or synchronous copying with shared memory. The secondtype of global movement shifts records within small subsets of processors in preparation fora local merge. The number of records between subsets and between processors within thesame subset varies greatly, making for unpredictable, data-driven communication patternsbetween processors and di�ering message sizes on distributed memory machines.13



4 Implementation and Timing ResultsTable 1 contains hardware, operating systems, and compiler details on each of the machineswe have used within our study.Connection Machine CM-5 (SIMD)Operating System:SunOS Release 4.1.2; CMOST Version 7.2Compiler:C� Driver Version 7.1 Final Rev f2000Processors:SunSPARC1 (plus 4 vector units per node)Memory per Node:32 MbytesConnection Machine CM-5 (MIMD)Operating System:SunOS Release 4.1.2; CMOST Version 7.2Compiler:SunOS C Compiler with CMMD ExtensionsProcessors:SunSPARC1Memory per Node:32 MbytesIBM SP2Operating System:AIX 6000Compiler:AIX C Compiler with MPL ExtensionsProcessors:RS/6000 (POWER2 architecture)Memory per Node:128 Mbytes

MasPar MP-2Operating System:ULTRIX V4.3 (Rev. MP-3.22)Compiler:MPL Version 3.2.14Processors:proprietary RISCMemory per Node:64 KbytesIntel iPSC/860Operating System:iPSC/860 UNIX Sys V 3.2, NX 3.3.2Compiler:icc/NX Sun4 Rel 4.0Processors:Intel i860Memory per Node:8 MbytesIntel ParagonOperating System:Paragon OSF/1 Release 1.0.4 Server 1.3 R1 3Compiler:icc/Paragon Version R5.0.1Processors:Intel i860 XPMemory per Node:16 MbytesTable 1: Machines Used in This Study4.1 MethodologyAll programs were written in C to promote portability. Accordingly, no low-level or machine-speci�c optimizations were used. In general, no specialized communication routines other14



than send, receive and broadcast were employed. On distributed memory architectures,only global synchronization, send, receive, one-to-all broadcast and a limited number ofinformational functions were allowed since all target machines support these operations.Thus, no reliance was placed on any one architecture, memory hierarchy, or connectiontopology.Keys are thirty-two-bit integers. Two sorted lists are created by dividing the data andprocessor sets in half and assigning an equal portion of the data to each processor. Eachdata set is divided into several (typically �fty) segments and the data generated within eachsegment has a di�erent, random density of duplicate key values. By varying the densityof duplicates we are attempting to model real-world data sets that would likely be mergedor sorted and whose key values aren't all equally probable. Compilations were done withmaximum optimization available through compiler ags.4.2 Machine ComparisonsNumeric benchmarks measure the number of oating-point operations executed per second.For non-numeric computations such a measure is meaningless. Also, exact counts for numbersof statements executed are not easily calculated a priori and rely entirely on the initialdistribution of data. Based on the performance metrics outlined in [15], a more usefulmeasure for non-numeric algorithms such as ours is the number of records handled persecond.Thus we use the average number of records merged per second (rec/s). This value iscomputed by dividing the total number of records by the total time taken by the merge.Unlike op/s, rec/s is an amortized metric in that after one second of execution of the mergeit is not the case that the given number of records will be in their �nal merged position.However, such a metric directly relates the number of records within the data set to the15



execution time of the code. Not only does this give a standard measure by which we cancompare di�erent machines with di�erent numbers of processors, but we can also comparedi�erent amounts of data on the same machine to determine how variations in load a�ectperformance.Table 2 lists the average Mrec/s (millions of records per second) performance we observedfor each machine over a range of data set sizes. The �le sizes used in our tests are theexact powers of two contained within the ranges shown plus those �le sizes midway betweensuccessive powers of two. Timings on each machine are taken from the average of �vedi�erent, random test runs for each �le size.Number of Range of File AverageMachine Processors Sizes Merged Mrec/sIBM SP2 16 32768 { 268435456 4.621Intel Paragon 32 131072 { 33554432 3.650IBM SP2 8 32768 { 134217728 2.174Intel Paragon 16 65536 { 16777216 1.984Thinking Machines CM-5 (MIMD) 32 32768 { 50331648 1.664Intel iPSC/860 32 131072 { 50331648 1.515Intel Paragon 8 32768 { 12582912 1.092Intel iPSC/860 16 32768 { 25165824 0.832Intel iPSC/860 8 32768 { 12582912 0.489MasPar MP-2 4096 32768 { 50331648 0.474Thinking Machines CM-5 (SIMD) 32 (128) 32768 { 3145728 0.002Table 2: Average Performance of Each MachineThe graph in Figure 1 depicts the entire set of run times we observed over the course ofour experiments. Note that the x axis uses a logarithmic scale.Memory capacity is another critical measure. We have observed before [6] that memorymanagement schemes can exhibit unexpected behavior at or near capacity. Table 3 listsmaximum data memory capacity and corresponding machine performance for three sample16



100000 1000000 10000000 100000000

Number of records

0

2

4

6

M
re

c/
s

IBM SP2 (16 PEs)
IBM SP2 (8 PEs)
Intel Paragon (32 PEs)
Intel Paragon (16 PEs)
Intel Paragon (8 PEs)
Thinking Machines CM-5 (32 PEs; MIMD)
Intel iPSC/860 (32 PEs)
Intel iPSC/860 (16 PEs)
Intel iPSC/860 (8 PEs)
MasPar MP-2 (4096 PEs)
Thinking Machines CM-5 (32 PEs/128 VU; SIMD)Figure 1: Detailed Performance of Each Machinecon�gurations: MasPar MP-2 with 4096 processors; Thinking Machines CM-5 (MIMD) with32 processors; Intel iPSC/860 32 processors.Maximum MemoryMachine �le size Mrec/s UtilizationMP-2 65404928 0.236 97.5%CM-5 (MIMD) 243760960 0.312 93.0%iPSC/860 59959808 1.428 91.5%Table 3: Memory Capacity Measure and PerformanceWe note a vast di�erence between the relative rankings of machines in our study andtheir rankings under the LINPACK Benchmarks. Using the notation of [9], we let Rmaxdenote billions of oating-point operations per second (Gop/s) measured for the largestproblem run on each machine. For comparison, we use Mrec/s values. The results from17



both benchmarks are shown in Table 4y. Numbers in brackets represent relative rankings.Among other things, Tables 2 and 4 both illustrate that SIMD architectures can be extremelyunfriendly to non-numeric algorithms. Number of LINPACK MergeMachine processors Rmax (Gop/s) (Mrec/s)Intel iPSC/860 32 .64 [2] 1.428 [1]MasPar MP-2 4096 .374 [3] 0.236 [2]Thinking Machines CM-5 (SIMD) 32 1.9 [1] 0.001 [3]Table 4: Comparison of LINPACK and In-Place Merge BenchmarksWe also note di�erences between our results and those of the NAS Parallel BenchmarkInteger Sort kernel. We have taken from [3] the raw execution times for 223 keys and convertedthem to Mrec/s. See Table 5. Number of NAS IS MergeMachine processors (Mrec/s) (Mrec/s)IBM SP2 16 3.077 [1] 4.877 [1]IBM SP2 8 1.678 [2] 2.956 [3]Intel iPSC/860 32 0.326 [4] 1.630 [4]Intel Paragon (OSF1.2) 32 1.074 [3] 4.039 [2]Table 5: Comparison of NAS Integer Sort and In-Place Merge BenchmarksIn addition to the di�erences between our rankings and those of LINPACK and NAS, weobserve a quantitative di�erence between relative machine performances. As an example,consider that the Intel iPSC/860 outperforms the MasPar MP-2 by a factor of less than twounder LINPACK, but by a factor of over six in our study.yThe selection of these particular machines was based solely on the fact that each had an entry in theLINPACK report for the same numbers of processors on which our in-place merge algorithm was run.18



5 DiscussionBy implementing a single algorithm across a variety of parallel platforms, we have investi-gated the behavior of these machines in supporting representative non-numeric codes. Weresist the temptation to conjecture about detailed explanations for each of the speci�c num-bers we have obtained; a variety of intricate architectural features can come into play. Wehave in fact aimed instead to eschew optimizations that favor any one particular cachecoherence scheme, network topology, memory hierarchy or other possible machine-speci�cperformance factor. We recognize that such factors are important, and that they can directlya�ect how well a given system will perform. We are much more concerned, however, withissues of portability, scalability and fairness.Based on the results we have depicted, we would not propose a wholesale replacement ofother merge and sort kernels in parallel and supercomputing benchmark suites. Rather, wewould argue for the addition of representative comparison-based algorithms, such as the onewe have employed, to cover a much wider range of applications.
19



References[1] C. A. Addison, V. S. Getov, A. J. G. Hey, R. W. Hockney and I. C. Walton, \TheGENESIS Distributed-Memory Benchmarks," in Computer Benchmarks (Advances inParallel Computing 8), J. J. Dongarra and W. Gentzsch, eds., Elsevier Science PublishersB.V., Amsterdam, 1993.[2] D. H. Bailey, J. T. Barton, T. A. Lasinski and H. D. Simon, \The NAS Parallel Bench-marks," RNR Technical Report RNR{91{002, NASA Ames Research Center, January1991.[3] D. H. Bailey, E. Barszcz, L. Dagum and H. D. Simon, \NAS Parallel Benchmark Results10-94," NAS Technical Report NAS{94{001, NASA Ames Research Center, October1994.[4] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer, R. Rolo�, A. Sameh,E. Clementi, S. Chin, D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsuing, J.Schwarzmeier, K. Lue, S. Orszag, F. Seidl, O. Johnson, R. Goodrum and J. Martin,\The PERFECT Club Benchmarks: E�ective Performance Evaluation of Computers,"International Journal of Supercomputer Applications 3 (1989), 5{40.[5] L. N. Bhuyan and X. Zhang, eds., Multi-Processor Performance Measurement and Eval-uation, IEEE Computer Society Press, Los Alamitos, CA, 1995.[6] C. P. Breshears and M. A. Langston, \MIMD Versus SIMD Computation: Experiencewith Non-Numeric Parallel Algorithms," Parallel Algorithms and Applications 2 (1994),123{138.[7] D. J. DeWitt, \The Wisconsin Benchmark: Past, Present, and Future," inThe Benchmark Handbook for Database and Transaction Processing Systems, J. Gray,editor, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1993.[8] K. M. Dixit, \The SPEC Benchmarks," Parallel Computing 17 (1991), 1195{1209.[9] J. J. Dongarra, \Performance of Various Computers Using Standard Linear EquationsSoftware," University of Tennessee Technical Report CS-89-85 (updated May 18, 1994).[10] R. Francis and I. Mathieson, \A Benchmark Parallel Sort for Shared Memory Multi-processors", IEEE Transactions on Computing 37 (1988), 1619{1626.[11] R. D. Grappel and J. E. Hemenway, \A Tale of Four �Ps: Benchmarks Quantify Per-formance," EDN (April 1, 1981), 179-265.[12] J. Gray, The Benchmark Handbook for Database and Transaction Processing Systems,Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1993.20



[13] X. Guan and M. A. Langston, \Time-Space Optimal Parallel Merging and Sorting,"IEEE Transactions on Computers 40 (1991), 596{602.[14] R. W. Hockney and M. Berry, eds., \Public International Benchmarks for Parallel Com-puters," PARKBENCH Committee: Report-1, February 1994.[15] R. W. Hockney, \A Framework for Benchmark Performance Analysis," in ComputerBenchmarks (Advances in Parallel Computing 8), J. J. Dongarra and W. Gentzsch, eds.,Elsevier Science Publishers B.V., Amsterdam, 1993.[16] B-C Huang and M. A. Langston, \Practical In-Place Merging," Communications of theACM 31 (1988), 348{352.[17] M. A. Kronrod, \An Optimal Ordering AlgorithmWithout a Field of Operation," Dok.Akad, Nauk SSSR 186 (1969), 1256{1258.[18] V. Kumar, A. Grama, G. Anshul and G. Karypis, Introduction to ParallelComputing: Design and Analysis of Algorithms, Benjamin/Cummings Publishing Com-pany, Inc., Redwood City, CA, 1994.[19] J. A. McCann and D. A. Bell, \A Hybrid Benchmarking Model for Database MachinePerformance Studies," in Computer Benchmarks (Advances in Parallel Computing 8), J.J. Dongarra and W. Gentzsch, eds., Elsevier Science Publishers B.V., Amsterdam, 1993.[20] O. Serlin, \The History of DebitCredit and the TPC," in The BenchmarkHandbook for Database and Transaction Processing Systems, J. Gray, editor, MorganKaufmann Publishers, Inc., San Mateo, CA, 1993.[21] E. Spertus, S. C. Goldstein, K. E. Schauser, T. von Eiken, D. E. Cutter and W. J. Dally,\Evaluation of Mechanisms for Fine-Grained Parallel Programs in the J-Machine and theCM-5," Proceedings, 20th Annual International Symposium on Computer Architecture(1993), 302{313.[22] K. Thearling and S. Smith, \An Improved Supercomputer Benchmark," Proceedings,Supercomputing (1992), 14{19.[23] The Industrial Liaison Program at University of California at Berkeley, Eqntott #V9,released 1985.[24] L. G. Valiant, \Parallelism in Comparison Problems," SIAM Journal of Computing 4(1975), 348{355.[25] A. J. van der Steen, \The Benchmark of the EuroBen Group," Parallel Computing 17(1991), 1211{1221.[26] R. P. Weicker, \Dhrystone: A Synthetic Systems Programming Benchmark," Commu-nications of the ACM 27 (1984), 1013{1030.21



[27] R. P. Weicker, \Dhrystone Benchmark: Rationale for Version 2 and MeasurementRules," SIGPLAN Notices 9 (1989), 60{82.[28] R. P. Weicker, \A Detailed Look at Some Popular Benchmarks," Parallel Computing17 (1991), 1153{1172.[29] N. Nupairoj and L. Ni, \Performance Evaluation of Some MPI Implementations onWorkstation Clusters," Proceedings, Scalable Parallel Library Conference 1994, 98{105.6 Appendix: A Brief Overview of In-Place MergingFast in-place merging inherently relies on the notions of internal bu�ering and block rear-ranging, ideas that can be traced back to the seminal work of Kronrod [17]. Assuming thereare k processors available, the data to be merged is viewed as k blocks, each block of size n=k,and each block managed by a distinct processor. The parallel method we have employed isfrom [13]. It will merge two sorted lists of total length n in O(n=k + log n) time and O(k)extra space on the EREW PRAM model of computation, and is thus time-space optimal forany value of k � n=(log n). It has �ve main steps.In the �rst step, processors sort blocks by their tails (largest-keyed records), then movethem accordingly. In the second step, the data is divided into pairs of series. When aprocessor determines that a series ends in its block, it broadcasts its index to the left usinga segmented parallel scan operation. Thus each processor can determine the boundaries ofthe series around it. In the third step, a special data structure and a phased merge are usedso that processors can e�ciently determine how many records need to be displaced to theirright. In the fourth step, records are distributed as necessary. In the �fth step, a sequentialin-place merge [16] is performed on local data.The algorithm also contains a few subtle special cases. The interested reader is referredto [13] for complete details. 22


