
LAPACK Working Note 93Installation Guide for ScaLAPACK1J. Choi, J. J. Dongarra, L. S. Ostrouchov, A. Petitet, and R. C. WhaleyDepartment of Computer ScienceUniversity of TennesseeKnoxville, Tennessee 37996-1301andJ. Demmel, I. Dhillon, and K. StanleyComputer Science DivisionUniversity of California, BerkeleyBerkeley, CA 94720andD. WalkerMathematical Sciences SectionOak Ridge National LaboratoryP.O. Box 2008, Bldg. 6012Oak Ridge, TN 37831-6367VERSION 1.0, February 28, 1995DATE: March, 1995AbstractThis working note describes how to install and test version 1.0 of ScaLAPACK. Thesetwo-dimensional distributed memory versions of common LAPACK routines rely on callsto the BLAS for local computation, and calls to the PBLAS for global computations. Forportability concerns, communication takes place inside the PBLAS through calls to theBLACS. The design of the testing/timing programs for the ScaLAPACK codes is alsodiscussed.Only a subset of the routines are available. Routines that are NOT available yetare the least squares driver, condition estimation and iterative re�nement forLU and Cholesky (so the expert drivers are not ready), PSIGN, and PUMMA.Please disregard discussion of these routines in this installation guide. Theywill be available soon.1This work was supported in part by the National Science Foundation Grant No. ASC-9005933; bythe Defense Advanced Research Projects Agency under contract DAAL03-91-C-0047, administered by theArmy Research O�ce; by the O�ce of Scienti�c Computing, U.S. Department of Energy, under ContractDE-AC05-84OR21400; and by the National Science Foundation Science and Technology Center CooperativeAgreement No. CCR-8809615. 1



Contents1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42 Overview of Distribution Format and Contents : : : : : : : : : : : : : : : : 42.1 ScaLAPACK Routines : : : : : : : : : : : : : : : : : : : : : : : : : : 52.2 Testing/Timing Routines : : : : : : : : : : : : : : : : : : : : : : : : 63 Installation Procedure : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63.1 Build the PVM 3.3 Library : : : : : : : : : : : : : : : : : : : : : : : 63.2 Build the BLACS Library : : : : : : : : : : : : : : : : : : : : : : : : 63.3 Build the BLAS Library : : : : : : : : : : : : : : : : : : : : : : : : : 73.4 Uncompress and untar the �le : : : : : : : : : : : : : : : : : : : : : 73.5 Edit the SLmake.inc include �le : : : : : : : : : : : : : : : : : : : : 73.6 Top-Level ScaLAPACK Make�le : : : : : : : : : : : : : : : : : : : : 83.7 Run the PB-BLAS Test Suite : : : : : : : : : : : : : : : : : : : : : : 93.8 Run the REDIST Test Suite : : : : : : : : : : : : : : : : : : : : : : 123.9 Run the ScaLAPACK Test Suite : : : : : : : : : : : : : : : : : : : : 133.10 Send the Results to Tennessee : : : : : : : : : : : : : : : : : : : : : 164 More About the ScaLAPACK Test Suite : : : : : : : : : : : : : : : : : : : : 164.1 Tests for the ScaLAPACK LU routines : : : : : : : : : : : : : : : : : 184.1.1 Input File for Testing the ScaLAPACK LU Routines : : : : 194.2 Tests for the ScaLAPACK LLT routines : : : : : : : : : : : : : : : : 194.2.1 Input File for Testing the ScaLAPACK LLT Routines : : : 204.3 Tests for the ScaLAPACK QR, RQ, LQ, QL, and QP routines : : : 204.3.1 Input File for Testing the ScaLAPACK QR, RQ, LQ, QL,and QP Routines : : : : : : : : : : : : : : : : : : : : : : : 214.4 Tests for the Linear Least Squares (LLS) routines : : : : : : : : : : 214.4.1 Input File for Testing the ScaLAPACK LLS Routines : : : 214.5 Tests for the ScaLAPACK TRI routines : : : : : : : : : : : : : : : : 224.5.1 Input File for Testing the ScaLAPACK TRI Routines : : : 224.6 Tests for the ScaLAPACK HRD routines : : : : : : : : : : : : : : : 234.6.1 Input File for Testing the ScaLAPACK HRD Routines : : 234.7 Tests for the ScaLAPACK TRD routines : : : : : : : : : : : : : : : 234.7.1 Input File for Testing the SCALAPACK TRD Routines : : 244.8 Tests for the ScaLAPACK BRD routines : : : : : : : : : : : : : : : 244.8.1 Input File for Testing the ScaLAPACK BRD Routines : : 244.9 Tests for the ScaLAPACK PSIGN routines : : : : : : : : : : : : : : 254.9.1 Input File for Testing the ScaLAPACK PSIGN Routines : 252



4.10 Tests for the ScaLAPACK SEP routines : : : : : : : : : : : : : : : : 254.10.1 Test Matrices for the Symmetric Eigenvalue Routines : : : 274.10.2 Input File for Testing the Symmetric Eigenvalue Routinesand Drivers : : : : : : : : : : : : : : : : : : : : : : : : : : : 27A ScaLAPACK Routines 31B ScaLAPACK Auxiliary Routines 34Bibliography : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

3



1 IntroductionOnly a subset of the routines are available. Routines that are NOT available yetare the least squares driver, condition estimation and iterative re�nement forLU and Cholesky (so these computational routines and the associated expertdrivers are not ready), PSIGN, and PUMMA. Please disregard discussion ofthese routines in this installation guide. They will be available soon.This working note describes how to install and test version 1.0 of ScaLAPACK[7].The supported platforms are: PVM 3.3, the Intel i860 series, Thinking Machines CM-5, orthe IBM SP series. (It is very important to note that only PVM version 3.3 is supportedwith the BLACS[19, 3]. Due to major changes in PVM and the resulting changes requiredin the BLACS, earlier versions of PVM are NOT supported. If you have a previous releaseof PVM you must obtain version 3.3 to install and test the BLACS. See section 3.2 fordetails of how to obtain the latest release of PVM.)Section 2 describes the distribution and organization of the �les. Step-by-step instal-lation and testing/timing instructions appear in Section 3. For users desiring additionalinformation, Section 4 gives details on the testing/timing programs for the ScaLAPACKcodes and their input �les. Appendices A and B describe the ScaLAPACK driver, compu-tational, and auxiliary routines currently available.2 Overview of Distribution Format and ContentsThe software is distributed in the form of a compressed tar �le which contains thePBLAS source and test code, PUMMA source and test code, and the ScaLAPACK sourceand test codes. A TOOLS directory is also supplied which contains needed LAPACK[6, 2, 1]routines as well as support routines.It is assumed that you have the BLACS, BLAS[18, 15, 14], and PVM (if necessary)available on your machine. If this is not the case, you MUST obtain the missing componentfrom netlib and have the library available for the ScaLAPACK installation. The BLACSare available in the blacs directory on netlib; the Fortran BLAS are available in the blasdirectory on netlib; and, PVM 3.3 is available in the pvm3 directory on netlib. Refer to theindex in the appropriate directory for further details.To obtain the complete ScaLAPACK package, send email to netlib@ornl.gov and inthe message type:send index from scalapackIt is also possible to obtain selected pieces of the SCALAPACK directory structurewithout having to download the entire package. At this time, one may obtain individual tar�les of the PBLAS or PUMMA. Refer to the scalapack index on netlib for further details.The software in the tar �le is organized in a number of directories as shown in Figure 1.Please note that this �gure does not re
ect everything that is contained in the SCALAPACKdirectory. Input and instructional �les are also located at various levels. Each of the lowest4



SCALAPACKPBLAS SRC TESTING TOOLS PUMMA REDISTSRC TESTING LIN EIG SRC TESTING SRC TESTINGFigure 1: Organization of ScaLAPACKlevel directories in the tree structure contains a make�le to create a library or a set ofexecutable programs for testing/timing. Libraries are created in the SCALAPACK directoryand executable �les are created in the TESTING directory(ies). Input �les are copied intothe TESTING directory at the time each executable is created.The PBLAS are parallel versions of the Level 1, 2, and 3 BLAS. For more details onthe PBLAS, refer to [12, 11]. The same naming scheme as the BLAS has been maintainedin the PBLAS with the addition of the pre�x P to signify that it is a PBLAS routine.All precisions { REAL, DOUBLE PRECISION, COMPLEX, and COMPLEX*16 { of theroutines are available.All precisions of ScaLAPACK routines are also available with this release, with the ex-ception of the eigenproblem routine PDSYEVX. Future releases will include single precisionreal and double precision real of the symmetric eigenproblem as well as the singular valuedecomposition.2.1 ScaLAPACK RoutinesLike LAPACK, there are three classes of ScaLAPACK routines:� driver routines solve a complete problem, such as solving a system of linear equationsor computing the eigenvalues of a real symmetric matrix. Please refer to Appendix Afor a list of all available driver routines. Global and local input error-checking areperformed for these routines.� computational routines, also called simply ScaLAPACK routines, perform a distinctcomputational task, such as computing the LU decomposition of anm-by-n matrix, orreducing a real general matrix to upper Hessenberg form. Please refer to Appendix Afor a list of all available ScaLAPACK computational routines. Global and local inputerror-checking are performed for these routines.� auxiliary routines are all of the other subroutines called by the computational rou-tines. Among them are subroutines to perform subtasks of block algorithms, and anumber of routines to perform common low-level computations. A list of all availableScaLAPACK auxiliary routines can be found in Appendix B. In general, no inputerror-checking is performed on the auxiliary routines. The exception to this rule is forthe auxiliary routines which are Level 2 equivalents of computational routines (e.g.,PxGETF2, PxGEQR2, PxORMR2, PxORM2R, etc.). For these routines, local inputerror-checking routines is performed.LAPACK auxiliary routines are also used whenever possible for local computation.5



2.2 Testing/Timing RoutinesTesting/timing programs are included for each of the ScaLAPACK routines. Refer tosection 4 for more details.3 Installation ProcedureInstalling, testing, and timing ScaLAPACK involves the following steps:1. Build the PVM 3.3 library, if necessary.2. Build the BLACS library.3. Build the BLAS library, if necessary.4. Uncompress and untar the �le.5. Edit the SLmake.inc include �le.6. Edit the top-level Make�le, and type make.7. Run the PB-BLAS Test Suite.8. Run the REDIST Test Suite.9. Run the ScaLAPACK Test Suite.10. Communicate any di�culties to the authors.3.1 Build the PVM 3.3 LibraryIf you wish to use ScaLAPACK on PVM, you will need to have PVM 3.3 installedon your machine. If you do not already have PVM installed on your machine, you needto obtain the source code from netlib by sending email to netlib@ornl.gov and in themessage type: send index from pvm3. This index contains instructions on how to obtainthe source code. After obtaining the source, follow the instructions in the PVM User'sGuide [17] for installation.NOTE: Any version of PVM previous to 3.3 is not supported with the BLACS.3.2 Build the BLACS LibraryIf you wish to use ScaLAPACK, you MUST have an appropriate version of the BLACSinstalled on your machine. If you do not already have the BLACS installed on your machine,you need to obtain the source code from netlib or via the html page (see below). Refer tothe blacs index on netlib or the BLACS html page for further details. The html pagealso contains a troubleshooting section and detailed information on each individual BLACSroutine. After obtaining the source, follow the instructions in \A User's Guide to theBLACS" or in the "Installing the BLACS" section of the html page to install the library.Instructions for running the BLACS Test Suite can be found in \A User's Guide to theBLACS Tester". Both of these documents are available via the URL6



http://www.cs.utk.edu/~rwhaley/Blacs.html3.3 Build the BLAS LibraryIdeally, a highly optimized version of the BLAS library already exists on your machine.You may already have a library containing some of the BLAS, but not all (Level 1 and 2,but not Level 3, for example). If so, you should use your local version of the BLAS whereverpossible.If you do not already have the BLAS installed on your machine, you need to obtain thesource code from netlib by sending email to netlib@ornl.gov and in the message type:send index from blas. This index contains instructions on how to obtain the source code.After obtaining the source, follow the instructions in the LAPACK Installation Guide [4]for installation.3.4 Uncompress and untar the �leTo unpack the scalapack.tar.Z, type the following command:uncompress -c scalapack.tar.Z | tar xvf -This will create a top-level directory called SCALAPACK, with the rest of the �les in thedirectory structure as previously discussed. You will need approximately 7 Mbytes of spacefor the tar �le.Your total space requirements will vary depending upon if all platforms of the BLACSare installed and the size of executable �les that your con�guration can handle.3.5 Edit the SLmake.inc include �leExample machine-speci�c SCALAPACK/SLmake.inc �les are provided in the top-levelSCALAPACK directory for the PVM, Intel, CM-5, and SP series implementations. When youhave selected the machine to which you wish to install ScaLAPACK, copy the appropriatesample include �le (if one is present) into SCALAPACK/SLmake.inc. For example, if you wishto run ScaLAPACK on a DEC ALPHA,cp SLmake.alpha SLmake.incHOWEVER, SLIGHT MODIFICATIONS TO THE INCLUDE FILE WILL STILLNEED TO BE MADE.Go to SCALAPACK and edit the SLmake.inc make include �le to contain the following:1. Specify the complete path to the top level SCALAPACK directory called home.2. Identify the platform to which you will be installing the libraries. If your directorystructure for ScaLAPACK is di�erent than the aforementioned structure, you will alsoneed to specify locations of SCALAPACK subdirectories.7



3. De�ne F77, NOOPT, F77FLAGS, CC, CCFLAGS, LOADER, LOADFLAGS, ARCH, ARCHFLAGS,and RANLIB, to refer to the compiler and compiler options, loader and loader options,library archiver and options, and ranlib for your machine. If your machine does nothave ranlib set RANLIB = echo.4. Specify the C preprocessor de�nitions for compilation, BLACSDBGLVL and CDEFS. Thepossible values for BLACSDBGLVL are 0 and 1. The possible options for CDEFS are-DAdd , -DNoChange, and -DUPCASE. If you are on a DEC ALPHA, you must also add-DNO IEEE to the de�nition of CDEFS.5. Specify the locations of the needed libraries: BLACS, BLAS, and PVM.This make include �le is referenced inside each of the make�les in the various subdirectories.As a result, there is no need to edit the make�les in the subdirectories. All informationthat is machine speci�c has been de�ned in this include �le. Do not be alarmed whenyou see multiple copies of SLmake.inc sprinkled throughout various subdirectories. Thesemultiple copies are included because portions of the distribution are available individually.By default, all make�les point to the SLmake.inc in the top-level SCALAPACK directory.3.6 Top-Level ScaLAPACK Make�leA top-level SCALAPACK make�le has been included to build all libraries and testing executa-bles. This make�le is very useful if you are familiar with the installation process and wishto do a quick installation. Your instructions to build all libraries and testing executablesare: cd SCALAPACKmakeAlternatively, if you wish to only build the libraries, you can specifymake lib.Or, if you wish to only build the executables (assuming that all libraries have previouslybeen built)make exe.If you wish to build only selected libraries or executables, you can modify the lib orexe de�nition accordingly.To specify the data types to be built, you will need to modify the de�nition of PRECISIONS.By default, PRECISIONS is set toPRECISIONS = single double complex complex168



to build all precisions of the libraries and executables. If you only wish to compile thesingle precision real version of a target specify single, for double precision real specifydouble, for single precision complex specify complex, and for double precision complexspecify complex16.By default, the presence of no arguments following the make command will result in thebuilding of all data types. The make command can be run more than once to add anotherdata type to the library if necessary.You may then proceed to running each of the individual test suites. See section 3.7 fordetails on the PB-BLAS Test Suite, section 3.8 to run the REDIST test suite, and section3.9 for details on the ScaLAPACK Test Suite. After all testing has been completed, youcan remove all object �les from the various subdirectories and all executables from theSCALAPACK/TESTING directory by typingmake clean.Or, you can selectively remove only the object �les with make cleanlib, or makecleanexe to remove only the executable �les.Build the TOOLS Librarya) Go to the directory SCALAPACK/TOOLS.b) Type make.By default, the TOOLS library is created in the top level directory SCALAPACK.Build the PBLAS Librarya) Go to the directory SCALAPACK/PBLAS/SRC.b) Type make.By default, the PBLAS library is created in the top level SCALAPACK directory.Build the REDIST Librarya) Go to the directory SCALAPACK/REDIST/SRC.b) Type make.By default, the REDIST library is created in the top level SCALAPACK directory.3.7 Run the PB-BLAS Test SuiteAt the present time, a tester for the PBLAS is not available. We are instead includingthe tester for the PB-BLAS which are internal to the PBLAS. The PBLAS tester will beincluded with the next release.a) Go to the directory SCALAPACK/PBLAS/TESTING.9



b) Type make followed by the data types desired. For the Level 2 PB-BLAS routines,the testing executables are called xspb2chk, xdpb2chk, xcpb2chk, and xzpb2chk,and are created in the PBLASTSTdir directory as de�ned in SLmake.inc. Likewise,the testing executables for the Level 3 PB-BLAS are xspb3chk, xdpb3chk, xcpb3chk,and xzpb3chk. There is one input �le associated with each testing executable. Forexample, the input �le for xspb2chk is called PBS2BLAS.dat. The input �les arecopied to the PBLASTSTdir directory at the time the executables are built.c) Do one of the following for the platform to which you have installed the BLACS:Instructions using the PVM BLACSFirst, insure that the PVM library and tester executable �les have been compiledfor each of the machines used in your PVM implementation. PVM 3.3 requires thatexecutable �les be stored in a particular directory so that the PVM daemon can�nd them. In the general case, PVM looks for executable �les in ~/pvm3/bin/arch,where arch speci�es the architecture for which the executable has been built. Forexample, if one wished to run the test program on a SUN SPARCstation and on anIBM RS6000 workstation, appropriately compiled executable �les need to be placed in~/pvm3/bin/SUN4 and ~/pvm3/bin/RS6K (for more directory information, consult thePVM documentation). If you wish to run the tests on machines that are not connectedto the same �le system, you need to make sure that the executable is available on each�le system. Next, start pvm by typingpvmAt this point, you specify the machines that are to take part in the testing process(see the PVM documentation for more information). Finally, to test the REAL PVMLevel 2 PB-BLAS, start the test program by typing:xspb2chkon one of the machines that is a member of your PVM machine. This program willthen instruct the PVM daemon to start processes on the other computers in your PVMmachine and you will be prompted by the program for the name of the executable.Make sure that PBS2BLAS.dat is located in the same directory as xspb2chk. It isread on the machine from which you type xspb2chk and its contents distributed tothe other computers in your PVM machine.Alternatively, you can use blacs setup.dat to perform much of this process. This �lespeci�es the name of the executable and the machines to spawn in your pvm cluster,as well as a few other features. See the \A User's Guide to the BLACS" for details.However, the use of this �le is not recommended for the naive user.Similar commands should be used for the other test programs, with the second letter`s' in the executable and data �le replaced by `d', `c', or `z'. The name of the output �leis indicated on the �rst line of the input �le and is currently de�ned to be PBBLAS.out10



for the REAL version, with similar names for the other data types. The user mayalso choose to send all output to standard error.Instructions using the Intel BLACSIf your compiler and loader are located on a separate machine and your current diskand directory is not cross-mounted or NFS-mounted on the destination computer, youwill need to �rst transfer the needed testing executable �les and the input �les to yourIntel computer. You must then decide on the number of processors to be allocated foryour testing/timing runs. In each input �le, there is a set of processor grid dimensionsspeci�ed (VALUES OF P and VALUES OF Q). The number of processors you allocate foran Intel class machine must be greater than or equal to the maximum processor grid (P� Q) speci�ed in the input �le. The default input �les assume 8 processors. Then, torun the tests of the REAL Level 2 PB-BLAS routines, for example, change directoriesto PBLASTSTdir, edit the appropriate gamma.exe, delta.exe, or pgon.exe �le to loadthe executable xspb2chk. And type,gamma.exe [number of processors to allocate]or delta.exe [number of processor rows] [number of processor columns]or pgon.exe [number of processors to allocate]depending upon which Intel computer you are using, and omitting the square brackets.Similar commands should be used for the other test programs, with the second letter`s' in the executable replaced by `d', `c', or `z'. The name of the output �le is indicatedon the �rst line of the input �le and is currently de�ned to be PBBLAS.out for theREAL version, with similar names for the other data types. The user may also chooseto send all output to standard error.Instructions using the CM-5 BLACSTo test the REAL CM-5 Level 2 PB-BLAS, for example, start the test program bytyping:xspb2chkSimilar commands should be used for the other test programs, with the second letter`s' in the executable and data �le replaced by `d', `c', or `z'. The name of the output �leis indicated on the �rst line of the input �le and is currently de�ned to be PBBLAS.outfor the REAL version, with similar names for the other data types. The user mayalso choose to send all output to standard error.11



If the tests were not successful, and you cannot easily determine the cause, pleasecontact the authors as directed in Section 3.10. Please tell us the types of machineson which the tests were run, the compiler and compiler options that were used, de-tails of the BLACS library that you used, and a copy of the input �le (for example,PBS2BLAS.dat) that was used.Instructions using the SP BLACSIf your compiler and loader are located on a separate machine and your current diskand directory is not cross-mounted or NFS-mounted on the destination computer,you will need to �rst transfer the needed testing executable �les and input �les fromthe SCALAPACK/TESTING directory to your IBM SP-1 or SP-2 computer. You mustthen decide on the number of processors to be allocated for your testing/timing runs.In each input �le, there is a set of processor grid dimensions speci�ed (VALUES OF Pand VALUES OF Q). The number of processors you allocate for an SP series machinemust be greater than or equal to the maximum processor grid (P � Q) speci�ed inthe input �le. The default input �les assume 8 processors.Then, for example, to test the REAL Level 2 PB-BLAS, edit the sp1.exe �le to loadthe executable xspb2chk. And type,sp1.exe [number of processors to allocate]omitting the square brackets.Please note that the commands needed to load and run the executable are not standardacross all SP series machines, the included script �le sp1.exe runs the tests on anIBM SP-1 located at Cornell University.Similar commands can be used for alternate precisions of the same test program orother test programs, where, xdlu is replaced by xdls, xdqr, xdllt, xdhrd, xdtrd,xdbrd, xdtri, xdpsign, or xdsep. The name of the output �le is indicated on thethird line of the input �le and is currently de�ned to be lu.out for the LU tester,with similar names for the other data types. The user may also choose to send alloutput to standard error.3.8 Run the REDIST Test SuiteThe redistribution routines are still under development. They allow the redistribution of2-D block cyclic distributed general or trapezoidal matrix from an arbitrary P � Q gridwith arbitrary blocksize to another grid with arbitrary blocksize. At the present time, theseroutines are not used in the ScaLAPACK library but they will be integrated into the libraryin the future.a) Go to the directory SCALAPACK/REDIST/TESTING.b) Type make followed by the data types desired. The testing executables are calledxigemr, xsgemr, xdgemr, xcgemr, xzgemr for the redistribution of general matrices.12



They are called xitrmr, xstrmr, xdtrmr, xctrmr, xztrmr. xdpb2chk, xcpb2chk,and xzpb2chk for trapezoidal matrices, and are created in the REDISTdir/TESTINGdirectory as de�ned in SLmake.inc. There is one input �le GEMR2D.dat for generalmatrices, and one input �le TRMR2D.dat for trapezoidal matrices. Each line of theinput �le is a separate test.Build the ScaLAPACK LibraryTo build the entire ScaLAPACK Library, do the following:a) Go to the directory SCALAPACK/SRC.b) Type make followed by the data types desired.The ScaLAPACK library is created in the top level SCALAPACK directory.Build the ScaLAPACK Testing ExecutablesIf you wish to build all ScaLAPACK testing executables, do the following:a) Go to the directory SCALAPACK/TESTING/LIN.b) Type make followed by the data types desired.c) Go to the directory SCALAPACK/TESTING/EIG.d) Type make followed by the data types desired.The executables are deposited into the TESTINGdir directory as speci�ed in SLmake.inc.The individual input �les are copied into the TESTINGdir directory after each executable isbuilt.Alternatively, if you do not wish to run all of the separate tests, you can modify thede�nition of all in the SCALAPACK/TESTING/LIN or SCALAPACK/TESTING/EIG directory tospecify only the desired executable.3.9 Run the ScaLAPACK Test SuiteThere are ten distinct test programs for testing the ScaLAPACK routines of the followingtype: LU, Cholesky, QR (RQ, LQ, QL, and QP), Linear Least Squares, upper Hessenbergreduction, tridiagonal reduction, bidiagonal reduction, triangular inversion, PSIGN (parallelSIGN), and the symmetric eigenproblem. Each of the test programs is automatically timedand reports a table of execution times and mega
op rates. There is one input �le foreach test program. As previously stated, the input �les reside in the SCALAPACK/TESTINGsubdirectory and are copied into the TESTINGdir directory (as speci�ed in the SLmake.inc�le) at the time the executables are built. All testing programs occur in four precisions, withthe exception of the symmetric eigenproblem which only occurs in SINGLE and DOUBLEPRECISION REAL. For more information on the test programs and how to modify theinput �les see Section 4.a) Do one of the following: 13



Instructions using the PVM BLACSFirst, insure that the PVM library and tester executable �les have been compiledfor each of the machines used in your PVM implementation. PVM 3.3 requires thatexecutable �les be stored in a particular directory so that the PVM daemon can �ndthem. In the general case, PVM looks for executable �les in ~/pvm3/bin/arch, wherearch speci�es the architecture for which the executable has been built. If you wish torun the tests on machines that are not connected to the same �le system, you needto make sure that the executable is available on each �le system. Next, start pvm bytypingpvmAt this point, you specify the machines that are to take part in the testing process(see the PVM documentation for more information).Finally, to test the DOUBLE PRECISION ScaLAPACK LU routines, start the testprogram by typing:xdluon one of the machines that is a member of your PVM machine. This program willthen instruct the PVM daemon to start processes on the other computers in your PVMmachine and you will be prompted by the program for the name of the executable.Make sure that LU.dat is located in the same directory as xdlu. It is read on themachine from which you type xdlu and its contents distributed to the other computersin your PVM machine.Similar commands can be used for alternate precisions of the same test program orother test programs, where, for example in double precision, xdlu is replaced byxdls, xdqr, xdllt, xdhrd, xdtrd, xdbrd, xdtri, xdpsign, or xdsep. The name ofthe output �le is indicated on the �rst line of the input �le and is currently de�ned tobe lu.out for the LU tester, with similar names for the other data types. The usermay also choose to send all output to standard error.Instructions using the Intel BLACSIf your compiler and loader are located on a separate machine and your current diskand directory is not cross-mounted or NFS-mounted on the destination computer, youwill need to �rst transfer the needed testing executable �les xdlu, xdqr, xdllt, xdhrd,xdtrd, xdbrd, and xdtri, and the input �les LU.dat, QR.dat, LLT.dat, HRD.dat,TRD.dat, BRD.dat, TRI.dat, and/or PSIGN.dat, from the SCALAPACK/TESTING direc-tory to your Intel computer. As with the PB-BLAS tester, you must then decide onthe number of processors to be allocated for your testing/timing runs. In each input�le, there is a set of processor grid dimensions speci�ed (VALUES OF P and VALUES OFQ). The number of processors you allocate for an Intel class machine must be greater14



than or equal to the maximum processor grid (P � Q) speci�ed in the input �le. Thedefault input �les assume 8 processors.Then, for example, to run the tests of the DOUBLE PRECISION REAL LU routines,edit the appropriate gamma.exe, delta.exe, pgon.exe �le to load the executablexdlu. And type,gamma.exe [number of processors to allocate]or delta.exe [number of processor rows] [number of processor columns]or pgon.exe [number of processors to allocate]depending upon which Intel computer you are using, and omitting the square brackets.Similar commands can be used for alternate precisions of the same test program orother test programs, where, xdlu is replaced by xdls, xdqr, xdllt, xdhrd, xdtrd,xdbrd, xdtri, xdpsign, or xdsep. The name of the output �le is indicated on thethird line of the input �le and is currently de�ned to be lu.out for the LU tester,with similar names for the other data types. The user may also choose to send alloutput to standard error.Instructions using the CM-5 BLACSTo test the DOUBLE PRECISION ScaLAPACK LU routines, for example, start thetest program by typing:xdluSimilar commands can be used for alternate precisions of the same test program orother test programs, where, xdlu is replaced by xdls, xdqr, xdllt, xdhrd, xdtrd,xdbrd, xdtri, xdpsign, or xdsep. If errors were detected, please contact the authorsas directed in Section 3.10. Please tell us the type of machine on which the tests wererun, the compiler and compiler options that were used, details of the BLACS librarythat you used, and a copy of the input �le (for example, LU.dat) that was used. Formore details on the test program, see section 4.Instructions using the SP BLACSIf your compiler and loader are located on a separate machine and your current diskand directory is not cross-mounted or NFS-mounted on the destination computer, youwill need to �rst transfer the needed testing executable �les xdlu, xdqr, xdllt, xdhrd,xdtrd, xdbrd, and xdtri, and the input �les LU.dat, QR.dat, LLT.dat, HRD.dat,TRD.dat, BRD.dat, TRI.dat, and/or PSIGN.dat, from the SCALAPACK/TESTING direc-tory to your IBM SP-1 or SP-2 computer. As with the PB-BLAS tester, you must15



then decide on the number of processors to be allocated for your testing/timing runs.In each input �le, there is a set of processor grid dimensions speci�ed (VALUES OF Pand VALUES OF Q). The number of processors you allocate for an SP series machinemust be greater than or equal to the maximum processor grid (P � Q) speci�ed inthe input �le. The default input �les assume 8 processors.Then, for example, to run the tests of the DOUBLE PRECISION REAL LU routines,edit the sp1.exe �le to load the executable xdlu. And type,sp1.exe [number of processors to allocate]omitting the square brackets.Please note that the commands needed to load and run the executable are not standardacross all SP series machines, the included script �le sp1.exe runs the tests on anIBM SP-1 located at Cornell University.Similar commands can be used for alternate precisions of the same test program orother test programs, where, xdlu is replaced by xdls, xdqr, xdllt, xdhrd, xdtrd,xdbrd, xdtri, xdpsign, or xdsep. The name of the output �le is indicated on thethird line of the input �le and is currently de�ned to be lu.out for the LU tester,with similar names for the other data types. The user may also choose to send alloutput to standard error.3.10 Send the Results to TennesseeCongratulations! You have now �nished installing and testing ScaLAPACK. Your partic-ipation is greatly appreciated. If possible, results and comments should be sent by electronicmail toscalapack@cs.utk.eduThis �rst public release of ScaLAPACK is not compatible with any previous test release.4 More About the ScaLAPACK Test SuiteThe main test programs for the ScaLAPACK routines are located in the SCALAPACK/TESTING/LINand SCALAPACK/TESTING/EIG subdirectories and are called pd driver.f (ps driver.f forREAL, pc driver.f for COMPLEX, and pz driver.f for COMPLEX*16), where theis replaced by lu, qr, llt, and so on. Each of the test programs for the ScaLAPACKroutines has a similar style of input.Please note that only the SINGLE and DOUBLE PRECISION REAL symmetric eigen-problem driver is available at this time.The following sections describe the di�erent input formats and testing veri�cations. Thedata inside the input �les is only test data designed to exercise the code. It should NOT beinterpreted in any way as OPTIMAL performance values for any of the routines. For bestperformance using PVM, the largest possible blocksize NB should be used. Our experimentson the Intel machines suggest that a blocksize of NB equal to 6 is a good starting point.16



The test programs for the routines are driven by separate data �les from which thefollowing types of parameters may be varied:� TRANS, (only used for LLS)� LOWER or UPPER, triangular input matrix (ONLY for TRD)� M, the number of rows in the matrix (not used for LLT, TRI, HRD, or TRD)� N, the order of the matrix (not used for QR)� ILO and IHI (ONLY for HRD)� NB, the blocksize for the blocked routines� NRHS, the number of right hand sides (only used for LU, LLT, and LLS)� NBRHS, the column blocksize for the rhs matrix B (only used for LU, LLT, and LLS)� P, the grid row dimension� Q, the grid column dimension� THRESH, the acceptable threshold value for the residuals� EST, logical 
ag to test cond. est. and it. ref. (ONLY for LU and LLT)The number and size of the input values are limited by certain program maximumswhich are de�ned in PARAMETER statements in the main test programs. These programmaximums are:Parameter Description ValueTOTMEM Total Memory available for testing data 6200000INTGSZ Length in bytes to store a INTEGER element 4REALSZ Length in bytes to store a REAL element 4DBLESZ Length in bytes to store a DOUBLE PRECISION element 8CPLXSZ Length in bytes to store a COMPLEX element 8ZPLXSZ Length in bytes to store a COMPLEX*16 element 16NTESTS Maximum number of tests to be performed 20The user should modify TOTMEM to indicate the maximum amount of memory inbytes his system has available. You must remember to leave room in memory for theoperating system, the BLACS bu�er, etc. For example, on our system with 8 MB ofmemory, the parameters we use are TOTMEM=6,200,000 (leaving around 1.8 MB for OS,program, BLACS bu�er, etc), and the length of a DOUBLE is 8. Some experimentingwith the maximum allowable value of TOTMEM may be required. All arrays used by thefactorizations, reductions, solves, and condition and error estimation are allocated out ofthe big array called MEM.Please note that these parameter maximums in the test programs assume at least 8Megabytes of memory per process. Thus, if you do not have that much space per processthen you will need to reduce the size of the parameters.17



For each of the test programs, the test program generates test matrices (nonsymmetric,symmetric, or symmetric positive-de�nite), calls the ScaLAPACK routines in that path,and computes a solve and/or factorization and/or reduction residual error check to verifythat each operation has performed correctly. The factorization residual is only calculated ifthe residual for the solve step exceeds the threshold value THRESH. Thus, if a user wantsboth checks automatically done then he should set THRESH = 0.0.When the tests are run, each test ratio that is greater than or equal to the thresholdvalue causes a line of information to be printed to the output �le.A table of timing information is printed in the output �le containing execution times aswell as mega
op rates.After all of the tests have been completed, summary lines are printed of the formFinished 180 tests, with the following results:180 tests completed and passed residual checks.0 tests completed and failed residual checks.0 tests skipped because of illegal input values.END OF TESTS.4.1 Tests for the ScaLAPACK LU routinesThe LU test program generates random nonsymmetric test matrices with values in theinterval [-1,1], calls the ScaLAPACK routines to factor and solve the system, and computesa solve and/or factorization residual error check to verify that each operation has performedcorrectly. Condition estimation and iterative re�nement routines are included and areoptionally tested.Speci�cally, each test matrix is subjected to the following tests:� Factor the matrix A = LU using PxGETRF� Solve the system AX = B using PxGETRS, and compute the ratioSRESID = jjAX �Bjj=(njjAjj jjXjj")� If SRESID > THRESH, then compute the ratioFRESID = jjLU �Ajj=(njjAjj")The expert driver (PxGESVX) performs condition estimation and iterative re�nement andthus incorporates the following additional tests:� Compute the reciprocal condition number RCOND using PxGECON. and compareto the value RCONDC which was computed as 1/(ANORM * AINVNM) where AIN-VNM is the explicitly computed norm of A�1. The larger of the ratiosRCOND=RCONDC and RCONDC=RCONDis returned. Since the same value of ANORM is used in both cases, this test measuresthe accuracy of the estimate computed for A�1.18



� Use iterative re�nement (PxGERFS) to improve the solution, and recompute the ratioSRESID = jjAX �Bjj=(njjAjj jjXjj")4.1.1 Input File for Testing the ScaLAPACK LU RoutinesAn annotated example of an input �le for the test program is shown below.'ScaLAPACK LU factorization input file''PVM machine.''lu.out' output file name (if any)6 device out2 number of problems sizes250 553 values of N3 number of NB's2 3 5 values of NB2 number of NRHS's1 5 values of NRHS3 Number of NBRHS's1 3 5 values of NBRHS5 Number of processor grids (ordered pairs of P & Q)1 4 2 1 8 values of P1 2 4 8 1 values of Q1.0 thresholdT (T or F) Test Cond. Est. and Iter. Ref. Routines4.2 Tests for the ScaLAPACK LLT routinesThe Cholesky test program generates random symmetric test matrices with values in theinterval [-1,1] and then modi�es these matrices to be diagonally dominant with positivediagonal elements thus creating symmetric positive-de�nite matrices. It then calls theScaLAPACK routines to factor and solve the system, and computes a solve and/or factor-ization residual error check to verify that each operation has performed correctly. Conditionestimation and iterative re�nement routines are included and optionally tested.Speci�cally, each test matrix is subjected to the following tests:� Compute the LLT factorization using PxPOTRF� Solve the system AX = B using PxPOTRS, and compute the ratioSRESID = jjAX �Bjj=(njjAjj jjXjj")� IF SRESID > THRESH, then compute the ratioFRESID = jjLLT � Ajj=(njjAjj")The expert driver (PxPOSVX) performs condition estimation and iterative re�nement andthus incorporates the following additional tests:19



� Compute the reciprocal condition number RCOND using PxPOCON. and compareto the value RCONDC which was computed as 1/(ANORM * AINVNM) where AIN-VNM is the explicitly computed norm of A�1. The larger of the ratiosRCOND=RCONDC and RCONDC=RCONDis returned. Since the same value of ANORM is used in both cases, this test measuresthe accuracy of the estimate computed for A�1.� Use iterative re�nement (PxPORFS) to improve the solution, and recompute the ratioSRESID = jjAX �Bjj=(njjAjj jjXjj")4.2.1 Input File for Testing the ScaLAPACK LLT RoutinesAn annotated example of an input �le for the test program is shown below.'ScaLAPACK LLT factorization input file''PVM machine.''lltest.out' output file name (if any)6 device out2 number of problems sizes250 553 values of N3 number of NB's2 3 5 values of NB2 number of NRHS's1 5 values of NRHS3 Number of NBRHS's1 3 5 values of NBRHS5 Number of processor grids (ordered pairs of P & Q)1 4 2 8 1 values of P1 2 4 1 8 values of Q1.0 thresholdT (T or F) Test Cond. Est. and Iter. Ref. Routines4.3 Tests for the ScaLAPACK QR, RQ, LQ, QL, and QP routinesThe QR test program generates random nonsymmetric test matrices with values in the inter-val [-1,1], calls the ScaLAPACK routines to factor the system, and computes a factorizationresidual error check to verify that each operation has performed correctly.Speci�cally, each test matrix is subjected to the following tests:� Compute the QR factorization using PxGEQRF, and generate the orthogonal matrixQ from the Householder vectors� Compute the ratioFRESID = jjQR�Ajj=(njjAjj") 20



The testing of the RQ, LQ, QL, and QP routines proceeds in a similar fashion. Sim-ply replace all occurrences of QR in the previous discussion with RQ, LQ, QL, or QP,respectively.4.3.1 Input File for Testing the ScaLAPACK QR, RQ, LQ, QL, and QP Rou-tinesAn annotated example of an input �le for the test program is shown below.'ScaLAPACK QR factorizations input file''PVM machine''QR.out' output file name (if any)6 device out'QR' 'QL' 'LQ' 'RQ' 'QP' factorization: QR, QL, LQ, RQ, QP8 number of problems sizes2 5 13 15 13 26 30 15 values of M2 7 8 10 17 20 30 35 values of N6 number of NB's2 3 4 5 6 20 values of NB7 number of process grids (ordered pairs P & Q)1 2 1 4 2 3 8 values of P1 2 4 1 3 2 1 values of Q3.0 threshold4.4 Tests for the Linear Least Squares (LLS) routinesThe LLS test program solves the undetermined or overdetermined system of linear equationsby generating random nonsymmetric test matrices with values in the interval [-1,1], callsthe ScaLAPACK routines to solve the system, and computes a solve residual error check toverify that each operation has performed correctly.Speci�cally, each test matrix is subjected to the following tests:� If M � N , factor the matrix A = QR using PxGEQRF� Solve the system AX = B using PxORMQR, and compute the ratioSRESID = jjAX �Bjj=(njjAjj jjXjj")� Else if M < N , factor the matrix A = LQ using PxGELQF� Solve the system AX = B using PxORMLQ, and compute the ratioSRESID = jjAX �Bjj=(njjAjj jjXjj")4.4.1 Input File for Testing the ScaLAPACK LLS RoutinesAn annotated example of an input �le for the test program is shown below.21



'ScaLAPACK LLS input file''PVM machine.''lstest.out output file name (if any)6 device out'N' TRANS ('N' or 'T')2 Number of problems sizes250 553 values of M250 553 values of N3 number of NB's2 3 5 values of NB2 number of NRHS's1 5 values of NRHS3 Number of NBRHS's1 3 5 values of NBRHS5 Number of processor grids (ordered pairs of P & Q)1 4 2 1 8 values of P1 2 4 8 1 values of Q1.0 threshold4.5 Tests for the ScaLAPACK TRI routines� Compute the LU factorization using PxGETRF, and then compute the inverse byinvoking PxGETRI� Compute the ratioFRESID = jjAA�1 � I jj=(njjAjj")4.5.1 Input File for Testing the ScaLAPACK TRI RoutinesAn annotated example of an input �le for the test program is shown below.'ScaLAPACK LU factorization + Inversion input file''CM5 32 nodes''TRI.out' output file name (if any)6 device out8 Number of problems sizes2 5 10 15 13 20 30 35 values of N6 number of NB's2 3 4 5 6 20 values of NB10 Number of processor grids (ordered P & Q)1 2 1 2 1 3 2 3 4 1 values of P1 1 2 2 3 1 3 2 1 4 values of Q1.0 threshold22



4.6 Tests for the ScaLAPACK HRD routinesThe HRD test program generates random nonsymmetric test matrices with values in theinterval [-1,1], calls the ScaLAPACK routines to reduce the test matrix to upper Hessenbergform, and computes a reduction residual error check to verify that each operation hasperformed correctly.Speci�cally, each test matrix is subjected to the following tests:� Reduce the matrix A to upper Hessenberg form H using PxGEHRDQT �A �Q = H .� and compute the ratioFRESID = jjQ �H �QT � Ajj=(njjAjj")4.6.1 Input File for Testing the ScaLAPACK HRD RoutinesAn annotated example of an input �le for the test program is shown below.'ScaLAPACK HRD input file''PVM machine.''HRD.out' output file name (if any)6 device out1 number of problems sizes100 101 values of N1 1 values of ILO100 101 values of IHI1 number of NB's2 1 2 3 4 5 values of NB1 number of processor grids (ordered pairs of P & Q)2 1 4 values of P2 4 1 values of Q1.0 threshold4.7 Tests for the ScaLAPACK TRD routinesThe TRD test program generates random symmetric test matrices with values in the interval[-1,1], calls the ScaLAPACK routines to reduce the test matrix to symmetric tridiagonalform, and computes a reduction residual error check to verify that each operation hasperformed correctly.Speci�cally, each test matrix is subjected to the following tests:� Reduce the symmetric matrix A to symmetric tridiagonal form T using PxSYTRDQT �A �Q = T .� and compute the ratioFRESID = jjQ � T �QT �Ajj=(njjAjj")23



4.7.1 Input File for Testing the SCALAPACK TRD RoutinesAn annotated example of an input �le for the test program is shown below.'ScaLAPACK TRD computation input file''PVM machine.''TRD.out' output file name6 device out'L' define Lower or Upper2 number of problems sizes16 17 100 101 values of N3 number of NB's3 4 5 values of NB3 Number of processor grids (ordered pairs of P & Q)2 4 1 values of P2 1 4 values of Q1.0 threshold4.8 Tests for the ScaLAPACK BRD routinesThe BRD test program generates random nonsymmetric test matrices with values in theinterval [-1,1], calls the ScaLAPACK routines to reduce the test matrix to upper or lowerbidiagonal form, and computes a reduction residual error check to verify that each operationhas performed correctly.Speci�cally, each test matrix is subjected to the following tests:� Reduce the matrix A to upper or lower bidiagonal form B using PxGEBRDQT �A � P = B.� and compute the ratioFRESID = jjQ �B � PT � Ajj=(njjAjj")4.8.1 Input File for Testing the ScaLAPACK BRD RoutinesAn annotated example of an input �le for the test program is shown below.'ScaLAPACK BRD input file''PVM machine.''BRD.out' output file name (if any)6 device out3 number of problems sizes16 14 25 15 16 values of M9 13 20 15 16 values of N2 number of NB's3 4 5 values of NB3 Number of processor grids (ordered pairs of P & Q)24



2 4 1 values of P2 1 4 values of Q1.0 threshold4.9 Tests for the ScaLAPACK PSIGN routines� Compute a low degree polynomial of A using PxGEPLN, then de
ate the resultingmatrix by calling PxGEDFL. The computation of the Sign function is performed byPxGESGN, PxGESGS or PxGESGH; the QR factorization with column pivoting byPxGEQPF; the post- and pre-multiplications by an orthogonal matrix by PxORMQR.� If the matrix can be generated on only one node, compute the eigenvalues of the initialmatrix and the de
ated matrix using the LAPACK routine xGEEV. Then, comparethe results by computing the maximum of the di�erence of the sorted eigenvalues.Otherwise no tests are performed. In a future release, this package will include aroutine to compute eigenvalues and/or eigenvectors, and/or Schur vectors, so that itwill be possible to perform checking tests for any matrix size.4.9.1 Input File for Testing the ScaLAPACK PSIGN RoutinesAn annotated example of an input �le for the DOUBLE PRECISION test program isshown below.'ScaLAPACK Sign function deflation process input file''PVM machine.''PSIGN.out' output file name (if any)6 device out1 Number of problems sizes10 200 300 400 500 600 values of N1 number of NB's4 values of NB1 Nb of processor grids (ordered P & Q)2 4 8 values of P2 4 2 values of Q'R' Region of the plane: 'L', 'R', 'S', 'T', 'P'1 Nb of points to define the region0.3D0 5.0D0 0.0D0 0.0D0 x1, x2, x3, x4 ...'NABHR' Scaling Scheme: 'A', 'B', 'H', 'R', 'N''NSH' Iter. process: 'N', 'S', 'H'1.0 threshold4.10 Tests for the ScaLAPACK SEP routinesThe following tests will be performed on PDSYEVX:r1 = kA� ZDZ�kn ulp kAk25



r2 = kI � ZZ�kn ulpr3 = mini kD1(i::i+m� 1)�D2kulp kD1kwhere Z is the matrix of eigenvectors returned when the eigenvector option is given, D1 isthe eigenvalues returned when the full eigendecomposition is requested. D2 is the eigenval-ues returned when only eigenvalues are requested. m is the number of eigenvalues requested,and ulp represents xLAMCH('P').The P SYEVX tester allows multiple test requests to be controlled from a single input�le. Each test request is controlled by the following inputs:Values of NN = The matrix sizeValues of P, Q, NBP = NPROW, the number of processor rowsQ = NPCOL, the number of processor columnsNB = the block sizeValues of the matrix typesSee Section 4.10.1.Number of eigen requests1 = Test full eigendecomposition only8 = Test the following eigen requests:Full eigendecompositionAll eigenvalues, no eigenvectorsEigenvalues requested by value (i.e. VL,VU)Eigenvalues and vectors requested by valueEigenvalues requested by index (i.e. IL, IU)Eigenvalues and vectors requested by indexFull eigendecomposition with minimal workspace providedFull eigendecomposition with random workspace providedThresholdThe highest value of r1; r2 and r3 that will be accepted.Absolute toleranceMust be -1.0 to ensure orthogonal eigenvectorsPrint Request1 = Print every test2 = Print only failing tests and a summary of the request26



4.10.1 Test Matrices for the Symmetric Eigenvalue RoutinesTwenty-two di�erent types of test matrices may be generated for the symmetric eigen-value routines. Table 1 shows the types, along with the numbers used to refer to the matrixtypes. Except as noted, all matrices have norm O(1). The expression UDU�1 means areal diagonal matrix D with entries of magnitude O(1) conjugated by a unitary (or realorthogonal) matrix U . Eigenvalue DistributionType Arithmetic Geometric Clustered OtherZero 1Identity 2Diagonal 3 4, 6y, 7z 5UDU�1 8, 11y, 12z, 9, 17� 10, 18�16�, 19?, 20�Symmetric w/Random entries 13, 14y, 15zTridiagonal 21aMultiple Clusters 22by{ matrix entries are O(pover
ow)z{ matrix entries are O(punder
ow)� { diagonal entries are positive? { matrix entries are O(pover
ow) and diagonal entries are positive� { matrix entries are O(punder
ow) and diagonal entries are positivea { Some of the immediately o�-diagonal elements are zero - guaranteeing splittingb { Clusters are sized: 1, 2, 4, : : : , 2i.Table 1: Test matrices for the symmetric eigenvalue problem4.10.2 Input File for Testing the Symmetric Eigenvalue Routines and DriversAn annotated example of an input �le for testing the symmetric eigenvalue routines anddrivers is shown below.'ScaLAPACK Symmetric Eigensolver input file''PVM Machine''sep.out' output file name (not supported)6 device out4 maximum number of processes' ''TEST 1 - test small matrices - '5 number of matrices0 1 2 3 42 number of uplo choices'L' 'U' uplo choices2 number of processor configurations (P, Q, NB)27



2 1 values of P (NPROW)1 2 values of Q (NPCOL)1 2 values of NB2 number of matrix types8 9 matrix types8 number of eigenvalue request types (1 or 8)10.0 Threshold-1 Absolute Tolerance2 print request (2= summary print only)' ''TEST 2 - test small matrices - all processor configurations'3 number of matrices2 3 42 number of uplo choices'L' 'U' uplo choices13 number of processor configurations (P, Q, NB)1 1 2 1 2 1 3 1 3 1 2 2 2 values of P (NPROW)1 1 1 2 1 2 1 3 1 3 2 2 2 values of Q (NPCOL)1 3 1 1 2 2 1 1 2 2 1 2 3 values of NB1 number of matrix types8 matrix types1 number of eigenvalue request types (1 or 8)10.0 Threshold-1 Absolute Tolerance2 print request (2= summary print only)' ''TEST 3 - test medium matrices - all types and requests'2 number of matrices21 631 number of uplo choices'U' uplo choices1 number of processor configurations (P, Q, NB)2 values of P (NPROW)2 values of Q (NPCOL)8 values of NB22 number of matrix types1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 matrix types1 number of eigenvalue request types (1 or 8)10.0 Threshold-1 Absolute Tolerance1 print request (2= summary print only)' ''TEST 4 - test medium matrices - all processor configurations'2 number of matrices25 36 28



2 number of uplo choices'U' 'L' uplo choices13 number of processor configurations (P, Q, NB)1 1 2 1 2 1 3 1 3 1 2 2 2 values of P (NPROW)1 1 1 2 1 2 1 3 1 3 2 2 2 values of Q (NPCOL)1 3 1 1 2 2 1 1 2 2 1 2 3 values of NB1 number of matrix types8 matrix types1 number of eigenvalue request types (1 or 8)20.0 Threshold-1 Absolute Tolerance1 print request (2= summary print only)' ''TEST 5 - test medium matrices - a bit of everything'2 number of matrices28 392 number of uplo choices'L' 'U' uplo choices3 number of processor configurations (P, Q, NB)2 1 2 values of P (NPROW)2 2 1 values of Q (NPCOL)8 3 13 values of NB2 number of matrix types8 9 matrix types8 number of eigenvalue request types (1 or 8)10.0 Threshold-1 Absolute Tolerance1 print request (2= summary print only)' ''TEST 6 - test one large matrix'1 number of matrices6001 number of uplo choices'L' uplo choices1 number of processor configurations (P, Q, NB)2 values of P (NPROW)2 values of Q (NPCOL)8 values of NB1 number of matrix types8 matrix types1 number of eigenvalue request types (1 or 8)4.0 Threshold-1 Absolute Tolerance1 print request (2= summary print only)' ' 29



'End of tests'-1

30



Appendix AScaLAPACK RoutinesIn this appendix, we review the subroutine naming scheme for ScaLAPACK and indicateby means of a table which subroutines are included in this release. We also list the driverroutines.Each subroutine name in ScaLAPACK, which has an LAPACK equivalent, is simplythe LAPACK name prepended by a P. All names consist of seven characters in the formPTXXYYY. The second letter, T, indicates the matrix data type as follows:S REALD DOUBLE PRECISIONC COMPLEXZ COMPLEX*16 (if available)The next two letters, XX, indicate the type of matrix. Most of these two-letter codesapply to both real and complex routines; a few apply speci�cally to one or the other, asindicated below:GE general (i.e. unsymmetric, in some cases rectangular)HE (complex) HermitianOR (real) orthogonalPO symmetric or Hermitian positive de�niteST symmetric tridiagonalSY symmetricTR triangular (or in some cases quasi-triangular)UN (complex) unitaryThe last three characters, YYY, indicate the computation done by a particular subrou-tine. Included in this release are subroutines to perform the following computations:BRD reduce to bidiagonal form by orthogonal transformationsCON estimate condition numberEBZ compute selected eigenvalues by bisectionEIN compute selected eigenvectors by inverse iterationEQR compute eigenvalues and/or the Schur form using the QR algorithm31



EQU equilibrate a matrix to reduce its condition numberGBR generate the orthogonal/unitary matrix from PxGEBRDGHR generate the orthogonal/unitary matrix from PxGEHRDGLQ generate the orthogonal/unitary matrix from PxGELQFGQL generate the orthogonal/unitary matrix from PxGEQLFGQR generate the orthogonal/unitary matrix from PxGEQRFGRQ generate the orthogonal/unitary matrix from PxGERQFGTR generate the orthogonal/unitary matrix from PxxxTRDHRD reduce to upper Hessenberg form by orthogonal transformationsLQF compute an LQ factorization without pivotingMBR multiply by the orthogonal/unitary matrix from PxGEBRDMHR multiply by the orthogonal/unitary matrix from PxGEHRDMLQ multiply by the orthogonal/unitary matrix from PxGELQFMQL multiply by the orthogonal/unitary matrix from PxGEQLFMQR multiply by the orthogonal/unitary matrix from PxGEQRFMRQ multiply by the orthogonal/unitary matrix from PxGERQFMTR multiply by the orthogonal/unitary matrix from PxxxTRDQLF compute a QL factorization without pivotingQPF compute a QR factorization with column pivotingQRF compute a QR factorization without pivotingRFS re�ne initial solution returned by TRS routinesRQF compute an RQ factorization without pivotingTRD reduce a symmetric matrix to real symmetric tridiagonal formTRF compute a triangular factorization (LU, Cholesky, etc.)TRI compute inverse (based on triangular factorization)TRS solve systems of linear equations (based on triangular factorization)Given these de�nitions, the following table indicates the ScaLAPACK subroutines forthe solution of systems of linear equations: HE HP UNGE GG GB GT PO PP PB PT SY SP TR TP TB ORTRF � �TRS � � �RFS � �TRI � � �CON � �EQU � �QPF �QRFy �GQRy �MQRy �y{ also RQ, QL, and LQThe following table indicates the ScaLAPACK subroutines for �nding eigenvalues andeigenvectors or singular values and singular vectors:32



HE HP HBGE GB GG HS HG TR TG SY SP SB ST PT BDHRD �TRD �BRD �EQR �EQZEIN �EBZ �Orthogonal/unitary transformation routines have also been provided for the reductionsthat use elementary transformations.UN UPOR OPGHR �GTR �GBR �MHR �MTR �MBR �In addition, a number of driver routines are provided with this release. The namingconvention for the driver routines is the same as for the LAPACK routines, but the last3 characters YYY have the following meanings (note an `X' in the last character positionindicates a more expert driver):SV factor the matrix and solve a system of equationsSVX equilibrate, factor, solve, compute error bounds and do iterative re�nement, andestimate the condition numberLS solve over- or underdetermined linear system using orthogonal factorizationsEV compute all eigenvalues and/or eigenvectorsEVX compute selected eigenvalues and eigenvectorsThe driver routines provided in ScaLAPACK are indicated by the following table:HE HP HBGE GG GB GT PO PP PB PT SY SP SB STSV � �SVX � �LS �EVEVX �33



Appendix BScaLAPACK Auxiliary RoutinesThis appendix lists all of the auxiliary routines (except for the BLAS and LAPACK)that are called from the ScaLAPACK routines. These routines are found in the direc-tory SCALAPACK/SRC. Routines speci�ed with a �rst character P followed by an underscoreas the second character are available in all four data types (S, D, C, and Z), except thosemarked (real), for which the �rst character may be `S' or `D', and those marked (complex),for which the �rst character may be `C' or `Z'.Functions for computing norms:P LANGE General matrixP LANHE (complex) Hermitian matrixP LANHS Upper Hessenberg matrixP LANSY Symmetric matrixP LANTR Trapezoidal matrixLevel 2 BLAS versions of the block routines:P GEBD2 reduce a general matrix to bidiagonal formP GEHD2 reduce a square matrix to upper Hessenberg formP GELQ2 compute an LQ factorization without pivotingP GEQL2 compute a QL factorization without pivotingP GEQR2 compute a QR factorization without pivotingP GERQ2 compute an RQ factorization without pivotingP GETF2 compute the LU factorization of a general matrixP HETD2 (complex) reduce a Hermitian matrix to real tridiagonal formP ORG2L (real) generate the orthogonal matrix from PxGEQLFP ORG2R (real) generate the orthogonal matrix from PxGEQRFP ORGL2 (real) generate the orthogonal matrix from PxGEQLFP ORGR2 (real) generate the orthogonal matrix from PxGERQFP ORM2L (real) multiply by the orthogonal matrix from PxGEQLFP ORM2R (real) multiply by the orthogonal matrix from PxGEQRFP ORMBR (real) multiply by the orthogonal matrix from PxGEBRDP ORMHR (real) multiply by the orthogonal matrix from PxGEHRDP ORML2 (real) multiply by the orthogonal matrix from PxGELQF34



P ORMR2 (real) multiply by the orthogonal matrix from PxGERQFP ORMTR (real) multiply by the orthogonal matrix from PxSYTRDP POTF2 compute the Cholesky factorization of a positive de�nite matrixP SYTD2 (real) reduce a symmetric matrix to tridiagonal formP TRTI2 compute the inverse of a triangular matrixP UNG2L (complex) generate the unitary matrix from PxGEQLFP UNG2R (complex) generate the unitary matrix from PxGEQRFP UNGL2 (complex) generate the unitary matrix from PxGEQLFP UNGR2 (complex) generate the unitary matrix from PxGERQFP UNM2L (complex) multiply by the unitary matrix from PxGEQLFP UNM2R (complex) multiply by the unitary matrix from PxGEQRFP UNML2 (complex) multiply by the unitary matrix from PxGELQFP UNMR2 (complex) multiply by the unitary matrix from PxGERQFOther ScaLAPACK auxiliary routines:P LABAD (real) returns square root of under
ow and over
ow if exponent range is largeP LABRD reduce NB rows or columns of a matrix to upper or lower bidiagonal formP LACGV (complex) conjugates a complex vector of length nPDLACHKIEEE performs a simple check for the features of the IEEE standardP LACON estimate the norm of a matrix for use in condition estimationP LACPY copy a matrix to another matrixPDLAEVSWP moves the eigenvectors from where they are computed to a standardblock cyclic arrayP LAHRD reduce NB columns of a general matrix to Hessenberg formPDLAIECTB computes the number of negative eigenvalues in (A� �I)where the sign bit is assumed to be bit 32.PDLAIECTL computes the number of negative eigenvalues in (A� �I)where the sign bit is assumed to be bit 64.P LAQGE equilibrate a general matrixP LAQSY equilibrate a symmetric matrixPDLARED1D redistributes a one-dimensional arrayP LARF apply (multiply by) an elementary re
ectorP LARFB apply (multiply by) a block re
ectorP LARFG generate an elementary re
ectorP LARFT form the triangular factor of a block re
ectorP LASCL scale a matrix by CTO/CFROMP LASET initializes a matrix to BETA on the diagonal and ALPHA onthe o�-diagonalsPDLASNBT computes the position of the sign bit of a double precision
oating point numberP LASSQ Compute a scaled sum of squares of the elements of a vectorP LASWP Perform a series of row interchangesP LATRD reduce NB rows and columns of a real symmetric or complex Hermitianmatrix to tridiagonal formP LATRS solve a triangular system with scaling to prevent over
ow35



P LAUU2 Unblocked version of P LAUUMP LAUUM Compute the product U*U' or L'*L (blocked version)

36



Bibliography[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users' Guide,Second Edition, SIAM, Philadelphia, PA, 1995.[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel. J. Dongarra, J. Du Croz, A. Greenbaum, S.Hammarling, A. McKenney, D. Sorensen, LAPACK: A Portable Linear Algebra Libraryfor High-Performance Computers, University of Tennessee, CS-90-105, May 1990.[3] E. Anderson, A. Benzoni, J. Dongarra, S. Moulton, S. Ostrouchov, B. Tourancheau, andR. van de Geijn, Basic Linear Algebra Communication Subprograms. Sixth DistributedMemory Computing Conference Proceedings, IEEE Computer Society Press, 1991.[4] E. Anderson, J. Dongarra, and S. Ostrouchov, LAPACK Working Note 41: InstallationGuide for LAPACK, University of Tennessee, CS-92-151, February 1992.[5] Z. Bai and J. Demmel, Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Com-puter Science Tech. Report UCB/CSD-92-718, U.C.Berkeley, 1992.[6] C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, andD. Sorensen, LAPACK Working Note #5: Provisional Contents, Argonne NationalLaboratory, ANL-88-38, September 1988.[7] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker, SCALAPACK: A Scalable Lin-ear Algebra Library for Distributed Memory Concurrent Computers, Proceedings of theFourth Symposium on the Frontiers of Massively Parallel Computation (FRONTIERS'92), IEEE Computer Society Press, 1992.[8] J. Choi, J. J. Dongarra, and D.W.Walker, PUMMA: Parallel Universal Matrix Multipli-cation Algorithms, Technical Report ORNL/TM-12252, Oak Ridge National Laboratory,Mathematical Sciences Section, Oak Ridge, Tennessee, August 1993.[9] J. Choi, J. J. Dongarra, and D. W. Walker, Parallel Matrix Transpose Algorithms onDistributed Memory Concurrent Computers, Technical Report ORNL/TM-12309, OakRidge National Laboratory, Mathematical Sciences Section, Oak Ridge, Tennessee, Oc-tober 1993.[10] J. Choi, J. J. Dongarra, and D. W. Walker, PUMMA Reference Manual, TechnicalReport ORNL/TM-12494, Oak Ridge National Laboratory, Mathematical Sciences Sec-tion, Oak Ridge, Tennessee, (in preparation) 1993.37



[11] J. Choi, J. J. Dongarra, S. Ostrouchov, A. P. Petitet, D. W. Walker, R. C. Whaley,The Design and Implementation of the ScaLAPACK LU, QR, and Cholesky Factoriza-tion Routines, LAPACK Working Note 80, Technical Report CS-94-246, University ofTennessee, September, 1994.[12] J. Choi, J. J. Dongarra, S. Ostrouchov, A. Petitet, and R. C. Whaley, A Proposal fora Set of Parallel Basic Linear Algebra Subprograms, In preparation, 1995.[13] J. Demmel and K. Stanley, The Performance of Finding Eigenvalues and Eigenvectorsof Dense Symmetric Matrices on Distributed Memory Computers, LAPACK WorkingNote 86, Technical Report CS-94-254, September, 1994.[14] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling, \A Set of Level 3 Basic LinearAlgebra Subprograms," ACM Trans. Math. Soft., 16, 1:1-17, March 1990.[15] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, \An Extended Set of FortranBasic Linear Algebra Subprograms," ACM Trans. Math. Soft., 14, 1:1-17, March 1988.[16] J. Dongarra and R. van de Geijn, Two Dimensional Basic Linear Algebra Communica-tion Subprograms, LAPACKWorking Note 37, technical report, University of Tennessee,1991.[17] G. A. Geist, A. L. Beguelin, J. J. Dongarra, W. Jiang, R. J. Manchek, and V. S. Sun-deram., PVM 3.3 User's Guide and Reference Manual, Technical Report ORNL/TM-12187, Oak Ridge National Laboratory, Oak Ridge, Tennessee, September 1994.[18] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, \Basic Linear AlgebraSubprograms for Fortran Usage," ACM Trans. Math. Soft., 5, 3:308-323, September1979.[19] R. Clint Whaley, Basic Linear Algebra Communication Subprograms: Analysis and Im-plementation Across Multiple Parallel Architectures, LAPACK Worling Note 73, Tech-nical Report CS-94-234, University of Tennessee, May 1994.
38


